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A B S T R A C T

Wine production is intricately dependant on the evolution of weather conditions in a given year. Therefore,
seasonal weather forecasts coupled with empirical wine production models can play a critical role in the short to
medium-term management of vineyards and wineries. The implementation of suitable and timely adaptation
measures based on predicted wine productions may contribute to risk reduction and improve efficiency. The
performance of seasonal forecasts of wine production in the Portuguese Douro & Port wine region (D&P WR) is
here assessed for the first time. This application may serve as a case study to be potentially extended to other
wine regions. Here, we develop a predictive logistic model of wine production based on monthly mean air
temperatures and monthly total precipitation, averaged over the periods of February–March, May–June, and
July–September, complemented with an autoregressive component of wine productions. The wine production in
the D&P WR during the period 1950–2017 (68 years) is keyed into three classes: low, normal and high pro-
duction years. The model reveals a correct estimation ratio of approximately 3/4 for the full period, and 2/3
when applied to independent 10%-random subsamples. We then evaluate the performance of the ECMWF 7-
month seasonal weather forecasts, issued from February to August, in predicting the meteorological conditions
relevant for the wine production in the D&P WR. Overall, the performance is satisfactory for the meteorological
predictors. As for the weather forecasts coupled with the wine production model, results reveal that forecasts
from May to August are strikingly the best performing, as 1) more observed data is integrated into the empirical
model and 2) the skill of seasonal forecasts for summer months is higher. The operational application of these
forecasts in the D&P WR is already foreseen. Given the encouraging results, we believe this case study and the
established methodology may be tested and adapted to other wine regions worldwide, with obvious benefits for
the winemaking sector.

1. Introduction

Seasonal weather forecasts are becoming increasingly important
across a wide range of sectors, such as agriculture, energy, water re-
sources and insurance (Doblas-Reyes et al., 2013; Turco et al., 2017).
Prediction of extreme events (such as the 2003 heatwave) on the sea-
sonal time scale still represents a challenge in the extra-tropical regions
(Weisheimer et al., 2011). However, new findings show the potential
for a better understanding of the spatial and temporal features of these
climatic events, along with associated precursors (Scaife et al., 2014;
Prodhomme et al., 2016; Wang et al., 2017). The skill of seasonal
forecasts is generally limited in Europe, but there are regions and sea-
sons where significant skill appears as a result of processes like the

ongoing climate change and/or soil processes, amongst others. Conse-
quently, seasonal forecasts are an added value for the agricultural
sector across Europe (e.g. Ceglar et al., 2018; Falloon et al., 2018).
Although the assessments of seasonal forecast skills applied to the
winemaking sector are still incipient, they are of foremost relevance,
owing to the importance of this sector in the economy of many regions
worldwide.

More specifically in Portugal, vitiviniculture is a key socioeconomic
sector. According to the most recent data from the Portuguese gov-
ernmental authorities (Instituto da Vinha e do Vinho, IVV; http://www.
ivv.gov.pt/), the vineyard area in Portugal is of roughly 187 000 ha (the
10th largest national vineyard area in the world). Portugal is the 11th
wine producer and the 9th wine exporter worldwide (OIV, 2018).
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Although Mediterranean climatic conditions prevail, a large diversity of
viticultural “terroirs” (van Leeuwen et al., 2004) and wine typicity
(Drappier et al., 2019) can be found. Different mesoclimates, soils,
cultural practices and grapevine varieties explain this diversity
(Magalhães, 2008). This study targets the Douro & Port wine region
(D&P WR henceforth), located in northern Portugal (Fig. 1), which
comprises two conterminous Denominations of Origin (Douro & Port).
This region comprises a vineyard area of nearly 45 000 ha, corre-
sponding to approximately 22% of the total vineyard area in Portugal.
It is responsible for >40% of the Portuguese wine exports, dominated
by the world-famous Port Wine (Gouveia et al., 2018). The D&P WR
features very complex orography, with a large diversity of terroirs
(Fraga et al., 2017b). These different terroirs have strong implications
on the chromatic and aromatic descriptors of the wines (Prata-
Sena et al., 2018). A large number of autochthonous varieties can be
found, but with low productivity (typically <5 000 kg ha−1).

The D&P WR is characterized by meso‑Mediterranean climates, with
annual mean temperatures within the range of 12–15 °C, January
means from 5 to 9 °C and July means from 21 to 25 °C (Costa et al.,
2017). In terms of aridity/dryness, conditions vary from humid in the
“Baixo-Corgo” (westernmost sector) and “Cima-Corgo” (central sector)
sub-regions to sub-humid (i.e. annual totals of precipitation below
evapotranspiration) in the “Douro Superior” (easternmost sector), with
a strong east-west precipitation gradient, ranging from ca. 400 to
1200 mm (Costa et al., 2017). Precipitation is ubiquitously scarce in
summer (June–August), typically less than 10% of annual precipitation,
as it is strongly concentrated in autumn and winter, with large inter-
annual variability (Costa et al., 2017).

Owing to the widely recognised sensitivity of the grapevine phy-
siological development to weather and climate conditions, through
several direct and indirect processes (Smart, 1985), grape berry quan-
tity and quality reveal important inter-annual variability. Grapevine
phenological timings are largely controlled by temperature
(Malheiro et al., 2013), also influencing vineyard management and
cultural practices. Hence, viticulture is at risk under climate change, as
grapevine responses will be necessarily different under future climates
(Moriondo et al., 2015; Fraga et al., 2016a; de Cortazar-Atauri et al.,

2017). This may threaten wine typicity and wine balance of a given
region, or even, in more extreme circumstances, its viticultural suit-
ability (Santos et al., 2020a).

In Portugal, where significant warming and drying trends are pro-
jected for the future, including enhancements in the frequency of oc-
currence of temperature and precipitation extreme events (Costa et al.,
2012; Andrade et al., 2014; Santos et al., 2019b), viticulture is parti-
cularly vulnerable to climate change (Fraga et al., 2014a, 2016b,
2017a; Santos et al., 2019a). The strong connection between pre-
cipitation in Portugal and the large-scale atmospheric circulation is a
major factor to take into account in future climate conditions. Shifts in
the large-scale atmospheric patterns within the Euro-Atlantic sector will
significantly increase the frequencies of occurrence of severe pre-
cipitation deficits and droughts (Santos et al., 2009, 2016). This will
challenge the country's water resources (Andrade et al., 2011) and limit
irrigation as a potential adaptation measure for viticulture (Fraga et al.,
2018). More frequent and intense heatwaves are also an important
hazard to be taken into account in future climates (Fraga et al., 2020).

In the D&P WR, the strong inter-annual variability in grapevine
yields and wine production has been associated to atmospheric forcing,
while long-term trends have been linked to changes in cultural practices
and management, as well as in national and regional policies, such as
programmes devoted to vineyard plantation, restructuring or replace-
ment (Santos et al., 2011, 2013). The pronounced interannual varia-
bility may have important impacts on phenology (e.g. budburst, flow-
ering and veraison), yields, wine acidity and berry sugar content, thus
challenging the stable production of high-quality wines (Santos et al.,
2020a). Therefore, knowing in advance the potential wine production,
based on seasonal climate forecasts, is of utmost relevance for the
winemaking sector. Suitable adaptation measures can be applied to
mitigate both the annual fluctuations in yields, in the short-term, and
the climate change impacts, in the long-term. Changes in agricultural
practices, such as pruning, application of sunscreens, cover crops,
mulching, soil tillage, phytosanitary treatments, irrigation and genetics,
are only a few examples of adaptation options (Duchene, 2016;
Mosedale et al., 2016; Bernardo et al., 2018; Fraga et al., 2018;
Fraga and Santos, 2018). Stock management in wineries is also a key
aspect that can be better planned when predictions are available. All
these measures may effectively reduce costs and improve the efficiency
of the whole wine production chain, thus highlighting the need for
reliable seasonal predictions of wine production. Although this study is
focused on a specific wine region, similar methodologies can be im-
plemented in other wine regions worldwide.

Along the previous lines, the present study objectives are threefold:
1) to develop a wine production model for the D&P WR that can be
operated with seasonal forecasts of meteorological variables, 2) to as-
sess the skill of the seasonal weather forecasts in the D&P WR, and 3) to
evaluate the performance of the seasonal predictions of wine produc-
tion in the D&P WR. The first objective builds on the study by
Santos et al. (2013), where a wine production model for the D&P WR
was developed. In that preceding study, climate model data were used
to generate long-range projections of wine production, based on dif-
ferent anthropogenic forcing scenarios. Nevertheless, here, we develop
a novel empirical wine production model aiming to integrate seasonal
weather forecasts into medium-range regional wine production out-
looks. To our knowledge, objectives 2) and 3) have not been addressed
in any previous study. Data and methods are presented in Section 2, the
main results in Section 3, followed by a discussion of the main results
and the overall conclusions of the study.

2. Material and methods

2.1. Wine production data

We apply a multinomial logistic linear regression (Wilks, 1995) to
model the wine production in the D&P WR, northern Portugal (Fig. 1).

Fig. 1. Douro & Port Wine Region: Hypsometric map of mainland Portugal
with the geographical location of the Douro & Port Wine Region. Seasonal
weather forecasts were retrieved for grid cells within the outlined rectangle.
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Since sub-regional or local/single “Quinta” (wine estates) time series
tend to suffer from many inconsistencies and heterogeneities, we use
the D&P WR wine production time series (in 103 hl) from the IVV (the
entity responsible for monitoring and regulating regional wine pro-
duction) over the period from 1950 to 2017 (Fig. 2a). This is a relatively
long time series (68 years) compared to other Portuguese wine regions
and was quality-controlled by IVV.

2.2. Logistic regression

In the development of the wine production model, we build on
Santos et al. (2013). In that study, a logistic linear regression was ap-
plied to model wine production in the D&P WR, using as exploratory
variables the mean temperature from February to March, the mean
temperature in May and the monthly total precipitation in March. The
meteorological variables were obtained from a local weather station
(Vila Real). As in that preceding study, the annual wine productions are

first categorized into three classes: low [0 to 1/3 quantile], normal]1/3
to 2/3 quantile[and high [2/3 to 1 quantile]. As potential predictors,
we test the mean (TG), minimum (TN) and maximum (TX) monthly
temperatures, as well as monthly total precipitation (RR). These vari-
ables have been retrieved from the E-OBS dataset (19.0e version;
Cornes et al., 2018), for the three grid cells covering the whole of the
D&P WR (their full extent is outlined by the rectangular sector in
Fig. 1). The gridded data are then spatially averaged to obtain a single
time series for each variable, on the monthly timescale and over the
selected period (1950–2017). Using a gridded dataset (E-OBS) for
model calibration is a clear advantage when the model is aimed to run
with gridded simulated data from weather forecasts. Furthermore, the
E-OBS dataset provides more homogeneous and representative in-
formation of the whole region than a single weather station. None-
theless, a correlation analysis between these time series and the cor-
responding variables recorded at the weather station in Vila Real,
located within the D&P WR, showed correlation coefficients >0.95 for

Fig. 2. Wine production time series: (a) Chronogram of the wine production in the Douro/Port Wine Region for the period of 1950–2017 (Source: IVV, http://
www.ivv.gov.pt/), along with the corresponding linear regression line (dashed line) and the 11-year moving average (thick solid line). The 11-year moving standard
deviation (SD) is also displayed (grey shading). (b) Boxplot of the linearly detrended wine production time series (dimensionless variable, normalised to zero-
minimum and unit-maximum). Horizontal line for the median, box upper/lower limits for 75/25th percentiles, and whiskers for non-outlier maximum and minimum
(outlier: 1990 production). (c) Burg's spectrum (power spectral density) of the linearly detrended wine production time series.
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all variables (statistically significant at 1% level).
We then apply exploratory stepwise multivariate linear regressions

(Wilks, 1995) between all potential predictors and wine production.
The results show that: 1) TN and TX do not perform better than TG, 2)
variables averaged over several months tend to perform better than
monthly means, and 3) improvements are achieved when lagged wine
production series are also incorporated in the model. The stepwise
approach selects 11 exploratory variables (predictors): the average of
monthly mean TG and monthly total RR from February to March, May
to June and July to September (6 variables), and previous year wine
production anomalies w.r.t. the five preceding years (five auto-
regressive variables). For the autoregressive variables, we use wine
production data from 1945 to 1949, obtained from the same source as
the data from 1950 to 2017 (IVV). Finally, we fit a multinomial logistic
regression model based on the aforesaid variables.

The selected meteorological variables are in general agreement with
the grapevine growing season (April to October, in the Northern
Hemisphere). The period from February to March corresponds to the
end of the winter dormancy phase (Leolini et al., 2020), which culmi-
nates with grapevine budburst. April does not show statistically robust
connections to wine production. The period from May to June is critical
for flowering and veraison, two major phenological stages, whereas the
period from July to September is determinant for grape berry matura-
tion and for determining the technical harvest date (Smart, 1985;
Magalhães, 2008). The autoregressive variables are coherent with the
2-year reproductive cycle of grapevines (Smart, 1985;
Magalhães, 2008). As such, the identified periods correspond to critical
stages of grapevine growth and development, which will ultimately
determine yields and vintage wine production. The wine production
model used in the present study significantly improves the one of
Santos et al. (2013), as it considers new variables computed over dif-
ferent temporal windows, and incorporates an autoregressive compo-
nent based on wine production series.

The probabilities of occurrence of the three wine production classes
are thereby attained for 1950–2017. We assign the most probable class
simulated by the model to each year and compare to the observed class.
The “correct estimation ratio” is the fraction of correct assignments by
the model for all years of the selected period (1950–2017). For vali-
dation purposes, the model performance is tested for 10%-subsamples
of independent data (verification subsamples), being the remaining
90% of the data used for model calibration (training subsamples). These
subsamples are randomly selected from the 68 years of data, without
repetition of years in the same subsample. In total, 1000 subsamples are
considered. The correct estimation error calculated over all subsamples
is then used as a validation performance metric.

2.3. Seasonal weather forecasts

For assessing the seasonal forecast skill of the wine production in
the D&P WR, we use an ensemble of 51 members/initializations of the
ECMWF (European Centre for Medium-Range Weather Forecasts) seasonal
forecast system 4 (S4; Molteni et al., 2011). Ensemble members reflect
model integrations that run with slightly different initial conditions for
the atmosphere and the ocean (Du et al., 2012; Balmaseda et al., 2013).
The seasonal forecast of air temperature and total precipitation is per-
formed on a horizontal resolution of nearly 0.7° latitude × longitude.
To evaluate the performance of the wine production forecasts (driven
by seasonal weather forecasts), we use a set of retrospective forecasts
emulating real predictions for a 30-year period (1981–2010), joined
with the operational S4 forecast for the period 2011–2015. The lead
time of forecasts is 7 months over the full period (1981–2015).
Therefore, to allow the computation of all the above-mentioned me-
teorological predictors of the wine production model (averages of
monthly TG and RR from February to September), we consider seasonal
weather forecasts issued from February (forecasts available from March
to September) until August (forecasts available from September to

March of the following year, only September is used). Seasonal fore-
casts are issued monthly, from February (before budburst) until August
(close to harvest), thus covering the whole grapevine growing season.

All forecasted variables are bias-corrected on the monthly timescale
using the aforementioned E-OBS variables as a baseline (1981–2015).
E-OBS precipitation and temperature data are re-gridded to match the
grid of seasonal forecasts. We apply conservational remapping for
precipitation and bi-linear interpolation for air temperature. We apply a
bias correction methodology based on non-parametric quantile map-
ping (Gudmundsson et al., 2012), with E-OBS re-gridded datasets used
as an observed meteorological reference. We retrieve a single grid cell
over northern Portugal, where the D&P WR is located (Fig. 1).

To assess the weather forecast performance, we calculate the mean
absolute error (MAE) of the simulated predictors as a function of the
forecast month, i.e. the month when the forecast is issued (from
February to August). For the predicted wine production in each forecast
month, we compute the Gilbert skill score – GSS (Wilks, 1995) between
seasonal forecasts of the different production classes, for all ensemble
members, and the predicted production class based on the observed
meteorological predictors. These scores provide a way of summarising
the ability of a deterministic prediction to correctly forecast a dichot-
omous event. GSS measures the fraction of observed and/or forecast
events that are correctly predicted, adjusted for hits associated with
random chance. Score 1 is assigned to a perfect forecast, while random
forecasts correspond to score 0.

3. Results

3.1. Analysis of the wine production time series

Concerning the wine production series (Fig. 2a) from 1950 to 2017,
no missing data exists and only a slight long-term linear trend is ap-
parent (dashed line), though it is not statistically significant at a 5%
significance level, according to the non-parametric Mann-Kendall test
(Wilks, 1995). The 11-year moving averages (thick black line) also hint
at the absence of a non-linear trend, thus showing that the background
low-frequency variability is mostly represented by the linear regression
curve (Fig. 2a). The 11-year moving standard deviations (SD, grey
shading) reveal some non-stationarity in the variance, with a maximum
in the period of 1986–2000 and a secondary maximum in the early
1960s (Fig. 2a). However, no consensual explanation was found for this
behaviour, particularly for the strong fluctuations of the production in
1986–2000. As the regional climatic conditions do not reveal a similar
pattern in SD (not shown), this behaviour might be related to non-cli-
matic factors.

The linearly detrended time series is normally distributed according
to the Lilliefors test and has no statistically significant serial auto-
correlation (both tests performed at a 5% significance level). The cor-
responding boxplot and Burg's spectrum of the detrended wine pro-
duction time series, normalized to zero-minimum and unit-maximum
(dimensionless variable), reveal very low skewness (Fig. 2b) and some
remaining background red-noise level, despite a secondary peak
centred at about 4 years (Fig. 2c). This suggests some periodicities in
wine production that may enable improving the model performance
with the incorporation of auto-regressive variables. These oscillations
in wine production may be explained by the 2-year reproductive cycles
and were already identified in previous studies (Fraga et al., 2014b).
Thus, the wine production time series fulfils the elementary assump-
tions for multinomial logistic regression analysis (Wilks, 1995).

3.2. Calibration and validation of the production model

The application of the multinomial logistic regression model to the
wine production data in the D&P WR over the 68-year period is de-
picted in Fig. 3. As stated above, we consider 11 predictors, namely
average of monthly mean TG and monthly total RR over the periods
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from February to March, May to June and July to September (6 vari-
ables) and wine production anomalies for the previous five years (5
variables).

Fig. 4 shows the normalized regression coefficients of the logistic
model for class-3 (high production). As expected, for class-1 (low pro-
duction) the coefficients are of opposite signal and similar magnitude

(not shown). The coefficients reveal that anomalously cool and wet
conditions in February–March are favourable to wine production; the
same holds for anomalously warm and dry conditions in May–June and
July–September, which is in clear agreement with previous studies
(Santos et al., 2011, 2013). Precipitation in early spring usually pro-
vides enough soil moisture for grapevine development, while abundant
precipitation at later stages can be particularly harmful, triggering
phytosanitary risks in the vineyards caused by outbreaks of pests and
diseases (Santos et al., 2020a). Moderate cool temperatures in early
spring are useful to avoid an excessive advancement of the phenological
stages, such as budburst, which may increase e.g. late frost risk
(Santos et al., 2020a). Conversely, moderately warm temperatures in
late spring and summer are normally favourable to the grapevine
growth and development, promoting higher yields (Santos et al.,
2020a). Furthermore, when the previous year experienced higher pro-
duction than the year before, the production also tends to be higher and
a three-year oscillation is found in the regression coefficients back to 5
years (Fig. 4), which is in accordance to the reproductive cycle of
grapevines (Magalhães, 2008; Santos et al., 2020a).

The observed and modelled wine production classes (1-low, 2-
normal and 3-high production) reveal an overall good agreement, with
a correct estimation ratio of 79%, i.e. 53 years out of 68 are accurately
estimated by the model (Fig. 3a). Of the 14 years that are not accurately
estimated, 3 are in class-3, 2 in class-1 and 9 in class-2. Hence, the
model can simulate most of the extreme years, as the majority of the
inconsistencies are indeed in class-2 (normal production). These false
classifications correspond to years in which normal wine production is
reported despite the unfavourable meteorological conditions, which let
the model suggests anomalously higher/lower production. In part,
these discrepancies can be explained by several measures applied by the
winemaking sector to stabilize production. Regardless of the production
class, years with false classifications are spread throughout the study

Fig. 3. Empirical wine production model:
(a) Observed and modelled wine production
classes (1-low, 2-normal and 3-high produc-
tion) in the Douro/Port Wine Region, Portugal,
from 1950 to 2017 (see legend for details). (b)
Cumulative bar chart of the corresponding
probabilities of occurrence (in%) of the three
wine production classes from the multinomial
logistic regression model. The 11 exploratory
variables are the average of monthly mean TG
and monthly total RR over February to March,
May to June and July to September (6 vari-
ables) and wine production anomalies for the
previous 5 years (5 variables). Wine classes are
defined as: low – [0 to 1/3 quantile], normal –]
1/3 to 2/3 quantile[and high – [2/3 to 1
quantile].

-

Fig. 4. Regression coefficients of the wine production model: Regression
coefficients of the logistic regression model for class-3 (high production). The
coefficients were normalized to a unit absolute maximum of each group of
variables: TG (mean temperatures), RR (total precipitations) and Prod-i (pre-
vious year production anomalies w.r.t. the i th preceding year).
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period, not revealing any clear temporal dependency or systematic bias.
The most striking discrepancies are for 1955 when the model estimates
high production while low production was observed, and for 1974
when the model estimates low production and high production was
observed instead. However, we have no consistent explanation for these
two extreme years. It is important to bear in mind that only atmo-
spheric mean conditions are taken into account in the present model,
thus not taking into account extreme weather episodes (e.g. frost, hail,
wind gusts or heavy precipitation) or weather-driven extreme events
(landslides) that may significantly alter annual production. Further-
more, many other wine production-controlling factors, such as man-
agement measures in both the vineyards and the wineries, which often
envision a stabilization of the annual wine production, are also not
taken into account by this model. These decisions may lead to “normal”
production years even under anomalous atmospheric conditions, which
may underlie some of the above-stated discrepancies between estimated
and observed productions.

The probabilities of occurrence of the three wine production classes
(Fig. 3b) complement the information provided above, also highlighting
the probabilistic (not deterministic) nature of the model. High prob-
abilities of occurrence can be found in a given class for some years (ca.
99% for class-1 in 1971), while very balanced probabilities are found
for other years (e.g. 1960). For each year, the probabilities of occur-
rence of each class are indeed much more informative than providing
only the most probable class, enabling a better judgement of the pre-
diction. As described above, we have tested the model performance in
1000 10%-subsamples of independent data, randomly selected from the
full period. The correct estimation ratio averaged over all subsamples is
of 67%. This value reveals a good performance against a ratio of ap-
proximately 33% obtained using a randomly generated wine produc-
tion series from a uniform probability distribution (random process
with equal probability for each of the three classes), i.e., without the
correlation structure between production and the predictors.

Although we follow a similar statistical approach as in
Santos et al. (2013), the wine production model is notably modified, by
integrating new variables, defined over new temporal windows, and by
considering autoregressive variables. Moreover, the model calibration
and validation is carried out using the gridded E-OBS dataset instead of
a single local weather station (Vila Real). The gridded data are more
homogenous and representative of the entire D&P WR than the single-
site meteorological data. These features may explain the identification
of more robust relationships between the wine production records for
the whole D&P WR and the meteorological elements, thus allowing the
incorporation of additional predictors in the model and enhancing its
overall performance.

3.3. Performance of seasonal forecasts of atmospheric variables

Monthly forecasts with a lead time of 7 months are issued from
January (forecast covering the period from February to August) to
August (forecast covering the period from September to March of the
following year). To assess the performance of these seasonal forecasts,
the MAE of monthly TG and RR are shown in Fig. 5a,b. For each
monthly variable and forecast month, we compute the MAE between
the corresponding ensemble mean of the 51 forecast members and the
corresponding E-OBS mean over the full period of 1981–2015. It should
be mentioned that no biases in the means exist, as data was previously
bias-corrected. As such, MAE only reflects the inter-annual variability
of the departures between ensemble means and E-OBS.

The MAE maximum in the period from March to May, apparent in
both variables (MAE >1.1 °C in TG and >30 mm in RR), can be ex-
plained by the fact that these months correspond to the transition from
wintertime to summertime regimes, thus with higher uncertainty in
weather conditions. As an illustration, the forecast issued in January
reveals a gradual increase in MAE of TG (or RR) until April (or March),
but a decrease can be found thereafter. Similar considerations hold for

September. In general, the MAE of TG and RR depict strong seasonality.
As a Mediterranean-type climate, with scarce summer precipitation,
MAE of RR in July and August are very low (<10 mm). Therefore, for a
given forecast issue, it is clear that the forecast skill does not necessarily
decrease with time. In climates with strong seasonality, the skill may
indeed increase with time over periods when weather conditions are
typically more settled and persistent. As the empirical model predictors
are based on these monthly means, the above-mentioned forecast errors
are expected to directly influence the forecast skill of the former vari-
ables.

We now assess the accuracy of the monthly forecasts of each pre-
dictor by the corresponding MAE, as a function of the forecast month,
from February to August (Fig. 5c,d). MAE is non-zero for TG(Feb-Mar)
in February, TG(May-Jun) from February to May, and TG(Jul-Sep) from
February to August, as for the respective following month each variable
will be entirely defined by observations (with zero MAE). Similar
considerations can be made for the three RR variables. As expected,
gradually lower errors are found as observational data is integrated into
the model predictors. Regarding TG(May-Jun) and RR(May-Jun), there
are no significant decreases of MAE until May (MAE>1.0 °C), when the
observed TG or RR for this month is incorporated in the corresponding
predictor. As such, in line with the previous considerations concerning
the high uncertainty in spring TG and RR (Fig. 4), we have not iden-
tified higher skill for these two variables with time. For TG(Jul-Sep) and
RR(Jul-Sep), analogous inferences can be made, as only in July and
August the MAE consistently decreases. In general, these findings
highlight that the seasonal forecasts of TG and RR for the D&P WR are
coherent with the E-OBS observational dataset, and can then be con-
sistently coupled with the logistic model to generate predictions for the
regional wine production.

3.4. Performance of seasonal forecasts for wine production classes

When the production model is run with the forecasted variables (51-
member ensemble means), the ratio of correct predictions (in%) by
forecast month gradually increases, approaching the ratio obtained
when the model is run only with the E-OBS observational data (Fig. 6).
For the sub-period with seasonal forecasts (1981–2015), the ratio of
correct predictions using E-OBS is higher than for the whole period
(1950–2017), being equal to 89% instead of 79%. The probably higher
data quality in the most recent sub-period, in both meteorological
variables and wine production, may explain this improvement in the
wine production model performance.

For July and August, the number of correct predictions of the wine
production class is of approximately 80%, while for May and June the
values are of 71% and 77%, respectively. This can be considered as a
good result owing to the simplicity of the approach, to the complexity
of the wine production-controlling factors and their multiple interac-
tions, as well as to the still existing limitations in seasonal weather
forecasts for the study region. Although the forecast skill is relatively
low for February, March and April, it is within the interval from 46% to
57% (the ratio of correct predictions in a purely random prediction
process is 1/3, i.e. approximately 33%). Hence, although the monthly
forecasts from May to August provide much higher predictive potential,
the forecasts from February to April may also be considered a useful
decision support tool, giving already some clues about the wine pro-
duction for a given year, with several months in advance.

The previous findings are based on the 51-member ensemble means
of the forecasted meteorological variables. Nonetheless, information on
the ensemble internal variability is of major relevance for an accurate
assessment of the actual predictive potential. GSSs are calculated to
provide measures on how seasonal wine production forecasts corre-
spond to different levels of the observed wine production. For this
purpose, the GSSs are shown in matrix charts (Fig. 7), by forecast
month (February to August, x-axis) and wine production class (1-low, 2-
normal and 3-high, y-axis). These charts depict GSS in a greyscale,
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ranging from 0 (no skill) to 1 (perfect skill). The scores are assessed
either using the estimated wine production class, indirectly obtained
from the logistic model driven by the E-OBS observational data

(Fig. 7a), or the directly observed class (Fig. 7b). As expected, the GSSs
are slightly lower when considering the observed rather than the esti-
mated wine production class. In fact, the direct comparison with the
observed production classes comprises the uncertainties in both the
weather forecasts and the logistic model, thereby explaining the lower
skill scores. The skill of seasonal predictions is dependant on the pro-
portion of seasonal forecast ensemble members (threshold) that lead to
the same wine production class (ensemble agreement on the correct
class). Thus, matrix charts for thresholds varying from 0.5 (50% of the
members agree with the correct class) to 1 (all ensemble members agree
with the correct class) are displayed (Fig. 7).

Overall, the outcomes hint at high skill in the seasonal predictions
from May onwards, particularly for low production years (Fig. 7). The
lowest skill belongs to the 1-ratio probability threshold, i.e. all en-
semble members agree on the production class. In this case, skill scores
above 0 only characterize seasonal production forecasts issued from
May until August, with the highest skill observed in August. The
member agreement is relatively low and, therefore, the skill tends to be
higher for lower thresholds (from 0.5 to 0.9-ratios), i.e., when smaller
fractions of the ensemble members are used for the prediction of an
event. In effect, for lower thresholds, some relevant skill appears for
seasonal forecasts issued earlier in the year, mostly for normal and high
wine production classes. Conversely, for low production years, the skill
remains low independently of the considered threshold for start dates
before May. One tentative explanation for this differentiated response is
the possibly stronger dependency of the occurrence of low production
years on unfavourable summertime conditions and extreme events,
such as heatwaves and severe droughts. Regardless of the threshold
taken and the wine production class, the seasonal forecast skill is
manifestly higher in summer months. Thus, these outcomes highlight

Fig. 5. Performance of seasonal forecasts of meteorological variables:Mean absolute errors (MAE) of (a) monthly mean temperature, TG (in °C), and (b) monthly
mean total precipitation, RR (in mm). (c,d) MAE in (a,b) averaged from February to March (Feb-Mar), May to June (May-Jun) and July to September (Jul-Sep).
Monthly forecasts are issued from February to August (forecast month), with a lead time of 7 months, i.e., a forecast issued in February covers the period from March
to September, and so forth. All forecasted variables were previously bias-corrected on the monthly timescale, w.r.t. the baseline period of 1981–2015, and using re-
gridded E-OBS data covering the D&P WR.

Fig. 6. Performance of wine production predictions: Ratio of correct pre-
dictions (in%) by forecast month. The ratio obtained when the wine production
model is run with meteorological observational data is also shown (E-OBS),
which is equal to the observed wine production class for 89% of the years. In
January is not possible to issue production forecasts as model data is not
available until September (forecast period of 7 months). The lower graph limit
of 30% is of approximately 1/3, i.e. the probability of a random correct pre-
diction of the wine production class.
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the high potential of the monthly weather forecasts from May to August
to predict wine production classes in the D&P WR.

4. Discussion and conclusions

The usefulness of seasonal weather forecasts on predicting wine
production has been herein assessed. We have categorized wine pro-
duction into three classes (low, normal and high production years) and
applied multinomial logistic regression to obtain a predictive model of
wine production in the Portuguese D&P WR over the period
1950–2017. In this empirical model, temperature and precipitation
averaged over the periods of February–March, May–June and
July–September, along with the anomalies of wine production in the
previous 5 years, are used as predictors. This wine production model
integrates a meteorological component, as in a previous study by
Santos et al. (2013), and an autoregressive component. The

meteorological component takes into account new variables compared
to the previous study, defined over new temporal windows, takes ad-
vantage of a gridded observational dataset (E-OBS) and thus establishes
more statistically robust relationships between meteorological condi-
tions and the wine production in the D&P WR. Correct estimation ratios
of 79% (calibration) and of 67% (validation) are achieved, highlighting
a quite satisfactory performance, despite the very simple statistical
methodology employed.

A 51-member ensemble from the ECMWF forecast system has been
used to produce weather forecasts for the D&P WR, issued from
February to August, with a lead time of 7 months. Forecasts from May
to August are generally the best performing, mostly because 1) there is
already a considerable part of observed data integrated into the em-
pirical model, and 2) the skill of seasonal forecasts for summer months
is generally higher in southern Europe. Furthermore, the skill in the
seasonal wine production for high and normal production classes is

Fig. 7. Performance of wine production predictions by production class and ensemble probability thresholds: Matrix charts of the Gilbert skill scores (GSS,
grey shading) of the wine production class forecast, using as reference (a) the estimated class by the wine production model (logistic empirical model) driven by the
E-OBS observational data, and (b) the observed production class. GSS are computed using the 51-member ensemble of ECMWF seasonal forecast system in-
itializations, as a function of the forecast month (February to August, x-axis) and for the three wine production classes (1-low, 2-normal and 3-high, y-axis). Different
probability thresholds (0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) are also shown. These thresholds indicate the ratio of seasonal forecast ensemble members that correctly predict
the wine production class. GSS ranges from –1/3 to 1, with 0 indicating no skill and 1 indicating perfect skill. The grey shading scales are defined for the range from 0
to 1.
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higher when we consider a relatively low threshold for the number of
members (close to half of the members).

Overall, the results are very promising, demonstrating significant
potential predictability of the wine production in the D&P WR. Other
factors, such as the critical role played by adverse extreme weather
events, are not taken into account in the current approach. Hailstorms
and heavy precipitation events are relatively frequent in late spring and
early summer in the D&P WR (Santos and Belo-Pereira, 2019), which
may underlie significant reductions in wine production, at least at sub-
regional scale. Although the analysis of the relationship between these
events and regional wine production is out of the scope of the present
study, the need for in-depth dedicated investigation is here pointed out.
Nevertheless, the insufficient representation of extremes by the sea-
sonal forecasting system (in terms of intensity and spatial-temporal
occurrence) must be taken into account when aiming to incorporate the
effects of extreme events. Interesting opportunities may arise from the
seamless merging of short-to-medium range weather forecasts (up to
two weeks). A unified approach should be envisioned in future research
to further enhance the effective value of these predictions for the
winemaking sector, not only in Portugal but also in other wine regions
worldwide.

The logistic regression approach followed herein is a rather simple
method that can be easily implemented in a wide range of applications
and decision support platforms. However, the application of more ad-
vanced statistical tools, such as those based on machine learning
techniques (Alexis et al., 2020), may significantly enhance the current
approach in forthcoming research, including the modelling of other
crop variables. Seasonal forecasts for other variables relevant to viti-
culture and winemaking may also be valuable, such as grape berry
quality attributes, grapevine stress parameters or the timings of phe-
nological stages. Phenology models have already been developed for
the D&P WR and applied under future climate change scenarios
(Costa et al., 2019; Reis et al., 2020). Their application to seasonal
weather forecasts should also be foreseen in the near future. The pre-
sent study can be regarded as a first step towards the implementation of
a forecast system for the wine sector in the D&P WR, and other wine
regions in Portugal, which can be operationalized within a consortium
with research units, winegrower's associations and the Portuguese
Weather Service, amongst other actors. This implementation is of
foremost relevance for stakeholders from the winemaking sector, taking
into account the high exposure, vulnerability and risk that viticulture is
facing under ongoing climate change (Santos et al., 2020b).
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