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Abstract: The quartz veins containing scheelite from Fonte Santa mine cut the Lower 10 

Ordovician quartzites. A muscovite-biotite granite (G1) and a muscovite granite (G2), 11 

both S-type, crop out close to the Fonte Santa mine and are related to the Moncorvo - 12 

Bemposta shear zone. The most altered samples of G2 show intense muscovitization and 13 

microclinization and contain chlorite, columbite-tantalite, wolframite, W-ixiolite and Fe-14 

oxides. The tin-bearing granites contain 18 ppm (G1) and 73 ppm (G2) Sn. The most 15 

altered samples of G2 correspond to a tungsten granite. The quartz veins contain 16 

muscovite, chlorite, tourmaline, scheelite, pyrrhotite, pyrite, sphalerite, chalcopyrite, 17 

galena, arsenopyrite, iron oxides, Fe-sulfates, phosphates of Pb, Fe and Al. The Fonte 18 

Santa mine area was exploited for W between 1942 and 1982. At the end of November 19 

2006, a flood event damaged the tailings dam of Fonte Santa mine, releasing 20 

contaminated material and increasing contaminant levels in water within the area of 21 

influence of the mine. The waters related to the Fonte Santa mine are poorly mineralized, 22 

with electrical conductivity < 965 µS / cm, and of a mixed type or HCO3
-
 and SO4

2-
 types. 23 

Most pH values (5.0  8.5) indicate that there is no significant acidic drainage in the 24 

region, as found in other areas. More acidic values (pH = 3.4) were found in the mine’s 25 

lagoon. Waters associated with mineralized veins and old mine activities have Fe and Mn 26 

concentrations that forbid their use for human consumption and agriculture. Natural Na, 27 

Mg and K water contents are associated with the alteration of albite, chlorite and 28 

muscovite of country rock, while Ca with the W-bearing quartz veins. Weathering agents 29 

are carbonic and sulphuric acids and the latter has a strong influence in areas draining 30 

fine-grained mine tailings. 31 
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1. Introduction 33 

 34 

Mining activities have been and remain important contributors to the Portuguese 35 

economy. The Neves Corvo and Panasqueira mines are still active. Although about ninety 36 

abandoned mining areas are known to be contaminated in Portugal (Oliveira et al., 2002), 37 

only a few of these have been subjected to environmental remediation. The abandoned 38 

mining sites are frequently located close to occupied rural areas and some of the waters 39 

and soils are used for agriculture or human consumption without any assessment of 40 

environmental and human health risks (Abreu et al., 2008).     41 

Sulfides are stable and very insoluble under reducing conditions, but oxidation 42 

takes place when these minerals are exposed to atmospheric conditions. The weathering 43 

of sulfide minerals promotes the formation of sulfuric acid, together with ferrous and 44 

ferric sulfates and ferric hydroxides, which lead to acidic conditions in the environment 45 

(Bell, 1998), with acid waters containing a high level of dissolved metals (e.g., Marszalek 46 

and Wasik, 2000; Cánovas et al., 2008; Navarro et al., 2008). The extent and degree of 47 

heavy metal contamination in waste rock and around mines vary depending upon 48 

geochemical characteristics and the content of sulfide minerals in the tailings (Johnson et 49 

al., 2000). Although metals released by sulfide oxidation are attenuated by precipitation, 50 

co-precipitation and sorption reactions (McGregor et al., 1998; Berger et al., 2000) in the 51 

mines and around them, the content of elements in the environment also depends on their 52 

mobility and solubility from rocks and stream sediments to waters. Effluents of 53 

abandoned mine workings typically consist of acid mine drainage, eroded material from 54 

mine tailings and waste rocks. 55 

The Fonte Santa mine area was mined for W between 1942 and 1982 (Triede, 56 

2002), and since then a significant development in the area has not occurred. The tailings 57 

and waste were deposited at the surface and have not been revegetated. As they are 58 

exposed to the air and water, they make an important contribution to the environmental 59 

geochemistry of the area. At the end of November 2006, after a major rain event, 60 

flooding at the Fonte Santa mine damaged the dam tailings, releasing fine eroded material 61 

into the Ribeiro da Ponte creek, which drains into the Sabor River. 62 



 

The aim of this paper is to present a detailed study of the geochemistry of Fonte 63 

Santa granites and related scheelite quartz veins and of the associated waters from the 64 

area, and to understand the distribution and mobility of the chemical elements. Waters 65 

from inside and outside the Fonte Santa mine area are compared, using data collected 66 

over a one year period, to evaluate the geochemical impact of the W deposits and the 67 

respective old mine workings on the quality of surface waters. The mineralogy of granites 68 

and the chemistry of minerals from granites and W-bearing quartz veins were used to 69 

model water-rock interactions that affect the composition of surface waters within the 70 

studied area. 71 

 72 

 73 

2. Geological setting  74 

 75 

The Fonte Santa mine is located in the northeast of Trás-os-Montes region (Fig. 76 

1a), along the southern border of the Mirandês Plateau in northern Portugal. Wolframite 77 

mining started in 1941, but scheelite was only discovered in 1942 and the maximum 78 

production in the mine was attained in 1953. Mining stopped in 1982. About 2784 tonnes 79 

of tungsten ore were produced along with 100 000 m
3
 of tailings (Triede, 2002). The 80 

main quartz veins were exploited in open pits and underground.  81 

The Fonte Santa area is located in the autochtonous Central Iberian Zone (ZCI), 82 

where Ordovician rocks crop out extensively. The mine country rocks consist mainly of 83 

Lower Ordovician chloritic phyllites with rare intercalations of Armorican quartzites and 84 

Cambrian metasediments. Magnesian marbles crop out close to the area (Silva, 2000).  85 

Syn- to late-kinematic medium- to coarse-grained, porphyritic, muscovite-biotite 86 

granite (G1) and fine- to medium-grained muscovite granite (G2) intruded the host 87 

Ordovician metasedimentary rocks in the Fonte Santa mine area (Fig. 1b) and were 88 

emplaced along the major sinistral Bemposta-Moncorvo shear zone, which is 5 km wide 89 

and 90 km long and strikes ENE-WSW. The granites produced a narrow contact 90 

metamorphic aureole, which consists of hornfels with andalusite and biotite in direct 91 

contact with G1 and schist containing biotite and andalusite in contact with G2. Both 92 

granites are deformed, but the muscovite granite (G2) shows higher strain rates, with “S-93 



 

C” foliation arrangements striking N80ºW, as a result of its proximity to the northern 94 

branch of the shear zone. The muscovite-biotite granite (G1) occupies the inner part of 95 

the shear zone, and therefore is less deformed, showing only a very incipient lineation 96 

defined by the alignment of K-feldspar phenocrysts in a WNW-ESE direction (Silva and 97 

Pereira, 2001). The geometry of this granitic massif (G1) is consistent with its 98 

emplacement in the core of a major Variscan antiform, and obeys to a heterogeneous 99 

simple shear pattern, revealing weak flattening and deformation (Silva and Pereira, 100 

2001). 101 

The mine is associated with the Bemposta-Moncorvo shear zone, and is emplaced 102 

along tensional fractures (Parra et al., 2001). Two generations of veins are recognised in 103 

the mine. The oldest generation is an irregular to lenticular vein set, folded by the last 104 

kinematic Variscan deformation phase, and the youngest generation forms a stockwork 105 

with mining shafts oriented along the tension and shear cracks. Scheelite occurs mainly in 106 

quartz veins hosted by pelitic rocks, but is also found in skarns that have replaced 107 

magnesian marble in the apical area of Fonte Santa muscovite granite (G2). The 108 

mineralized area is 300 m wide and 1100 m long, elongated ENE-WSW, parallel to the 109 

regional structures; the maximum depth of mining is 200 m and the volume can be 110 

estimated at around 20 million cubic meters (Ribeiro and Rebelo, 1971). Alluvial 111 

scheelite occurs in the stream bed and in adjacent alluvium.  112 

 113 

 114 

3. Climate, Soils and Land Use  115 

 116 

The Fonte Santa area lies between 450 and 700 m altitude and is characterized by 117 

very hot summers (to 40.2 °C) and cold winters (to -12.6 ºC). For the period 19601980, 118 

the average annual precipitation was 566 mm and the average annual temperature was 119 

15.9 ºC (http://snirh.pt). Data from 2006 show  a maximum precipitation of 219.4 mm in 120 

October, but data were not recorded for November due to a flood event that damaged the 121 

register system (http://www.meteo.pt). The year of 2007 had atypical climatic conditions. 122 

It was characterized by a very dry climate, with seasons not well represented by the 123 

http://snirh.pt/
http://www.meteo.pt/


 

respective months, while December was a dry month. The annual precipitation varied 124 

from a minimum of 9.60 mm in July to a maximum of 120 mm in February.  125 

Chloride concentrations in rain water are available for the northern Portugal 126 

(http://www.emep.int). For the period 20052007, they are 5.44 mg/l in Viana do 127 

Castelo, close to the Atlantic coast, and 0.88 mg/l in Bragança around 60 km to the North 128 

of Fonte Santa. 129 

Soils in the area are of the lithosol type (http://scrif.igeo.pt). These soils are on 130 

average 30 cm deep and are consist of 62 % sand, 23 % loam, 15 % clay, and 3.9 % 131 

organic matter (Caetano and Pacheco, 2008). Based on these percentages of sand, clay 132 

and organic matter, the field capacity was estimated to be 90 mm, using an approach 133 

proposed by Macedo (1991). This field capacity was applied in the estimation of 134 

evapotranspiration (ET) by a water balance using the Thornthwaite & Mather (1955) 135 

method and ET is 431 mm/y. This is a high portion (76.2 %) of the annual precipitation, 136 

but is justified given the combination of low precipitations and high temperatures 137 

observed in the region. Land use and occupation in the area are dominated by shrubs (42 138 

%), forests (29 %), dry farming (22 %), olive yards (6 %), and the Fonte Santa mine area 139 

(1 %) (http://snig.igeo.pt). Farmers still use farmyard manures as the main source for 140 

supplying nutrients to fields or pastures; dressings of commercial fertilizers for 141 

agricultural land remain low. Apart from the 70 % of water and 26 % of organic matter, 142 

average-matured cow manures are composed of 0.74 % potassium 0.06 % magnesium, 143 

0.12 % calcium, 0.45 % sulfate, and 3.14 % nitrate (Pacheco et al., 1999). 144 

 145 

 146 

4. Analytical techniques 147 

 148 

Detailed studies of samples collected from granites, W-bearing quartz veins and 149 

tailings included transmitted and reflected-light microscopy and electron-microprobe 150 

analyses.  Major and trace elements (Rb, Sr, Y, Zr, Nb, Ba, Ta, Sn, W and Th) were 151 

determined by X-ray fluorescence according to the method of Tertian and Claisse (1982), 152 

using a Philips PW 2404 Spectrometer. Precision is better than 1 % for major elements 153 

http://www.emep.int/
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and Rb and better than 4 % for the other trace elements. Copper, Cr, Ag, B, Zn, Sb, Pb, 154 

Ni, V, Be, Mo, As, Co and Cd were analyzed by multi-element emission spectrometry 155 

(DCP – Direct Current Plasma), using a SMI–III Spectrometrics Incorporated model, 156 

with a mean precision of 10 %. Duplicate blank (pure quartz) and laboratory standards 157 

were analysed routinely for quality control. FeO was determined by titration with a 158 

standardised potassium permanganate solution, and H2O+ was determined using a 159 

Penfield tube, both with an precision of 5 %. Lithium was determined by flame atomic 160 

absorption spectrometry, and F was determined by direct potentiometry, with an precision 161 

of 2 % and better than 5 %, respectively. These determinations were carried out at the 162 

Department of Earth Sciences of Coimbra University (Portugal).  163 

Minerals from the muscovite granite (G2) and associated quartz veins were 164 

analyzed using a Cameca Camebax electron microprobe and a Jeol JXA-8500F at the 165 

National Laboratory of Energy and Geology (LNEG) (Porto, Portugal). Analyses were 166 

conducted using an accelerating voltage of 15 kV; beam currents of 20 nA and 10 nA 167 

were used in the Cameca and the Jeol microprobes, respectively. Each element was 168 

counted for 20 seconds. Beam diameter was 5 µm for most analyses, except for mica 169 

where a beam of 10 µm was used. Standards used include albite (Na K); orthoclase (Al 170 

K, Si K; K K); cassiterite (Sn L); MnTiO3 (Mn K, Ti K); Fe2O3 (Fe K); 171 

sphalerite (Zn K, S K); pyrite (S K, Fe K); galena (Pb M); wollastonite (Ca K, 172 

Si K); AsGa (As L); MgO (Mg K); Au (M); Mo (L); Ni (K); Cu (K); As (L); 173 

Ag (L); Co (K); Cd (L); Sb (L); Bi (M); Ta (M); Nb (L); Mo (L) and W (L, 174 

M). Mineral standards were analysed routinely by electron microprobe for quality 175 

control.  176 

The location of the Fonte Santa mine area and of 10 sites selected for water 177 

sampling are shown in Figure 1. Four water samples were collected from each site in the 178 

months of January, April, August and December of 2007, with the exception of  site FS1 179 

that dried out in August and December. January and April represent the wet season 180 

whereas August and December represent the dry season.  181 

Temperature, pH, Eh, electrical conductivity and alkalinity were determined in situ. 182 

The waters were filtered through a 0.45 m Fioroni Cellulose Nitrate Membrane model 183 



 

filter and divided into two aliquots, one acidified to pH<2 using nitric acid and both kept 184 

at 4 ºC. Anions were determined in the non-acidified aliquot by ion chromatography with 185 

a Dionex ICS 3000 Model and cations were determined in the acidified aliquot by ICP-186 

OES (Inductively Coupled Plasma – Optical Emission Spectroscopy) using a Horiba 187 

Jovin Hyvon JY 2000-2 Model. Arsenic was determined by flame atomic absorption 188 

spectrometry. The detection limit was 0.02 mg/L for most elements, except for As and K  189 

(0.01 mg/L). The precision for most analyses was better than 5 %, but better than 15 % 190 

for Na and Al. Duplicate blanks and a laboratory water standard were analysed for quality 191 

control. The laboratory analyses were performed at the Department of Earth Sciences, 192 

University of Coimbra (Portugal).  193 

The charge balance is better than 5 %, with the exception of samples FS2, FS3, 194 

FS4, FS5 and FS7. In these cases, the deviations are attributed to an anion excess caused 195 

by a flood event that brought suspended contaminated load from neighbour agricultural 196 

zones to the study area. However, all charge balances are below 10 %, the maximum 197 

deviation accepted for further consideration.  198 

 199 

5. Geochemistry of granites 200 

 201 

Following the classification of Le Maitre (2003), G1 is a granite and G2 is an alkali 202 

feldspar granite. Both have a subhedral granular texture and contain quartz, microcline, 203 

plagioclase, muscovite, chlorite, tourmaline, sillimanite, zircon, apatite, rutile and 204 

ilmenite. G1 also has biotite. Plagioclase composition is albite-oligoclase (An3-An25) in 205 

G1 and pure albite (<An1) in G2. The most altered samples of G2 show intense 206 

muscovitization and microclinization, and contain wolframite, columbite-tantalite and W-207 

ixiolite.  208 

Representative chemical analyses of major, trace and rare earth elements  in granite 209 

samples are given in Table 1. Both granites are peraluminous with a molecular A/(CNK) 210 

= Al2O3/(CaO+Na2O+K2O) ratio of 1.2; they are interpreted as S-type granites. As the Sn 211 

content of representative samples of granites G1 and G2 are 18 ppm and 73 ppm, 212 

respectively, they are Sn-bearing granites (Lehmann, 1990). Tungsten is always below 213 

the limit of detection in granite G1 but the most altered samples of G2 contain up to 158 214 



 

ppm of W. The most intensely muscovite-microcline-altered samples of G2 are 215 

specialized for W (Tischendorf, 1977).  216 

Granite G2 is highly differentiated (Rb-Ba-Sr diagram) and has low ratios of K/Rb, 217 

Mg/Li and Ba/Rb and a high Rb/Sr ratio (Table 1), typical for tungsten granites 218 

(Srivastava and Sinha, 1997). A Geochemical Characterization Index (GCI = log10 (Rb
3 

x 219 

Li x 10
4
/Mg x K x Ba x Sr)) was proposed to characterize tungsten granites and barren 220 

granites (Srivastava and Sinha, 1997). Positive GCI values for any granite suggest a W 221 

potential. Both G1 and G2 granites have positive GCI but the values are quite different, 222 

varying in the interval 0.3-1.0 in the unaltered samples of granite G1 and between 3.0 and 223 

4.9 in the altered samples of granite G2, respectively (Table 1), which suggests that the 224 

mineralization may be related to G2. The geochemical data suggest that late magmatic 225 

fluids, which were responsible for the hydrothermal alteration of granite G2, transported 226 

W and reacted with carbonates from country rocks producing scheelite (Silva and Pereira, 227 

2001). G2 is the closest granite to the mine (Fig. 1).  228 

 229 

 230 

6. W-bearing quartz veins  231 

 232 

The W-bearing veins contain quartz, scheelite, sphalerite, galena, pyrite, pyrrhotite, 233 

chalcopyrite, arsenopyrite and rare siderite. The representative chemical compositions of 234 

granites, W-bearing minerals and sulfides from quartz veins are given in Tables 1, 2 and 235 

3, respectively. Quartz is partly recrystallized, locally brecciated and impregnated by 236 

sulfides that fill joints, fractures and microfissures. 237 

Scheelite (Ca1.02W0.99O4) is anhedral, light coloured, with typical blue fluorescence. 238 

Either stolzite ((Pb0.93Mg0.04Ca0.03)W0.99O4) (Fig. 2a) and ferritungstite 239 

(K0.08Ca0.11W1.55Fe
3+

0.64O6(H2O)) (Fig. 2b) fill the fractures in scheelite (Table 2). 240 

Wolframite was not found in quartz veins, but is a common accessory mineral in the 241 

hydrothermally altered granite G2. 242 

Monoclinic pyrrhotite (Fe0.88 S1.00) is associated with chalcopyrite and included in 243 

sphalerite (Fig. 2c, Table 3). Some pyrrhotite crystals are replaced by pyrite.  244 



 

Sphalerite is one of the most abundant sulfide minerals and shows “chalcopyrite 245 

disease” (Fig. 2d). Many grains of chalcopyrite with pyrrhotite associated and galena 246 

were probably introduced along the microfractures (Fig. 2d). Sphalerite contains Fe, Cu, 247 

Mn and Cd that can replace Zn, but their abundances are in total below 12 wt.%. The 248 

mean sphalerite composition is (Zn0.86Fe0.18Mn0.01) S1.00 (Table 3). In general, each 249 

sphalerite grain has a homogeneous composition. The total variation in FeS found in 250 

sphalerite grains is 16.1 to 18.5 mole %, which may reflect constistency in the sulfur 251 

fugacity of the fluid during precipitation. Chalcopyrite was found solely as blebs in 252 

sphalerite and is homogeneous (Cu0.87Zn0.05)Fe1.07S2.00, although has some silver up to 253 

0.19 wt. % (Table 3). 254 

Pyrite crystals are euhedral or subhedral and fractured. They have inclusions of 255 

galena and electrum. Pyrite locally fills fractures in quartz. Average pyrite composition is 256 

Fe1.01S2.00 (Table 3). Arsenopyrite is rare and has a near ideal composition. 257 

Galena is abundant and occurs in three generations: 1. subhedral crystals that 258 

locally are replaced by Pb sulfate veins (Fig. 2f); 2. anhedral grains filling fractures in 259 

sphalerite;  3. anhedral grains replacing pyrite (Fig. 2e). Galena ((Pb0.94Bi0.03Ag0.02)S1.00) 260 

has Ag and Bi contents up to 1.6 % and 3.3 %, respectively, and 0.3 wt. % of Zn (Table 261 

3). 262 

Magnetite occurs in subhedral crystals (Fig. 2f) and also associated with ilmenite 263 

and chlorite. Supergene Al, Fe and Pb hydrated phosphates and Fe sulfates (Fig. 2g, h) 264 

occur in brecciated fragments of quartz veins surrounded by quartz.  265 

 266 

 267 

7. Geochemistry of waters  268 

 269 

The results of chemical analyses of waters from the Fonte Santa mine area are 270 

presented in Table 4. Samples from a spring (FS1) and from a stream (FS2) were 271 

collected upstream of the mine area, away from its influence, to be used as references of 272 

the background water chemistries. Although stream (FS5, FS6, FS9, FS10) and mine 273 

lagoon waters (FS3, FS4, FS7, FS8) were located inside the impact area of the mine and 274 

reflect the influence of abandoned mining activities and mineralized veins, only the 275 



 

stream waters were affected by the flood event (Fig. 1). Sites FS3 and FS4 collect waters 276 

from coarse-grained tailings, while sites FS7 and FS8 receive waters from fine-grained 277 

tailings and waste rock.  278 

The relation between rock types and water cation-anion compositions are 279 

commonly displayed in Piper diagrams (Appelo and Postma, 2005). Most waters from 280 

Fonte Santa area do not contain a dominant cation composition and plot in the mixed 281 

water type. However, some of them are Na and Mg water types (Fig. 3). Relatively to the 282 

anions, HCO3
-
 and SO4

2-
 water types dominate. From January to April 2007, during the 283 

wet period, the waters had similar composition with local variations in Na and HCO3
-
 284 

contents, particularly for water collected inside the area influenced by mining (Fig. 3a, b). 285 

The waters from the dry period (August and December 2007) present an higher 286 

variability than the waters from wet months, particularly on the SO4
2-

 content of waters 287 

located inside the mine influence (Fig. 3c, d). 288 

The waters from Fonte Santa plot mainly in the field of near-neutral/low metal 289 

waters (Fig. 4), according to the classification of Ficklin et al. (1992). This classification 290 

considers that Zn, Cu, Cd, Ni, Co and Pb are the major heavy metals found in mine 291 

drainage waters (Fig. 4). Most waters from the Fonte Santa mine area are poorly 292 

mineralized, but waters inside the mine influence are richer in Zn+Cu+Cd+Ni+Co+Pb 293 

than those from outside that influence (Fig. 4), showing the effect of abandoned old 294 

mining activities on water quality. The mine lagoon water samples FS8 and, particularly,  295 

FS7 are acidic and have high metal concentrations (Fig. 4) and also tend to have the 296 

highest Eh values, electrical conductivity, SO4
2-

, K, Ca, Mg, Mn, Al, Sr, Li and the 297 

highest metal contents (Table 4). Low pH values promote the dissolution of metallic 298 

minerals and high metal concentration in waters (Bell, 1998). However, if the sulfide 299 

minerals are non-reactive or if the rocks contain materials to neutralize the acidity, the pH 300 

will be near neutral (Bell, 1998). In Fonte Santa, there is no significant acid mine 301 

drainage because the area contains a small amount of sulfides and scheelite, and quartz 302 

veins cut the regional schist and quartzite, with rare marble intercalations, which can 303 

contribute to the neutralization of the waters and promote the decrease of trace element 304 

contents, as observed in other old mining areas (e.g., Antunes et al., 2002; Frau et al., 305 

2008).  306 



 

Iron-tungstite, stolzite, Fe-sulfates and Fe, Pb and Al phosphates found in the 307 

scheelite quartz veins retain some metallic elements and consequently these metals are 308 

not present in significant concentrations on the waters. Secondary Fe- and Al-phases in a 309 

gold-arsenic mine with scheelite from Salanfe (Switzerland) adsorbed the elements and 310 

decreased the contamination (Pfeifer et al., 2007). Secondary sulfate minerals play an 311 

important role in acid drainage and metal sequestration in surface environments 312 

(Hammarstrom et al., 2005). The phosphate minerals also retain the PO4
3-

, which was not 313 

detected in most water analyses (Table 4).  314 

The waters with the highest SO4
2-

 and metal concentrations and the lowest pH 315 

(FS7 and FS8) are associated with mine lagoons that receive water from fine tailings and 316 

rejected mining materials (Fig. 1; Table 4). This correlation can be associated with 317 

oxidation and dissolution of Fonte Santa sulfide minerals, such as pyrite, chalcopyrite, 318 

sphalerite, galena, arsenopyrite and pyrrhotite. Most element contents from water mine 319 

lagoons (FS3 and FS4) are similar or lower than the ones found on stream waters (Table 320 

4), because these points receive water from coarse-grained tailings. SO4
2-

 has positive 321 

correlations with electrical conductivity, Ca, Sr and metals (Cu+Zn+Pb+Ni+Co+Cr) (Fig. 322 

5), because the dissolution of SO4
2- 

will promote
 
an increase in dissolved elements and 323 

electrical conductivity. Waters from the abandoned Ervedosa tin mine area also show 324 

positive correlations between SO4
2-

 and electrical conductivity and metal contents but a 325 

negative correlation between SO4
2-

 and pH (Gomes and Favas, 2006). Correlations 326 

between trace elements are poor and do not show a significant trend, as found in other 327 

areas (e.g., Antunes et al., 2002; Gomes and Favas, 2006). 328 

The water samples containing Fe above detection limit were plotted in the Eh-pH 329 

diagram for iron species (Deutsch, 1997). The waters from Fonte Santa plot mainly in the 330 

Fe(OH)3 field (Fig. 6). Therefore, precipitation of Fe(OH)3 may control the Fe 331 

concentration. Pyrite is not stable at Eh and pH values of the water samples. The pyrite 332 

oxidation decreases the water pH of the mine lagoons and the dissolved iron occurs as 333 

Fe
2+

 (Fig. 6). 334 

Arsenic has an irregular distribution in Fonte Santa waters and in some water 335 

samples is below the detection limit (Table 4) which can be attributed to the rare 336 

occurrence of arsenopyrite or the possible precipitation or adsorption of this element on 337 



 

stream sediments and soils (e.g., Fe-oxyhydroxide, suspended organic matter). In other 338 

Portuguese abandoned W-Sn mines the soils have significant As concentrations but As 339 

has not been detected in waters (Cama et al., 2008). Metals such as Fe, Mn form 340 

oxyhydroxide compounds which are able to complex with As compounds and precipitate 341 

As out of the solution (Serfor-Armah et al., 2006, Cama et al., 2008). 342 

The seasonal variation of waters from Fonte Santa is not regular (Table 4). 343 

However, most water samples contain the highest electrical conductivity, SO4
2-

, Na, Mn, 344 

Sr, Li values during the dry months (August and December 2007; Table 4). This is 345 

observed particularly in water from mine lagoons (FS7 and FS8), which is the most acid 346 

and characterized by an increase in metal content with decrease in rain (e.g., Fe, Mn, Sr, 347 

Cd; Table 4). 348 

Iron and Al concentrations in water from the FS5, FS6, FS9 and FS10 sample 349 

sites were highest in January 2007 (Table 4), after the flood event. In the streams, Fe and 350 

Al are transported in fine suspended solid particles, which increase with flow and 351 

turbidity. The key role of flood events in the hydrochemical variations and contaminated 352 

load were highlighted during the monitoring of three flood events in the Rio Tinto, SW 353 

Spain (Cánovas et al., 2008). Other elements such as Mn, Zn and Ni tend to increase in 354 

the streams during August and December 2007 (Table 4) due to ion concentration effect, 355 

associated with the less quantity of water in the streams (e.g., Antunes et al., 2002; 356 

Gomes and Favas, 2006). 357 

Although most major and trace element content of metals in waters from Fonte 358 

Santa are low (Table 4), some of them exceed the accepted values for human 359 

consumption and/or agricultural use (Portuguese Law, 2001; 2007). The water from mine 360 

lagoon, FS7, is the most contaminated of the area and must not be used for human 361 

consumption, according to the Portuguese Law (2001; 2007), due to its electrical 362 

conductivity (> 450 µS/cm), SO4
2-

 (> 250 mg/L), Mg (> 30 mg/L), Fe (> 0.05 mg/L), Mn 363 

(> 0.05 mg/L), Zn (> 0.5 mg/L), Al (> 0.2 mg/L), Ni (> 0.05 mg/L) and Co (> 0.05 mg/L) 364 

(Fig. 7 and Table 4). Iron, Mn and Ni water contents in FS5 to FS10 sites, at least once 365 

during the year of observation, are higher than parametric values defined for human 366 

consumption (Fig. 7). Some of these waters may not be used for agriculture due to their 367 

Fe and Mn contents (Fig. 7). Most waters from the Fonte Santa area have NO2
-
 (0.1 368 



 

mg/L) contents above those recommended for human potable water. In the most 369 

mineralized waters (FS7 and FS8), NO2
-
 is below the recommended values probably due 370 

to low pH (Table 4). The environmental impact of this abandoned mine is not very high 371 

and the contamination problems are essentially related with the flood event that carried 372 

contaminant load by stream along 2 km from the tailings and with mine lagoons draining 373 

fine-grained tailings and waste rock. 374 

 375 

 376 

8. Weathering and Hydrochemistry  377 

 378 

The following paragraphs discuss how atmospheric, anthropogenic and natural 379 

contributions of major inorganic compounds to the composition of groundwater were 380 

assessed by mass balance calculations. The contributions were first calculated for each 381 

sample, excluding the samples collected at site FS7 because the bicarbonate contents 382 

were not analyzed in these cases (Table 4), and then were averaged for each contribution 383 

and compound. The average values are depicted in Table 5. 384 

The samples have relatively homogeneous chloride concentrations (4.87 ± 0.99 385 

mg/L). The estimated evapotranspiration (ET) by a simple chloride balance  (ET = (1 – 386 

[Cl

]r/[Cl


]g)×P, where [Cl


]r and [Cl


]g are the chloride concentrations in rainwater and 387 

groundwater, respectively, and P is the average annual precipitation) is 464 mm/yr. This 388 

value is comparable to the 431 mm/y estimated above by a conventional water balance 389 

method (Thornthwaite & Mather, 1955), suggesting that chloride concentrations in 390 

groundwater mainly result from simple concentration of rain water by evapotranspiration.  391 

For this reason, all [Cl

] in groundwater is assumed sourced from sea salt/seaspray. It is 392 

further assumed that atmospheric deposition will account for variable amounts of the 393 

other major cations and anions (X) to keep with the [Cl

]/[X] ratios in seawater (Appelo 394 

and Postma, 2005), which means that any effect of fractionation affecting these 395 

contributions in the path of rainwater from the Atlantic coast to the study area is 396 

neglected. The contributions of sea salt deposition to the water chemistry are depicted in 397 

the first row of Table 5. 398 



 

Around the Fonte Santa mine area, 22 % of the area is occupied by farmyards 399 

where manures are applied annually as main sources of nutrients, releasing variable 400 

amounts of nitrate, potassium, magnesium, calcium and sulfate to groundwater. In this 401 

study, all [NO3

] in groundwater is assumed sourced by these manures. It is also assumed 402 

that manures release K
+
, Mg

2+
, Ca

2+
 and SO4

2
 (X) to the solution in the same proportions 403 

as they appear in the fertilizer, meaning that their concentrations can be equated to [X] = 404 

(mole ratio X/NO3

 in manure) × [NO3


]. The mole ratios were deduced from the 405 

published composition of average-matured cow manure presented above. The calculated 406 

[X] values are listed in the second row of Table 5. The nitrate concentrations are on 407 

average relatively low (1.86 mg/L), but show a high standard deviation (3.29 mg/L) 408 

meaning that the sources of [NO3

] are irregularly distributed within the study area, 409 

contaminating some samples to some extent (e.g. sample FS1 with an average [NO3

] = 410 

8.93 mg/L) and leaving others practically undisturbed (e.g. sample FS8 with an average 411 

[NO3

] = 0.31 mg/L). The average concentrations in mg/L of K

+
(0.88), Mg

2+
(0.14), 412 

Ca
2+

(0.07) and SO4
2

(0.27) derived from leachates of manures are even lower. 413 

The overall contribution of rock weathering to the water composition can be 414 

deduced from the difference between the total concentrations (heading Major Dissolved 415 

Compounds) and the contributions by the other sources (Table 5). It is assumed that the 416 

dominant weathering agent is carbonic acid derived from CO2 dissolved in soil water. 417 

However, because the sulfate concentrations remain very high, even after correction of 418 

the total concentrations for the atmospheric plus anthropogenic inputs (average: [SO4
2-

] = 419 

31.57 mg/L), it is also assumed that a weak sulfuric acid derived from sulfide oxidation 420 

can also act as a weathering agent. 421 

The corrected sulfate concentrations are also very heterogeneous (standard 422 

deviation: [SO4
2-

] = 46.8 mg/L), suggesting that the action of sulfuric acid will be 423 

significant only in some places. This is consistent with the location of the sampling sites: 424 

from FS6 to FS10 are located close or downstream the area, where fine-grained tailings 425 

were deposited and sulfide residues have accumulated. In these sites, it is expected that 426 

sulfuric acid is the main weathering agent. Mineral/water interactions in tailings of a 427 

tungsten mine at Mount Pleasant (New Brunswick, Canada), particularly the sulfide 428 



 

oxidation, contributed to the geochemical processes and water composition in the area 429 

(Petrunic and Al, 2005). In contrast, sites FS1 to FS5 are located upstream the area of 430 

fine-grained taillings. For these sites, it is expected that sulfuric acid plays a role in the 431 

weathering reactions if the flow paths of groundwater cross sectors of the rock massif 432 

where mineralized veins or disseminated sulfide minerals are still in situ. 433 

Natural contributions to the water composition are derived from weathering of 434 

minerals in contact with water travelling along flow paths from the recharge areas to the 435 

discharge sites across a soil/saprolite cover succeeded by a network of fractures, fissures 436 

and joints. In some cases (sites FS6FS10), the flow paths may also cross fine-grained 437 

tailings deposited around the Fonte Santa Mine, or be affected by drainage derived from 438 

them. The geologic environments are characterized by metasediments and muscovite 439 

granite (G2) with albite (An0) which are cut by quartz veins containing sulfides and 440 

scheelite. In these rocks, the most weatherable minerals are usually albite and chlorite 441 

(Van der Weijden and Pacheco, 2006). The alterations of these minerals are assumed the 442 

sources of natural sodium and magnesium present in water. The metasediments may 443 

contain some carbonate layers, but in the presence of metal ores the weathering of 444 

scheelite should also account for some of the natural calcium. For that reason, natural Ca 445 

is assumed sourced by the dissolution of both minerals.  Finally, it is assumed that the 446 

source of natural potassium is the weathering of muscovite. The fine-grained tailings are 447 

composed of crushed metasediment and granite and residues of sulfide minerals, 448 

produced by the mine workings. Within these tailings, weathering of minerals will be 449 

enhanced by the presence of sulfuric acid resulting from the oxidation of sulfides. 450 

The release of cations during weathering of rock-forming minerals and ores is 451 

accompanied by precipitation of secondary phases such as clay minerals (halloysite, 452 

smectite, vermiculite), metal oxides (ferritungstite) and Fe sulfates. Regardless the 453 

specific reaction involved, equivalent proportions of bicarbonate and/or sulfate must be 454 

released with the cations, depending on whether carbonic acid or/and sulfuric acid is/are 455 

the weathering agent(s), to comply with the charge-balance condition (electric neutrality 456 

of water). It is assumed that carbonic acid plays the dominant role in weathering because 457 

this acid is added to the system right from the beginning of the flow path, when soil water 458 



 

dissolves atmospheric CO2. Conversely, sulfuric acid enters the system only if the flow 459 

path crosses mineralized sectors of the rock or fine-grained tailings, or is affected by their 460 

leachates. 461 

The contributions of weathering reactions to groundwater chemistry were 462 

assessed by the stepwise subtraction of the different contributions, following the 463 

approach used by Garrels and Mackeinzie (1967), and starting with the water 464 

composition corrected for the atmospheric plus anthropogenic inputs. Subtractions 465 

followed the sequence: albite  carbonates + scheelite  chlorite  muscovite. The 466 

results are not inherently dependent on the sequence adopted because in this study each 467 

contribution is assumed to link to a single cation (e.g. weathering of albite links to Na; of 468 

chlorite to Mg; etc.), but the proportions of cations and anions ascribed to each 469 

weathering agent depend on whether carbonic acid is assumed to act first and sulfuric 470 

acid later, or vice versa. For the present case study, it was already assumed and defended 471 

that minerals will react first with carbonic acid producing HCO3
-
 and later with sulfuric 472 

acid producing SO4
2-

.The concentration of cations, bicarbonate and sulfate derived from 473 

weathering of albite, carbonates+scheelite, chlorite and muscovite are listed in Table 5. 474 

In most samples, bicarbonate was in excess of sodium and for that reason all 475 

sodium in these samples was attributed to weathering of albite by action of carbonic acid. 476 

But in samples collected during the dry season of 2007 (August and December), in the 477 

vicinity of the fine-grained tailings, sodium was in excess of bicarbonate. For these 478 

samples, an amount of sodium equivalent to the bicarbonate concentration was attributed 479 

to weathering of albite by action of carbonic acid and the rest to weathering of albite but 480 

by action of sulfuric acid. On average (considering the samples from all sites), dissolution 481 

of albite released 3.06 mg/L of Na when H2CO3 was the weathering agent and 0.74 mg/L 482 

when the agent was H2SO4 (Table 5). The results obtained for this cation are striking as 483 

they confirm a distinguishable role of fine-grained tailings in the promotion of sulfuric 484 

weathering. The fact that sulfuric acid is required to explain the Na concentrations only 485 

during the dry season suggests that sulfide minerals may be concentrated at the bottom of 486 

the tailings.  487 

The rationale used to assign sodium to weathering of albite by carbonic and 488 

sulfuric acid was repeated for the other cations. The results for Ca resemble the Na results 489 



 

because weathering of carbonates+scheelite by sulfuric acid is significant for 12 (out of 490 

16) samples collected close to the fine-grained tailings but only for 3 (out of 18) samples 491 

collected away from them. On average, dissolution of carbonates+scheelite released 1.96 492 

mg/L of Ca when H2CO3 was the weathering agent and 4.62 mg/L when the agent was 493 

H2SO4 (Table 5). 494 

In contrast to albite and carbonates+scheelite, sulfuric acid seems to weather 495 

chlorite in the vicinity of the fine-grained tailings, but also away from them. However, 496 

the proportions ascribed to carbonic and sulfuric acid weathering differ if F6FS10 497 

samples or to the FS1FS5 samples are taken into account. In the first case, carbonic 498 

weathering releases 0.1 mg/L of Mg to solution and sulfuric weathering 6.7 mg/L, 499 

whereas in the second case the values are 0.7 and 0.8 mg/L, respectively. On average, this 500 

gives a release of 0.4 mg/L of Mg when H2CO3 is the weathering agent and 3.8 mg/L 501 

when the agent is H2SO4 for dissolution of chlorite (Table 5). These results stress that 502 

mine tailing drainage is a key factor controlling sulfuric weathering, although the passage 503 

of groundwater through mineralized sectors of the rock massif may also play a role in this 504 

process.  505 

When weathering of muscovite was accounted for, most of the carbonic acid has 506 

already been consumed by the other reactions. For that reason, only 3 samples of the 507 

FS1FS5 sites and 1 sample from the F6FS10 sites could be linked to carbonic 508 

weathering of muscovite, contributing negligibly to the average water composition. It 509 

could be questioned that this result is a consequence of the order in which weathering 510 

contributions were subtracted from the initial water composition, but it should be 511 

recognised that muscovite is also the least soluble of the minerals included in the mass 512 

balance calculations. Consistently with the results obtained for the other cations, sulfuric 513 

weathering is more important when calculations are made for the F6FS10 samples 514 

(average K release of 1.8 mg/L) than when they are made for the FS1FS5 samples 515 

(average K release of 0.7 mg/L), emphasizing the dominance of this process in areas 516 

affected by drainage of sulfide mine wastes. When considering the samples altogether, 517 

sulfuric dissolution releases 1.18 mg/L of K to groundwater (Table 5). 518 



 

The average results depicted in Table 5 show that weathering of minerals 519 

promoted by the attack of carbonic acid to the crystal lattices represents 45.5 % of the 520 

total weathering and is materialized by a production of 278 mol/L of bicarbonate. The 521 

remaining 54.5 % are attributed to weathering by attack of weak sulfuric acid and are 522 

manifested in 329 mol/L of sulfate released during the reactions. Presented as is, this 523 

fact seems to question the role of carbonic acid as weathering agent, but it should be 524 

noted that the average values of natural sulfate are biased by huge concentrations present 525 

in a few samples, particularly in sample FS8 (average: [SO4
2-

] = 1395 mol/L). 526 

Calculating the average HCO3
-
 and SO4

2-
 concentrations, but neglecting sample FS8, 527 

gives HCO3
-
 = 290 mol/L and SO4

2-
= 186 mol/L, which ascribe 61 % of total 528 

weathering to bicarbonate, i.e. a dominant role. 529 

The consistency of the cation and anion distributions by the atmospheric, 530 

anthropogenic and natural sources is deduced from the residual concentrations (Table 5). 531 

The differences found for the K
+
, Mg

2+
, HCO3

-
 and SO4

2-
 water contents can be 532 

associated to the analytical procedures.    533 

 534 

 535 

9. Conclusions 536 

 537 

1. The muscovite-biotite granite (G1) and muscovite granite (G2) from the Fonte 538 

Santa mine area are tin-bearing S-type granites. However, the most altered sample of 539 

granite G2 is W specialized. The late magmatic fluids that hydrothermally altered G2 540 

carried W, which probably reacted with calcium carbonates from country rocks and 541 

deposited scheelite in quartz veins. 542 

2. Scheelite from W-bearing quartz veins has a homogeneous composition, but its 543 

fractures are filled by stolzite and ferritungstite. Mineral paragenesis of W-bearing quartz 544 

veins consists of pyrite, pyrrhotite, sphalerite, chalcopyrite, arsenopyrite, galena, iron 545 

oxides, Al, Fe and Pb hydrated phosphates and Fe sulfates. 546 

3. Waters from the Fonte Santa area are poorly mineralized. However, there is an 547 

increase in most parameters and element contents from outside to inside the mine 548 



 

influence, showing the effect of abandoned old mining activities on water quality. Most 549 

of the waters from Fonte Santa do not contain a dominant cation-anion composition and 550 

are of mixed water type. Some of them are Na and Mg water types and HCO3
-
 and SO4

2-
 551 

waters. 552 

4. The environmental impact is essentially related with the flooding event that carried 553 

a suspended contaminated load, increasing immediately Fe and Al contents in natural 554 

stream waters inside the mine influence. 555 

5. There is no significant acid drainage associated with old mine workings, which can 556 

mainly be attributed to the presence of calcium carbonates in country rocks and scheelite 557 

in quartz veins, that probably neutralized the waters and decreased metal concentrations. 558 

6. Waters with the highest SO4
2-

 are associated with mine lagoons FS7 and FS8, 559 

which received waters from fine-grained tailings and waste rock and contain the highest 560 

metal concentrations and the lowest pH values. 561 

7. Most waters associated with the mineralized veins and old mine activities at Fonte 562 

Santa have Fe and Mn concentrations that forbid their use for human consumption and 563 

agriculture. Some waters present concentrations above parametric Portuguese values for 564 

other contaminants (such as SO4
2-

, NO2
-
, Mg, Zn, Al, Ni and Co) and should not be used 565 

for human consumption. 566 

8. The alteration of albite, chlorite and muscovite of country rock are responsible 567 

for the natural sodium, magnesium and potassium present in water and the weathering of 568 

carbonates and scheelite are the most reasonable sources for natural calcium. The 569 

weathering of rock-forming minerals and mineralizations will also result in precipitation 570 

of secondary phases such as clay minerals (halloysite, smectite, vermiculite) metal oxides 571 

(ferritungstite) and Fe sulfates. 572 

9. Finally one of the important conclusions of the study is the relative importance 573 

of sulfuric versus carbonic acid for weathering. 574 

 575 
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