
 
 

Universidade de Trás-os-Montes e Alto Douro (UTAD) 

 

Efficient tools to simulate main crops in Portugal for 

decision support systems 

 

 

PhD Thesis 

Agricultural Production Chains - From Fork to Farm 

 

Chenyao Yang 

 

Supervisor: Professor Doctor João Carlos Andrade Santos 

                       Co-supervisors: Professor Doctor Wim Van Ieperen 

                                                    Doctor Helder Fraga 

 

 

 

 

 

 

 

 

 

 

 

 

VILA REAL, 2019 

 



 
 

Universidade de Trás-os-Montes e Alto Douro (UTAD) 

 

Efficient tools to simulate main crops in Portugal for 

decision support systems 

 

 

PhD Thesis 

Agricultural Production Chains - From Fork to Farm 

 

Chenyao Yang 

 

Supervisor: Professor Doctor João Carlos Andrade Santos 

                       Co-supervisors: Professor Doctor Wim Van Ieperen 

                                                    Doctor Helder Fraga 

 

 

Jury Members: 

  President:  

       Doutora Ana Maria Araújo de Beja Neves Nazaré Pereira (UTAD);  

  Vowels:        

       Doutor Alfredo Moreira Caseiro Rocha, Professor Associado com Agregação (UA); 

       Doutor Aureliano Natálio Coelho Malheiro, Professor Auxiliar (UTAD); 

       Doutor Hernâni Varanda Gerós, Professor Associado com Agregação (UMinho); 

       Doutor João Carlos Andrade dos Santos, Professor Auxiliar com Agregação (UTAD); 

       Doutor José Paulo de Melo e Abreu, Professor Associado com Agregação (ISA); 

       Doutor Marco Moriondo, Investigador do Italian National Research Counicil (CNR).  

 

 

VILA REAL, 2019 



 
 

 

 

 

 

Declaração 

 

Esta Tese foi expressamente elaborada para cumprimentos dos requisitos 

necessários à candidatura ao grau de Doutor em Cadeias de Produção Agrícola - da 

mesa ao campo pela Universidade de Trás-os-Montes e Alto Douro. 

Declaro para os devidos fins que a Tese de Doutoramento atende as normas técnicas 

e científicas exigidas pelos regulamentos em vigor da Universidade de Trás-os-

Montes e Alto Douro. As doutrinas apresentadas no presente trabalho são da 

exclusiva e inteira responsabilidade do autor. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

The PhD works are supported by European Investment Funds under 

FEDER/COMPETE/POCI – Operational Competitiveness and Internationalization 

Program (POCI-01-0145-FEDER-006958), and by National Funds of FCT – 

Portuguese Foundation for Science and Technology (UID/AGR/04033/2013). I also 

acknowledge the granted FCT fellowship (PD/BD/113617/2015) under the Doctoral 

Program “Agricultural Production Chains − from fork to farm” (PD/00122/2012). 

 

 

 

 

 



 
 

 

 

 

 

 

 

 



 
 

 

 



I 
 

ACKNOWLEDGEMENTS 

It felt as if a blink of eye in four years of time with intense training, working and living in a foreign 

country away from home. It is indeed a significant challenge for me to undertake the PhD works 

at beginning, as there are insufficient experience, limited resources and a big knowledge gap in 

this research topic. In particular, it is a brave decision to jump into this new field of research for 

me, who previously held a background of molecular biology in master degree. But when I looked 

back at the time of delivering my applications to this International PhD program four years ago, I 

still appreciate being given this opportunity to improve myself and empower my career as long 

aspiring to be a scientific researcher. At some point of time, it just occurred to me I really have 

passions for this topic, in particular for crop system modelling. Over these four years of PhD works, 

I feel fortunate for not being lonely in this path. I want to have my genuine thanks to many who 

have generously helped me in both life and works: 

 

To my supervisor and tutor Professor João Carlos Andrade Santos, for his guidance of works, 

concerns in my personal life, for always being supportive, available and dedicated. His advices, 

transmitted knowledge, encouragement for explorations, all contribute to the success of the works;   

 

To my co-supervisor Professor Wim Van Ieperen, for his valuable insights, guidance of works, 

and expert opinions in crop modelling, which all contribute to the success of works. Also, special 

thanks for his great assistance in arranging my wonderful stay in Wageningen University; 

 

To my co-supervisor Helder Fraga, for being a friend in life, his detailed instructions in crop 

modelling, and for his experience and advices in designing research directions, which all contribute 

to the success of works. I also appreciate his many novel and inspiring ideas during the course; 

 

To the secretaries of the doctoral program, Mrs. Lígia Pinto and Mrs. Lídia Nobrega, and Miss 

Ana Moura, who always respond to my requests quickly and efficiently arrange the logistic matters, 

as well as providing great assistance in dealing with the bureaucratic issues and procedures;  

 

To Universidade de Trás-os-Montes e Alto Douro (UTAD) and Wageningen University (WUR); 



II 
 

To the Professor Amelia M. L. Dias da Silva, who kindly help me and my family´s settlement, and 

for her dedications in running this doctoral program in the beginning and ensure a smooth 

transition afterwards; 

 

To the Professor Eduardo Rosa, for being the director of this doctoral program most of the time, 

who is very committed to monitoring our progress and organizing the program. I am inspired by 

his insistence on research quality and on importance of state-of-the-art literature reviewing;   

 

To the Professor Henrique Trindade, for his useful inputs from an agronomic expert point of view; 

 

To the STICS founders, forum and team members, for their technical assistance and shared advices; 

 

To my friend Myriam Taghouti, who always act selflessly and give me and my family great support 

and help, for her toughness and positivity in life;  

 

To my friend Ratnajit Mukherjee, for his essential support in computer programming that greatly 

facilitate my works. I am very grateful by his detailed guidance to the “New World”; 

 

To my team members and friends Andre Fonseca, Ricardo Costa and Mónica Santos, who share 

the same values and principles in research, having fun, respect and help each other; 

 

To my colleagues and friends António Fernandes, Ana Abraão, André Lemos, Chenhe Zhang, 

Daniela Terêncio, Ermelinda Silva, Ivo Pavia, Iva Prgomet, Liren Shu, Lisa Martins, Luis Rocha, 

Miguel Oliveira, Nikola Grcic, Richard Gonçalves, Shweta Singh, Weina Hou for their companies; 

   

Lastly, I want to express my most important and enormous gratitude to my beloved wife (Manyou 

Yu) and kid (Krystal Isabella Yu Yang), as well as beloved father (Junpin Yang) and mother (Jinyu 

Chen) for their infinite loves, tolerance, great support and cares, continuous encouragements. 

Language is pale to describe how much I love all of you. Without them, it would be impossible to 

accomplish the works and complete the PhD thesis.        

   



III 
 

ABSTRACT 

Agricultural systems are inherently vulnerable to climate variability and climate change is 

expected to increase this vulnerability. Various studies warn the anthropogenic-driven global 

warming with elevated CO2 concentration and altered regional precipitation pattern, are expected 

to negatively affect local crop productivity and thus exacerbate food insecurities in many regions 

worldwide, particularly for Mediterranean basin. Mediterranean basin is one of the most prominent 

climate change “hotspot” due to ongoing and projected changes in both climate means and 

variabilities, comprising a robust climate change signal of an overall warming and drying trend, 

accompanied by more frequent occurrence of severe drought and extreme high temperatures. 

Specifically, these projected changes are expected to be more pronounced in southern Europe, 

such as in Portugal, where annual mean temperature has increased at a rate more than double the 

global warming rate in the past decades, along with the observed decreases in precipitation and its 

enhanced inter-annual variability.  

Therefore, it is urgently needed to carry out the assessment of climate change impacts on 

agricultural production and explore suitable adaptation strategies, whereas the related studies so 

far remain scarce in Portugal. We had chosen three important cropping systems for Portuguese 

agriculture, i.e. irrigated maize, rainfed wheat and perennial forage grassland, while representative 

study sites in their current principal growing regions were identified accordingly. The overall 

methodology follows combined use of climate and crop models, where the spatially-downscaled 

bias-corrected climate change projections from climate models were utilized to drive crop model 

simulations at study sites, which were prior calibrated using local observed weather, soil and 

management data. For employed process-based crop models, both STICS and AquaCrop were 

applied for the irrigated maize production, whereas the other two cropping systems were only 

analyzed using STICS model. It was noteworthy one major strength from current studies consisted 

in, on top of projected mean climate changes, we had consistently incorporated the effects of 

potential changes in climate variability and its associated extreme weather events into the 

simulated impacts (e.g. yield changes) for a more reliable assessment.  

The results indicate threats and risks of future climate change are substantially high for agriculture 

production in Portugal. Because an overall negative climate change impact from the mid until the 

end of 21st century is obtained for all three important cropping systems, corresponding to 

moderate-to-severe yield losses with increased inter-annual variabilities. Yield losses are greater 
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in magnitude with higher year-to-year variability, in the second half of the century than in the first 

half, and in a high emission pathway than in a low emission scenario. The CO2 fertilization effect 

is unlikely to compensate these yield reductions, where it brings more yield increment for C3 

species (wheat and defined grass mixture) than for C4 (maize). Specifically, majority of negative 

impacts are derived from the shortened growth duration for irrigated maize under a warmer climate, 

and from intensified drought and heat stresses during a sensitive period (grain-filling) for rainfed 

wheat or during an unfavorable summer period for perennial grassland. These aspects correspond 

to the vulnerabilities of cropping systems facing climate change. It is interesting to note though 

higher temperature is clearly detrimental to irrigated maize production, it facilitates advanced 

phenology of perennial grass shifting towards the favorable cool and wet winter period for 

enhanced production or it may also help rainfed wheat crop to mature earlier to avoid excessive 

terminal stresses. Yet the magnitude of climate change impacts on agricultural productivity 

remains uncertain, varying with analyzed cropping systems, locations and management practices, 

applied climate models (including downscaling approaches) and crop models (including partial or 

full calibration), selected time periods and emission pathways.  

Adaptation strategies provide potential to mitigate these negative impacts, and development of 

appropriate and risk-focused adaptation policy should address previously identified vulnerabilities 

and prioritize available options for an integrated and comprehensive strategy. For annual cereal 

crops, increased irrigation amount at various levels has been firstly tested for irrigated maize 

cropping system under climate change, taking into account crop water demand and projected 

seasonal rainfall distribution. Though increased irrigation is able to mitigate yield reductions and 

maintain current yield levels, crop WUE considerably declines as a result of diminished yield 

responsiveness to seasonal water input with shorter growth duration. In view of increasing risks of 

water scarcity and decreasing portion of fresh water available for agriculture in the Mediterranean 

basin, solely increased irrigation supply might not be a feasible strategy, whereas the adaptive 

response for maize should be prioritized to promote water-saving techniques and maximize WUE 

for stabilizing yields (marginal reductions allowed). Combining optimized irrigation strategy (e.g. 

deficit irrigation) and installed efficient facilities (e.g. drip irrigation system) with other adaptation 

options, including introducing longer cycle cultivars and advanced sowing dates to counterbalance 

the shortened growing duration, is recommend, but should be further rigorously examined. 
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For the rainfed wheat cropping system, adaptation priority should address the exacerbated risks of 

drought and heat stresses during the sensitive anthesis and grain-filling periods. The terminal stress 

escaping strategy is proposed by firstly testing early flowering cultivars (also known as short-cycle 

genotypes), where the trade-off between lower risk of exposure to terminal stress and higher risk 

of reduced yield potential tends to be positive, leading to net yield gains. Still, this option needs to 

be combined with other adaptation opportunities including early sowing date, wheat cultivars with 

less or no vernalization requirement (e.g. using spring wheat) and supplementary irrigation during 

the sensitive stage. Early sowing is expected to achieve the same stress escaping goals by 

anticipation of growth cycle. But winter warming during early sowing window could potentially 

slow vernalization fulfillment, with limited benefits to advance the susceptible stages. Using early-

flowering spring wheat cultivars (the earliness threshold must be carefully defined) thus can help 

advocating early sowing practice that potentially make use of more autumn-winter rainfall. 

Nevertheless, the proposed stress escaping strategy is found to be comparatively more useful to 

avoid enhanced terminal heat stress (>38º last over a short period) than prolonged terminal drought 

stress, where the latter can be alleviated with optimized supplemental irrigation.     

Adaptation strategy for perennial forage grassland should take advantage of opportunity and tackle 

the challenge, both arising from climate change. Benefiting from advanced phenology towards 

winter and early spring with alleviated cold stress and enriched ambient CO2 concentration, 

adaptation measures should focus on maximizing growth potential during this favorable period. 

These include optimized resource use (balanced early fertilization strategy with limited N leaching) 

and using grass-legume mixture for flexible forage utilization and better exploiting the stimulated 

CO2 responsiveness. In contrast, to cope with the challenge of exacerbated risks of summer heat 

and drought stresses, future breeding programs should ensure a diversification (intra- and 

interspecific variations) of available germplasms in phenology (fit new seasonal climate pattern), 

heat tolerance and dehydration tolerance for principal forage species. Specifically, continuous 

improvement of drought persistence and summer dormancy traits should gain more importance for 

rainfed Mediterranean grassland. Moreover, these drought survival traits should be integrated into 

plant materials with deeper root system to enhance water uptake (e.g. more of tall fescue), but it 

may raise forage quality issues that remain unassessed. Besides, we also hypothesize it is possible 

to adapt to summer drought from a management perspective without the needs to improve and 

diversify the species and variety mixture. The findings suggest that provided minimum soil 
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moisture is guaranteed by supplemental irrigation to ensure adequate drought survival rate and 

standing density, breeding efforts should be more motivated towards heat tolerance, particularly 

in southern Portugal. Meanwhile, this measure is likely to result in a considerable increase in 

irrigation need, rendering a similar water-restriction issue facing irrigated maize.  

Crop yield projections and explored adaptation strategies are essential to assess the regional food 

security prospects and provide crucial information to support planning and implementing suitable 

adaptation strategies for farmers and policymakers in Portugal and in Mediterranean basin that is 

known to be susceptible to climate change. Despite the uncertainties in the magnitude of yield 

impacts and quantitative effectiveness of adaptations, the proposed and recommended adaptation 

strategies can represent promising opportunities to maintain or increase production in future 

climate while minimize environment impacts. Future research efforts should be directed towards 

using multi-model ensembles (both crop and climate models) to quantify the uncertainties and 

make the estimations more robust and reliable, but sustained and extensive international 

cooperation is required. Moreover, stronger link of field experimentation with crop modelling is 

essential for a more mechanistic understanding of crop response to climate change, as well as the 

integration of crop model into economic modelling for complex farm-level assessment. These shall 

all contribute to appropriate manage the climate risks and comprehensively improve the resilience 

of cropping system.  

 

Keywords: Cropping systems, Crop modelling, Climate change projections, Mediterranean 

conditions, Impact and vulnerability assessments, Adaptation explorations. 
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RESUMO 

Os sistemas agrícolas são inerentemente vulneráveis à variabilidade climática e espera-se que a 

mudança climática aumente essa vulnerabilidade. Vários estudos alertam para o facto de que o 

aquecimento global de causas antropogénicas, a elevada concentração atmosférica de CO2 e 

padrões de precipitação regional alterados deverão afetar negativamente a produtividade local das 

culturas e, assim, exacerbar inseguranças alimentares em muitas regiões do mundo, 

particularmente na bacia do Mediterrâneo. A bacia do Mediterrâneo é um dos mais proeminentes 

"hotspots" das alterações climáticas, devido às mudanças climáticas em curso e projetadas, tanto 

na média como na variabilidade, compreendendo um sinal robusto de mudanças climáticas com 

uma tendência geral de aquecimento e secura, acompanhada pela ocorrência mais frequente de 

secas severas ou extremas e temperaturas muito altas. Especificamente, espera-se que estas 

mudanças projetadas sejam mais pronunciadas no sul da Europa, como em Portugal, onde a 

temperatura média anual aumentou a uma taxa de mais do dobro da taxa de aquecimento global 

nas últimas décadas, juntamente com os decréscimos observados na precipitação e maior 

variabilidade interanual.  

Por conseguinte, é necessário avaliar os impactos das alterações climáticas na produção agrícola e 

explorar estratégias de adaptação adequadas, enquanto os estudos efetuados até agora permanecem 

escassos em Portugal. Escolhemos três importantes sistemas de cultivo para a agricultura 

portuguesa, nomeadamente o milho de regadio, trigo de sequeiro e pastagens forrageiras perenes, 

sendo os locais de estudo escolhidos representativos das suas principais regiões de crescimento. A 

metodologia geral segue o uso combinado de modelos de clima e de culturas, onde as projeções 

climáticas de elevada resolução espacial e corrigidas de viés foram utilizadas como forçamentos 

das simulações de modelos de culturas, tendo sido estes previamente calibrados usando dados 

meteorológicos, de solo e de práticas agrícolas locais. Para a produção de milho de regadio foram 

utilizados os modelos de culturas dinâmicos STICS e AquaCrop, enquanto os outros dois sistemas 

de cultivo foram analisados apenas com o modelo STICS. É importante salientar que os resultados 

do presente estudo incorporaram nos impactos simulados os efeitos das alterações não apenas na 

média, mas também na variabilidade climática e seus extremos (por exemplo, mudanças de 

produção), o que permite uma avaliação mais rigorosa. Os resultados indicam que as ameaças e os 

riscos das alterações climáticas são elevados para a produção agrícola em Portugal, dado que se 
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verifica um impacto global negativo para os três sistemas de cultivo estudados, correspondendo a 

perdas de rendimento moderadas a severas, com elevadas variabilidades inter anuais. As perdas de 

rendimento são maiores, com maior variabilidade interanual na segunda metade do século do que 

na primeira metade, e para um cenário de emissão elevada do que num cenário de baixa emissão. 

É improvável que o efeito da fertilização com CO2 compense estas reduções de rendimento, com 

um maior rendimento para as espécies C3 (trigo e pastagem) do que para a C4 (milho). Mais 

especificamente, a maioria dos impactos negativos resulta do encurtamento do período de 

crescimento do milho de regadio sob um clima mais quente, e da intensificação do stresse hídrico 

e térmico durante o período sensível para o trigo de sequeiro ou para as pastagens perenes. Esses 

aspetos correspondem às vulnerabilidades dos sistemas de cultivo face às alterações climáticas. É 

interessante notar que temperaturas mais altas são claramente prejudiciais à produção de milho de 

regadio, mas facilitando a antecipação da fenologia das pastagens perenes, melhorando a produção 

durante para o período favorável de inverno fresco e húmido. Estas novas condições também 

podem ajudar o trigo de sequeiro a amadurecer mais cedo, evitando valores excessivos de stresse. 

No entanto, a magnitude dos impactos da mudança climática na produtividade agrícola permanece 

incerta, dependendo do sistema de cultivo, local e práticas culturais, modelos climáticos aplicados 

(incluindo abordagens de downscaling) e modelos de culturas (incluindo calibração parcial ou 

total), períodos de tempo selecionados e cenários de emissão.  

As estratégias de adaptação fornecem potencial para mitigar esses impactos negativos. O 

desenvolvimento de medidas de adaptação apropriadas e focadas no risco deve ter em conta as 

vulnerabilidades previamente identificadas e priorizar as opções disponíveis para uma estratégia 

integrada e abrangente. Para as culturas anuais de cereais, o aumento dos volumes de rega em 

vários níveis foi primeiramente testado para o sistema de cultivo de milho de regadio em cenários 

de alterações climáticas, tendo em consideração as necessidades de água da cultura e a projeção 

da distribuição sazonal de precipitação. Embora o aumento da rega seja capaz de mitigar as 

reduções de rendimento e manter os níveis atuais, a WUE da cultura decresce consideravelmente 

como resultado da menor resposta ao fornecimento de água devido ao encurtamento da época de 

crescimento. Devido ao risco crescente de escassez de água e à redução da água disponível para a 

agricultura na bacia do Mediterrâneo, o aumento do recurso à rega pode não ser uma estratégia 

viável, devendo ser priorizadas estratégias de gestão de água e maximização da WUE com vista à 

estabilização dos rendimentos (reduções marginais permitidas). Combinar estratégias de irrigação 
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otimizadas (por exemplo, irrigação deficitária) e instalações eficientes (por exemplo, sistema de 

rega gota a gota) com outras opções de adaptação, incluindo a introdução de variedades de ciclo 

mais longo e datas de sementeira mais precoces de forma a contrabalançar o encurtamento do 

período de crescimento é recomendável. Para o sistema de cultivo do trigo de sequeiro, a prioridade 

de adaptação deve abordar os riscos exacerbados stresse térmico e hídrico durante os períodos 

sensíveis de antese e enchimento de grãos. A estratégia para evitar o stresse terminal é proposta 

testando primeiramente variedades de floração precoce (também conhecidas como genótipos de 

ciclo curto), onde o trade-off entre menor risco de exposição ao stresse terminal e maior risco de 

redução do potencial produtivo tende a ser positivo, levando a ganhos líquidos de rendimento. 

Ainda assim, esta opção precisa ser combinada com outras estratégias de adaptação, incluindo a 

data de semeadura antecipada, cultivares de trigo com menor ou nenhum requisito de vernalização 

(por exemplo, usando trigo de primavera) e irrigação suplementar durante o período mais sensível. 

Uma sementeira mais precoce deverá permitir evitar o stresse terminal por antecipação do ciclo de 

crescimento. No entanto, o aquecimento de inverno durante a janela de sementeira precoce poderá 

potencialmente abrandar a vernalização, com benefícios limitados no avanço das fases suscetíveis. 

A utilização de variedades de trigo de primavera com floração precoce (o limiar de antecipação 

deve ser cuidadosamente definido) advogam sementeira precoce, o que permite a utilização da 

precipitação de outono-inverno. No entanto, a estratégia proposta para evitar o stresse é 

comparativamente mais útil para evitar o aumento do stresse térmico terminal (> 38ºC por um 

período curto) do que o stresse prolongado por seca, onde este último pode ser aliviado com rega 

suplementar otimizada. A estratégia de adaptação para pastagens forrageiras perenes deve 

aproveitar a oportunidade e enfrentar o desafio, ambos decorrentes da mudança climática. 

Beneficiando-se de fenologia avançada em relação ao inverno e início da primavera, com menor 

stresse por frio e maior concentração atmosférica de CO2, as medidas de adaptação devem-se 

concentrar na maximização do potencial de crescimento durante este período favorável. Estes 

incluem o uso otimizado de recursos (estratégia balançada de fertilização precoce com limitação 

da lixiviação de N) e o uso de mistura de gramíneas e leguminosas para utilização de forragens 

flexíveis e melhor exploração da resposta estimulada de CO2. Em contraste, para lidar com o 

desafio dos riscos exacerbados de calor no verão e stresse hídrico, futuros programas de 

melhoramento devem garantir uma diversificação (intra e inter varietal) dos germoplasmas 

disponíveis em fenologia (ajuste ao novo padrão climático sazonal), tolerância ao calor e tolerância 
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à desidratação para espécies forrageiras. Concretamente, a melhoria contínua das características 

de persistência à seca e de dormência de verão devem ganhar mais importância para as pastagens 

mediterrâneas de sequeiro. Além disso, estas características de sobrevivência à seca devem ser 

integrados em materiais vegetais com sistema radicular mais profundo para aumentar a absorção 

de água (por exemplo, festuca mais alta), mas isso pode resultar em problemas de qualidade da 

forragem que ainda permanecem por avaliação. Além disso, também formulamos a hipótese de 

que é possível a adaptação à seca de verão a partir de uma perspetiva de gestão sem a necessidade 

de melhorar e diversificar a mistura de espécies e variedades. Os resultados sugerem que, desde 

que a humidade mínima do solo seja garantida pela rega suplementar para garantir a taxa adequada 

de sobrevivência à seca e a densidade de planta, os esforços de melhoramento devem ser mais 

motivados para a tolerância ao calor, particularmente no sul de Portugal. Ao mesmo tempo, esta 

medida provavelmente resultará num aumento considerável na necessidade de rega, tornando-se 

num problema similar de restrição de água enfrentado pelo milho de regadio.  

As projeções de colheira e as estratégias de adaptação exploradas são essenciais para avaliar as 

perspetivas regionais de segurança alimentar e fornecer informações cruciais para apoiar o 

planeamento e a implementação de estratégias adequadas de adaptação para agricultores e 

decisores políticos em Portugal e na bacia do Mediterrâneo. Apesar das incertezas na magnitude 

dos impactos na produção e na eficácia quantitativa das adaptações, as estratégias de adaptação 

propostas e recomendadas podem representar oportunidades promissoras para manter ou aumentar 

a produção no clima futuro, minimizando ao mesmo tempo os impactos ambientais. Esforços de 

investigação futuros devem ser direcionados para o uso de ensembles de modelos (tanto modelos 

agrícolas quanto climáticos) para melhor quantificar as incertezas e tornar as estimativas mais 

robustas e confiáveis. Não obstante, é necessária uma cooperação internacional vasta e sustentável. 

Além disso, uma forte ligação entre a experimentação de campo e a modelação de culturas é 

essencial para uma compreensão mais mecanicista da resposta da cultura às alterações climáticas, 

bem como a integração dos modelos de cultura na modelação económica. Todos estes devem 

contribuir para gerir adequadamente os riscos climáticos e melhorar a resiliência dos sistemas de 

cultivo. 

 

Palavra Chave: Sistemas de cultivo, Modelação de culturas, Projeções de mudanças climáticas, 

Condições do Mediterrâneo, Avaliações de impacto e vulnerabilidade, Estratégias de adaptação. 
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1.1 Context introduction and importance of problems 

One of the millennium development goals established by Food Agricultural Organization (FAO) 

is to eradicate extreme poverty and hunger, as the number of hungry people still remains 

unacceptably high despite recent efforts to restrict this figure below 1 billion (UNICEF, 2004). 

Even if hunger is primarily a question of insufficient access to food due to poverty, there is a global 

consensus that crop production needs to increase considerably by about 60% in the middle of 21st 

century to satisfy the food demand for agricultural products, due to population and consumption 

growth, economic development and rapid urbanization (Alexandratos and Bruinsma, 2012; 

Godfray et al., 2010). As in the past, crop production increases were mainly achieved by 

productivity gains with moderate changes in cropping areas or livestock numbers (Godfray et al., 

2010). For instance, crop yield improvement should account for more than 80% of total crop output 

increase in the next decade, according to OECD/FAO agricultural outlook 2016–2025 

(OECD/FAO, 2016). However, in the context of foreseen global climate change in the upcoming 

decades, i.e. anthropogenic-driven greenhouse gas emissions with elevated atmospheric CO2 level, 

rising temperature, altered local precipitation pattern (IPCC, 2013), it is becoming increasingly 

difficult to maintain or increase crop yields without any changes in current cropping systems.  

A robust and coherent global pattern is discernible of climate change impacts on crop productivity 

that could have consequences on two dimensions of food security, i.e. availability and stability 

(Wheeler and von Braun, 2013). A comprehensive meta-analysis of global climate change impacts 

indicated a great risk of mean yield reductions for staple crops (maize, wheat and rice) in tropical 

and temperate regions by a projected moderate warming of 2℃, being more consistent from 2030s 

onwards, up to 25% of aggregated yield losses (Challinor et al., 2014).Besides decreases in mean 

yields, increased inter-annual yield variabilities, associated with increased climate variabilities and 

extreme events, are expected to negatively affect future year-to-year stability of food crop supply, 

amplifying marketing price and fluctuations (Asseng et al., 2014; Challinor et al., 2014). A notable 

example was the 2003 summer heat wave, characterized by an increase in mean temperature and 

much larger temperature variability, which considerably reduced cereal production by about 23 

million tons in Europe, with huge economic impacts on the food supply chains (Schär et al., 2004). 

This situation concretely demonstrated how climate variability and associated extreme events may 

have significant impacts on agriculture production. 

 



Chapter 1 – General Introduction 

4 
 

1.2 Vulnerability and research gaps in Portugal 

It is likely that climate change and variability have more impacts on cropping systems and 

exacerbate food insecurities in current vulnerable regions, such as the Mediterranean region 

(Prosperi et al., 2014). Projections from a wide range of global and regional climate models 

confirm a robust climate change signal of an overall warming and drying trend for the 

Mediterranean basin, accompanied by greater frequency and intensity of extreme events (Giorgi 

and Lionello, 2008). Despite being identified as one of the most prominent “hot-spot” for climate 

change impacts (Giorgi and Lionello, 2008), relatively fewer studies have been conducted to 

evaluate climate change impacts in the Mediterranean region compared to the counterpart 

temperate region. Studies are even more scarce for Portugal, a southern European country within 

Mediterranean basin, which currently calls for the strong needs for research assessments on climate 

change impacts and risks, to identify vulnerabilities of various agro-ecosystems and exploration 

of policy guidelines for planning efficient, integrated and target adaptation strategies (Carvalho et 

al., 2014). Resultantly, the findings obtained are not only relevant in Portugal, but also have 

broader implications for regions with similar Mediterranean-type climates.  

Scenarios, Impacts and Adaptation measures (SIAM, http://cciam.fc.ul.pt/prj/siam/) was a 

pioneering project for climate change impact assessments in Portugal over 1999–2006 (Santos and 

Miranda, 2006). It revealed that future climate change may reduce yields of rainfed wheat and 

irrigated maize in Portuguese major producing regions by 25% and 29% respectively, highlighting 

the need for development and planning of adaptation strategies (e.g. early sowing dates and 

introducing cultivars with better heat and drought tolerance) (Santos and Miranda, 2006). However, 

one major limitation from the SIAM project arises from the fact that their climate projections are 

directly based on the coarse horizontal resolution (200–300 km) of Global Climate Model (GCM) 

simulations that are normally not appropriate for direct use in impact models, i.e. crop models are 

typically operated at 1 ha scale (Yang et al., 2019; Yang et al., 2010). Moreover, the trajectories 

of future Greenhouse Gas (GHG) emissions are dependent on demographic changes, technologic 

trends, social-economic development and policy influences, thus adding uncertainty to the climate 

change projections (Asseng et al., 2013). Climate change scenarios adopted by SIAM are based 

on limited sets of social-economic scenarios (Carvalho et al., 2014; Santos and Miranda, 2006), 

such as A1 and A1B from the Special Report on Emission Scenarios (SRES), where these scenarios 

do not include possible future policy interventions and thus not encompass full ranges of potential 

http://cciam.fc.ul.pt/prj/siam/
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outcomes (Nakicenovic et al., 2000). Besides, the crop models are implemented without adequate 

calibrations and performance evaluations, as well as lack of appropriately incorporating local 

agronomic characteristics (Santos and Miranda, 2006). Moreover, quantitative effectiveness of 

adaptation strategies explored has not been evaluated in their simulations, only providing 

qualitative suggestions based on interpretations of projected yield impacts that are inherently 

uncertain (Santos and Miranda, 2006).    

 

1.3 Framework of PhD program 

In the framework of a novel doctoral program in the field of agriculture science (Agricultural 

Production Chains – from fork to farm, AgriChains), my PhD research was carried out to extend 

and improve estimations of agricultural impacts of and adaptation responses to climate change, 

attempting to address the challenge issues and fill the research gaps in climate change risk 

assessment studies in Portugal. The resulting development of decision support systems (DSS) will 

allow for planning, guiding and implementing climate change adaptation strategies for the 

Portuguese agriculture, taking into account potential climate variability and change scenarios. This 

approach is plainly justified within the framework of the AgriChains doctoral program. In fact, it 

corresponds to one of its main topics (cf. approved proposal by FCT): “Climate changes and 

adaptation measures”. Moreover, it is aimed to provide practical information to farmers and policy-

makers, in order to bridge scientific knowledge to real economy. 

 

1.4 Overall methodologies 

We have firstly identified three crop production systems that are socially, culturally and 

economically important in Portugal, namely irrigated maize, perennial grassland and rainfed wheat 

crops, which are chosen as the subjects in our climate impact studies (Yang et al., 2018; Yang et 

al., 2019; Yang et al., 2017). The corresponding representative study sites in the major producing 

regions of Portugal have been identified. The overall methodologies follow the combined use of 

climate models and crop models. Climate models generate a wide range of plausible projections 

of future climate conditions at study sites, at which crop responses are simulated by process-based 

crop models, resulting in the variations and changes of important agronomic outputs (e.g. growth 

duration, grain yield, aerial biomass) relative to the reference (baseline) period. These variations 

and changes are primarily interpreted as impacts of climate change, for which quantitative 
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effectiveness of field-level adaptation strategies are proposed and tested by modifying cultivar 

traits or adjusting management inputs that are both available as an integral part of crop models 

(Challinor et al., 2014; Ruiz-Ramos et al., 2018). Climate models are appropriate tools for 

analyzing climate change, while crop growth and yield formation processes are simulated by 

dynamic crop models that quantify the impacts of complex interactions among Genotypes × 

Management × Environment (G × M × E) on a daily time-step (Asseng et al., 2014; Challinor et 

al., 2014). Moreover, use of crop models allows to isolate the impacts of climatic and non-climatic 

factors on crop yields while keep other factors constant, which are difficult to determine in field 

experiment or long-term yield trends, e.g. trend of time-series regional yield statistics is a result of 

numerous interplaying factors, thus being difficult to isolate their individual contribution to yield, 

such as the case of temperature or precipitation (Asseng et al., 2011; Lobell et al., 2005).  

Over the course of my PhD, I mainly focused on using the STICS crop model, which has been 

developed by INRA (French National Institute for Agricultural Research) since 1996 (Brisson et 

al., 2003; Brisson et al., 2009; Brisson et al., 1998; Brisson et al., 2002). The model is initially 

parameterized for cereal crops, such as maize and wheat (Brisson et al., 1998; Brisson et al., 2002), 

but later being adapted to various other crops, such as perennial grassland (Ruget et al., 2009). The 

robustness of model, with its standard set of parameters, has been sufficiently tested and examined, 

showing satisfactory performance for a wide range of agro-climatic conditions, including 

situations under Mediterranean-type climate (Coucheney et al., 2015). AquaCrop, a water-driven 

crop model developed by FAO (Steduto et al., 2009), which is relevant for studying the relations 

between crop yield and water productivity under climate change, is also employed in my thesis 

works for one occasion (Yang et al., 2017).  

In Chapter 2, we will provide state-of-the-art literature reviews on modelling climate change 

impacts on crop growth and yield, including detailed information on the social-economic 

importance of these identified production systems in Portugal, as well as current state of 

knowledge concerning climate change projections and model-based evaluation of impacts and 

adaptation options (including a brief overview of the STICS crop model). In short, projected 

climate change impacts on crop growth and productivity, based on the combined use of crop and 

climate models, are known to vary with different locations and regions, characteristics of selected 

cropping systems, GHG emission scenarios and future time periods chosen (Asseng et al., 2013; 

Challinor et al., 2014; Islam et al., 2012; Rötter et al., 2018; Wang et al., 2018). Therefore, 
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assessments of climate change impacts and exploration of adaptation strategies should be carried 

out in a specified local context. Appropriate assimilations of local crop growing conditions into 

crop models, including observed climate data, dominant soil types and representative farming 

practices (e.g. common cultivars, planting dates, resource investments, among others) before 

feeding climate projections data, are essential for a more relevant and reliable analysis.  

 

1.5 Objectives and tasks 

The overall objectives of my PhD thesis research are 1) to explore food security prospects for 

farmers and stakeholders by providing crucial information and insights on yield projections of 

three main crop production systems in Portugal (i.e. irrigated grain maize, rainfed winter wheat 

and perennial grassland); 2) to aid in developing, planning and enacting climate change adaptation 

strategies for Portuguese major producing regions of these crops, based on rigorously examined 

various levels of adaptation options in the modelling processes; 3) to bring added value to enhance 

the resilience of agri-food chains where key inputs are available to bio-economic or farming system 

models for more integrated and comprehensive risk assessment and management; 4) to improve 

our understandings of crop physiological and growth response to climate change. 

In line with these objectives, the following research tasks have been carried out: 

1) Analysis of performance of two dynamic crop models (STICS and AquaCrop) in simulating 

irrigated maize yields at regional scale by comparing to statistic data in the Portuguese major 

producing region (Ribatejo) (Chapter 3).  

2) Analysis of the response of several important outputs of the irrigated maize system (i.e. yield, 

growth duration, seasonal water input and water use efficiency) to project climate change in 

Ribatejo, based on the previous two crop models, and propose irrigation-based adaptation 

strategies, by analyzing water-yield relations under different climate change scenarios (Chapter 

3).  

3) Evaluation of STICS model performance in simulating local grain yields of winter wheat, using 

5-year published yield data at one representative site within a major wheat growing region in 

Portugal (Alentejo) (Chapter 4). 

4) Assessment of winter wheat yield response to projected climate change using STICS model, 

and estimate the quantitative effectiveness of using early flowering cultivars and early sowing 
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dates as potentially suitable regional adaptation options for wheat production in Alentejo (Chapter 

4). 

5) Comparison of forage Dry Matter Yield (DMY) of Mediterranean perennial grassland simulated 

by STICS with observations, and estimate potential climate change impacts on DMY under 

contrasting grassland growth duration and irrigation water supply (Chapter 5). 

6) Explorations of recommendable adaptive responses to the impacts of foreseeable enhanced 

extreme weather events in summer (June–August) derived from climate change projections, by 

separating the effects of severe water deficits on DMY from effects of heat stress using STICS 

model at grassland sites throughout Portugal (Chapter 5). 

The current PhD thesis is organized in 7 chapters, with Chapter 6 of General Discussion and 

Chapter 7 of Concluding Remarks and Future Outlooks. A diagram overview is provided below 

in Fig. 1. 

 

 

Figure 1. An overview of present PhD thesis structure 
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2.1 Crop production and challenge under climate change  

      2.1.1 Importance of crop production in Portugal  

The European Union is one of the world´s largest and most productive supplier for food, standing 

for 20% of global cereal production, with crop productivity 60% higher than the world average 

(Olesen et al., 2011). In Portugal, where the agricultural area represents about 40% of the whole 

territory, with a remarkable economical volume (approximate 4,640 million euros), the inter-

annual crop yield variability has played a determinant role on food price and security, as well as 

land use competitions with non-food sectors (Charlier and de Gasperi, 2007).  

Fodder crop production (including perennial and annual grassland) stands for the largest 

proportion of total crop production in Portugal (Fig. 1). There are around 2.5 million hectares of 

grassland in Portugal, accounting for 25% of territory area, with its main distribution in the 

northwest, center and south regions (Jongen et al., 2011). In the northwest, large areas are devoted 

to intensive dairy farms, which contributes to more than 50% of national milk production 

(Trindade, 2015). Success of these dairy farms are largely dependent on self-sufficient forage 

supply from none-grazing permanent grassland (Trindade, 2015). In the center region, grassland 

utilization generally focuses on integrated livestock production, e.g. in Quinta da Franca covering 

around 500 ha, in which irrigated pasture provides an essential forage source (Pereira et al., 2004). 

For the south, where grassland is the main vegetation cover, semi-natural grassland with higher  

 

 

Figure 1 Proportion of various crop production systems in Portugal (INE, 2015). 
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conservation value (Aires et al., 2008), is critical to sustain extensive animal grazing, but being 

gradually replaced by sown biodiverse permanent pasture (Teixeira et al., 2011). Given the 

important role of forage production, climate conditions may exert strong control on farmer’s 

livelihood. For instance, in the dry year of 2004-2005, animal stocking rate in several pasture farms 

significantly decreased as a result of drought induced forage deficiency (Teixeira et al., 2011). 

Perennial crops are inherently vulnerable to climate changes, owing to the all-around-the-year 

exposure to fluctuations in local weather conditions that also vary from place to place. Evaluations 

of climate change impacts and development of adaptation measures for perennial grassland are 

most needed. 

It is also evident from Fig. 1 that maize (Zea mays L.) is the most important cereal crop in Portugal 

grown for grain and silage production. The most important growing area is located in the Ribatejo 

region, having approximately ~30,000 ha of maize fields (ca. 35% of the total maize area in 

Portugal) (Yang et al., 2017). The Ribatejo climate, characterized by very dry summers, does not 

naturally provide optimal conditions for a high water-demanding crop like maize, with a spring-

summer growing season. Hence, almost all of the maize cultivated area (94%) is currently irrigated 

(INE, 2015). Within the region, the Sorraia Valley is another example of intensive irrigated maize 

growing area, in which irrigated maize cultivation area accounts for about 25.6–44.9% of the total 

area irrigated during 2004–2014 (Ramos et al., 2017). In a larger context, the agricultural sector is 

by far the largest water consumer, where approximately 80% of water consumption has been 

allocated to irrigation in the Mediterranean region (Araus, 2004). However, water availability for 

agricultural purposes is rapidly declining due to increasing competition from non-food sectors, as 

well as driven by projected warming and drying trends (Challinor et al., 2014; Giorgi and Lionello, 

2008; Hamdy et al., 1995; Iglesias et al., 2007). Given the fact that irrigation practice plays a 

critical role in increasing crop productivity and improving production stability, scarcity of water 

resource with poor field management is expected to significantly hinder sustainable development 

of maize production. Therefore, sustainable methods to increase crop Water Use Efficiency (WUE) 

are gaining importance in arid and semi-arid regions such as the Mediterranean basin (Geerts and 

Raes, 2009). In recent years, the research focus has shifted to limiting factors of cropping systems 

(e.g. water availability) for sustainable intensification, instead of solely maximizing crop 

productions. Adaptation strategies based on optimized water management, such as deficit 

irrigation that contribute to maximize WUE on crops grown in drought-prone area, enable water 
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saving practices while helping to stabilize crop yields (Geerts and Raes, 2009; Zhang and Oweis, 

1999). 

Another import cereal crop in Portugal is wheat (mainly winter wheat) that are culturally, socially 

and economically important in Portugal, but insufficient domestic productions lead to the 

dependency on imports for satisfying internal demand (Almeida et al., 2016) (Fig. 1). The main 

wheat growing areas are situated in the Alentejo region in southern Portugal, representing about 

80% of total growing areas and account for >75% of national wheat production (INE, 2019). In 

Alentejo, the prevalence of dryland farming systems leads to wheat cultivation under rainfed 

conditions (Valverde et al., 2015). Approximately, 95% of wheat growing areas in Alentejo are 

devoted to bread wheat production (Gouveia and Trigo, 2008). The typical Mediterranean climate 

of this region causes a high evaporative demand in late spring (ca. April–June) when precipitation 

is low, thus considerably enhancing the risks of occurrence of severe water deficit during the most 

susceptible growth stage of winter wheat, i.e., flowering and post-anthesis grain filling period 

(Costa et al., 2013; Páscoa et al., 2017). It is clear that climate-related risks for wheat production 

are substantially high in this region. A previous analysis revealed that climatic water deficits in 

May and June in this region, largely coinciding with the grain filling and ripening stages, may 

impose strong limitations on wheat yields (Páscoa et al., 2017). Over the last decades, it was found 

that regional wheat growing areas had declined drastically from an average of 211,104 ha (331,007 

t), during 1986–1995, to of 47,394 ha (84,227 t), during 2006–2015 (INE, 2019). The reason for 

this increasingly low adoption, in addition to policy modifications, can be largely explained by the 

observed climate trend towards a more arid climate in Alentejo, aggravating the existing climatic 

constraints, with serious concerns over yield returns and economic viability (Páscoa et al., 2017; 

Valverde et al., 2015). More investments and efforts are required by farmers to offset the negative 

impacts on yield. Therefore, it is important to quantify and understand to what extent the two main 

abiotic stresses (drought/heat) have limited wheat yield, and how adaptation options can help 

overcoming these limitations. 

Other important annual crop species, like rice and potato and dry pulses (Fig. 1), also play an 

important role in Portuguese agri-food production, with annual production reaching ~600,000 ton 

in total (INE, 2015). For fruit crop, grapevine contributes to more than 11% of total production 

(Fig. 1) (INE, 2015), making Portugal the 11th highest wine producing and exporting country in 
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the world. The commercial vineyards were distributed across 12 viticulture regions in mainland 

Portugal, representing 227,000 ha (Fraga et al., 2016). 

 

      2.1.2 Observed yield stagnations in Europe and Portugal 

The growing trends of food consumption, due to rapidly increasing population, economic growth 

and urbanization, are predicted to boost land use and water resource competition, creating marked 

impacts on various socioeconomic sectors (Alexandratos and Bruinsma, 2012; Godfray et al., 

2010). In such a context, maintaining crop production under changing climates to satisfy increasing 

consumption demand is the greatest challenge we face as a species. During the last century, 

increased crop yields were brought about mainly through Green Revolution, i.e. breeding for 

increased harvest index and disease resistance, as well as by using more irrigation and 

agrochemicals (Evenson and Gollin, 2003). While genetic gains continue, the multiple challenges 

of climate change and growing global population demand new approaches to produce nutritious, 

high yielding, climate resilient crops. For instance, it is shown that the continuous genetic progress 

on cereal grain yields has been partly counteracted by climate warming since 1990, resulting in 

yield stagnations in many European countries (Brisson et al., 2010). This particularly holds true 

for Portugal, which displays the lowest level of wheat yield with the slowest increasing rate (FAO, 

2003; Porter and Semenov, 2005) (Fig. 2). 

 

 

Figure 2 Observed wheat grain yields in selected European countries (FAO, 2003; Porter and Semenov, 2005).   
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      2.1.3 Crop response to climate change and variability 

The agricultural sector is intrinsically vulnerable to climate change, as crops are commonly subject 

to several forcing factors, being climate variability among the most important driver on crop yield 

variation. Climatic variability plays a major role in producing meteorological conditions that 

deviate substantially from mean conditions, known as climate anomalies, accompanied by the 

occurrences of extreme weather events. A number of modelling studies, centred on the effects of 

elevated atmospheric CO2 level in conjunction with changes in average climatic conditions (e.g. 

annual mean temperature and precipitation) on crop production, were conceptually incomplete, 

likely causing an underestimation of climate impacts (Asseng et al., 2013; Kassie et al., 2015; 

Tubiello et al., 2000). This is because crop is generally subject to a combination of several growth-

limiting factors (e.g. water and nutrients shortage and heat stress) and respond non-linearly to 

changes in growing conditions, exhibiting discontinuous threshold response (Porter and Semenov, 

2005; Semenov and Porter, 1995). Therefore, increased climate variability, on top of changes in 

mean climate conditions, can assume a greater role as climatic constraints in limiting crop yields. 

For example, the nation-level cereal productions across the globe were reduced by an average of 

9–10% during 1964–2007, resulting from the impacts of historical extreme drought and heat 

stresses (Lesk et al., 2016). Likewise, the 2003 European summer heat wave, characterized by an 

increase in mean temperature and much larger temperature variability, considerably reduced cereal 

production by about 23 million tons in Europe, with huge economic impacts on the food supply 

chains (Schär et al., 2004). 

It is repetitively stressed that along with projected mean climate changes (such as annual mean 

temperature and precipitation), changes in climate variability and associated frequency and 

intensity of extreme weather events, such as severe drought and heat stress, should also be 

explicitly included in climate change impact analysis (Lesk et al., 2016; Moriondo et al., 2011). It 

is later confirmed by IPCC (2013) that climates may become more extreme if the variance of the 

climate distribution is larger. As an illustrative example from a statistic point of view, the 

postulated temperature distribution changes were presented by Porter and Semenov (2005) in 

relation to the effects of increase in mean and variance on the frequency of occurrence of extreme 

temperature events, i.e. heat stress or frost damages (Fig. 3). Figure 3 below indicates (i) 

increasing mean temperature moves the distribution towards warmer weather (Fig. 3a); (ii) 

increasing temperature variance results in the tendency towards more frequent occurrence of 
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extreme weather events, such as heat stress (Fig. 3b);  (iii) increases in both mean and variance of 

temperature cause warmer and more frequent heat stress (Fig. 3c). 

 

Figure 3 Postulated temperature distribution changes via increases in (a) mean temperature, (b) temperature variance 

and (c) in both mean and variance of temperature (Porter and Semenov, 2005). 

 

2.2 Climate changes and climate model projections  

      2.2.1 Concepts of climate systems, variabilities and changes  

According to the World Meteorological Organization (WMO), climate can be defined as the 

statistical description in terms of mean and variability of relevant quantities over a period of time 

(typically 30 years) (WMO, 1983). Therefore, climate is the statistical description of weather at a 

given location, including the likelihood for a range of weather phenomena and states (Arguez and 

Vose, 2011). For this reason, climate sometimes refers to the average weather. Weather at 

individual locations is further subject to larger-scale complex interactions between components 

within the earth climate system, of which comprising the atmosphere, biosphere, land surface, 

hydrosphere and cryosphere (WMO, 1983). The chaotic processes occurring within the climate 

system, mainly due to the non-linear interactions between its components, constitute the internal 

climate variability, which is more pronounced at shorter temporal and smaller spatial scales 

(Frankcombe et al., 2015; Hawkins and Sutton, 2011). Moreover, the climate system might be 

forced by external factors beyond internal processes, including natural variations in solar radiation 

and volcanic eruptions, as well as human-induced alterations to atmospheric composition and land 

use, a process known as the external climate variability (Frankcombe et al., 2015). Strictly 
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speaking, the term “climate variability” refers to variations in the mean or any other statistical 

properties of the climate state, on all temporal and spatial scales, which is often used to measure 

the deviations of climate statistics over a given period of time (e.g. month, season or year) from 

the long-term statistics for the same calendar period, namely Climate Anomaly (CA) (WMO, 

1983). In contrast, climatic change, according to WMO and its usage by the Intergovernmental 

Panel on Climate Change (IPCC), is defined as the statistically significant variations in the mean 

state of climate or its variability, persisting for a long period of time (decades or longer) (IPCC, 

2013). It refers to any changes in climate system, caused by either internal variability or external 

variability. In essence, the conceptual differences between climate variability and climate change 

consist in the fact that the former looks at changes at smaller timeframes (month, season or year), 

whereas climate change considers changes for a much larger scale (decades or longer) (WMO, 

1983). From a practical viewpoint, the difference can also be interpreted as if the anomalous 

conditions persist as compared before, i.e. rare events occur more frequently. Care should be taken 

when attributing individual events to anthropogenic-driven climate change, because a sequence of 

consecutive anomalous events can even be within the bounds of natural climate variability (Deser 

et al., 2012). Only a persistent series of unusual events, in the context of broad changes in regional 

climate parameters, can suggest a potential change in climate has occurred (Deser et al., 2012; 

IPCC, 2013).  

 

      2.2.2 Observed global warming and associated Greenhouse gas emissions (GHG) 

This sub-section is based on the Summary for Policymakers chapter that is contained in the 

synthesis report of the Fifth Assessment Report (AR5) of IPCC, which synthesizes the contributing 

IPCC working group reports and providing an overview of the state of knowledge concerning the 

science of climate change (IPCC, 2014). The evidences of human influence on the earth climate 

system have grown since the IPCC Fourth Assessment Report (AR4), and recent anthropogenic 

emissions are the highest in history: surface temperature of Northern Hemisphere barely changes 

in the last 1400 years, except over the recent 30-year period (1983–2012), with widespread impacts 

on human and natural ecosystems (IPCC, 2013). The observed climate warming is unequivocal, 

as the global average combining ocean and surface temperatures shows a robust multi-decadal 

warming of 0.85°C [0.65–1.06°C] over 1880–2012, accompanied by great decadal and inter-

annual variability (Fig. 4a). This warming occurs despite nearly 60% of total emissions have 
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already been removed from the atmosphere, either through various natural sinks involved in the 

carbon cycle (e.g. uptake by plants and immobilization by soil microorganisms) or via energy 

absorptions in the ocean (IPCC, 2013). Ocean warming dominates the energy increases in our 

climate system, storing about 30% of emitted anthropogenic CO2 and accounting for more than 

90% of total energy uptake between 1971 and 2010 (IPCC, 2013). This eventually creates ocean 

acidification, which represents a significant challenge for future sustainable development goals 

(Harrould-Kolieb and Herr, 2012; IPCC, 2014). The atmosphere and ocean warming have likely 

affected the global hydrological cycle, causing the retreat of glaciers, increased surface melting of 

arctic ice sheet and greatly contributing to the sea level increase. Over the period from 1901 to 

2010, global mean sea level rose by 0.19 [0.17 to 0.21] m (Fig. 4b). The sea level rising rate since 

the mid-19th century has been larger than the mean rate during the previous two millennia (IPCC, 

2013). 

More than half of globally averaged surface temperature increase can be explained by the 

anthropogenic increased GHG emission since the mid-20th century (IPCC, 2014). The GHG 

emissions have since driven large increases in the atmospheric concentrations of CO2, CH4 and 

N2O, of which 78% are derived from CO2 emissions by fossil fuel burnt, cement production and 

other industrial process, as well as from forestry and other land cover and land use changes (Fig. 

4c, d). The anthropogenic forced CO2 emission, mainly driven by population and economic growth, 

have produced an approximate 40% increase in the atmospheric concentration of CO2, from about 

280 ppm in 1850 to nearly 400 ppm in 2010 (Fig. 4c). To attribute human activities to observed 

climate warming, the recent IPCC Special Report, as part of the IPCC AR6 on the impacts of 1.5°C 

global warming, provides an estimation of 1°C [0.8–1.2°C] warming that is caused by 

anthropogenic forcing since the pre-industrial era. The warming rate is likely to continue until 

reaching 1.5°C between 2030 and 2052 (IPCC, 2018). 

 

      2.2.3 CMIP5 simulation experiments and framework 

Climate models are the most useful tools for understanding the climate systems and climate 

changes. A new set of global coordinated climate model experiments was established following 

the endorsements of World Climate Research Program (WCRP)’s Working Group on Coupled 

Modelling (WGCM), which initiated the fifth phase of the Coupled Model Intercomparison Project  

 

https://en.wikipedia.org/wiki/Parts_per_million
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Figure 4 Observed global warming and GHG emissions (colors for different dataset). (a) Annually and globally 

averaged combined land-and-ocean surface temperature anomalies relative to the average over 1986–2005. (b) 

Annually and globally averaged sea-level change relative to the average of 1986 to 2005. (c) Evolution of atmospheric 

CO2 (green), CH4 (orange) and N2O (red). (d) Global anthropogenic CO2 emissions from forestry and land use as well 

as from fossil fuel combustions, cement production, and flaring (the corresponding cumulative CO2 emission and their 

uncertainties are shown as bars and whiskers, respectively) (IPCC, 2013; IPCC, 2014). 
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(CMIP5) (Taylor et al., 2012). In the global coordinated framework of CMIP5, the main tasks 

consisted of 1) improving the poorly understood processes associated with carbon and cloud cycles, 

2) investigating predictive abilities of climate models on decadal to century scales and 3) exploring 

the cause of underlying differences in the produced range of responses among climate models 

(Taylor et al., 2012). CMIP5 hence aimed to provide a state-of-art multi-model ensemble context 

that form the basis for exploring climate change impacts and policy issues of considerable interests, 

which were used to inform the major assessment activities of IPCC AR5 (IPCC, 2013). The CMIP5 

includes two types of model experiments, namely near-term decadal prediction experiments until 

2035 and long-term century climate projections until the end of the 21st century and beyond. The 

entirely new suite of near-term prediction, based on the time-slice approach to integrate recent 

decadal climate and future climate until 2035, aims to examine the predicative skill of forecast 

systems on decadal time scales that are still in the exploratory phase (Kirtman et al., 2013; Taylor 

et al., 2012). For instance, a number of different methods have been tested to assimilate ocean 

observations into these forecast systems, but no single method has gained widespread acceptance 

(Taylor et al., 2012). In contrast, the long-term experiments are directly built on the CMIP3 but 

include additional runs to provide more comprehensive understandings of long-term climate 

change and variability (Taylor et al., 2012). For these simulations, conventional atmosphere–ocean 

GCMs and Earth system Models (ESMs) of intermediate complexity are for the first time being 

joined by more recently developed ESMs in CMIP5, in which a richer set of output fields will be 

archived (Taylor et al., 2012). These models respond to specified, time-evolving concentration of 

various atmospheric constituents (e.g. greenhouse gases and aerosols) and land cover changes, 

producing an interactive representation of the atmosphere, land, ocean and sea ice conditions 

(Taylor et al., 2012).  

 

      2.2.4 Climate change projections and scenarios under CMIP5 

For future projections, climate model simulations are performed with pre-defined trajectories of 

anthropogenic emission and atmospheric concentrations of GHG, aerosols and other drivers, which 

are the net results of human activities and expressed as climate change scenario (changes in the 

natural drivers such as volcanic eruptions or solar variations are not included) (IPCC, 2013; IPCC, 

2014). The resulting anthropogenic emission scenarios provide crucial emission inputs to climate 

models for exploring possible responses of our climate system. These scenarios account for a broad 
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range of evolutions of future population growth, societal-economic development and technological 

advancement, such as the scenarios developed in the Special Report on Emission Scenarios (SRES) 

that are used in the IPCC third and fourth assessment reports (Nakicenovic et al., 2000). Future 

evolution of global GHG emissions and concentrations is highly uncertain, and climate change 

scenarios are appropriate tools for analyzing the plausible influence of driving forces on emission 

outcomes that in turn impact climate simulations in GCMs, reflecting our current understandings 

and knowledge in the existing literature for the underlying uncertainties on how alternative images 

of future may unfold (Nakicenovic et al., 2000). In the framework of CMIP5, a set of four emission 

scenarios are formulated, corresponding to the new generation of scenarios, i.e. Representative 

Concentration Pathways (RCPs) (Moss et al., 2010; van Vuuren et al., 2011). In comparison with 

SRES scenarios, RCPs do not specify societal-economic changes, but rather assume different 

pathways to targeting specific Radiative Forcing (RF) in the end of the 21st century, with respect 

to the pre-industrial level (van Vuuren et al., 2011). The RF corresponds to net changes on the 

energy fluxes of various well-mixed GHG or other atmospheric constituents: a positive RF leads 

to a warming surface, whilst a negative value indicates a surface cooling trend (Collins et al., 2006; 

Shine, 2000). The anthropogenic influences have made a substantial contribution to the GHG 

emissions, resulting in increased RF and additional energy uptake by surface and ocean (Shine, 

2000).  

As listed in Table 1, RCP8.5 is a business-as-usual high emission scenario, with rapid increases 

of RF reaching 8.5 W/m2 in the end of 21st century. Similarly, other assumed emission pathways 

lead to the target RF of 2.6 W/m2, 4.5 W/m2 and 6 W/m2, corresponding to one mitigation scenario 

of RCP2.6 and two stabilization scenarios of RCP4.5 and RCP6.0 (Moss et al., 2010) (Table 1). 

In contrast to previous scenarios from SRES (e.g. A1 or A1B), RCPs already represent a range of 

climate policies for adaptation and mitigation throughout the 21st century undertaken to achieve 

certain emission targets. These are deemed necessary as extensive uncertainties exist in future 

forcing of and responses to climate change, necessitating the use of future scenarios to explore the 

potential consequences of different response options (Moss et al., 2010; Taylor et al., 2012; van 

Vuuren et al., 2011). It should also be noted though that RCPs span a wide range of total forcing 

values, they do not cover the full range of emissions in the literature, particularly for aerosols 

(IPCC, 2014).  
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Table 1. Overview of four Representative Concentration Pathways (RCPs) (Moss et al., 2010; van Vuuren et al., 

2011). 

 
RCP 

scenarios 
Radiative forcing  

 CO2 equivalent 

concentration (ppmv) 
Pathway  

Scenario 

category 

RCP2.6 Peak at ~3 W/m2 before 

2100 and decline afterwards  

Peak at ~490 before 2100 

and decline afterwards 

Peak and 

decline 
Mitigation 

RCP4.5 ~4.5 W/m2 at stabilization 

after 2100 

~650 stabilization after 

2100 

Stabilization 

without 

overshoot 

Stabilization 

RCP6.0 ~6 W/m2 at stabilization 

after 2100 

~850 stabilization after 

2100 

Stabilization 

without 

overshoot 

Stabilization 

RCP8.5 >8.5 W/m2 in 2100 >1370 in 2100 Continuous 

rising 
High-emission 

Note: The approximate radiative forcing levels were defined as ±5% of the stated level relative to pre-industrial     

levels. The radiative forcing are net effects of all anthropogenic GHG and other forcing agents 

 

      2.2.5 Regional climate projections and EURO-CORDEX 

A new generation of more complex GCMs employed in CMIP5 are expected to provide more 

detailed and accurate climate projections, with projected spatial patterns of global temperature and 

precipitation changes rather consistent among models (Knutti and Sedláček, 2012). However, the 

exercises of risk assessments of climate change impacts and development of local-to-regional 

adaptation strategies highlight the need for availability of high-resolution climate projections. It is 

evident that the relatively coarse spatial resolutions of CMIP5 models, mostly GCMs or ESMs 

ranging from 0.5° to 4°, are insufficient to meet the research needs for a broad range of climate-

related disciplines, such as hydrological modelling at river basins (Yang et al., 2010) or crop 

modelling at field scales (Yang et al., 2019).  

Within the European branch of the global Coordinated Regional Downscaling Experiment 

(EURO-CORDEX), a number of fine-resolution RCMs, implemented over an European domain 

at 50 km (EUR-44) or 12.5 km (EUR-11), were employed to dynamically downscale the 

corresponding GCMs simulations from CMIP5 under four RCP scenarios (Jacob et al., 2014). 

More emphasis are placed on EUR-11 as it stands for the finest spatial resolutions of climate 

projections to date. The added value of using RCMs can be reflected by better representations of 

present-day climates and more relevant and accurate projections of future climate, resulting from 

more detailed descriptions of geographic features and sub-grid scale parameterization schemes 

(IPCC, 2015; Jacob et al., 2014). It is also frequently noted that the added value are more likely to 

occur for precipitation than for temperature, as regional precipitation change signals simulated by 
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RCMs tend to show substantial orographically-induced fine scale structure that is absent in GCMs 

(Di Luca et al., 2012; Giorgi and Lionello, 2008).  

 

      2.2.6 Bias Correction and Delta Change 

There are growing demands for regional climate information to be used in impact models that 

provide crucial downstream inputs for decision-making. However, despite the fine-resolution 

climate data generated by GCMs-RCMs, such information still contains a number of uncertainties 

that cannot be directly used by impact models, as the latter often require high resolution unbiased 

inputs (Maraun, 2016). For instance, there is often a historical control period defined for GCMs-

RCMs simulations using measured atmospheric concentrations of GHG, but some limitations 

should be expected regarding the estimated climate statistical properties of important 

meteorological variables (e.g. temperature and precipitation), such as sub-daily, daily, monthly 

and seasonal means or standard deviations (Yang et al., 2010). Regardless, all climate models are 

an approximation and simplification of the real climate system, applying different physical 

parameterization schemes and numerical approaches (IPCC, 2015). Alternatively, Empirical 

Statistical Downscaling (ESD) can be used to provide statistical downscaling of GCMs outputs, 

which calibrate model simulations against observations according to the exploited dependencies 

between large and small scales of different climate variables, such as temperature and precipitation 

(Maraun et al., 2015). But some of these statistical approaches do not provide reliable climate 

change trends (Maraun, 2016). 

Bias correction (BC) has become an integral part of pre-processing of climate model simulations 

prior to being used by impact models. The correction factors are derived by comparing RCMs 

simulations during the reference (baseline) period with observations, which are then applied to 

projections for a future period, a technique in meteorology known as model output statistics that 

has been extensively used to correct weather forecasts (Yang et al., 2010). As future climate change 

is expected not only to influence mean climates, but also to modify the frequency and intensity of 

extreme weather events (Moriondo et al., 2011), BC is known to better preserve future climate 

variability produced by individual RCMs and to take into account the covariance between 

temperature and precipitation, resulting in improved usability by climate change impact studies 

(IPCC, 2015; Yang et al., 2010). It should be noted that BC is generally a post-statistical approach 

absence of any physical arguments, but it could potentially alter climate change signals compared 
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to non-adjusted climate projections (Maraun, 2016; Maurer and Pierce, 2014). Various BC 

methods, such as quantile mapping (Piani et al., 2010) or distribution-based scaling (Yang et al., 

2010), are yet to be thoroughly assessed by climate science communities. Guidance on BC 

availability, use, interpretation, limitation and uncertainty in the broad context of other possible 

post-processing techniques, shall be well elaborated in the upcoming 6th assessment report of IPCC 

(IPCC, 2015). 

Similarly, future time series of climate data can also be constructed by perturbing observational 

records of reference period with projected long-term mean changes (or changes factors) simulated 

by RCMs, an approach conventionally called Delta Change (DC) (Hay et al., 2000; Ruiter, 2012). 

The long-term differences (e.g. temperature) or ratios (e.g. precipitation and radiation) between 

mean values in the historical run and future periods, are calculated on monthly or seasonal basis 

by individual GCMs-RCMs chains and added to the observed weather records (Ruiter, 2012). 

Clearly, one major flaw of DC is the rough assumption that variance of future climate has kept the 

same as in the historical period, which is unlikely true (Hay et al., 2000; Yang et al., 2010). The 

covariance between weather variables (e.g. temperature, radiation and precipitation) is artificially 

weakened when DC is implemented separately (Yang et al., 2010). 

 

      2.2.7 Observed climate and climate change projections in Portugal 

Situated in southern Europe, Portugal is a Mediterranean country, with typically mild and rainy 

winters and warm and dry summers. The mean annual temperature varies between 2°C in the inner 

highlands of central Portugal and 18°C in the southern coast, whilst the mean annual precipitation 

is around 900 mm, with a strong northwest–southeast gradient (e.g. 3000 mm in the northwestern 

mountains and below 400 mm in the southernmost parts) (Carvalho et al., 2014). 

The observed climate conditions in the second half of the twentieth century show a warming and 

drying trend over mainland Portugal, with increases in both maximum and minimum temperatures 

(Espírito Santo et al., 2014; Páscoa et al., 2017). The analysis of the temperature trend shows a 

cooling period over 1945–1975, followed by a significant and widespread warming during 1976–

2006 (Espírito Santo et al., 2014). The annual mean temperature increased by 0.52°C per decade 

during 1976–2006, which is more than double the rate of mean annual global temperature increase 

(Carvalho et al., 2014; Ramos et al., 2011). Heat waves have become more frequent since the 

beginning of this century (e.g. occurred in 1981, 1991, 2003, 2006, 2009 and 2010), and eight of 
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the ten warmest years occurred in the last 20 years (e.g. 1997 is the warmest year since 1941) 

(Carvalho et al., 2014). The precipitation distribution in Portugal shows strong seasonality and 

inter-annual variability (Mourato et al., 2010), mostly concentrating in winter from December to 

February, with ~7% in summer from June to August (Carvalho et al., 2014). There is evidence of 

a generalized decrease of spring precipitation since 1970, with an opposite wetting trend for 

autumn precipitation (Santo et al., 2014). In the last 30 years, the drying trend has become 

particularly pronounced in mainland Portugal (e.g. 2005 was the driest in the last 78 years, 

followed by 2007 and 2004), with severe droughts occurring in 2004–2005 and 2011–2012 

(Carvalho et al., 2014). This observed drying trend is more noticeable in southern Portugal, where 

prolonged dry spells and a tendency toward arid climatic conditions during 1955–1999 are detected 

(Costa and Soares, 2009; Mourato et al., 2010). Consequently, decreased precipitation, coupled 

with increased atmospheric evaporative demand caused by rising temperature, has been widely 

associated to the observed increase in drought severity in Portugal and the Iberian Peninsula (IP), 

which might be aggravated in future climate (Páscoa et al., 2017; Vicente-Serrano et al., 2014).  

Numerous independent studies using outputs from a broad range of climate models, indicate a 

robust climate change signal for continuous warming and drying trend, accompanied by greater 

frequency and intensity of extreme weather events, such as number of hot days >35°C and severe 

drought (Carvalho et al., 2014; Costa et al., 2012; Fraga et al., 2012; Miranda et al., 2002; Ramos 

et al., 2011; Santos and Miranda, 2006). However, these studies differ in terms of the extent of the 

increase in temperature and of the decrease in precipitation. To contribute to a reduction of these 

uncertainties, we have recently developed climate change projections over 2021-2080 in southern 

Portugal (Alentejo) (Yang et al., 2019) (Fig. 5), based on the multiple bias-corrected outputs of 

fine-resolution GCMs-RCMs simulations (~12.5 km) within the framework of EURO-CORDEX 

(Jacob et al., 2014). The multi-model ensemble mean simulations in Alentejo show that average 

annual mean temperature is projected to increase by 0.6–1.5°C in 2021–2050 and by 1.5–2.7°C in 

2051–2080 in comparison to mean baseline temperature over 1981–2010, with a more pronounced 

increase under RCP8.5 than in RCP4.5 (Fig. 5a). Similarly, average annual precipitation is 

projected to decrease by –12% to –3% in 2021–2050 and by –18% to –12% in 2051–2080, 

depending on the RCP (Fig. 5b). 
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Figure 5 Simulated average annual (a) mean temperature (°C) and (b) precipitation (mm) over baseline along with 

their corresponding changes by climate projections over 2021-2080 under RCP4.5 (middle panels) and RCP8.5 

(bottom panels) in Alentejo region (Southern Portugal) as represented by multi-model ensemble means of bias-

corrected GCM-RCM outputs from EURO-CORDEX (Jacob et al., 2014; Yang et al., 2019). 
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2.3 Modelling crop response to climate change and adaptation exploration  

      2.3.1 Statistical crop models (SCMs) vs dynamic crop models (DCMs) 

Traditional agricultural research has focused on pot, glasshouse trials or field experiments, where 

crop production functions in relation to environment factors were derived from statistical analysis, 

without referring to the underlying detailed biophysical processes (Oteng-Darko et al., 2013). The 

application of correlation and regression analysis into field data has provided some qualitative 

understandings of cropping systems that help advance the agriculture science. One practical 

example is to summarize observed relationship between weather input and crop yield outputs, 

which is frequently used in Statistical Crop Models (SCMs) for predicting crop yield response to 

changes in the seasonal weather and examining projections for future yields (Challinor et al., 2014; 

Lobell and Burke, 2010; Shi et al., 2013). However, the quantitative information obtained from 

SCMs are site-specific and very limited, in which the corresponding findings are only relevant for 

other sites with similar range of weather variations (e.g. usually required more than 10 years of 

weather data to capture inherent variability) and agronomic conditions (Oteng-Darko et al., 2013). 

Further, in analysing crop yield response to climate change, SCMs do not properly resolve the 

covariance between weather variables (e.g. temperature and radiation). In addition, they are not 

able to explicitly incorporate adaptation effects for more comprehensive evaluations (Shi et al., 

2013). These identified limitations greatly hinder the quantitative applicability of regression-based 

SCMs for decision-making. 

The process-based crop models or Dynamic Crop models (DCMs), based on ecophysiology 

knowledge and a wide range of empirical relationships, have proven to be useful tools to simulate 

the complex interactions between Genotypes, Management and Environment (G × M × E), which 

are difficult to be captured by site-specific field trials (Rotter et al., 2018; Rotter et al., 2015). 

These models are frequently used to assess the impacts of G × M × E interactions on crop yield 

potential, phenology and crop water use in response to environment changes (Rotter et al., 2015). 

In agricultural research, they have been proposed as possible tools for multiple practical 

applications, including the potential to develop and optimize agronomic practices for sustainable 

intensification of agriculture systems (Debaeke, 2004; Urruty et al., 2017), support for aiding in 

ideotype design and breeding of future cultivars (Batley and Edwards, 2016; Rotter et al., 2015), 

as well as use of multi-model ensemble for climate change risk assessment and explore adaptation 

options to better inform farmers and decision-makers (Asseng et al., 2014; Asseng et al., 2013; 
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Challinor et al., 2014; Ewert et al., 2015; Rosenzweig et al., 2013; Seidel et al., 2018). In particular, 

recent research efforts for modelling adaptations to multiple climate-induced risks (Challinor et 

al., 2018) have focused on integrated strategies by modifying cultivar traits with management 

adjustment, in order to deal with potentially enhanced heat and drought stress during sensitive crop 

growing cycles (e.g. anthesis and grain-filling), associated with projected increases of climate 

variability and frequency and severity of adverse extreme weather events (Moriondo et al., 2011; 

Rotter et al., 2015; Ruiz-Ramos et al., 2018). For instance, for wheat production in the 

Mediterranean South Environment zone of Spain, an ensemble of 17 dynamic crop models are 

used to build up the adaption response surface, concluding that effective local adaptions should be 

based on the combination of supplementary irrigation, early sowing date and spring wheat cultivars 

without vernalization requirement (Ruiz-Ramos et al., 2018).  

DCMs are an integration of our current knowledge on crop growth and development originating 

from various disciplines, including crop physiology, agronomy, agrometeorology and soil science, 

which are structured in a consistent, quantitative and process-oriented manner (Oteng-Darko et al., 

2013). In particular, DCMs contain a set of mathematical equations to characterize the influence 

of various explanatory variables on several outputs of agronomic interest (e.g. grain yield and N 

content, total biomass and water drainage) (Seidel et al., 2018), enable quantitatively combining 

climate, crop, soil and management practices to simulate or imitate the real crop behaviour. As for 

SCMs, they are largely constrained by availability of adequate, representative yield data, and lack 

information on the crucial interaction derived from weather-management-soils (Rotter et al., 2018). 

In contrast, DCMs not only predict the final state of crop production or harvestable yields, but also 

contain quantitative information about underlying biophysical processes occurring in the cropping 

system (Brisson et al., 2009; Oteng-Darko et al., 2013; Rotter et al., 2018). Moreover, the restricted 

applicability only to the historical range of weather variations where statistical models are trained, 

are not reflected in dynamic modelling, given the robust empirical relations between crop 

behaviours and environment variables (depending on model structures, formalisms and 

parameterizations). This capability warrants a more consistent and reliable climate change impact 

assessment with respect to the uncertainties of changes in climate variability.  

However, in no way should we determine that dynamic crop models perform better than statistical 

models, but comparative analysis of both approaches will surely stimulate the discussions and 

improve the understandings of major yield limitations at higher aggregation level (Rotter et al., 
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2018). As such, SCMs continue to play a prominent role in hinting at the mechanisms and 

relationships that are not sufficiently covered in DCMs. By attributing observed yield variability 

to a few simplified measurement of climatic variables (e.g. mean temperature or precipitation), 

SCMs inherently integrate yield limiting factors that DCMs largely have ignored, namely pest and 

disease damages and weed infestation (as the actual yield might include impacts of these factors), 

thus possibly leading to inaccurate estimation of crop yields by DCMs in regions where biotic 

stress are significant (Rotter et al., 2018). On the other hand, DCMs are able to entangle and 

quantify contributions of more important yield-limiting factors at some certain environments (such 

as the heat and drought stress during critical growth stages), which could in turn help to improve 

SCMs. In one rare example, it has demonstrated that combined use of both SCMs and DCMs 

would enhance the reliability of evaluation results by complementing each other in estimating 

yield response to climate changes: SCMs were firstly trained on the simulated historical maize 

yield variability by DCMs of CERES-Maize model at nearly 200 sites in Sub-Saharan Africa, 

before estimating the yield response to changes in mean temperature and precipitation (Lobell and 

Burke, 2010).  

 

      2.3.2 Uncertainties in dynamic crop model predictions 

Despite the well-known advantages of process-based crop models, uncertainties in model 

simulation have been identified (Asseng et al., 2013; Seidel et al., 2018; Wallach and Thorburn, 

2017). The DCMs prediction uncertainty is defined as the distribution of prediction errors that is 

written as the sum of prediction bias between simulation and observations, plus a predictor error 

term that represents the random variations due to uncertainties in model structure, input values and 

parameter sets (Seidel et al., 2018; van Oijen and Ewert, 1999; Wallach and Thorburn, 2017). The 

structural uncertainty mainly arises from the fact that no single model could include all relevant 

explanatory variables and describe all underlying bio-physical processes within a defined cropping 

system, or the formalisations (mathematic equations) and parameterization schemes are not robust 

enough in reproducing observations (Seidel et al., 2018). Input uncertainty is largely caused by 

sampling errors of observed variables or limitation in data availability (Seidel et al., 2018; Wallach 

and Thorburn, 2017). Similarly, measurement errors and insufficient data are also the source of 

uncertainties in the estimation of parameter values, plus a source of variability due to different 

methods and approaches chosen in calibrating the models (Wallach et al., 2011; Wallach et al., 
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2012). Complex mathematic structures in the model, such as non-linearity, discontinuity and 

intricate correlation among numerous outputs, lead to the fact that no standard statistical method 

or software exist to crop model calibration procedures (Wallach et al., 2018).   

Consequently, different models differ substantially in the way they simulate the dynamic processes, 

resulting in large disparities about evaluated climate change impacts with even the same conditions 

(Asseng et al., 2013; White et al., 2011). In the context of modelling crop yield response to climate 

change, a landmark study published in nature using 27 different DCMs and 16 climate models at 

four contrasting wheat growing environments, concluded that a great proportion of uncertainties 

in projected climate change impacts was due to variations of crop models than to variations among 

downscaled GCMs (Asseng et al., 2013). Asseng et al. (2013) further suggested that uncertainties 

could be reduced by continuous improvement of models, particularly for improving the 

relationship between temperature and CO2 functions. However, Wang et al. (2018) argues that 

climate projections in their study were based on the Delta Change (DC) approach using 

downscaled GCM outputs, without accounting for the potential changes in climate variability, thus 

possibly narrowing the wide range of uncertainty that potentially exists in climate projections. 

 

      2.3.3 Categories of process-based crop models 

The relevance of DCMs (hereafter crop models) in agronomy research was once doubted, as 

considerable debates exist as to whether the mathematic descriptions of complex physical, 

physiological, morphological processes within a cropping system would be accurate and reliable 

enough (Oteng-Darko et al., 2013). However, the practice of crop modelling has undergone an 

important evolution in recent years, with growing practical applications in decision support and 

risk assessment, of which the improvement also contribute to the progress of agriculture research 

(Challinor et al., 2018). Much of this progress has been undertaken by several pioneering research 

projects, such as the Agricultural Model Intercomparison and Improvement Project (AgMIP) 

(Rosenzweig et al., 2013), Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) 

(Warszawski et al., 2014) and European knowledge hub on Modelling European Agriculture with 

Climate Change for Food Security (MACSUR) (Bindi et al., 2015). These projects consistently 

highlight the need for the use of multi-model ensembles to quantify the uncertainties among crop 

models and make the predictions more robust and reliable. Although the major goal is to have a 

more balanced viewpoint on prediction error and the predictor uncertainty (Wallach and Thorburn, 
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2017), the coordinated, standardized and objective multi-model ensemble simulations are 

enormously challenged when undertaken by a single research team. 

No one universal crop model exists in the agriculture field, and it is always necessary to adapt the 

system definitions, simulation processes and model formalisations to specific problems or 

situations (Brisson et al., 2003). In general, a crop model simulates the crop development and 

growth process, as well as the water and nitrogen (some models do not consider the N effects) 

balance of the cropping system on a daily time-step. It can estimate both agricultural variables (e.g. 

crop grain yields and N content, biomass) and environmental variables (e.g, soil water and drainage, 

N leaching amount, not available in some models), by taking into account the interactions from 

weather-crop-soil-management practices (Coucheney et al., 2015). The upper boundary of the 

system is the atmosphere, which is characterized by several relevant weather variables (e.g. 

temperature, radiation, rainfall, wind speed, relative humidity or other forms of humidity), whereas 

the lower boundary corresponds to the soil/sub-soil interface (Brisson et al., 2009). Crops are 

generally perceived in terms of phenology stages, Leaf Area Index (LAI), above-ground biomass 

and biomass of harvest organs (such as grains or fruits). Many models have conducted a sequential 

simulation process where temperature drives phenology development rate, which in turns 

determine LAI development that influence biomass formations and followed by its partitions into 

various organs (e.g. grains) (Brisson et al., 2009; Jamieson et al., 1998; Jones et al., 1991; Jones 

et al., 2003; Keating et al., 2003; Ritchie et al., 1985; Stöckle et al., 2003; van Diepen et al., 1989). 

Different modelling approaches in parameterization are adopted among these models, and could 

possibly lead to different sensitivity of climate change impacts (Challinor et al., 2018). As a generic 

framework and listed in Table 2, the most frequently used process-based DCMs are distinguished 

and organized into three categories depending on how these growth models estimate net 

photosynthesis and biomass production rate from captured source, such as carbon dioxide, 

radiation and water (and nutrients) (Abedinpour et al., 2012). Surely, there are other classification 

methods depending on how these model simulate several important growth processes (LAI 

development or yield formations) according to their objectives (Asseng et al., 2013), but net 

photosynthesis is widespread perceived as the most important crop growth process that is also the 

basis for final yield determination. In fact, the simulation of yield formation process is very 

different among models (Abedinpour et al., 2012). Accordingly, the first category corresponds to 

the (i) carbon-driven models, where a traditional net photosynthesis concept is prescribed for 
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biomass accumulations, computing the balance between gross photosynthesis and respiration; (ii) 

water-driven models, where models associate net photosynthesis with water uptake, by assuming 

a near-linear relationship between transpiration rate and biomass growth rate (an overall small 

number of models in this category); (iii) radiation-driven models (highest number of existing 

models fall within this category), where net photosynthesis and corresponding daily biomass 

production rate are estimated from canopy intercepted radiation, following a radiation (light) use 

efficiency approach (Table 2, note some models adopt mixed simulation strategies).  

 

Table 2. Categories of crop models based on their net photosynthesis growth engines (asterisks indicate models with 

mixed approaches). 

 

Model class 
Modelling approaches for 

net photosynthesis 

Categorized crop  

growth models 

Carbon-driven 

models 

Balance between gross 

photosynthesis and 

respiration 

GECROS* (Stenger et al., 1999) 

HERMES (Kersebaum, 2007) 

LPJmL (BONDEAU et al., 2007) 

MCWLA (Tao et al., 2009) 

SUCROS (Goudriaan and Van Laar, 2012) 

WOFOST (van Diepen et al., 1989) 

Water-driven 

models 

Associations of net 

photosynthesis with water 

uptake, i.e. transpiration 

AquaCrop (Steduto et al., 2009) 

CropSyst (Stöckle et al., 2003) 

GECROS* (Stenger et al., 1999) 

GLAM* (Challinor et al., 2004) 

OLEARY (O'Leary et al., 1985) 

Radiation-driven 

models 

Transformation of canopy 

intercepted photosynthetic 

active radiation into biomass 

prescribed by Radiation Use 

Efficiency (RUE) 

APSIM (Keating et al., 2003) 

DSSAT (Jones et al., 2003) 

Expert-N-CERES (Biernath et al., 2011) 

EPIC (Jones et al., 1991) 

GLAM* (Challinor et al., 2004) 

InfoCrop (Aggarwal et al., 2006) 

LINTUL4 (Spitters and Schapendonk, 1990) 

MONICA (Nendel et al., 2011) 

SALUS (Basso et al., 2010) 

Sirius (Jamieson et al., 1998) 

STICS (Brisson et al., 2009) 

      

      2.3.4 A brief overview of STICS model  

As previously mentioned, my PhD research is committed to using the STICS (Simulateur 

mulTIdisciplinaire pour les Cultures Standard) crop model. Therefore, a brief description of STICS 

model, in terms of how the model simulates important development and growth processes, is 

presented in this section. This is important for model users to understand the mechanisms behind 

the simulated outputs and carry out the sensitivity analysis accordingly. More detailed information 
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is available in Brisson et al. (1998); Brisson et al. (2002); Brisson et al. (2003); (Brisson et al., 

2009). In particular, please refer to Brisson et al. (2009) for a thorough and more comprehensive 

documentation of theory, system definitions, underlying formalizations and parameterization 

schemes. The whole model software platform and a list of relevant documentations are freely 

available at http://www6.paca.inra.fr/stics_eng/. 

STICS is a soil-crop model developed by the French National Institute for Agricultural Research 

(INRA) since 1996 in collaboration with many other research institutions worldwide (Brisson et 

al., 2003). It was initially parameterized for cereal crops such as wheat and maize (Brisson et al., 

1998; Brisson et al., 2002), but soon adapted to many other crops such as grassland and other 

perennial crops (e.g. grapevine) (Brisson et al., 2003). Compared to other crop models, STICS is 

made up of a number of original parts, which include the use of iteratively calculated crop 

temperature and enable considerations of many special farming management techniques (e.g. 

plastic or crop residue mulching, various forms of forage cuttings, winter pruning for woody crops) 

(Brisson et al., 2009). However, the remaining parts, especially with respect to ecophysiology 

principles, are taken from conventional formalizations of many other preceding crop models. The 

three strong points are (i) model generic, adaptability to a wide range of crops according to whether 

crops have determinate (vegetative and reproductive growth occurs successively, e.g. wheat, maize, 

soybean and sorghum) or indeterminate growth pattern (vegetative and reproductive growth occurs 

simultaneously or partly, e.g. tomato, potato, forage grass and grapevine); (ii) modularity that 

enable adding new modules to complement system descriptions to facilitate subsequent model 

development; (iii) its robustness, with the ability to simulate various agro-climatic conditions 

(including Mediterranean climate) without significant biases using its standard parameters. This 

aspect has been recently re-affirmed, exhibiting particularly high performance for soil water 

content (10%), followed by plant biomass (35%) and N content (33%) in terms of normalized Root 

Means Square Error (nRMSE) (Coucheney et al., 2015). 

 

      2.3.5 Key mathematic equations used in STICS model parameterization 

The STICS model is organized into modules: a first set of three modules deals with the 

ecophysiology of above-ground parts (phenology, shoot growth, yield formation), while the 

second set of four modules tackles soil water and nitrogen transfer and balance together with the 

function of root growth and distribution (i.e. water and N absorber) (Fig. 6). In addition, the 

http://www6.paca.inra.fr/stics_eng/
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microclimate module simulate the combined effects of climate and soil water balance on crop 

canopy temperature and humidity that in turn drive the phenology development (Fig. 6). Lastly, 

the crop management module specifically handles the interaction between the applied techniques 

and the soil-crop-microclimate system (Fig. 6). Within each module, there are submodule and 

options that can be used to extend the scope of applicability of STICS to various cropping system. 

The following section will focus on the aboveground growth modules only, as they directly relate 

to crop growth and development processes and offer a quick look at the underlying ecophysiology 

principles.   

   

 

Figure 6 Main modules of STICS soil-crop model. 

 

In equation 1, calculations of crop phenology development rate is given. The crop development 

is mainly driven by accumulation of effective temperature using the thermal index of Growing 

Degree Days (GDDs) with different base temperatures depending on the crop species. Depending 

on the plant type, it is also possible to consider influences of photo-thermal index (photoperiod 



Chapter 2 – State-of-the-art 

39 
 

and vernalization) on the phasic course. Besides, crop development progress can be delayed in 

case of water and nitrogen stresses. It is also noteworthy that for more detailed descriptions on 

functions of individual component with each equation, please refer to Brisson et al. (2009).  

 

Equation (1)-Phenology: UPVT (I)= UDEVCULT(I) X RFPI(I) X RFVI(I) X (STRESSDEV X 

min(TURFAC(I), INNLAI(I))+1-STRESSDEV).  

Where I within the parentheses refer to a given day of the growing season, UDEVCULT stands for 

the triangular function of GDD, RFPI and RFVI are the photoperiod and vernalization index 

respectively, varying from 0 (completely halt of development) to 1 (no effects). TURFAC and 

INNLAI are water and nitrogen stress respectively, which are specifically used for development 

dynamics. STRESSDEV is an optional parameter that represents active or inactive for water and 

nitrogen stress effects. It should be noted this function is only applicable after crop emergence, 

whereas a different function is used for development rate during germination and emergence.  

 

Phenology development rate subsequently drives leaf growth and LAI dynamics, but the net leaf 

growth rate is the product of gross growth (equation 2) and leaf senescence (equation 3). 

Equation 2 reveals how simulated LAI evolution in canopy scale responds to development 

progression, influence of canopy temperature (or incidentally thermal stress damages), inter-plant 

competition to decrease surface leaf area and environment conditions (water and nitrogen stress).  

 

Equation (2)-LAI dynamics (gross growth): DELTAI(I) = DELTAIdev(I) X DELTAIT(I)  X 

DELTAIdens (I) X DELTAIstress(I). 

Where DELTAIdev describes a logistic curve with prescribed asymptote and inflexion point of 

dynamics that can be modified, which is driven by UPVT from the development module. DELTAIT 

corresponds to the effective crop temperature accumulated in the canopy. DELTAIdens represents 

the empirical plant density-dependent function. DELTAIstress adopts the relatively severer effect 

between water and nitrogen stress from involved TURFAC or INNLAI. Note that a maximum 

threshold of LAI growth rate per unit of biomass accumulation is introduced to associate leaf 

expansion with shoot biomass accumulation rate, aiming to account for trophic effects and avoid 

unrealistic simulations. 
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In equation 3, leaf senescence is described. In STICS, shoot senescence only concerns leaf where 

the LAI and the part of accumulated dry matter amount starts to disappear once the senescence is 

elapsed. To calculate the onset of senescence, the concept of lifespan is employed to explicitly 

distinguish natural senescence due to aging and senescence accelerated by stress (e.g. water and 

nitrogen stress and frost damages) (equation 3). The natural leaf lifespan is calculated from the 

date that leafs are emitted and it is assumed to linearly increase from the end of juvenile phase 

until a constant value at the stage of maximum LAI, which is specified as a genotype-dependent 

parameter. The natural lifespan, however, could be possibly reduced in the events of water and 

nitrogen stress or frost damages (consider the interaction by adopting the severest effect). The 

resulting calculated dynamic threshold (considered as the plant vigour limit) of leaf lifespan will 

then be directly compared to the actual accumulation of lifespan (thermal-time) by crops. In this 

comparative analysis scheme, if the accumulated lifespan exceeds the dynamic lifespan threshold, 

senescence occurs and the LAI and part of biomass produced on a given senescence day will be 

lost. However, senescent losses of LAI and biomass are reversible if the lifespan threshold on a 

given day becomes higher than the accumulated lifespan (this is possible when stresses are relieved 

during a period of time when crop lifespan accumulation is very close to this threshold).   

 

Equation (3)-LAI dynamics (leaf senescence): DURVIE (I) = f(DURAGE0)+ f(SENTRESS); 

SOMSEN(I)=2^(UPVT(I) /10); If ∑ 𝑆𝑂𝑀𝑆𝐸𝑁(𝐼)
𝐼

𝐼0
>DURVIE, DELTAI and DLTAMS on a 

given day made disappear and reduced, respectively. 

Where DURVIE represent the dynamic lifespan threshold combining f(DURAGE0) corresponding 

to the natural leaf aging function involving a cultivar dependent parameter, with f(SENTRESS) 

corresponding to the stress function involving water and nitrogen stress effect, and frost damage. 

SOMSEN refers to the actual accumulated life span associated with phenology development 

module (UPVT), but expressed as an exponential function (cumulative Q10 units). DELTAI and 

DLTAMS are LAI and biomass growth rate, respectively.   

 

Leaf growth and expansion make possible the calculations of canopy intercepted photosynthetic 

active radiation, forming the basis for biomass production calculations. In equation 4, canopy 

interception of radiation available for biomass transformation is presented. Crop canopy is 
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assumed to be a homogeneous environment with random distributions of leaves, thus allowing the 

direct use of Beer´s law.  

         

Equation (4)-Radiation interception: RAINT (I) = 0.95 X PARSURRG X TRG (I) X (1–exp^(– 

EXTIN X LAI (I)) 

Where PARSURRG represents the classic astronomic ratio of surface photosynthetic active 

radiation to global radiation (default of 0.48 subject to modification). The TRG(I) represents the 

surface shortwave radiation coming from weather variable input. The EXTIN is the extinction 

coefficient used in the Beer´s law: the more erect the plant, the smaller is the extinction coefficient. 

Transformation of canopy intercepted radiation into aerial biomass is achieved using equation 5. 

The linear relationship between biomass accumulation rate in the plant and radiation intercepted 

by foliage leads to the definition of Radiation Use Efficiency (RUE) as the slope of this relationship. 

RUE has been widely used in many crop models for its simplified approach to synthesize gross 

photosynthesis and respiration, while exhibiting its robust relationship over a wide range of 

environments. However, RUE is likely to vary with different growth stages and environmental 

conditions. To account for this aspect, RUE is proposed as a physiologic function in STICS model 

that varies depending on the stages, taking into account various factors known to influence the 

elementary photosynthesis and respiration processes (temperature, water, nutrients and CO2 

concentrations) (equation 5). 

 

Equation 5-Biomass growth: DLTAMS = [EBMAX (I) X RAINT (I) – COEFB X RAINT (I)2] X 

FTEMP (I) X SWFAC (I-1) X INNS (I-1) X EXOBIOM (I-1) X FCO2 + DLTAREMOBIL (I) 

Where DLTAMS is the daily biomass production rate, calculated as the function of intercepted 

photosynthetic active radiation (RAINT), maximal RUE (EBMAX) of a crop species on the given 

stage, which could be reduced in the case of sub-optimal temperature conditions (FTEMP), water 

stress (SWFAC) and water-logging effect (EXOBIOM) as well as nitrogen stress (INNS). The 

COEFB stands for the radiation saturation effect that can be observed on individual leaf scale when 

calculations are made on daily scale. Higher atmospheric CO2 concentrations can stimulate 

photosynthesis and result in higher biomass production, which is expressed using an exponential 
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relationship within FCO2. In perennial woody crops, such as grapevine, daily biomass 

accumulation can be complemented by remobilized perennial reserve (DLTAREMOBIL).  

During the period of grain filling, the accumulated biomass begins to partition into harvest organs 

(grains or fruits). Between the onset of grain filling and maturity, the amount of carbon assimilates 

allocated to grains is calculated by applying the progressively increased Harvest Index (HI), in 

analogous to a dynamic partition coefficient (equation 6). However, a translocation temperature 

threshold could potentially halt the grain-filling process.  

 

Equation 6-Grain yield formation: DLTAGS(I)= (IRCARB(I+1) X MASEC(I+1) – IRCARB(I) 

X MASEC(I) ) X FTEMPREMP(I) 

Where DLTAGS denotes daily grain filling rate, which is determined by the cumulative above-

ground biomass (MASEC) and the progressively increased HI (IRCARB). The grain filling 

dynamics could be inhibited by extreme high temperature effects (FTEMPREMP). The 

cumulative DLTAGS over grain filling period eventually gives the final harvest yield at maturity.     

 

      2.3.6 Modelling climate change impacts on crop productivity in Mediterranean region 

The Mediterranean basin is one of the most prominent climate change hotspot due to its unique 

transitional zone between the arid climate of North Africa and the temperate and rainy climate of 

central Europe, which is sensitive to the interactions between mid-latitude and tropical processes 

(Giorgi and Lionello, 2008). Climate trends observed in recent decades suggest that climate 

conditions in the Mediterranean basin are moving towards a more arid climate type with increased 

annual mean temperature and decreased annual rainfall (Ruiz-Ramos et al., 2018). Projections 

from a wide range of global and regional climate models confirm a robust climate change signal 

of an overall warming and drying trend for Mediterranean region, accompanied by greater 

frequency and intensity of extreme events (Diffenbaugh and Giorgi, 2012; Giorgi and Lionello, 

2008; IPCC, 2013). The state-of-the-art multi-model ensemble median projections for the 

Mediterranean region, indicates a long-term mean increase of annual mean temperature by ~5°C 

and a decrease of annual precipitation by about 15% until the end of 21st century under RCP8.5 

(IPCC, 2013). Associated with these changes, an increase in the frequency and intensity of extreme 
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daily maximum temperature is projected, particularly for the Iberian Peninsula (Giorgi and 

Lionello, 2008; Sánchez et al., 2004). 

Modelling studies integrating future climate change impacts (net effect of projected changes in 

temperature, precipitation and CO2) on crop yields in the Mediterranean region or under 

Mediterranean-type climates, reveal overall negative impacts, most of which are driven by heat 

and drought stresses that differently affect maize (Guereña et al., 2001; Meza and Silva, 2009; 

Meza et al., 2008; Rosenzweig and Tubiello, 1997; Tubiello et al., 2000), wheat (Iglesias et al., 

2010; Mínguez et al., 2007; Moriondo et al., 2011; Olesen et al., 2007; Ruiz-Ramos et al., 2018; 

Tubiello et al., 2000), and grassland (Chang et al., 2017; Cullen et al., 2009; Keller et al., 2014; 

Ruget et al., 2010).  

 

      Impacts on irrigated maize production systems 

For maize production (mainly irrigated) in the Mediterranean region, the negative impacts are 

relatively consistent, which mainly derive from the early maturity and reduction of crop growing 

season caused by higher temperature (Guereña et al., 2001; Meza et al., 2008; Tubiello et al., 2000). 

Increased temperature accelerates the crop development rate and advances crop phenological 

stages, resulting in a shortening of crop growing season, with less time available for photosynthesis 

and captured resources (water, nutrients and light), consequently lowering crop productivity. 

These negative impacts are expected not to be compensated by elevated atmospheric CO2 

concentrations for C4 crops like maize, leading to net yield reductions under irrigation (Gabaldón-

Leal et al., 2015; Meza et al., 2008; Rosenzweig and Tubiello, 1997; Tubiello et al., 2000). For 

instance, Tubiello et al. (2000) indicate that maize yield under irrigated conditions is reduced by 

20% in response to combined effects of temperature increase and doubled CO2 level at Modena 

(Italy), resulting from the shortened growth duration by 16 days and diminished seasonal 

evapotranspiration by 70 mm. Similarly, in the south of the Iberian Peninsula, the irrigated maize 

productivity is projected to decrease by 6 to 20% (depending on the locations), in response to rising 

temperature and CO2 level (Gabaldón-Leal et al., 2015; Guereña et al., 2001). In the central part 

of Chile with Mediterranean-type climate, climate change diminished irrigated maize yield by 10–

30% (Meza et al., 2008). For C4 crops, elevated CO2 is more likely to stimulate the intercellular 

leaf CO2 assimilation rate only when crop is under water stress, through which stomatal 

conductance is reduced (combined effects of water stress and increasing CO2), and resultantly soil 
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water was conserved (Ghannoum et al., 2000; Kimball, 2016). Moreover, water availability for 

irrigation is facing increasingly intense competition in the Mediterranean region due to growing 

water demand from the non-food sector (e.g. household, sanitation and entertainment utilizations) 

and climate-driven decreased and more variable precipitation (Rosenzweig and Tubiello, 1997). 

The irrigation requirement of maize is under complex interactions of higher potential 

evapotranspiration caused by rising temperature, smaller stomatal conductance rate and seasonal 

transpiration induced by higher CO2 level, as well as by shortened growth duration (Tubiello et al., 

2000). The net results of this interaction differed in literatures, where projections showed either 

reduced water use and irrigation requirement with improved WUE (Gabaldón-Leal et al., 2015; 

Meza et al., 2008), or sharply increased irrigation demand by 60–90% to maintain current yield 

level (Tubiello et al., 2000).    

 

      Impacts on rainfed wheat production systems 

Global wheat grain yield is estimated to decline between 4.1% and 6.4% with 1ºC global 

temperature increase (Liu et al., 2016), and yield reductions can amount to 28% if temperature 

increase reaches 2ºC and to 55% for a 4ºC increase (Asseng et al., 2014). Wheat yield potentials 

under rainfed Mediterranean conditions have been long constrained by late season occurrences of 

enhanced water deficits and high temperature events, primarily overlapped with the critical 

reproductive stages, which has been identified as the main vulnerability facing climate change 

(Asseng et al., 2011; Moriondo et al., 2010; Ruiz-Ramos et al., 2018; Shavrukov et al., 2017). In 

particular, the projected increases of frequency and severity of extreme climatic events during 

sensitive wheat growth stages are expected to dominate the negative impacts, during which high-

temperature episodes may intensify the adverse effects of water scarcity, which are hardly 

compensated by CO2 fertilization effects (Moriondo et al., 2011; Ruiz-Ramos et al., 2018). In a 

European-wide study, Moriondo et al. (2010) explicitly show that the wheat yields respond 

negatively to projected 2°C warming scenario, including changes in both climate mean state and 

variability, which are more pronounced in southern Mediterranean areas than in Northern Europe, 

as a consequence of higher frequency of both heat and drought stresses at anthesis. Specifically 

for the “Mediterranean south environment zone” of Spain, where an ensemble of 17 crop models 

are built to simulate winter wheat yield response to perturbed temperature and precipitation, CO2 

under different soil types, the multi-model ensemble median shows a wide range of mean yield 
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response from 3000 to 7000 kg/ha, demonstrating that temperature tends to be the yield limiting 

factor at high precipitation increment, whereas precipitation will dominate the yield variations at 

low temperature increase (Ruiz-Ramos et al., 2018). At national scale, a 21% mean yield decrease 

is projected until the end of 21st century (Olesen et al., 2007) across Spain, while the yield response 

becomes more variable in Northern Spain with decreased yield linked to low elevation area and 

increased yield link to high elevation area (Mínguez et al., 2007). At another Mediterranean site 

of Italy, where wheat crops already suffer severe water stress during baseline conditions, projected 

wheat yields could be significantly reduced by 30%–50% (Tubiello et al., 2000). 

 

      Impacts on perennial grassland production systems 

In total, the effects of climate change on the productivity or seasonal Dry Matter Yield (DMY) of 

perennial grassland in the Mediterranean region from available studies are summarized as follow: 

early shift of phenology stages with an earlier onset of winter and spring growth, increased DMY 

during cooler and wetter season (e.g. autumn and winter), with a clear decrease in DMY during 

summer (Chang et al., 2017; Cullen et al., 2009; Ergon et al., 2018; Graux et al., 2013; Keller et 

al., 2014; Ruget et al., 2010). Annual DMY of established semi-intensive Mediterranean grassland 

is analysed as the sum of accumulated DMY during two distinguished seasonal growing patterns: 

September–April (autumn regrowth and favourable growth during winter and spring) and May–

August (unfavourable summer growth with drought and high temperature) (Lelievre and Volaire, 

2009). For the first period, with cool and wet season, water supply is generally optimal and forage 

growth rate mainly depends on temperature, being proportional to thermal time (Lelievre and 

Volaire, 2009). Climate warmings, depending on the local magnitude, could help alleviate the cold 

stress and promote production during this period. In the second period, during the warm and dry 

summer season, the major agronomic goal in the Mediterranean region is to use forage germplasm 

with high drought tolerance so as to ensure sufficient surviving plant density throughout the long, 

dry summer, without active growth, but that can regrow rapidly at the onset of the wet autumn, a 

cultivar trait known as summer dormancy (Lelievre and Volaire, 2009). More severe and frequent 

summer droughts reducing forage productivity and persistence (standing density), is considered 

the major challenge for forage production in the Mediterranean region (Ergon et al., 2018; Lelievre 

and Volaire, 2009). In France, a study using STICS model to simulate the semi-natural grassland 

system for 34 locations, shows consistently enhanced winter production in future climate, whereas 
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summer DMY accumulation remarkably decreases as a result of aggravated water deficits (Ruget 

et al., 2010). Similarly, for another modelling study conducted in France, grass summer DMY 

accumulation is shown to be markedly reduced until the end of 21st century, but with higher DMY 

production during autumn, winter and spring due to combined effects of higher temperature and 

CO2 level, leading to an overall increased annual productivity (Graux et al., 2013). At a study site 

in Australia with Mediterranean-type climate, the mean annual DMY is projected to be slightly 

higher than the baseline under 2030s but declined by 18% until 2070s in a high emission scenario, 

resulting from progressively decreased summer growth rate and shortening of spring growing 

season (Cullen et al., 2009).    

Overall, it is clear that the magnitudes of climate change impacts depend on the selected crop 

models, climate models (including downscaling methods), emission scenarios, time period chosen 

for analysis (baseline and future) and intensity of current management systems, while the source 

of these variations in turn will vary substantially from region to region globally (Asseng et al., 

2013; Challinor et al., 2014; Kang et al., 2009). As a general framework of modelling climate 

changes impacts on agriculture, Rosenzweig and Tubiello (1997) propose that a particular analysis 

should (i) clearly define the study area, analyse cropping systems and summarize current climate 

and farming practices; (ii) properly calibrated crop models using locally relevant observational 

data and test the calibrated parameters; (iii) develop local-relevant climate change scenarios for 

both short-term and long-term future. 

 

      2.3.7 Modelling adaptation response to climate change in Mediterranean region 

Adaptations on cropping systems have shown great potential to alleviate or counteract the 

projected adverse climate change impacts (Challinor et al., 2018; Challinor et al., 2014; Howden 

et al., 2007; Moriondo et al., 2010). Adaptation options explored using process-based crop models 

are typically field-scale or crop-level adaptations, such as changes of cultivated crop varieties from 

a genetic breeding perspective (e.g. longer or shorter cycle, better drought and heat tolerance etc.) 

and from a management perspective by adjusting sowing dates, irrigation and fertilization 

strategies (organic and mineral fertilization) (Challinor et al., 2014). These relatively marginal 

changes and variations of cropping systems are highly contrasting with a more systemic change, 

e.g. by choosing different growing crops and grazing integration or to the transformational 

approach, e.g. with crop relocations and complete changes of farming systems (Challinor et al., 
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2014; Rickards and Howden, 2012). However, the effectiveness of these adaptation options shows 

substantial benefits on some cropping systems only under moderate climate changes (e.g. moderate 

perturbations of temperature and precipitation), whereas the adaptive responses can be constrained 

under severe climate changes (Howden et al., 2007). Therefore, the development of appropriate 

and targeted adaptations should particularly address previously identified vulnerabilities of 

cropping systems facing climate changes (e.g. the increasing risks of crop exposure to heat stress 

at anthesis) and test solutions to improve resilience. Besides, a single adaptation option might not 

be enough to cope with the projected climate change impacts over the Mediterranean region with 

conditions of high uncertainty, whereas combined adaptation measures could be more effective in 

mitigating yield decline (Gabaldón-Leal et al., 2015; Ruiz-Ramos et al., 2018). 

  

      Adaptations on irrigated maize production systems 

Of evaluated crop-level adaptation strategies for irrigated maize system, several studies agree on 

the need to incorporate the longer cycle cultivars to counterbalance the effects of accelerated 

phenology and shortened growing duration due to warmer climates (Gabaldón-Leal et al., 2015; 

Meza et al., 2008; Rosenzweig and Tubiello, 1997; Tubiello et al., 2000). Moreover, benefiting 

from projected temperature increase in spring, early planting for spring-sown crops (maize), is also 

widely suggested to be helpful and a potentially effective adaptation option by minimizing or 

reducing the risks of exposure to enhanced drought and heat stresses during the hotter and drier 

summer months (Gabaldón-Leal et al., 2015; Meza et al., 2008; Tubiello et al., 2000). However, 

extended growing season under warmer climate to maintain or increase crop yield will in turn 

cause higher irrigation requirements and resulting in decreased irrigation WUE. Tubiello et al. 

(2000) explicitly show that though combination of longer growth duration with early planting 

succeed in maintaining crop yields at current level, irrigation requirement is increased significantly 

by 60–90% for maize, along with a concomitant decrease of irrigation WUE. Another study 

conducted for the south of Iberia, coupling the CERES-Maize model with a bias-corrected high 

resolution RCM, highlight that combined adaptation options of early sowing dates and use of a 

longer cycle maize cultivar are able to fully compensate, and even reverse the projected yield 

reductions, resulting in up to 14% higher yield relative to baseline, with a concomitant reduction 

of irrigation requirement and irrigation WUE (Gabaldón-Leal et al., 2015). In addition, Meza et al. 

(2008) propose an innovative adaptation strategy based on double cropping (i.e. two harvests of 
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maize cultivation successively in the same land and in a single year) to cope with extreme climate 

change scenarios. This strategy is likely to have better yield and economic gains than other 

adaptation alternatives based on agronomic decisions, being able to mitigate economic impacts of 

climate change or generate additional monetary return (Meza et al., 2008).   

 

      Adaptations on rainfed wheat production systems 

Model-based adaptation studies for rainfed wheat in the Mediterranean basin have primarily 

focused on a combined adaptation strategy by introducing adaptive cultivars with efficient 

management practices, to alleviate the detrimental impacts of pronounced terminal drought and 

heat stresses, partially coinciding with the sensitive growth cycle (e.g. anthesis and grain-filling) 

(Moriondo et al., 2010; Ruiz-Ramos et al., 2018; Shavrukov et al., 2017). For targeted cultivar 

traits, early flowering cultivars, associated with rapid crop development and quick transition to 

reproductive phase, represent a successful stress escaping strategy for wheat production under 

typical Mediterranean environments, by minimizing the risk of crop exposure to terminal 

drought/heat stress during reproductive stages (Debaeke, 2004; Shavrukov et al., 2017). Early 

flowering varieties follow short vegetative phases, resulting in an early completion of growth cycle 

prior to enhanced terminal stresses, in a process that usually correlates with short season genotypes. 

Under favourable conditions, early flowering/maturity trait can limit grain yield potential as 

growth duration becomes shorter with less time for capturing light, nutrients and water. Despite 

such trade-off, gradual shift toward using early flowering wheat genotypes and overall yield 

benefits are observed over the last century in countries with Mediterranean-type climate 

(Shavrukov et al., 2017). For the Mediterranean basin, previous studies consistently demonstrate 

earlier occurrence of anthesis and shift of grain filling towards a cooler and wetter period induced 

by the use of early flowering wheat cultivars, which partially offset the increasing temperature 

trends on grain-filling duration under warmer future climates (Moriondo et al., 2010; Moriondo et 

al., 2011). This successfully reduces the frequency of stress occurrences of drought by 12% and 

heat by 14%  on average, during sensitive reproductive stages (Moriondo et al., 2010). Early 

sowing date, is also widely recommended for wheat adaptation to the impacts of projected higher 

frequency of terminal heat stress and longer dry spell in the Mediterranean basin, as it allows 

anticipation of the crop cycle to advance the anthesis and grain-filling periods (resemble early 

flowering adaptation) (Moriondo et al., 2010; Moriondo et al., 2011; Ruiz-Ramos et al., 2018). 
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Supplemental irrigation that supply additional water for rainfed crop during the drought-sensitive 

period, has also been suggested to be a very promising strategy for wheat production in the 

Mediterranean region (Oweis et al., 2003; Saadi et al., 2015). As it helps mitigating the negative 

effects on critical assimilate partition processes, while minimizing the water losses through 

evaporation, aiming to stabilize crop yield and maximize water use efficiency (Oweis et al., 2003). 

A single supplemental irrigation is sufficient to develop high yield adaptive potential in wheat 

cultivation zone in north-eastern Spain, allowing to overcome most of the detrimental effects of 

complex interactions among a wide range of temperature, precipitation and CO2 perturbations 

(Ruiz-Ramos et al., 2018). 

 

      Adaptations on perennial grassland production systems 

In the Mediterranean region, water availability will often be the limiting factor for photosynthesis 

and forage DMY accumulation, and severe water deficits, such as Mediterranean summer drought 

will have marked impacts on standing density and cause plant mortality (Ergon et al., 2018; 

Porqueddu et al., 2016). In contrast, the direct effect of heat stress is unlikely to be equally 

important for grassland, probably because the effect is masked by the strong dominance of water 

scarcity. The development of adaptation strategies for grassland-based forage production in the 

Mediterranean region needs to address the challenge and opportunities arising from the climatic 

changes. Climate change is likely to alter grass seasonal growth patterns, which will shift towards 

cooler and wetter winter season due to warmer winters and drier summers (Ergon et al., 2018). To 

take advantage of this emerging opportunity, breeding efforts are required to develop forage 

varieties or select species with growth pattern that increase production during the favourable part 

of the year (e.g. winter), while conferring an balance between growth potential, nutritive values 

and responsiveness to the CO2 fertilization effect (Ergon et al., 2018). Likewise, defoliation and 

fertilization regimes, representing crucial management practices, also need adaptations to optimize 

forage growth pattern (e.g. more frequent grazing and early fertilization to increase winter and 

spring growth rate) (Ergon et al., 2018; Lelievre and Volaire, 2009). On the other hand, diversity 

among responses to critical weather factors improves resilience at both sward and farm level. Thus, 

design and utilization of species and variety mixture composition is generally considered  a key 

strategy to maintain production and meet the challenges of climate change (Lüscher et al., 2004). 

Under dry Mediterranean conditions, grass-legume mixtures including both annuals and perennials, 
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as compared to monocultures or simple mixture, are widely suggested to achieve higher and stable 

yield, as well as providing greater flexibility in forage utilization and ecosystem services in future 

climate (Ergon et al., 2018; Lelievre and Volaire, 2009; Porqueddu et al., 2016). For improving 

drought persistence and survival rate, breeding programs should be prioritized at continuous 

improvement of summer dormancy traits that is associated with growth cessation at the onset of 

successive drought with dehydration avoidance and tolerance of basal meristematic tissues, rather 

than targeting maintenance of growth under moderate drought (Ergon et al., 2018; Lelievre and 

Volaire, 2009; Porqueddu et al., 2016). Moreover, inclusion of forage legumes has several 

advantages including nitrogen fixation, better utilization and exploitation of elected CO2 level and 

improvement of forage quality (Ergon et al., 2018). Other adaptive recommendation consists of 

using perennial grassland species with deep root system to enhance water uptake and resilience of 

grassland community (Cullen et al., 2014; Ergon et al., 2018). However, modelling adaptation 

strategy for grassland should further explicitly account for plant drought persistence, e.g. involving 

increased mortality response to successive summer droughts but regrow rapidly after wet autumn 

onset (depending on the number of survival basal tissues), as well as integrating the interaction 

effects of botanic composition with seasonal climatic variations (Cullen et al., 2009; Ergon et al., 

2018; Graux et al., 2013). These factors are not well simulated currently in many grassland models 

(including STICS) and their improvement should represent a necessary step for building a more 

robust and reliable analytic framework in the future. 
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Briefing notes:  

Grain maize production plays a dominant social-economic role in Portugal, amounting to about 7 

million tons per year with a huge gross economic volume of around 120 million euros/year. The 

principal growing area is located in Ribatejo region, having ~30,000 ha of concentrated maize 

fields. Irrigation is essential to sustain the maize growth and successful grain yield production 

during the hot, dry summer under Mediterranean climate. However, water is a scarce resource 

across Mediterranean basin, and water allocation for agricultural purpose is rapidly declining due 

to growing competition from non-food sector (e.g. urban sanitation and entertainment purposes), 

as well as being driven by projected warming and drying trends under future climate change. Thus, 

climate change is expected to intensify existing risks, particularly in regions where water scarcity 

is already a concern. Taken together, it highlights the need to develop adaptation strategies for 

appropriate and integrated agricultural water management, by promoting sustainable practices and 

methods to improve crop and irrigation water productivity while maintaining crop yields in a 

changing climate. 

In this context, we have developed a study concerning the projections of climate change impacts 

on several important aspects (e.g. grain yield, irrigation water use and productivity) of irrigated 

maize system at three sites in Ribatejo (Portugal), as well as exploring appropriate adaptation 

strategies based on examining the water-yield relations and their variations under different climate 

change projections. Two dynamic crop models (STICS and AquaCrop) are used to simulate the 

maize growth and yield responses to climate projections using the fine-resolution regional climate 

model. The ensemble mean over two models and three sites is used to represent the simulations at 

regional scale for a specific climatic period and scenario. Inter-model comparison and uncertainty 

analysis are also performed.    

This chapter specifically covers this developed study, which has been published as a research 

article entitled “Assessment of irrigated maize yield response to climate change scenarios in 

Portugal” in an international journal of Agricultural Water Management. The works correspond 

to task 1 and 2 undertaken, aiming to provide insights and crucial information for stakeholders and 

policymakers to explore regional food security prospects, as well as aiding in enacting a 

sustainable and long-term agricultural policy (specifically for maize production and irrigation 

water management), preferably taking into account the need for adaptation response to 

forthcoming climate changes in the following decades. 
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Abstract 

Maize is an important crop for the Portuguese agricultural sector. Future climate change, with 

warmer and dryer conditions in this Mediterranean environment, will challenge this high-water 

demanding crop. The present study aims at assessing the response of maize yield, growth cycle, 

seasonal water input and daily water productivity (DWP) to climate change, and analyse water-

yield relations. For this purpose, two process-based crop models are used (STICS and AquaCrop) 

and were validated in simulating irrigated maize yields in Central Portugal (Ribatejo) by using 

regional statistics (1986–2005). Both models show an overall agreement in their outputs. The 2-

model mean outputs are considered under future climate projections (2021–2080; RCP4.5 and 8.5), 

using the global/regional climate model chain M-MPI-ESM-LR/SMHI-RCA4. The most 

significant reductions on maize yield (–17%), growth cycle (–12%) and DWP (–19%) are observed 

for 2061–2080 under RCP8.5, with a noticeable decrease of seasonal water input (–9%) during 

2041–2060. Decreased DWP is largely due to significant yield reduction, with limited benefit of 

atmospheric CO2 enrichment. A water-yield relation analysis highlights that an increase of 2–14% 

in irrigation for future scenarios (compared to 1986–2005) might be a suitable strategy to mitigate 

yield reduction, despite substantially lower DWP (down to –23%). These findings demonstrate 

that our model approach can be used as a decision support tool by Portuguese farmers, particularly 

in optimizing maize production under changing climates. 

 

Keywords: Maize Irrigation, Water Use Efficiency, STICS, AquaCrop, Climate Change 

Projections, Adaptation Strategies 
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3.1 Introduction 

Crop production systems are often largely controlled by environmental factors, thus being 

vulnerable to climate change (IPCC, 2013). Anthropogenic forcing, leading to continuous rise of 

greenhouse gas (GHG) atmospheric concentrations, is expected to alter regional temperature and 

precipitation patterns, also contributing to higher risks of extreme weather events and climate 

irregularity (IPCC, 2013), with obvious implications on crops (Porter and Semenov, 2005). Maize 

(Zea mays L.) is a main food crop in the world and Europe is one of the most productive regions 

(Olesen et al., 2011). Assessments of maize responses to past changing climatic conditions 

generally point to an increased risk of yield reduction for Southern Europe and Mediterranean 

regions (Olesen et al., 2011; Supit et al., 2010; Wolf and Vandiepen, 1995). In the recent-past, 

irrigation strategies has been critical to stabilize/maximize yields in many regions worldwide, such 

as in Mediterranean-type climatic regions, where precipitation is scarce during the maize growing 

season. Crop water stress hampering physiologic processes (e.g. canopy cover expansion and 

stomatal functions) is expected to be enhanced by future warmer and drier climates, requiring more 

irrigation to mitigate potential yield reductions (Doll, 2002; Fischer et al., 2007; Wolf and 

Vandiepen, 1995). 

Portugal, located in Southwestern Europe, features typical Mediterranean conditions. Maize has 

the largest area amongst annual crops, playing a key role in the Portuguese agri-food sector 

(Nóbrega, 2006). One of the most important maize growing regions is Ribatejo-Oeste (in Central 

Portugal, hereafter Ribatejo) (Figure 1), having approximately ~30,000 ha of maize fields (ca. 35% 

of the total maize area in Portugal) (INE, 2015). The Ribatejo climate, characterized by very dry 

summers, does not naturally provide optimal conditions for a high water-demanding crop like 

maize, with a spring-summer growing season. Hence, almost all of the maize cultivated area (94%) 

is currently irrigated (INE, 2015).  

According to the IPCC latest report (IPCC, 2013), southern Iberia (where Ribatejo is located) is 

projected to experience higher temperatures and lower precipitation in the future, which may bring 

new challenges for the regional sustainability of this crop. Furthermore, water availability for 

agricultural purposes is decreasing rapidly, as water demand by other socioeconomic sectors is 

also growing (Iglesias and Garrote, 2015; Iglesias et al., 2007). Maximizing water use efficiency 

(WUE) or water productivity (WP), i.e. the ratio of crop yield to transpiration-driven water uptake, 

is a plausible adaptation measure for stabilizing crop yields in the future (Zhang and Oweis, 1999). 
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WP can also be defined based on the ratio of yield to the sum of precipitation and irrigation (Howell, 

2001).  

Therefore, it becomes necessary to analyze maize yield response to varying water supply in order 

to identify the most efficient irrigation scheduling (Afzal et al., 2016; Dagdelen et al., 2006; Farre 

and Faci, 2009; Katerji and Mastrorilli, 2009). In future climates, the established water-yield 

relations are susceptible to being changed. The enhanced CO2 levels may trigger higher maize 

biomass accumulation and yields, particularly under crop water stress conditions, while it tends to 

reduce water demand by diminishing crop transpiration (Islam et al., 2012). Rising temperatures 

may accelerate crop phenological development rates and shorten growing season, along with 

intensified transpiration rates. The multiple interactions among climatic elements and crops require 

an integrated analysis. As such, to better evaluate crop responses to climate change, process-based 

crop models are becoming increasingly used tools (Kang et al., 2009). 

Coupling crop models with climate change projections, generated by high resolution regional 

climate models, is a common approach. Crop models dynamically simulate crop responses to 

management practices (e.g. irrigation), soil properties (e.g. texture, depth), as well as crop 

physiological responses to atmospheric conditions (e.g. air temperature, precipitation and CO2). 

Some examples of these models are STICS (Simulateur mulTIdisciplinaire pour les Cultures 

Standard) (Brisson et al., 2003) and AquaCrop (Steduto et al., 2009). These two crop models 

mainly differ in their growth module: STICS is a radiation-driven model, estimating daily biomass 

formation from canopy intercepted radiation (Brisson et al., 2009), whereas AquaCrop adopts a 

water-driven strategy, assuming a linear relationship between crop transpiration and biomass 

production (Steduto et al., 2007). STICS has been tested and validated in simulating maize yield 

under deficit irrigation strategies (Katerji et al., 2010), also showing a good accuracy in predicting 

soil water content under various agro-environments (Constantin et al., 2015; Coucheney et al., 

2015). AquaCrop, developed by FAO (Food and Agriculture Organization of the United Nations), 

also proves to be an effective tool to simulate maize yield response to contrasting irrigation regimes 

and soil moisture conditions (Abedinpour et al., 2012; Katerji et al., 2013; Paredes et al., 2014). 

The present study aims at assessing climate change impacts on maize in Portugal, under recent-

past and future scenarios, by coupling crop models with climate models. Particular emphasis will 

be given to water productivity. Therefore, our objectives are four-fold: 1) to compare the 

performance of two process-based crop models (STICS and AquaCrop) in simulating important 
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maize parameters under recent-past conditions; 2) to validate the two models in simulating regional 

irrigated maize yield; 3) to assess climate change impacts under different scenarios and future 

periods; 4) to test the effects of a wide range of seasonal water inputs on yield under different 

future climates. 

 

3.2 Data and methods 

      3.2.1 Study sites 

Three sites in Ribatejo, which have been used for maize cultivation in the past decades, were 

selected to capture spatial heterogeneities, namely Salvaterra de Magos (39.003°N, 8.793°W, 10 

m a.s.l.), Catapereiro (38.822°N, 8.863°W, 20 m a.s.l.) and Coruche (38.960°N, 8.467°W, 30 m 

a.s.l.) (Fig. 1). In Ribatejo, maize is grown in spring/summer, with conventional tillage and sowing 

date ranging from March to June. The mostly planted corn cultivars are medium-late varieties 

(FAO500-FAO600), with growth length around 130 days. A number of regional water reservoirs 

are critical for crop irrigation (Batista et al., 2001). Sprinkler irrigation is broadly used, with high 

irrigation efficiency (Nóbrega, 2006). 

 

 

Figure 1 Location of the three selected sites in Ribatejo, Portugal. 
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      3.2.2 Climate parameters and scenario projections  

Daily weather data for running the two crop models are: minimum and maximum 2-m air 

temperature (ºC), solar radiation (MJ m-2 day-1), rainfall (mm), wind speed (m s-1), water vapour 

pressure (hPa), and atmospheric CO2 concentration (ppmv). Potential evapotranspiration (PET), 

estimated by the Penman-Monteith method (Penman, 1948), is a climatic parameter also used by 

both models. In both models, PET was used to estimate maximum ET and, subsequently, the actual 

ET is obtained as a model output. Based on the selected three sites, daily temperature and 

precipitation over the historic period of 1986–2005 (baseline) are obtained from the E-OBS dataset 

(Haylock et al., 2008), v14.0, comprising gridded datasets (0.25° latitude × 0.25° longitude) from 

observational records (http://eca.knmi.nl/). For each site, wind speed, water vapour pressure and 

solar radiation are directly obtained from the evaluation run of the Regional Climate Model (RCM) 

SMHI-RCA4 (Samuelsson et al., 2011), produced within the EURO-CORDEX project at a spatial 

resolution of 0.125° latitude-longitude (Jacob et al., 2014). This running was forced by ERA-

interim reanalysis (Dee et al., 2011). The atmospheric CO2 concentration varies annually and was 

obtained from the Mauna Loa Observatory for the baseline and from two Representative 

Concentration Pathways, RCP4.5 and RCP8.5, for the future period. RCP4.5 is a climate change 

scenario with a slow rising rate of CO2 content after 2070, while RCP8.5 is a CO2 rising scenario 

until the end of the 21st century, at which the CO2 concentration almost doubles that in RCP4.5 

(Table 1). 

 

Table 1. Mean atmospheric CO2 equiv. concentration for the three sub-periods of RCP4.5 and RCP8.5. For baseline 

(1986–2005) the mean value is of 363 ppmv. 
 

Mean CO2 concentration 

(ppmv) 
RCP4.5 RCP8.5 

2021-2040 (short-term) 460 485 

2041-2060 (medium-term) 526 635 

2061-2080 (long-term) 568 842 

 

Regarding the climate change projections, the M-MPI-ESM-LR (Global Climate Model, GCM) 

coupled with the regional climate model (SMHI-RCA4) is used in the current study. The 

GCM/RCM chain, also obtained from the EURO-CORDEX project (Jacob et al., 2014), is selected 

due to its high performance in reproducing the observed seasonality in westernmost European 
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regions (Santos et al., 2016). In EURO-CORDEX, future daily weather data was forced by two 

scenarios (RCP4.5 and RCP8.5) for the period of 2021–2080. The projected changes on CO2 are 

also taken into account by the crop models, allowing the integration of elevated CO2 effect on 

maize yield. Moreover, in the present study, model data was submitted to preliminary point-by-

point bias corrections on a monthly scale, using E-OBS as a reference for temperatures and 

precipitation and the evaluation run for the remaining variables. 

 

      3.2.3 Soil parameters 

The three study sites are selected to represent the predominant agricultural soil texture (USDA) in 

Ribatejo, which is loamy sand with some distribution of sandy soil (Table 2). The main site-

specific soil properties are obtained from the Harmonized World Soil Database (HWSD, v1.2). 

HWSD is an ensemble of several soil databases, providing worldwide soil data at high grid cell 

resolution (~1 km), in which 48,148 soil profile tables are presented, including standardized 

taxonomic classification, soil phases, and chemical-physical properties of topsoil (30 cm) and 

subsoil (70 cm) (Jones and Thornton, 2015). Site related topographic characteristics, such as slope 

degree and elevation, are obtained from the GTOPO30 digital elevation model 

(https://lta.cr.usgs.gov/GTOPO30, Table 2). Based on the obtained slope degree, no surface runoff 

is considered for study sites. The dry soil albedo is only considered in STICS, which plays a 

significant role in estimating soil temperature (Richard and Cellier, 1998).  

Both models require hydrodynamic characteristics (e.g. soil volumetric content at field capacity, 

wilting point, infiltration rate, cumulative evaporation limit), which are calculated as a function of 

obtained soil texture class using pedo-transfer functions (Brisson et al., 2009; Wosten et al., 2001) 

(Table 2). In both models, standard soil layer thicknesses are set as: 0–30 cm for top soil, and 30–

100 cm and 100–200 cm for the two subsoil layers. The two models incorporate soil characteristics 

at different degrees of resolution, i.e. an elementary layer of 1 cm for STICS and of 10 cm for 

AquaCrop. Soil chemical parameters are also different, with pH and CaCO3 content considered in 

STICS and salinity level in AquaCrop (Table 2). Since the study sites are irrigated fields (deep 

capillary rise is ignored), initial soil water content at planting date is set at field capacity. 

 

      3.2.4 Agronomic parameters 
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Table 2. Soil parameters for three study sites in Ribatejo, along with their respective denomination, dataset source or 

reference literature. Parameters used in pedotransfer functions for soil hydrodynamic property estimations are 

highlighted by “*”. 

 

Soil parameter 

description 

Salvaterra de Magos Catapereiro Coruche Calculation 

method/Source STICS AquaCrop STICS AquaCrop STICS AquaCrop 

Limestone 

content in topsoil 

(%) 

0 - 0 - 0 - HWSD 

Initial soil pH in 

topsoil 
6 - 4.4 - 4.4 - HWSD 

Dominant soil 

group (FAO) 
Arenosols Podzols Podzols HWSD 

Topsoil texture* Coarse Coarse Coarse HWSD 

Topsoil USDA 

texture* 
Sand Loamy Sand Loamy Sand HWSD 

Subsoil texture* Coarse Coarse Coarse HWSD 

Subsoil USDA 

texture* 
Sand Sand Sand HWSD 

Albedo of dry 

soil 
0.25 - 0.25 - 0.25 - 

(Richard and 

Cellier, 1998) 

Cumulative 

evaporation limit 

(mm) 

q0=6.65 REW=4 q0=6.95 REW=5 q0=6.95 REW=5 

(Brisson et al., 

2009; Ritchie, 

1972) 

Mean slope 

classes (%) 
0–2 0–2 0–2 GTOPO30 

Soil salinity 

(dS/m) 
- 0.1 - 0.1 - 0.1 HWSD 

 

In order to represent the commonly grown varieties in Ribatejo, a medium-late maturation is 

defined in both STICS and AquaCrop. This is done by adjusting crop model phenological 

parameters to the thermal forcing requirements (e.g. growing degree day – GDD) for different 

development stages. A selected medium-late variety with standard settings is used in STICS, while 

the modification of GDD parameters in crop file is performed for AquaCrop (Table 3). Although 

the thermal requirements are similar for the selected medium-late varieties, the GDD definition in 

both models is different, since the corresponding threshold temperatures (Tbase /Tmax) are 6/32 ºC 

in STICS and 8/30 ºC in AquaCrop (Table 3). 

In both models, root growth determines crop water availability and water stress level. More 

sensitive parameters for these processes are modified. In STICS, sensitivity of root deepening rate 

to soil moisture is defined by parameter Sensrec (default=0, indicating root growth is extremely 

sensitive to soil water deficit), in which an intermediate value of 0.5 would avoid overestimation 

of soil dryness on hindering roots growth (Jego et al., 2011) (Table 3). As in AquaCrop maize 
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maximum effective root depth determines root volume and available soil moisture, 1.2 m is 

specified to represent the medium-deep root system (Abedinpour et al., 2012). 

An automatic scheduling of irrigation events is selected for both models. The criterion for 

activating an irrigation event is based on a pre-defined crop water stress level, for STICS, and 

based on soil moisture depletion of total available water (TAW) over the root zone, for AquaCrop. 

However, crop water stress affecting canopy expansion, transpiration rate and biomass growth is 

determined as a function of root zone water availability and crop water demand in both models. 

To account for moderate local irrigation input, mild crop water stress before an irrigation event 

(ratiol=0.5 for STICS and 50% decrease in TAW for AquaCrop, Table 3) is set for irrigation 

thresholds (Tardieu and Katerji, 1991). For individual irrigation events, STICS replenishes soil 

water content to field capacity, whereas AquaCrop supplements small amounts to maintain the 

pre-defined TAW depletion, following the concept of net irrigation requirement (Raes et al., 2012). 

These differences imply more frequent irrigation in AquaCrop.  

 

Table 3. Modified crop and management input parameters of STICS and AquaCrop for validation procedure.  

 

Parameters STICS AquaCrop 

Cultivar 

phenology 

characteristics 

Embedded cultivar (Pactol) in default value: 

Tbase=6 ℃, Tmax=32 ℃ 

Emergence to end of juvenile (GDD): 253 

End of juvenile to max leaf area (GDD): 507 

Emergence to grain filling onset (GDD): 1080 

Grain filling onset to maturity (GDD): 600 

Root lifetime (GDD): 1500 

Flowering duration (GDD): 250 

Tbase=8 ℃, Tmax=30 ℃ 

Sowing to emergence (GDD): 84 

Sowing to max Canopy (GDD): 708 

Sowing to senescence (GDD): 1260 

Sowing to maturity (GDD): 1560 

Sowing to max root (GDD): 1260 

Sowing to flowering (GDD): 876 

Flowering duration (GDD): 192 

HI building duration (GDD): 588 

Sensitivity 

parameter of root 

growth 

Sensrec=0.5 Effective Root depth =1.2 m 

Sowing date April 20th April 20th 

Sowing density 7.5 plant.m-2 7.5 plant.m-2 

Irrigation Ratiol=0.5 
Determination of net irrigation 

requirement= 75%*RAW=50%*TAW 

Fertilization 
160 kg ha-1 mineral N fertilizer, equally split 

between 12 and 30 days after sowing 

Near optimal nutrition condition, 

corresponding to 7% soil fertility stress 

Organic residue 

julres=100, coderes= 1, qres=9, Crespc=42, 

CsurNres=90, Nminres=0, eaures=7, 

jultrav=100, profres=0, proftrav=25 

- 

Harvest method Physiological maturity Physiological maturity 
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Note: Tbase – minimum temperature allowing plant development; Tmax – maximum temperature allowing plant 

development; Sensrec – index of root sensitivity to drought; Ratiol – crop stomatal water stress index below which an 

irrigation event is triggered; julres – Julian day for organic residue addition; coderes – type of organic residue; qres – 

organic residue quantity; Crespc  – organic carbon content; CsurNres – C/N ratio of organic residue; Nminres – 

mineral nitrogen fraction; eaures – water content of organic residue; jultrav – Julian day of tillage; profres – upper 

depth of organic residue; proftrav  – maximum depth of organic residue incorporation. RAW – readily available water 

for root zone uptake before start of stomatal closure. TAW – total available water between soil field capacity and 

wilting point. 
 

For both models, sowing date, sowing density and harvest method are empirically obtained from 

local cultivation practices (Table 3). In STICS, the organic residue provides certain amount of 

mineral N and helps maintaining soil moisture, being parameter values describing residue 

attributes retrieved from Brisson et al. (2009), assuming that cereal straw prevails on maize field 

surface. Organic residue practices are not considered in AquaCrop. Fertilization is the most 

important source of mineral N, for which fertilization rate and frequencies are input parameters 

for STICS. For AquaCrop, only qualitative estimation of soil fertility stress on potential biomass 

reduction is established (Raes et al., 2012). Herein, both models assume near optimal N condition 

(Table 3).  

 

      3.2.5 Model runs and validation 

Based on the selected three sites, the two models (STICS v8.41 and AquaCrop v5.0) were run over 

different periods (i.e. 20 years each) for baseline (1986–2005), for future short-term (2021–2040), 

medium-term (2041–2060) and long-term (2061–2080) periods under RCP4.5 and RCP8.5. Crop 

model validation for yield simulation is herein carried out at regional scale over baseline, by 

comparing modelled with observed yields retrieved from national statistical bureau (Instituto 

Nacional de Estatística, INE). Additionally, a comparative analysis of the performance of the two 

models is undertaken to examine their agreement in simulating yield and yield-related outputs over 

baseline. Keeping the same settings (e.g. moderate water supply) as in baseline, impact 

assessments of the two climate change scenarios on studied variables (described below) are 

performed.  

 

      3.2.6 Water use efficiency 

The conventional crop WUE definition is based on the ratio between yield and actual crop ET 

(Perry, 2011), but the present study aims to assess irrigation requirement during the growing cycle. 

Therefore, an adapted measure of applied water, Daily Water Productivity (DWP), is proposed as 
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an efficiency indicator of seasonal water input (irrigation plus precipitation). DWP (kg.m-3.day) is 

the yield divided by daily water input (ratio of seasonal water input to growth cycle length). This 

metric allows taking into account precipitation seasonal distribution for assessing irrigation 

scheduling on a daily basis in both STICS and AquaCrop, which enables accurate water accounting 

and provides guidelines when attempting to optimize irrigation input. The current methodology 

aims to quantify the role of growth cycle on seasonal water use, under present and future scenarios. 

In fact, shorter maize growth cycle is likely to occur in the future, thus reducing seasonal water 

supply, crop transpiration and water demand (Islam et al., 2012; Meza et al., 2008). Conversely, a 

longer growth cycle is likely to produce larger and deeper root systems that allow extracting more 

soil moisture and maximizing crop water uptake (Blum, 2009; Debaeke and Aboudrare, 2004). 

DWP incorporates three components: yield, seasonal water input and growth cycle length, which 

are the main study variables of agronomic interest for irrigated maize. However, DWP is an 

adapted water use efficiency indicator, used herein for a specific purpose. For comparison purposes, 

the conventional WUE was also computed (i.e. yield divided by actual ET), and differences to this 

new metric were assessed.  A more comprehensive analysis of agricultural water use efficiency 

terminology can be found in Perry (2011). 

 

      3.2.7 Adaptation measures: irrigation trials 

In order to assess maize yield response to seasonal water supply, with changes in DWP under 

different climate change scenarios, several seasonal water input in silico trials (crop water stress 

varying from severe to mild, or to absence) are undertaken. Therefore, possible adaptation 

measures based on irrigation strategies can be identified to mitigate potential yield losses. This is 

carried out by implementing a wide range of irrigation thresholds in both crop models, keeping 

other parameters invariant. Seasonal irrigation is gradually increased: water stress level from 0.00 

to 1.00 at 0.02 intervals, for STICS, and soil water depletion level from 100% to 0% at 2% intervals, 

for AquaCrop. For each seasonal water input trial, the two models are re-run for baseline and for 

the three future sub-periods under RCP4.5 and RCP8.5. The averages for the two models and three 

sites are then computed (ensemble means). The corresponding relative changes (%) to the 0%-

baseline (i.e. baseline for model comparison and validation) in yield, seasonal water input and 

DWP are assessed for the different time periods separately. 
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3.3 Results and Discussions 

      3.3.1 Historic and future climatic conditions in Ribatejo 

Monthly mean temperatures (Tmin, Tmean and Tmax) and precipitation (Prec) over both baseline 

(1986–2005) and future long-term period (2061–2080) are firstly investigated across the three 

selected sites. For the recent-past, Tmean varies from approximately 10.0ºC in January to around 

23.5ºC in July/August, showing moderate temperature seasonality, while Tmin remains above 5.0ºC 

throughout the year and Tmax ranges from 15.0ºC in January to 31.0ºC in July/August (hot 

summertime diurnal temperatures) (Fig. 2a). Precipitation is mostly concentrated in autumn and 

winter (October to February), being summer particularly dry (neglectful rainfall from June to 

August) (Fig. 2a). For the growing season, Tmean rises from ~15.0ºC around seeding (April) to 

~23.5ºC during grain filling stage (June to September). Regarding the precipitation regime, it is 

clearly unfavorable: high water demanding stages (June to September) present monthly rainfall  

 

 

 

Figure 2 Monthly means of daily minimum (Tmin), maximum (Tmax) and mean (Tmean), temperatures and mean monthly 

precipitation totals (Prec) are shown for the three selected sites in Ribatejo over (a) baseline (1986–2005). The 

differences for Tmin, Tmax, Tmean and Prec between the long-term period (2061–2080) and baseline are shown for (b) 

RCP4.5 and (c) RCP8.5. The growing season for local grain maize cultivation is from April to September (filled 

columns). 
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varying from 4.4 mm to 37.7 mm, with very low precipitation accumulation from June to August 

(<10 mm) (Fig. 2a). In fact, the offset between the maize growing season and the precipitation 

regime subjects maize growth to the dry half of the year, which is unsuitable for rainfed maize. 

For the future long-term period in RCP4.5 and RCP8.5, a strong seasonal warming trend and 

intensified precipitation shortage are observed. Growing season Tmean is projected to averagely 

increase by 1.5ºC and 3.1ºC, under RCP4.5 and RCP8.5 respectively, with significant rise for the 

warmest months (yield formation stage), where Tmean increase by 2.0ºC under RCP4.5 or 3.5ºC 

under RCP8.5 (Fig. 2b, c). Moreover, the projected changes for Tmin and Tmax are very similar to 

Tmean in both scenarios, but with slightly stronger changes for Tmax. For precipitation in both 

scenarios, monthly precipitation is projected to decrease for spring and autumn (transitional 

seasons), while summer remain very dry, thus enhancing overall dryness conditions throughout 

most of the year (Fig. 2b, c). The extent of reduction is more pronounced in RCP8.5 (6–17 mm) 

than in RCP4.5 (2–11 mm) over the critical water demanding stage (Fig. 2b, c). It is worth noting 

that the greatest precipitation reduction occurred in October for both scenarios, but with no direct 

implications on maize production. 

 

      3.3.2 Inter-model comparison 

Assessing the coherence between STICS and AquaCrop in simulating the selected maize output 

variables (yield, growth cycle, irrigation and seasonal water input, maximum leaf area index and 

cumulative actual evapotranspiration) are analyzed for baseline (0%-baseline) (Fig. 3). 

Statistically significant correlations (p<0.01, two-tail Spearman method) between models are 

found for yield (r=0.89), growth cycle (r=0.87), irrigation amount (r=0.60), seasonal water amount 

(r=0.89), maximum leaf area index (LAImax) (r=0.92) and cumulative actual evapotranspiration 

(ET) (r=0.81) (Fig. 3a-f). For the 20-year means, STICS shows relatively higher yields than 

AquaCrop (STICS=10,690.7 kg ha-1, AquaCrop=9,471.8 kg ha-1), i.e. a relative difference of 

11.4%. Nonetheless, STICS shows lower values than AquaCrop for the remaining variables, but 

with small relative differences: growing cycle length (STICS=122.0 days, AquaCrop=126.0 days, 

–3%), irrigation (STICS=407.5 mm, AquaCrop=418.9.0 mm, –3%), seasonal water input 

(STICS=495.2 mm, AquaCrop=507.6 mm,–3%), LAImax (STICS=3.0 m2 m-2, AquaCrop=3.37 m2 

m-2, –12%) and ET (STICS=509.6 mm, AquaCrop=535.9 mm,–5%). Apart from yields, these 

outputs cannot be validated owing to the lack of observational data at regional scale.   
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The linear regression slopes also provide an estimate of output sensitivity (value distribution range 

of each model) to climatic conditions. The LAImax is the variable clearly showing a larger climate 

sensitivity in AquaCrop than in STICS, while the remaining variables present similar responses 

(Fig. 3a-f). The high correlation and relatively small differences between the two crop models for 

these outputs is evident. Hence, the 3-site model ensemble means will be subsequently used for 

annual simulation. 

 

 

 
Figure 3 Comparison of STICS and AquaCrop in simulating seasonal (a) grain yield, (b) growth cycle length, (c) 

irrigation, (d) seasonal water input, (e) LAImax (maximum LAI) and (f) actual ET (evapotranspiration) over the baseline 

period (1986–2005) and in the study sites. r indicates correlation coefficients between the two model outputs (“*” 

denotes statistically significant correlation at p<0.01 by two-tail Spearman analysis). 
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      3.3.3 Regional yields and model validation 

In Ribatejo, the mean observational yield has initially fluctuated around 6,300 kg ha-1 in the 1986–

1991 period, but rose rapidly to 9,500 kg ha-1 by the end of the 1990s, despite the reduction to 

8,600 kg ha-1
 in 2005 (Fig. 4a). The anomalously low yield in 2005 can be explained by the extreme 

2004/05 drought in Portugal (Santos et al., 2007). The simulated yields show that both models 

systematically overestimate observational yields, being the bias in their means 2,473.3 kg.ha-1 for 

STICS and 1,254.5 kg.ha-1 for AquaCrop (Fig. 3a, 4a). However, this will not significantly 

compromise the model skills at regional scale, since more emphasis is given to their ability to 

replicate inter-annual variability of yield (i.e. correlation coefficient between observations and 

simulations) than to simulate its absolute-values (Li et al., 2011; Xiong et al., 2007). Further, a 

strong upward linear trend of 236.1 kg ha-1 year-1 is identified for the observational 20-year time 

series with the mean yield of 8,217.4 kg ha-1. As the trend may largely reflect gradual changes in 

technology development and agronomic practices (e.g. land use, fertilization, irrigation and 

varietal selection), which are difficult to discriminate and are out of the scope of the present study, 

the linear trend is removed.  

 

 

 
Figure 4 Standardized irrigated maize yields from simulations for the 3 study sites and observed yields over baseline 

(1986-2005). (a) Chronogram of statistical yield series in Ribatejo for baseline, along with the respective linear trend. 
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(b) Comparison of standardized yields between regional statistics and mean simulations by STICS and AquaCrop, 

along with the corresponding correlation coefficient (“*” denotes statistically significant correlation at p<0.01 by two-

tail Spearman analysis). The simulated annual yield spatial variation (grey shading) is also displayed. 

 

The agreement for the standardized yields (divided by their corresponding averages) between 

observation and simulation is clear (r=0.69, p<0.01 according to the two-tail Spearman test) (Fig. 

4b). The two models separately obtain a lower correlation coefficient (r=0.66) than the model 

ensemble average. For baseline period, a low simulated spatial yield variation is observed among 

three sites (grey shading in Fig. 4b). For annual simulation (3-site model ensemble mean), the 

coefficient of variation (CV) for yield varies from 3% to 16% over the baseline period. A similar 

study validating crop model simulations (from CERES-Maize) at grid-level and using statistical 

maize yield, shows the association with r<0.5 (Xiong et al., 2007). The overall good agreement 

suggests that our model approach is able to reproduce temporal and spatial maize yield variations, 

also allowing climate change impact assessments. 

 

      3.3.4 Climate change impacts 

A clear strong warming and drying trend under RCP4.5 and RCP8.5 are projected for the study 

sites (Fig. 2). The projected annual outputs correspond to the ensemble means over the 3 sites and 

2 models. An 11-year moving average is firstly applied to filter out high-frequency inter-annual 

variability, emphasizing a long-term trend over the future period (Fig. 5a, c, e, g). For yield, 60-

year linear downward trends are projected, with annual reduction rates of 20 kg ha-1 year-1 (RCP4.5) 

or 28.9 kg ha-1 year-1 (RCP8.5) (Fig. 5a). Similar analysis for growth cycle, seasonal water input 

and DWP also reveal progressive decline trends, displaying stronger effects for RCP8.5 than for 

RCP4.5 (Fig. 5c, e, g). The mean and standard deviation (SD) of simulated outputs are now 

analysed for each specific period. 

 

             Impacts on grain yield (kg ha-1) 

The predicted yields show a continuously decrease from 10,081.3 kg ha-1 in the baseline to 9,791.3 

kg ha-1 (–3%, RCP4.5) or 9,434.4 kg ha-1 (–6%, RCP8.5) for 2021–2040 (short-term period), to 

9,184.5 kg ha-1 (–9%, RCP4.5) or 8,776.1 kg ha-1 (–12.9%, RCP8.5) for 2041–2060 (medium-term 

period), then falling to 9,029.9 kg ha-1 (–10%, RCP4.5) and 8,410.6 kg ha-1 (–17%, RCP8.5) for 

2061–2080 (long-term period) (Fig. 5b). A slight decrease of yield variability is detected from 
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baseline (SD=1,145.2 kg ha-1) to the long-term period for RCP4.5 (SD=1,042.9 kg ha-1) or RCP8.5 

(SD=1,073.6 kg ha-1). However, it is known that crop yield SD simulated using atmospheric 

datasets derived from climate models tend to be lower than using observational data (Qian et al., 

2011). The projected yield reduction in Ribatejo (Portugal) could be compared to other intense 

irrigated maize fields under Mediterranean-type climates. For instance, the combined effect of CO2 

increase with warmer and drier climates was simulated using CropSyst in two Italy sites, projecting 

a maize yield reduction of 20% with significant growth cycle reduction (Tubiello et al., 2000). 

Similar values were found by Guerena et al. (2001) for two Spanish basins, in which maize yield 

has been projected to decrease by up to 16%. 

 

 

 

Figure 5 Projected yield, growth cycle length, seasonal water input and daily water productivity (DWP) under climate 

change scenarios (RCP4.5 and RCP8.5) for the three study sites in Ribatejo: (a, c, e, g) corresponding 11-year moving 

averaged series for RCP4.5 and RCP8.5; (b, d, f, h) averages and standard-deviations (error bars) for baseline and 

future sub-periods (2021–2040, 2041–2060 and 2061–2080) under RCP4.5 and 8.5. The ensemble means for the 2 

models and 3 sites are used for annual outputs. 
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             Impacts on seasonal growth duration (days) 

The growth cycle length is projected to decline from 124 days (baseline) to 123 (–1%, RCP4.5) or 

119 days (–4%, RCP8.5) in the short-term, to 119 (–4%, RCP4.5) or to 114 days (–8%, RCP8.5) 

for the medium-term, and to 117 days (–6%, RCP4.5) or to 109 days (–12%, RCP8.5) for the long-

term period (Fig. 5d). The mean SD over the three periods in RCP4.5 (4 days) or RCP8.5 (6 days) 

shows shorter ranges than for baseline (8 days). A steady reduction on both yield and growth cycle 

throughout the future period, mostly for RCP8.5, is observed, including decreasing inter-annual 

variability. Future higher temperature may facilitate a faster crop development rate, thus 

shortening growth cycle length, likely with insufficiently long phenological stages (e.g. flowering 

or grain filling for dry matter and yield formation), subsequently resulting in lower yields, as was 

already found in field experiments ~100 km away from our study sites (da Silva and Silva, 2008). 

 

             Impacts on seasonal water input (mm) 

Seasonal water input combines precipitation with irrigation, which are determined by weather 

conditions and by root zone water deficit. It decreases from 501 mm (baseline) to 494 mm (–1%, 

RCP4.5) or 488 mm (–3%, RCP8.5) in the short-term period and to 465 mm (–7%, RCP4.5) or 

454 mm (–9%, RCP8.5) over the medium-term, then following a slight increase to 476 mm (–5%, 

RCP4.5) or 456 mm (–9%, RCP8.5) for the long-term period (Fig. 5f). In the same way, the mean 

SD over the three sub-periods displays longer ranges for RCP8.5 (45 mm) than for RCP4.5 (38 

mm), but lower than for the baseline (54 mm). 

The general reduction of seasonal water input compared to baseline may be attributed to both 

decreasing precipitation and shortening growth cycle with less opportunity for receiving irrigation. 

Similar studies, using the DSSAT crop model and multiple future climate change scenarios, 

illustrate that the seasonal irrigation water use for corn tends to decrease substantially with 

diminished crop transpiration (crop water requirement), caused by elevated CO2 level and 

shortening of crop maturity duration (Islam et al., 2012; Meza et al., 2008). However, in current 

study, the higher seasonal water use in the long-term period than in the medium-term under both 

scenarios is due to more frequent irrigation supply in the former period to guarantee a moderate 

irrigation input as defined in baseline. As the severest water stress is expected in the long-term 

period, with decreased growing season, more frequent irrigation applications could be perceived 

as an adaptation strategy for model to meet the increased occurrence of pre-defined specified water 
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stress (STICS) or allowable root zone water depletion (AquaCrop). This could also be reflected by 

the variation of daily water input: 4.04 mm day-1 in the baseline, decreased to 3.91 mm day-1 

(RCP4.5) or 3.94 mm day-1 (RCP8.5) over the medium-term period, followed by an increase to 

4.06 mm day-1 (RCP4.5) or 4.15 mm day-1 (RCP8.5) over the long-term period.  

 

             Impacts on seasonal water productivity (kg m-3 day) 

Owing to the projected decrease in yield, growth cycle and seasonal water input, DWP decreases 

from 249.8 (baseline) to 243.8 (–2%, RCP4.5) or 231.7 kg m-3 day (–7%, RCP8.5) in the short-

term period (Fig. 5h). The medium-term period shows a reduction to 235.7 (–6%, RCP4.5) or 

222.3 (–11%, RCP8.5) kg m-3 day, then descending to 222.6 (–11%, RCP4.5) or 203.0 (–19%, 

RCP8.5) kg m-3 day for the long-term period (Fig. 5h). With respect to the conventional WUE 

(yield per unit of ET), the decrease in RCP4.5 varies from 2.01 kg m-3 in baseline to 1.98 (–1.4%), 

1.97 (–1.8%) and 1.90 kg m-3 (–5.5%), for the short-term, medium-term and long-term period, 

respectively. The respective reductions of WUE in RCP8.5 over these periods are 1.93 (–4%), 1.94 

(–3%) and 1.85 kg m-3 (–8%). The larger magnitude of decrease for DWP than for WUE 

demonstrates that DWP is a more sensitive indicator of water use efficiency under climate change 

scenarios. Moreover, the decline trend for DWP is more driven by the observed reduction on yield 

than by the variation of daily water input, since only small differences are detected for daily water 

input until the long-term period, either for RCP4.5 (4.06 mm day-1) or RCP8.5 (4.15 mm day-1), 

compared to baseline (4.04 mm day-1). Additionally, in contrast with the previous parameters, the 

mean SD of the three sub-periods increases from 24.0 in baseline to 29.3 for RCP4.5 or 27.9 kg 

m-3 day for RCP8.5. 

Previous findings suggest the increased atmospheric CO2 concentration generally result in an 

increase of WUE, owing to enhanced photosynthetic rate and declined stomatal conductance and 

transpiration (Polley, 2002). However, the interaction between such positive effect and the 

potential negative impact from the remaining climate elements on WUE has been less addressed. 

In our study, DWP gradually declines as a result of yield reduction, despite the elevated CO2 level. 

It suggests that the beneficial CO2 effects are not enough to mitigate other negative impacts on 

yield. As Mo et al. (2009) shows, the simulated detrimental effect of warming is significantly 

larger than the positive CO2 enrichment on maize yield in North China Plains, leading to a 25% 

reduction on WUE.  
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      3.3.5 Adaptation measures: irrigation trials 

In view of the projected yield reductions under RCP4.5 and RCP8.5, different irrigation amounts 

are tested (in silico) as possible climate change adaptation measures to maintain past yields. These 

trials firstly lead to the relative change (%, relative to 0%-baseline) of seasonal water input from 

–35% to 35% for the baseline, RCP4.5 and RCP8.5, together with corresponding changes in yield 

and DWP (Fig. 6). In addition, only changes in seasonal water input are displayed to conform to 

DWP definition, which directly corresponds to changes in irrigation amount. Although such 

changes comprise various irrigation timings, only seasonal totals are considered. Third-order 

polynomial curves are applied to the outputs of these irrigation trials (fitness measurement by R-

square) (Table 4) and are then described in the following sections. 

 

 

 
Figure 6 Effects on yields and daily water productivity (DWP) as a function of relative changes (%) in seasonal water 

input for (a, c) baseline and future sub-periods under RCP4.5, and for (b, d) baseline and future sub-periods under 

RCP8.5. 

 

In comparison with the 0%-baseline (i.e. 0% change in irrigation, yield and DWP), 35% less 

seasonal irrigation (i.e. severe water stress) corresponds to a 47% yield reduction, while 35% more 
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(i.e. absence of water stress) leads to a 16% yield increase (potential yield) over baseline period 

(Fig. 6a-b). At higher irrigation levels (>20%), yield stabilizes thereafter. These results highlight 

the non-linear relationship between yield and irrigation, which is taken into account by the crop 

models. In accordance with WUE evolution suggested by Geerts and Raes (2009), DWP of all 

studied periods is firstly very low for limited water supply, following a linear increase with 

additional water application, until a range of optimal water supply is achieved with maximum 

DWP (Fig. 6c-d). DWP then decreases owing to excessive water supply that will slow yield 

increase rate and increase seasonal water input. For all baseline irrigation trials, the maximum 

obtained DWP (249.8±1.3 kg m-3 day) is achieved by a range of irrigation from –7% to 9%, 

including the 0%-baseline trial (Fig. 6c-d).  

 
Table 4. Equations of three-order polynomial curves for relative changes (in %) in yield or daily water productivity 

(DWP) (dependent variables) as a function of the relative changes (in %) in seasonal water input (independent variable) 

for the outlined periods. The corresponding R-square measures fitting these relations are also outlined. 

 

 

Periods 

 

Yield change (y) vs.  

Seasonal water change (x)  

DWP change (y) vs. 

Seasonal water change (x) 

R2 

(yield/D

WP) 

Baseline 

(1986-2005) 

 
y = -0.6424x3 -1.2363x2 + 0.975x - 0.0032 

 

 
y = 0.6868x3 - 1.4505x2 + 0.0272x - 0.0035 

 

0.98/0.93 

RCP

4.5 

 

 

 

2021-

2040 

 

y = -0.0236x3 -1.4471x2 + 0.9979x - 0.0078 

 

 

y = 1.4173x3 - 1.6249x2 + 0.0305x - 0.0177 

 

0.91/0.87 

2041-

2060 

 

y = -0.6701x3 -1.1047x2 + 0.9405x - 0.0082 

 

 

y = 0.6396x3 - 1.1467x2 - 0.0419x - 0.0477 

 

0.87/0.82 

2061-

2080 

 
y = -0.5844x3 -1.1494x2 + 0.9657x - 0.0419 

 

 
y = 0.6999x3 - 1.189x2 + 0.0061x - 0.0942 

 

0.89/0.83 

RCP

8.5 

 

 

2021-

2040 

 
y = -0.5156x3 - 1.154x2 + 0.995x - 0.0325 

 

 
y = 0.7911x3 - 1.3271x2 + 0.0531x - 0.0662 

 

0.82/0.89 

2041-

2060 

 
y = -0.9207x3 -1.0523x2 + 0.972x - 0.0301 

 

 
y = 0.3683x3 - 1.0299x2 - 0.0068x - 0.1017 

 

0.83/0.84 

2061-

2080 

 

y = 0.2572x3 - 0.9675x2 + 0.7713x - 0.0848 
 

 

y = 1.7006x3 - 0.8496x2 - 0.1454x - 0.1884 
 

0.72/0.69 

 

For RCP4.5, the necessary increase of irrigation (relative to the 0%-baseline) to mitigate the 

projected yield reduction of both the short/medium-term is ~2% and ~5% for the long-term (Fig. 

6a intercept of x-axis). However, this adaptation strategy will still lead to a DWP decrease from –

3% and –9%, compared to the DWP for the 0%-baseline (Fig. 6c intercept of y-axis). For RCP8.5, 

the yield response in the first two sub-periods is very similar, showing ~4% more irrigation to 
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maintain past yield, while DWP decreases from –6% to –10% for the short- and medium-term, 

respectively (Fig. 6b, d). For the long-term period, the projected irrigation increment to maintain 

yield is of ~14%, leading to a DWP reduction of –23% (Fig. 6b, d). Our results show that 2–14% 

more irrigation than for baseline (1986–2005) might be a robust strategy to counteract future yield 

reduction, though the maximum DWP is substantially lower than for baseline (up to –23%). 

 

      3.3.6 Uncertainties 

               Crop model uncertainty 

Apart from the ensemble mean shown before for climate change impact assessment (Fig. 5), 

uncertainty arises for STICS and AquaCrop in simulating yield under a higher atmospheric CO2 

concentration (i.e. long-term period of RCP8.5). The mean yield relative difference for STICS 

minus AquaCrop over the long-term period of RCP8.5 reaches –1,865.5 kg ha-1 (–25%), compared 

to –174.3 kg ha-1 (–2%) in the short-term period, with lower CO2 level (Fig. 7a, b). In comparison 

with baseline, where CO2 level is the lowest, the long-term period of RCP8.5 shows significant 

mean yield reduction in STICS (7477.9 kg ha-1, –30%), with the highest CO2 level (Fig. 7a). 

Conversely, the mean yield in AquaCrop remains almost the same (9,343.4 kg ha-1, –1%) for the 

long-term period in RCP8.5 relative to the baseline (Fig. 7b). These results suggest that AquaCrop 

may be more sensitive to the CO2 fertilization effect than STICS, notably offsetting the detrimental 

climate change impacts on yields. The CO2–biomass effect sub-modules in each crop model are 

indeed different: adapted from Stockle et al. (1992) for STICS and from Steduto et al. (2007) for 

AquaCrop. Besides, each model simulation of DWP tends to follow the yield trend, highlighting 

again that yield plays a central role in DWP response to climate change scenarios (Fig. 7c, d). 

However, the agreement between STICS and AquaCrop is quite clear in simulating seasonal water 

input and growth cycle with increased CO2 level (Fig. 7e, f, g, h). In general, the two-model 

ensemble means of each variable may be more statistically robust measures than single-model 

variables. 

 

              Pedo-climatic uncertainties 

Our projected climate change impacts heavily rely on the coupled GCM/RCM outputs (M-MPI-

ESM-LR/SMHI-RCA4) in the study sites and in RCP uncertainties (Wilcke and Barring, 2016). 

Furthermore, the HWSD minimal mapping unit ranges from 1 to 10 km, which can affect soil 
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properties at each site (Fraga et al., 2016). The simplified management (e.g. sowing date and 

density and fertilization rate) and limited number of representative maize cultivars, without 

considering their changes in the future, is another source of uncertainty. 

 

 

 

Figure 7 Individual model simulations (STICS and AquaCrop) under climate change scenarios (RCP4.5 and 8.5) for 

the three selected sites in Ribatejo. Averages and corresponding standard-deviations from STICS (a, c, e, g) and 

AquaCrop (b, d, f, h) are shown for yield, daily water productivity (DWP), seasonal water input and growth cycle 

length over baseline (1986–2005), RCP4.5 (2021–2080) and RCP8.5 (2021–2080). 

 

3.4 Conclusion 
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The present study hints at the close behavior of two process-based crop models (STICS and 

AquaCrop) in simulating several maize yield-related outputs, as well as the good agreement 

between normalized statistical yields and regional simulations over the past period (1986–2005) 

in Ribatejo (Portugal). An adapted daily water productivity (DWP) measure, i.e. yield divided by 

daily water input (ratio of seasonal water input to growth cycle length), allows integrating the 

effect of shortened growing periods on seasonal water input. Future climate change projections 

show warmer and drier climate change scenarios. The impact of RCP4.5 and RCP8.5 on maize 

growth reveals a progressive decrease effect, with the most significant reduction on maize yield (–

17%), growth cycle (–12%) and DWP (–19%) for 2061–2080 under RCP8.5, associated with a 

decrease of seasonal water input (–9%) during 2041–2060. The decreased DWP is largely due to 

the significant yield reduction, for which the positive CO2 enrichment effect on crop yield 

increment is not enough to mitigate other unfavorable climate-driven processes (e.g. excessive 

warming). 

By testing different irrigation amounts as possible adaptation measures to mitigate the projected 

yield reductions, the required water supply increment by irrigation is higher in RCP8.5 than in 

RCP4.5, despite lower water use efficiency. The required irrigation increments are of 2–14% than 

for baseline (1986–2005), with substantially lower DWP than for baseline (down to –23%). 

Overall, these findings provide scientific knowledge for stakeholders and decision-makers within 

the Portuguese maize sector when planning suitable regional irrigation strategies under future 

climate change. 
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Briefing notes:  

Wheat (Triticum aestivum L.) is a traditionally important crop in Portugal, but insufficient 

domestic production leads to high dependency on wheat importation for satisfying its internal 

demand. The principal wheat growing area is situated in the Alentejo region in southern Portugal, 

where the prevalence of dryland farming system in this region, with typical Mediterranean climate, 

leads to wheat cultivation mostly under rainfed conditions. It plays an important social-economic 

role and represents essential source of livelihood for local smallholder famers. However, the 

observed warmer and drier climate trends in the last decades imply an exacerbation of crop water 

deficit and high temperature episodes, especially during sensitive crop growth stage (anthesis and 

grain-filling), that is typical of wheat cropping system in this region. This climatic trend is likely 

to continue under global warming, thus expect to aggravate the identified vulnerability with higher 

frequency and severity of extreme weather events, adding serious concerns over yield returns and 

its economic viability. Therefore, development, planning and guiding target and appropriate 

adaptation strategies are strongly needed. 

In this context, we have developed a study on evaluating impacts of a wide range of climate change 

projections (derived from 10 bias-corrected dynamically downscaled climate model outputs), on 

winter wheat yield using STICS crop model at one representative site in Alentejo, as well as 

exploring field-level adaptation options. The proposed and tested adaptation options are using 

early-flowering cultivars and early sowing dates, aiming to minimize the risk of crop exposure to 

enhanced terminal drought and heat stresses during grain filling period. STICS is calibrated using 

independently published wheat yield data from a 5-year local field trial with meteorological 

conditions ranging from anomalous dry to anomalous wet (each year encompasses combined 

treatment of three different N fertilization and two sowing dates). 

This chapter specifically covers aforementioned content and has been previously published as a 

research article by Climatic Change, entitled as “Effects of climate change and adaptation options 

on winter wheat yield under rainfed Mediterranean conditions in southern Portugal”. The works 

correspond to task 3 and 4 undertaken, aiming for a better understanding of crop yield response to 

climate changes under Mediterranean environment, as well as aiding in designing target adaptation 

strategies for policymakers by providing valuable information on guiding breeding efforts. 
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Abstract 

Projected warming and drying trend over Mediterranean region represent a substantial threat for 

wheat production. The present study assesses winter wheat yield response to potential climate 

change and estimate the quantitative effectiveness of proposed adaptation options for the major 

wheat production region of Portugal. A crop model STICS is used for this purpose, which is 

calibrated for yield simulations before projecting yields. Climate projections over 2021–2050 and 

2051–2080 under two emission scenarios (RCP4.5 and RCP8.5), are retrieved from bias adjusted 

datasets, generated by a 10-member climate model ensemble. Projected intensification of water 

deficits and more frequent high temperature events during late spring (April–June), coinciding 

with the sensitive grain filling stage, primarily result in continuous mean yield losses (relative to 

1981–2010) by –14% (both scenarios) during 2021–2050 and by –17% (RCP4.5) or –27% 

(RCP8.5) during 2051–2080, also accompanied by increased yield variabilities. Of evaluated 

adaptation options at various levels, using earlier flowering cultivars reveal higher yield gains (26–

38%) than that of early sowings (6–10%), which are able to reverse the yield reductions. The 

adopted early flowering cultivars successfully advances the anthesis onset and grain-filling period, 

which reduces or avoids the risks of exposure to enhanced drought and heat stresses in late spring. 

In contrast, winter warming during early sowing window could affect vernalization fulfilment with 

prolonged pre-anthesis growth, thus with limited effects on advancing reproductive stage. Crop 

yield projections and explored adaptation options are essential to assess food security prospects 

(availability and stability) of dry Mediterranean areas, providing crucial insights for policymaking. 

 

Keywords: Dryland Environment, Crop Modelling, STICS, Regional Climate Projections, 

Multi-model ensemble, EURO-CORDEX 
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4.1 Introduction 

How to improve agricultural production to meet projected increasing demand of global food 

products by around 60% until 2050, due to growing population and economic development, 

represents a substantial challenge, particularly in the context of climate change (Alexandratos and 

Bruinsma, 2012). Projected anthropogenic-driven climate change, with elevated atmospheric CO2 

level, rising surface air temperatures and changes in local precipitation regimes are expected to 

adversely affect crop growth and yields in many parts of the world (IPCC, 2013), bringing 

numerous uncertainties and risks for agricultural production and food security (Schmidhuber and 

Tubiello, 2007).  

Wheat (Triticum aestivum L.) is the staple food crop throughout the world, and Portugal is a 

country that still highly depends on the importation of wheat, e.g. used as fodder crop in many 

dairy farms. In this context, satisfying internal demands via increased domestic production may 

play a vital social-economic role (Páscoa et al., 2017). Wheat production is mainly concentrated 

in southern Portugal, namely in the Alentejo region, which contributes to more than 75% of 

national wheat production (Eurostat, 2015). In Alentejo, the prevalence of dryland farming systems 

leads to wheat cultivation under rainfed conditions (Valverde et al., 2015). Approximately, 95% 

of wheat growing areas in Alentejo are devoted to bread wheat production (Gouveia and Trigo, 

2008). The typical Mediterranean climate in this region causes a high evaporative demand in late 

spring (ca. April–June) when precipitation is low, considerably enhancing the risks of occurrence 

of severe water deficit during the most susceptible growth stage of winter wheat, i.e. flowering 

and post-anthesis grain filling period (Costa et al., 2013; Páscoa et al., 2017). A previous analysis 

for this region revealed climatic water deficits in May and June, largely coinciding with the grain 

filling and ripening stages, could impose strong limitation on wheat yields (Páscoa et al., 2017). 

Moreover, such a critical growing period is also frequently exposed to extremely high temperatures, 

with clear detrimental effects on final grain yield (Dias and Lidon, 2009; Scotti-Campos et al., 

2014). For instance, post-anthesis high temperature (>30℃), which is common in Alentejo (Scotti-

Campos et al., 2014), can cause significant grain yield reductions, resulting from a shortened grain-

filling phase and increased leaf senescence (Asseng et al., 2011; Dias and Lidon, 2009). A 

modelling study in major wheat growing regions of Australia suggested that variations in mean 

growing season temperature by ± 2℃ could impose a substantial reduction on wheat grain 

production by up to 50% (Asseng et al., 2011). Observed climate conditions in southern Portugal 
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have shown a clear trend towards a more arid climate, with increased mean temperature and 

decreased annual precipitation, particularly spring precipitation (Páscoa et al., 2017; Rolim et al., 

2017; Valverde et al., 2015). The observed warming and drying trends are likely to be strengthened 

in future climates (Páscoa et al., 2017; Rolim et al., 2017), with a concomitant increase in the 

frequency and intensity of extreme weather events, e.g. droughts (Santos et al., 2016). 

Adaptation measures on cropping systems have shown great potential to reduce or counteract the 

negative climate change impacts (Howden et al., 2007). For instance, a meta-analysis reviewing 

numerous studies revealed that the projected wheat yield losses, in both tropical and temperate 

regions, can be avoided or even reversed by implementing crop-level adaptation options, such as 

cultivar changes, adjusting planting date, irrigation and residue management (Challinor et al., 

2014). However, analysis of effects of these adaption options will rely on a contextual approach 

(Challinor et al., 2014; Howden et al., 2007), which requires incorporating local characteristics, 

such as local soil properties, climatic projections, crop behavior and common agronomic practices. 

Process-based crop models are efficient tools for simulating interactions amongst weather, soil, 

crop and management practices, and are increasingly used to project future crop yield and explore 

adaptation options in different regions worldwide (Asseng et al., 2013; Kassie et al., 2015; Wang 

et al., 2017). STICS is such a model, initially parameterized and validated for cereal crops (Brisson 

et al., 2003; Brisson et al., 1998; Brisson et al., 2002), and has been thoroughly evaluated over a 

wide range of agro-environmental conditions (including Mediterranean-type climates), showing a 

satisfactory and robust performance in simulating growth and yield of winter wheat (Coucheney 

et al., 2015).  

Although future climate projections are often carried out by global climate models (GCMs), their 

coarse spatial resolutions (100–500 km) often constrain the direct use of GCM outputs in crop 

models (often operated on a one hectare-basis). Dynamical downscaling is a common approach to 

obtain appropriate regional climate information, in which higher resolution regional climate 

models (RCMs) are applied within limited areas, with boundary conditions provided by coupled 

GCMs (IPCC, 2015). Within the European branch of the global Coordinated Regional 

Downscaling Experiment (EURO–CORDEX) initiative, a number of RCMs, driven by large-scale 

outputs of GCMs under different Representative Concentration Pathways (RCPs), were used to 

carry out high resolution RCM simulations (~12.5 to 50 km) throughout Europe (Jacob et al., 2014). 

Nevertheless, raw outputs from GCM–RCM model chains still tend to have systemic errors (bias) 
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as compared to observations, because either GCMs or RCMs are just an approximation of the earth 

climate system, which highlights the need for bias-adjustments towards observed climatology 

(IPCC, 2015; Yang et al., 2010). While multiple climate models are increasingly used for a 

comprehensive understanding of potential climate change, few studies have applied bias-corrected 

multi-model ensembles from high-resolution RCMs, to assess climate change impacts on crop 

yields. 

Previous studies on potential climate change influences on wheat production in Portugal were 

either focused on assessing crop water deficits (Rolim et al., 2017) or using climate change 

projections without accounting for the potential changes in climate variabilities and associated 

extreme events (Valverde et al., 2015). Besides, neither of these studies attempt to explore 

adaptation strategies. In the present study, ten bias-corrected GCM–RCM pairs and two RCPs are 

used to cover both model and anthropogenic forcing uncertainties for future climate projections 

(IPCC, 2015). STICS is calibrated using local wheat yield data before projecting future yields. We 

aim to (i) assess impacts of a range of climate change projections on winter wheat yield for the 

major wheat production region (Alentejo) of Portugal and (ii) explore consistent and suitable 

adaptation strategies to cope with potential climate change. 

 

4.2 Data and methods 

      4.2.1 Study region and representative site 

The study was performed within the Alentejo region (southern Portugal), featuring vast open areas 

of rolling plains, with some mountainous areas in the northeast (Fig. 1a). The area was 

characterized as a dry (sub-humid to semi-arid) Mediterranean climate, with extensive 

development of dryland farming systems, occupying ~63400 ha (Valverde et al., 2015). Rainfed 

winter wheat was typically sown in November, with a flexible sowing window, and harvested in 

June of next year (Gouveia and Trigo, 2008). Pests/diseases damages and weed infestation were 

generally well managed and controlled (Costa et al., 2013). Owing to the relatively homogeneous 

regional climate, the study site was chosen at Beja district (38.0°N, 7.9°W, 192 m a.s.l., Fig. 1a) 

to represent the dominant soil type (vertisol), where a weather station is also located <10 km away. 

Standard soil physical properties were primarily obtained from local measurements (Carvalho and 

Basch, 1995), complemented by information from the global SoilGrids dataset at 250 m resolution 

(Hengl et al., 2017) and Harmonized World Soil Database (~1 km resolution) 



Chapter 4 - Climate change impacts and adaptation options for winter wheat under rainfed 

Mediterranean conditions in southern Portugal 
 

 

106 
 

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), which are summarized in Online Resource (OR) 1. 

Required soil hydraulic properties were directly obtained from EU–SoilHydroGrids (OR1), a 

newly developed fine-resolution (1 km) multiplayer soil hydraulic database (Brigitta et al., 2017). 

 

 

Figure 1 Study site and characterization of historical climate conditions. (a) Geographic location of the Beja district 

in southern Portugal (Alentejo region) with (b) average annual and monthly minimum (Tmin, °C), maximum 

(Tmax, °C) and mean (Tmean, °C) temperatures, precipitation sum (mm) and potential evapotranspiration (PET, mm) 

over the baseline period (1981–2010). Mean and standard deviation of (c) cumulative water deficit (precipitation 

minus PET, mm) and of (d) days (only positive error bars are plotted) with maximum temperature >30 °C in three 

wheat growing phases during baseline. 

 

      4.2.2 STICS description and calibration 

In STICS, simulations for crop development and growth processes mainly involve phenological 

stages, leaf growth and senescence, transformation of intercepted photosynthetic radiation into 

aerial biomass, followed by its partition into various organs (e.g. grain). These processes were 

simultaneously governed by simulated stress factors, such as water shortage or waterlogging, N 

deficiency and thermal stresses. Furthermore, for winter wheat, the phenology development could 

also be slowed either by the sub-optimal photoperiod conditions or by non-compliance with 

vernalization requirement. Detailed model parameters, formalizations and modelling approaches 

are available at Brisson et al. (2009). 
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STICS was calibrated for simulating local grain yield (15% grain moisture) of winter wheat, using 

available published yield data for consecutive five growing seasons (1981–1986) at Beja (Carvalho 

and Basch, 1995) (OR2). Yield data were averaged over two experimental cultivars (Etoile and 

Mara) to facilitate comparison with our simulations, as no significant differences were found 

between them (OR2). Detailed information on experimental design and relevant inputs, such as 

common seeding date and rate as well as N fertilization practices, were documented by Carvalho 

and Basch (1995) and summarized in OR 2. 

For calibration, the performance of nine built-in cultivars of winter wheat were firstly examined. 

As only yield data was available, no attempt was made to calibrate default cultivar parameters, 

such as phenology and leaf area index (LAI) dynamics, but focusing only on the cultivar choice 

(No.1 to No.9). Subsequently, the general plant parameters, i.e. radiation use efficiency (RUE) that 

represented how the crop net photosynthesis was modelled (Brisson et al., 2009), were adjusted 

by testing a wide range of predefined values (2.25–4.25 with 0.25 interval). Various combinations 

of RUE with cultivar choice were thus investigated. The pair providing the best goodness-of-fit 

between observed and simulated yields was eventually selected. The overall approach was in 

agreement with standard procedures proposed by Jégo et al. (2010). The calibrated crop parameters 

and agronomic input values were kept invariant in the following climate change impact analysis. 

 

      4.2.3 Climate data 

For the historical period of 1981–2010 (hereafter “baseline”), observed daily minimum and 

maximum air temperatures (℃) and precipitation (mm) were directly obtained from the Beja 

weather station, available at European Climate Assessment & Dataset (ECA&D, www.ecad.eu) 

(Klein Tank et al., 2002). Daily surface solar radiation data (MJ m-2 day-1) were extracted from 

both the coarse-resolution (0.75° × 0.75°) ERA-Interim reanalysis (Dee et al., 2011) and the finer-

resolution (0.05° × 0.05°) satellite-based observations (CM SAF) (Pfeifroth et al., 2018). A good 

linear agreement was found within their overlap period (1983–2010) and the corresponding linear 

function was then applied to calibrate ERA-Interim data for the entire baseline period (OR3). 

Potential evapotranspiration (PET) was externally calculated using the FAO ET0 (v3.2) calculator. 

Annual records of atmospheric CO2 concentration (ppm) for baseline were retrieved from NOAA 

(www.esrl.noaa.gov/gmd/) and supplied as input in STICS. 

http://www.ecad.eu/
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The future periods of 2021–2050 (near-future) and 2051–2080 (distant-future) were selected. 

High-resolution (~12.5 km) projections for temperature (minimum and maximum) and 

precipitation were retrieved from ten bias-adjusted GCM–RCM simulations, produced by the 

EURO–CORDEX project and under RCP4.5 and RCP8.5, and for each period (10 models × 2 

scenarios) (Jacob et al., 2014). RCP4.5 corresponds to an anthropogenic radiative forcing reaching 

4.5 W/m2 by 2100 relative to the pre-industrial level, whereas RCP8.5 is a high-emission scenario, 

with a radiative forcing of 8.5 W/m2 by 2100 (van Vuuren et al., 2011). The ten GCM–RCM pairs 

combine five RCMs, three GCMs and four initializations (OR4). The bias adjustment was based 

on distribution-based scaling approach, where corrected distribution parameters were obtained by 

comparing model simulations and observations during the control period (1989–2010), and then 

applied to adjust the frequency distribution of raw model future projections (Yang et al., 2010). 

Such an approach was known to better preserve projected climate variability generated by 

individual RCM, as well as being able to realistically consider the covariance between temperature 

and precipitation (Yang et al., 2010). The observation source for bias-adjustments was the 

MESoscale ANalysis (MESAN) dataset at 3–12 km resolution throughout Europe, which was 

extensively used for regional reanalysis of a number of surface parameters (e.g. temperature and 

precipitation) (Dahlgren et al., 2016; Landelius et al., 2016). Moreover, as recommended from 

IPCC (2015), it is also essential to verify the performance of the bias adjustment using independent 

(additional) observational data (IPCC, 2015). Hence, the cumulative distribution functions of 

monthly mean temperature and precipitation sum between local weather station data and model 

simulations were thus compared for the control period (OR5). An overall agreement was found, 

particularly for monthly precipitation (OR5), suggesting sufficient bias adjustment for individual 

model outputs, as well as demonstrating the relevance of regional climate projections for the local 

impact study. 

Radiation projections were not directly retrievable from bias-adjusted model outputs, but from raw 

outputs of each GCM–RCM pair within EURO-CORDEX (Jacob et al., 2014). Nonetheless, the 

bias adjustment was still performed by firstly deriving the ratios of mean monthly radiation sum 

between observations and model simulations over baseline. These monthly ratios were then 

applied as multiplicative correction factors to the raw projections of daily radiation of the 

respective month. The projected radiation sum eventually shows no significant differences at 

monthly scale compared to baseline data (not shown). Furthermore, to account for elevated CO2 
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effect on crop growth and yield, the pre-defined future atmospheric CO2 concentrations for each 

scenario were considered (RCP4.5 or RCP8.5). 

 

      4.2.4 Exploration of adaptation strategies 

Two potentially suitable adaptation strategies were proposed in an attempt to minimize exposure 

of the most sensitive grain-filling phase (i.e. anthesis to grain maturity) to the typical unfavourable 

spring (April–June) conditions that were expected to be exacerbated in future climate. The first 

adaptation strategy assumed the genotypic development and use of earlier flowering wheat cultivar, 

which was suggested to be useful in avoiding critical/terminal stress conditions during 

reproductive stages for winter wheat under Mediterranean-type climates (Debaeke, 2004; Wang et 

al., 2017). Simulation of a future early flowering cultivar was achieved by reducing the growing 

degree days (GDD) requirement between emergence and anthesis, without altering other cultivar 

parameters (e.g. GDD for grain filling duration) in STICS (OR2). Three different adaptation levels 

were set, corresponding to 10%, 20% and 30% GDD reductions. Note that 30% reduction 

represents about the maximum extent of earliness to ensure no prior occurrence of anthesis over 

heading onset, while it still remains practical for cultivar breeding efforts. In general, this 

adaptation strategy tends to explore the trade-off effect between lower risk of yield limitation by 

drought/heat stress and higher risk of potential yield reduction with shorter growth duration 

(because of GDD reductions). Nevertheless, early flowering cultivars could be subject to the risk 

of spring frost damage with yield losses. In view of predictable climate warming, occurrence of 

spring frost is expected to be markedly reduced, such as the projections obtained for the wheat belt 

of Eastern Australia (Wang et al., 2015), thus likely being a lesser concern for yield threat under a 

warmer climate. The second adaptation strategy, namely early sowings, hypothesized that similar 

avoiding effects could be equally achieved from a management perspective, resulting from an 

anticipation of the growth cycle. Range of sowing dates (three different levels) were tested, namely 

10, 20 and 30 days early sowing (i.e. early sowing window from Oct_30 to Nov_20 with 10-day 

interval) relative to the baseline adopted average sowing date of Nov_30 (OR2), without changing 

other parameters. Late sowings are not considered as sowing in the late December or early January 

were expected to notably increase the crop exposure to frequent drought and heat stresses during 

the sensitive grain filling period, thus leading to more yield reductions (Dias and Lidon, 2009). 

 



Chapter 4 - Climate change impacts and adaptation options for winter wheat under rainfed 

Mediterranean conditions in southern Portugal 
 

 

110 
 

      4.2.5 Statistical analysis 

Comparison of STICS simulations with local observed wheat yields was statistically assessed 

using the following complementary metrics: normalized Root Mean Square Error (nRMSE, %), 

Mean Absolute Error (MAE, kg ha-1) and Correlation Coefficient (r). Regarding future yield 

projections, Student´s independent sample t-test was applied for assessing the significance of 

differences in means between baseline and each future period. Yield inter-annual variability of 

each period was expressed using the coefficient of variation (CV). 

 

4.3 Results 

      4.3.1 Calibration for simulating wheat yield 

Prediction errors (nRMSE and MAE) reveal a gradual increase as a function of RUE for individual 

cultivars, while differences of errors among cultivars tend to enlarge (Fig. 2a, b). The lowest 

nRMSE (stabilized at 20%) and MAE (432–476 kg ha-1) are consistently found for cultivar No.7 

with RUE ranging from 2.75 to 3, though 2.75 should be preferentially selected to minimize 

cultivar differences (Fig. 2a, b). Furthermore, a robust model performance is found, i.e. simulated 

yields are highly correlated with observations (r>0.75), irrespective of RUE and cultivar (Fig. 2c). 

Highest r is also obtained using cultivar No.7, for which r tends to stabilize with RUE>2.75 (Fig. 

2c). Hence, for the combination of cultivar No.7 and RUE=2.75 (OR2), the simulations explain 

90% of observed variance, with nRMSE of 20% and MAE of 464 kg ha-1 (Fig. 2d), which are 

chosen henceforth for following analysis.  

 

      4.3.2 Baseline and projected climates 

Baseline average annual mean temperature is of 16.9℃, with monthly mean temperature varying 

from 9.9℃ in January to 24.7℃ in August (Fig. 1b). For the growing season, mild winter 

temperatures (typically>10℃) are followed by a steadily increase from 14.7℃ in April to 22.0℃ 

in June (end of the growing season), with average maximum temperature reaching 30.0℃ in June 

(Fig. 1b). The rainy season concentrates in October–March, with baseline average precipitation of 

403 mm and low evaporative demand (Fig. 1b), leading to a negligible climatic water deficit (Fig. 

1c). In contrast, lower spring precipitation with rising temperature results in a mean baseline 

climatic water deficit of –324 mm for April–June (Fig. 1b, c). High temperature events (daily 
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maximum temperature >30℃) are also frequent during these months, with an average occurrence 

of 20 days in baseline (Fig. 1d).    

 

 

Figure 2 Comparison between observed yield data and simulations, with inputs from different combinations of a 

general plant parameter (RUE, radiation use efficiency) and STICS built-in cultivar choice (No.1 to No.9). The 

following evaluation metrics are considered: (a) nRMSE (normalized root mean square error), (b) MAE (mean 

absolute error) and (c) correlation coefficient (r), together with (d) the results from the selected combination of RUE 

(approximation of 2.75 to 2.8 g MJ-1 day-1) and cultivar choice (cultivar No.7–Thetalent). Refer to online resource 2 

for summarized input parameters used for calibration. 

 

Climate projections for the selected models and scenarios show increased annual mean 

temperature by an average (among models) of 0.8℃ (0.6–1.0℃) in RCP4.5 or 1.0℃ (0.8–1.2℃) 

in RCP8.5 for 2021–2050, and of 1.3℃ (1.0–1.7℃) in RCP4.5 or 2.3℃ (2.2–2.5℃) in RCP8.5 

for 2051–2080, with respect to baseline (OR6). Projected warming rates show a remarkable 

asymmetry at the monthly scale, with highest mean temperature increase (by model-average) in 

May (up to 2.9℃) and lowest increase in March (up to 1.7℃) over the growing season (OR6). 

Further, higher temperature increases in RCP8.5 than in RCP4.5 are clearly discernible in 2051–

2080 (OR6). As a result of temperature increase, mean annual PET are also increased, depending 

on RCP4.5 or RCP8.5, by an average of 30 or 44 mm in 2021–2050 and of 56 or 105 mm in 2051–
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2080, respectively (OR6). Precipitation projections indicate that annual precipitation reductions 

are very likely, in which projected mean precipitation changes vary from –8% to +7% (excluding 

outlier) in RCP4.5 or from –24% to –2% in RCP8.5 during 2021–2050, and from –19% to –4% 

(RCP4.5) or –28% to –6% (RCP8.5) during 2051–2080 (OR6). However, monthly precipitation 

projections are more uncertain, e.g. varying widely from –78% to 39% (RCP4.5) in June during 

2021–2050 and from –29% to 42% in March (RCP8.5) during 2051–2080 (OR6). Climate 

projections over the whole Alentejo region (as indicated by multi-model ensemble mean) also 

show increased annual mean temperature (up to 2.7℃) and decreased annual precipitation (up to 

–18%), revealing a regional homogeneity of climate signals for a given scenario and period (OR7). 

 

      4.3.3 Impacts of climate change projections on wheat yield 

The simulated 30-year baseline yield (inter-quartile) ranges from 1409 to 2848 kg ha-1, with an 

average of 2045 kg ha-1 and a strong inter-annual variability (CV=47%) (Fig. 3a). Future 

projections tend to show an overall decrease in mean yield, accompanied by enhanced variability. 

For RCP4.5, ensemble mean yield is of 1427–2109 kg ha-1 for 2021–2050 and of 1310–1962 kg 

ha-1 for 2051–2080, with mean yield reductions (relative to baseline) of –14% and–17%, 

respectively (Fig. 3a, b). Increased yield variability (CV>47%) is projected in 2021–2050 by 50% 

of climate model projections and by 70% in 2051–2080 (Fig. 3a). Under RCP4.5, mean yield 

change under individual model projection ranges from –25% to –5% in 2021–2050 and –33% to 

6% (including significant reductions from –33% to –24%) in 2051–2080 (Fig. 3b). For RCP8.5, 

ensemble mean yield shows a range of 1471–2119 kg ha-1 in 2021–2050, with decreased mean 

yield by –14%, and of 1180–1804 kg ha-1 in 2051–2080, with significant mean yield reduction of 

–27% (Fig. 3c). Increased yield variability is also projected in 2021–2050 by 50% of climate 

projections, whereas it is projected by all models in 2051–2080 (RCP8.5) (Fig. 3c). The range of 

mean yield changes vary from –22% to 5% in 2021–2050, while significant mean yield reductions 

are consistently projected in 2051–2080 (RCP8.5), ranging from –39% to –22% (Fig. 3d). 

Uncertainties are higher among climate models than between scenarios, in which mean yield 

reductions are of –18% to 0% for models (averaged over scenarios) and –13% to –11% for 

scenarios (averaged over models) during 2021–2050, and of –36% to –8% for models and –28% 

to –17% for scenarios during 2051–2080 (Fig. 3). Elevated atmospheric CO2 levels reveal limited 
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benefits on crop yield, mitigating mean yield reductions by an average of 4% for RCP4.5 or 5% 

for RCP8.5 during 2021–2050 and 7% for RCP4.5 or 10% for RCP8.5 during 2051–2080 (OR8). 

 

 

Figure 3 Projections of wheat yield under (a, b) RCP4.5 and (c, d) RCP8.5 over the near-future (2021–2050) and 

distant-future periods (2051–2080) under climate projections from 10 models (GCM-RCM). Refer to online resource 

4 for detailed information of individual climate models. Dash lines indicate the median value of baseline yield and the 

diamond symbols denote increased yield inter-annual variability under respective climate model projection (left 

segments). Statistically significant changes (p<0.05) of mean yield with respect to baseline are highlighted with 

asterisks (right segments). 

 

      4.3.4 Projections of water deficit and high temperature events  

Climate projections reveal a high likelihood of increased climatic water deficit and more frequent 

high temperature events during April–June (Fig. 4), which are assumed as the primary drivers of 

the projected yield reductions and increased variability. In April–June, multi-model ensemble 

mean indicates significantly enhanced (increased) water deficits by –38 (RCP4.5) or –51 (RCP8.5) 

mm for 2021–2050, and by –59 (RCP4.5) or –90 (RCP8.5) mm for 2051–2080, with respect to 

baseline (Fig. 4a, b). The projected range of changes of mean water deficit during April–June 

primarily shows significant intensification, adding up to –65 (RCP4.5) or –76 mm (RCP8.5) 

deficits in 2021–2050 (Fig. 4a, b). Significant increases of mean water deficits are coherently 
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found in 2051–2080 apart from one model projection, adding up to –89 (RCP4.5) or –107 mm 

(RCP8.5) deficits for this critical growing period (Fig. 4a, b). Regarding high temperature events 

in April–June, ensemble means indicate significant increases by 3 (RCP4.5) or 6 (RCP8.5) days 

in 2021–2050, and by 8 (RCP4.5) or 14 (RCP8.5) days in 2051–2080 (Fig. 4c, d). There are 

significant mean increases over 2021–2050, varying from 4 to 8 days (RCP4.5) or 6 to 11 days 

(RCP8.5) (Fig. 4c). Until 2051–2080, 70% of the projections under RCP4.5 suggest significant 

increases by 7 to 12 days, while significant increases are consistently found under RCP8.5, ranging 

from 10 to 19 days (Fig. 4d). Note that significant mean increases of high temperature occurrences 

(by up to 6 days) with enhanced water deficits (adding up to –87 mm) are also projected during 

October–December, particularly over 2051–2080, but the overall effects are much less pronounced 

for the cool rainy season (October–March) (Fig. 4b, d). 

 

 

 

Figure 4 Projected mean changes of (a, b) cumulative water deficits (precipitation minus PET, mm) and of (c, d) days 

with maximum temperature >30 ℃ during three wheat growing phases for future periods with respect to baseline. 

Statistically significant changes (p<0.05) are highlighted with asterisks. 
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      4.3.5 Adaptation strategies 

It is clear that projected negative climate change impacts (Fig. 3) are gradually alleviated by using 

10%, 20% and 30% earlier flowering cultivars, in which projected yield losses are offset or 

eventually reversed (Fig. 5a). During 2021–2050, ensemble means reveal that projected mean 

yield reductions of –14% under both scenarios (without cultivar adaptation) (Fig. 3b) are mitigated 

to –7% or –2% (10% early), and are reversed to an increase of 3% or 11% (20% early) and a 

continuous increase of 12% or 24% (30% early), depending on RCP4.5 or RCP8.5, respectively 

(Fig. 5a). Likewise, during 2051–2080, ensemble means indicate that mean yield reductions of –

17% (RCP4.5) or –27% (RCP8.5) (without cultivar adaptation) (Fig. 3d) are continuously 

ameliorated to –8% or –17% (10% early), 3% or –6% (20% early) and 14% or 6% (30% early) 

(Fig. 5a). Hence, mean yield gains from no cultivar adaptation to use of up to 30% earlier flowering 

cultivar, are of 26% (RCP4.5) or 38% (RCP8.5) for 2021–2050 and 31% (RCP4.5) or 33% 

(RCP8.5) for 2051–2080. Moreover, the consistent significant mean yield reductions during 2051–

2080 under RCP8.5 (Fig. 3d) almost disappear by only introducing the 10% early flowering 

cultivar, while projected yield losses are almost reversed in 2021–2050 with the adoption of the 

20% early flowering cultivar (Fig. 5a). The use of the 30% early flowering cultivar contributes to 

a nearly consistent increase in mean yield for both 2021–2050 and 2051–2080, during which 

potential increases are projected to reach up to 32% and 39%, respectively (Fig. 5a).  

In contrast, wheat yield seems to be less responsive to early sowings with only slightly yield 

improvement, in which projected yield losses are unlikely to be fully counteracted under a range 

of climate projections (Fig. 5b). Ensemble means reveal that projected yield losses of –14% during 

2021–2050 (without early sowings) (Fig. 3b) are slightly reduced to a range of –8% to –4% 

(RCP4.5) or –7% to –4% (RCP8.5), following 10–30 days early sowing strategies (Fig. 5b). 

Similarly, mean yield reductions of –17% (RCP4.5) or –27% (RCP8.5) in 2051–2080 (Fig. 3d) 

are only marginally alleviated to a range of –13% to –11% (RCP4.5) or –24% to –19% (RCP8.5) 

(Fig. 5b). Thus, maximum mean yield gains by early sowings are projected to be 10% (both 

scenarios) in 2021–2050 and 6% (RCP4.5) or 8% (RCP8.5) in 2051–2080. There are no increases 

in yield gains from 10 to 30 days early sowings, particularly during 2051–2080, in which more 

adverse results (significant reductions up to –27%) are found with 30 days early sowing than that 

of 20 days (Fig. 5b). Less favorable performance of early sowing adaptations can be largely 

attributed to its limited effects to advance the onset of anthesis and grain filling period to avoid 
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intensified drought/heat stress late in the season. This could be reflected by increased pre-anthesis 

growth durations when sowings occur earlier than the prescribed date (Nov 30th). There are robust 

(small variations of results among climate projections and between scenarios) mean increases of 

6, 13 and 21 days (ensemble means) in phenology phase between germination and stem elongation 

over both 2021–2050 and 2051–2080 periods, with 10, 20 and 30 days early sowings, respectively 

(OR9). The extended early growth duration effectively leads to prolonged vegetative growth, in 

which days to anthesis are increased by an average of 8, 17 and 26 days for both 2021–2050 and 

2051–2080 with 10, 20 and 30 days early sowings, respectively (OR9).  

 

4.4 Discussions 

      4.4.1 Calibration performance 

Soil-crop models, such as STICS, has been increasingly used as powerful tools to assess interactive 

effects of crop growth, climate conditions, soil properties and management practices on yield and 

environment impacts on agriculture (Coucheney et al., 2015). When the model is applied to address 

a particular research question at a given site, calibrations of some model parameters are often 

firstly performed to fit simulations to available observations for better representing local 

production conditions. Our results indicate that an appropriate adjustment of general plant 

parameter and built-in cultivar choice could lead to a considerable improvement of prediction 

accuracy for wheat yield, where nRMSE is reduced from up to 100% to as low as 20% (Fig. 2a). 

In the pilot project of Agricultural Model Intercomparison and Improvement (AgMIP), similar 

prediction accuracy of wheat yields (nRMSE of 30%) has been achieved using STICS under 

various environmental conditions, before being applied to project yield response to future climate 

change (Asseng et al., 2013). Furthermore, the 5-year observed yields are herein obtained under 

quite different meteorological conditions (including an extremely dry year) and over a wide range 

of possible yields, i.e. 800–4000 kg ha-1 (Fig. 2d and OR2). The model ability to reproduce 

observed yield variability, as reflected by a consistently high agreement between simulations and 

observations (r>0.75, Fig. 2c), suggests that inter-annual sensitivity of wheat yield to weather 

variations could be skilfully captured by the model (in particular from extreme weather events), 

which may warrant its applicability in climate change impact assessments. Moreover, observed 

yields are directly obtained from independent field measurements of published data, thus further 

strengthening the reliability of our model calibrations and outcomes. However, the relevance of  
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Figure 5 Effects of adaptation measures on wheat yield by using (a) early flowering cultivars with three different 

extent of earliness at anthesis (earlier than the baseline cultivar), and by using (b) three early sowing dates (earlier 

than the baseline adopted average sowing date: Nov_30) for the near-future (2021–2050) and distant-future (2051–

2080) periods, under RCP4.5 and RCP8.5. Statistically significant mean yield changes (p<0.05) with respect to 

baseline are highlighted with asterisks. 
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newly calibrated parameter values for local conditions (e.g. RUE=2.8) should be further evaluated 

using additional representative datasets. 

 

      4.4.2 Climate projections  

Climate models are widely accepted tools to simulate present and future climates. However, 

climate model projections are inherently uncertain, resulting from simplified representation of the 

real climate system by climate models with different numerical approaches for describing physical 

processes (IPCC, 2015), from social-economic uncertainties regarding influences on future 

trajectories of greenhouse gas emissions (Asseng et al., 2013; van Vuuren et al., 2011) and from 

model initializations (Deser et al., 2012). Within the EURO-CORDEX initiative, a coordinated 

bias-adjusted multi-model, multi-scenario and multi-initialization ensemble of downscaled 

experiments with fine spatial resolution (0.11°) were generated (Jacob et al., 2014). A subset of 

these model runs are employed in our study to address these uncertainties, in which the diverse 

ensemble composition (10 models and 4 initializations under 2 forcing scenarios) enables a wide 

range of probable projections. The resulting climate projections over near- and distant-future 

period, indeed give a relatively robust climate change signal with small range of variations, e.g. 

projected annual mean temperature increase by 2.2–2.5℃ accompanied by precipitation reductions 

by up to –28% in 2051–2080 under RCP8.5 (OR6). Hence, a reasonable level of confidence for 

climate projections has been achieved in the current study, despite some uncertainties found at 

monthly scale (e.g. in June) (OR6). It is worth mentioning that these multi-model ensembles of 

climate projections also account for a broad range of altered climate variabilities, thus the projected 

yield impacts implicitly integrate the potential changes (increase) in the frequency and intensity of 

extreme events.  

 

      4.4.3 Impacts of climate change and regional food security 

The overall climate change projections depict a moderate warming and enhanced dryness with 

increased magnitudes as a function of time (OR6), resulting in continuously decreased mean yield 

with increased variabilities (Fig. 3). During 2021–2050, projected variations of mean yield 

changes are relatively close between RCP4.5 (–25% to –5%) and RCP8.5 (–22% to 5%), in which 

both scenarios agree on a mean yield reduction of –14% (by ensemble mean) (Fig. 3b, d). The two 

emission scenarios indeed present relatively smaller differences in the projected trends of 
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greenhouse gas concentrations (in particular CO2 concentration) before 2050s, and only begin to 

diverge substantially in the latter half of the century, with different impacts on climate simulations 

(van Vuuren et al., 2011). During 2051–2080, significant decreases of mean yields (–39% to –22% 

with an ensemble mean of –27%) are consistently found under high emission scenarios (RCP8.5), 

with a strong agreement concerning increased yield variabilities (Fig. 3c, d). The stabilization 

scenario (RCP4.5) is also likely to have a mean yield loss (–33% to 6% with an ensemble mean of 

–17%) over this period, together with the projected high likelihood (70%) of increased yield inter-

annual variabilities (Fig. 3a, b).  

The overall results are consistent with a meta-analysis of crop yield response to projected climate 

change, concluding that wheat yield changes are expected to be negatively affected by even 

moderate warming (by 2℃ of local warming), with higher risk of mean yield loss and greater yield 

variabilities in the second half of the 21st century than in the first one (Challinor et al., 2014). In 

southern Portugal (Guadiana river basin), a similar study also indicates the susceptibility of rainfed 

winter wheat to climate change, where projected mean yield reductions range from –8% to –4% 

for 2011–2040 and from –14% to –7% for 2041–2070, across multiple climate models and 

different emission scenarios (Valverde et al., 2015). In comparison, these relatively smaller 

magnitudes of yield losses could be attributed to the lack of introducing climate projections with 

altered climate variabilities, where variance of projected future climate is kept the same as in the 

historical baseline period (Valverde et al., 2015), which are unlikely true. In general, our findings 

indicate that negative yield impacts are very likely (i.e. high agreement in yield reductions with 

increased variabilities) despite the magnitudes of impacts vary among models and between 

scenarios, which are particularly emphasized for 2051–2080 (Fig. 3). Simulated yield variations 

among climate model projections represent major source of impact uncertainties when compared 

to variations between scenarios (Fig. 3). In fact, uncertainties in simulating yield impacts among 

climate model projections tend to dominate regional climate impact assessment (Kassie et al., 2015; 

Osborne et al., 2013). However, this can also be attributed to the asymmetry between the numbers 

of models (ten) and of scenarios (two) in our case. On the other hand, the simulated yield benefits 

from atmospheric CO2 enrichment, particularly under the high emission scenario of RCP8.5 (i.e. 

up to 10% mean yield mitigations) (OR8), are in contrast to reported average yield increment by 

about 16–22% (depending on soil water and N availability) for C3 cereals under 190 ppm CO2 

increment (Kimball, 2016). The limited yield response may be explained by the fact that projected 
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higher temperature above the optimum growth range, could partially offset CO2 induced 

stimulation of photosynthesis, in which the similar simulation results were previously obtained by 

Wang et al. (2017). Interactive effects of temperature and CO2 on crop photosynthesis and biomass 

growth are able to be captured by STICS via influences on crop RUE (Brisson et al., 2009).  

The projected mean yield decrease with increased variability may undermine the two important 

dimensions of food security, i.e. availability and stability (Schmidhuber and Tubiello, 2007). 

Historically, wheat production policies in Portugal encouraged increases in harvest areas, while 

supporting seed selection and massive use of chemical fertilizers, resulting in an intensification of 

cropping systems and severe soil degradation on marginal lands (Jones et al., 2011). Following the 

introduction of afforestation measures and policies favoring meat/milk products since the 1980s, 

arable crop land (including wheat areas) substantially declined with a concomitant increase of 

forest land and grassland areas (Jones et al., 2011). On the other hand, wheat yield increased as a 

result of management and cultivar improvements (Páscoa et al., 2017), as well as by abandonment 

of less fertile soils. However, recent common agricultural policy promotes integrated management 

and soil conservation practices (Jones et al., 2011), thus yield improvements by means of intensive 

resource use (e.g. water and fertilizers) are likely to be more and more constrained. Hence, in the 

national context of growing environmental concerns on soil degradation, increasing land use 

competition and restricted resource use, influence of projected wheat yield reductions shall be 

more pronounced, as the efforts for maintaining or increasing grain production in order to achieve 

self-sufficiency could be substantially undermined, provided no adaptation measures are 

implemented. 

Annual recorded (winter) wheat yield statistics in Alentejo region over the past three decades has 

been characterized by a strong variability (~30% of CV), ranging from 566 kg ha-1 in 2005 

(associated with severe drought) to 2482 kg ha-1 in 2016 (national statistics at www.ine.pt). Other 

than some external factors such as technical trends and growing areas changes, this variability 

could be largely explained by increased climate variability, particularly by the strong inter-annual 

variability of seasonal precipitation. During 1986–2012, simultaneous occurrence of dry events 

and anomalously low wheat yields are consistently found for most of the Iberian Peninsula (Páscoa 

et al., 2017), showing the vulnerability of rainfed wheat cropping systems to extreme weather 

conditions, particularly severe drought events. Thus, climate change is expected to further 

aggravate this vulnerability through increased climate variability with more aridity and frequent 
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extreme temperature, such as projections shown in Fig. 4. As a result, projected increase of yield 

inter-annual variabilities implies substantial threat to future year-to-year stability of food crop 

supply with notable impacts to food chain resilience (Challinor et al., 2014).  

 

      4.4.4 Adaptation to enhanced water deficits and heat stress 

Grain yield production of winter wheat in regions with typical Mediterranean climate is commonly 

limited by water deficits and heat stress during the flowering and grain filling period and such 

unfavorable growing conditions are likely to be further worsened in the future climate (Asseng et 

al., 2011; Páscoa et al., 2017; Wang et al., 2017). Projected negative yield impacts in our study are 

largely due to the intensified water deficits and more frequent high temperature events during the 

April–June period, within which grain-filling phase typically occurs (Fig. 4). Significant mean 

increases of water deficits (–38 to –90 mm) and of high temperature events (3 to 14 days) during 

April–June are coherently projected for the two future periods, along with smaller magnitudes of 

increases for the early growing season, i.e. October–March (Fig. 4). In line with our analysis, 

Rolim et al. (2017) suggests that average seasonal water deficits of local rainfed winter wheat are 

projected to increase across three climate models and two scenarios. Moreover, as indicated by 

Asseng et al. (2011), wheat yield losses owed to high temperatures during the important grain 

filling phase are likely to be an important constraint for major wheat producing regions worldwide, 

thus substantially undermining global food security. In particular, our case study illustrates that 

average hot days (>30℃) during April–June are projected to increase significantly by 14 days over 

2051–2080, RCP8.5 (Fig. 4d), reaching >34 days (20 days in baseline) for this critical period with 

enormous detrimental impacts for successful grain production.  

Between the adaptation options explored, our study reveals that the use of early flowering cultivars 

results in more yield gains under a range of climate projections, and thus may outperform the other 

adaptation measure of early sowings (Fig. 5). By adopting early flowering wheat cultivars, crop 

growing season lengths are expected to markedly decrease under combined effects of reduced 

thermal requirement and accelerated development rate under warmer climates, resulting in less 

intercepted nutrients and radiation, with consequently lower biomass accumulation and yield 

formation (Asseng et al., 2011; Debaeke, 2004; Kassie et al., 2015). Nonetheless, such negative 

impacts of potential yield reductions with shorter growing duration, are shown to be 

counterbalanced, with less pronounced effects than the positive effects by advancing anthesis, 
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where risks of crop exposure to intensified drought and heat stresses during grain filling are 

reduced or avoided, leading to net seasonal yield gains and mitigations of mean yield reductions 

(Fig. 5a). Besides, a shortened vegetative phase with early flowering cultivar is also likely to result 

in reduced grain numbers (Farooq et al., 2011), with subsequent detrimental impacts on final grain 

yields, but this process is currently not incorporated into the model. The projected mean yield 

reductions (Fig. 3) are gradually alleviated and eventually reversed when considering cultivars 

with progressively early flowering, resulting in maximum yield gains of 26–38% (Fig. 5a). In 

many dry Mediterranean (typical winter-dominant rainfall) environments, earlier flowering has 

proven to enable shifting the sensitive wheat growth stage (i.e. grain filling) to the cooler and 

wetter part of the season, thus increasing the harvest index by minimizing the risks of exposure to 

terminal drought and very high temperatures late in the season (Asseng et al., 2011; Debaeke, 2004; 

Wang et al., 2015; Wang et al., 2017). Moreover, the nearly consistent increases in the mean yields 

for both 2021–2050 and 2051–2080 (up to 39%), using 30% early flowering cultivar (Fig. 5a), 

may point out the potential opportunities for local yield improvement despite increasingly 

unfavorable climate conditions. On the other hand, Wang et al. (2017) projected increased yield 

of rain-fed winter wheat in the warm and dry sites of Eastern Australia, benefiting from warming-

induced early flowering even without cultivar adjustment. Without cultivar adaptation, our results 

clearly indicate negative yield response, which probably could be attributed to insufficient extent 

of growth advancement from projected temperature increase alone.        

In contrast, 10–30 days early sowing strategy appears to be less favorable with maximum mean 

yield gains of only 6–10% (Fig. 5b), owing to the weak effects of advancing the onset of anthesis 

and grain filling stage. When sowing occurs 10, 20 and 30 days earlier, duration of pre-anthesis 

growth increases by an average of 8, 17 and 26 days (OR9), respectively, thus largely offsetting 

the effects of anticipation of the growth cycle. Most of these increases originate from the prolonged 

seasonal growth duration between germination and stem elongation (OR9), corresponding to the 

main phase for crop vernalization fulfilment (an important prerequisite for the induction of 

reproductive growth for winter wheat). Climate warming during vernalization period may affect 

and slow effective chilling accumulation before anthesis, thus increasing the vegetative phase and 

delaying the onset of anthesis (Rosenzweig and Tubiello, 1996; Wang et al., 2015). The flowering 

date of winter wheat was previously projected to be delayed by an average of 14 days under 

RCP8.5 in eastern Australia, resulting from restricted vernalization fulfilment with temperature 



Chapter 4 - Climate change impacts and adaptation options for winter wheat under rainfed 

Mediterranean conditions in southern Portugal 
 

 

123 
 

increase (Wang et al., 2015). Indeed, the current mean monthly temperature (~15℃) around the 

early sowing window (i.e. mid of October to early November) at study area, is already close to the 

defined upper threshold (16.5℃) of effective chilling accumulation (vernalization value) for 

winter wheat (Brisson et al., 2009). Therefore, early sowing, which allows making use of more 

winter rainfall, may be compromised by climate warming, resulting from decreased number of 

effective vernalization days. As such, adopting winter wheat varieties with lower vernalization 

requirements may be useful to deal with this constraint.  

 

4.5 Conclusion 

In summary, among a large range of yield projections, simulations with early flowering cultivars 

result in higher yield gains than that of early sowings, which successfully mitigate and even reverse 

the projected mean yield reductions. Therefore, development of early flowering cultivars from 

breeding programme may help maintain and increase local grain yield productions in future 

climates for the major wheat production region of Portugal, along with likely effects for regions 

with similar Mediterranean-type climates. However, the extent of flowering earliness should only 

reach up to a point where shortened duration of vegetative growth does not constitute significant 

potential yield reduction. Despite some inherent uncertainties (e.g. climate projection uncertainties) 

and limitations (e.g. lack of inclusion of other crop models), our findings are expected to contribute 

to a better understanding of crop yield response to future climate changes under typical 

Mediterranean environments, as well as aiding in designing suitable adaptation strategies for 

policy makers, e.g. by providing insights for guiding breeding efforts. 
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Briefing notes:  

Grassland utilization or harvest, through extensive animal grazing or forage conservation as hay 

and silage production, represent essential source of livelihood for smallholder farmers scattered 

across the Mediterranean region. However, the projected warming and drying trends, along with 

higher frequency and intensity of extreme weather events, particularly during summer, are 

expected to substantially challenge grassland forage production. While it is foreseen that forage 

production will be increasingly limited by prolonged summer drought, with negative impacts on 

both productivity and persistence, direct effects of summer heat stress, with detrimental impacts 

on growth and productivity, has been largely ignored in previous studies. On the other hand, the 

growing season will likely shift towards winter due to warmer winter and drier summer, leading 

to modified annual growth pattern of grassland species, with a distinguished seasonal growth 

pattern. Moreover, the elevated atmospheric CO2 level may, to some extent, help alleviating 

drought limitations on photosynthesis and growth, particularly during the cooler winter period. 

Taken together, changes in CO2 level, temperature and precipitation are likely to affect 

productivity of perennial grassland in a complex manner, requiring an integration of local growing 

conditions. In this context, we have developed a study to evaluate the overall climate change 

impacts on forage dry matter yield production, under contrasting growing seasons by considering 

different cutting regimes (early cut for winter-spring growing season only or late cut for winter-

spring-summer). For that purpose, the STICS crop model at three different grassland sites across 

Portugal was used. Simulations are performed under conditions of restricted irrigation in order to 

avoid simulating drought persistence or mortality rate during hot and dry summer. The findings 

reveal the development of targeted adaptation strategies should take advantage of emerging 

opportunity (increase growth potential during the increasingly favorable winter season) and 

minimize risks to tackle challenges (enhance summer dormancy plant traits to avoid summer heat 

and drought impacts) arising from climate change.  

This chapter thus devotes to fully cover this study, which has been published as a research article 

“Modelling climate change impacts on early and late harvest grassland systems in Portugal” in 

an international journal of Crop&Pasture science. This research corresponds to tasks 5 and 6, 

aiming to improve our understanding of perennial forage species behavior under climate change, 

and provide valuable insights for guiding and prioritizing breeding and research efforts to improve 

the climate resilience of grassland production system.
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Abstract 

Climate change projections for Portugal showed warming and drying trends, representing a 

substantial threat for the sustainability of forage production in perennial grassland. The objective 

of current study was to assess climate change impacts on seasonal dry matter yield (DMY) in three 

locations (Northwest-, Central-inner and South-Portugal) with different climatic conditions, for 

two grassland production systems deviating in growing season length, either early cuts in spring 

(ES) or late cuts in summer (LS). Impacts were estimated using the STICS crop model, by 

comparing a historical baseline period (1985–2006) with simulated projections over future periods 

(2021–2080). For this purpose, the STICS crop model was driven by high-resolution climate data 

from a coupled Global Climate Model / Regional Climate Model chain. As a result, we obtained 

that, during the baseline period, DMY of LS was consistently much higher than that of ES in all 

three locations. For LS, significant reductions in mean DMY were forecasted during 2061–2080, 

ranging from mild (–13%) in the north to severe (–31%) in the south of Portugal. In contrast, 

seasonal DMY was largely maintained for ES among sites until 2080, benefiting from low water 

deficits, the expected atmospheric CO2 rise and the forecasted temperature increase during cool 

season. Thus, the yield gap was projected to gradually decrease between the two regimes, in which 

mean DMY for ES was foreseen to exceed that of LS over 2061–2080 in the southern site. 

Moreover, ES was projected to have very low exposure to extreme heat and severe water stresses. 

Conversely, LS, subjected to high summer water deficit and irrigation needs, was projected to 

experience increased summertime water stress (9–11%) and drastically increased heat stress (33–

57%) in 2061–2080, with more pronounced heat stress occurring in the south. Frequency of 

occurrence of extreme heat stress was projected to gradually increase in summer over successive 

mailto:cyang@utad.pt
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study periods, with a concomitant increased intensity of DMY response to inter-annual variability 

of heat stress during 2061–2080. Heat stress tended to be more important than water stress under 

the prescribed irrigation strategy for LS, potentially being the main limiting factor for summertime 

DMY production under climate change scenario.  

 

Keywords: Mediterranean Grassland, Dry Matter Production, Seasonal Water Consumption, 

STICS, Climate Change Scenarios, Summer Heat Stress 

 

5.1 Introduction 

Under the Mediterranean environment, permanent grassland was a primary forage source to sustain 

extensive animal grazing activities crucial to rural economy. Perennial grassland was typically 

exposed to two distinct growing seasons: from September to April (cool season: autumn–winter–

spring period with cool and rainy conditions) and from May to August (warm season: hot dry 

summers). Thus, Mediterranean grasslands often suffered from regular, and sometimes severe, 

water deficit, thus leading to a shortage of forage grass, particularly during the dry summertime 

period. The lack of natural feedstuff over a certain period was incompatible with constant 

nutritional needs of livestock, which highlights the role of forage production conserved as hay or 

silage (Courault et al., 2010; Lourenco and Palma, 2001). Given the important role of forage 

conservation, suitable growing season length represented the key factor for defining a proper 

cutting regime as seasonal cumulative herbage yield was often subject to various uncertainties, 

including heterogeneous botanic composition, different fertilization strategies and soil 

characteristics, as well as climatic variability and change (Belesky and Fedders, 1995; Casella et 

al., 1996; Cop et al., 2009). 

Portugal was characterized by a Mediterranean-type climate, in which the typical irregularity and 

high inter-annual variability of the precipitation regime was aggravated by warming trends and 

increased frequencies of temperature extremes over recent decades (Andrade et al., 2014; Andrade 

et al., 2011). Future climate change in broad Mediterranean areas, manifested by temperature 

increases and precipitation reductions (IPCC, 2013), was expected to negatively influence forage 

yields. The lengthening of drought episodes, with a concomitant increase of frequency of their 

extremes, may not be offset by higher growth rates in the cool season and by the CO2 fertilization 

effect (Lelievre and Volaire, 2009). Moreover, heat stress was far from negligible at inhibiting 

plant growth and yield (Dumont et al., 2015).  
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There were around 2.3 million hectares of grasslands in Portugal, covering approximately 25% of 

its territory (Jongen et al., 2011), mainly in northwestern, central-inner and southern regions 

(Carneiro et al., 2005; Lopes and Reis, 1998; Teixeira et al., 2011). In the northwest, large areas 

were devoted to intensive dairy farms, which contribute to more than 50% of national milk 

production (Trindade, 2015). Success of these dairy farms was largely dependent on self-sufficient 

forage supply from zero-grazing permanent grassland (Trindade, 2015). In the central-inner region, 

grassland utilization was generally concentrated in a few farms, in which irrigated pasture provided 

principal forage supply to the integrated livestock production (Pereira et al., 2004). Natural and 

semi-natural grasslands were the main vegetation cover in southern Portugal (Aires et al., 2008a). 

Currently, they were critical to sustain extensive animal production, but recent trends showed a 

gradual replacement by managed sown biodiverse permanent pasture (Teixeira et al., 2011). 

Across Portugal, there were two prevailing cutting regimes: 1) early cutting in late spring, which 

may result in insufficient growing periods and low herbage yields; 2) late cutting in the end of 

summer for a longer growing season, but exposing grassland to potential summer water deficit and 

heat stress. Under future climate change, there were increasing uncertainties for sustainable and 

stable production of both grassland systems. 

Process-based crop models were widely recognized as efficient tools to simulate crop behaviour 

under various environmental conditions. In particular, STICS (Simulateur mulTIdisciplinaire pour 

les Cultures Standard) was a generic model for simulating a wide range of crops (Brisson et al., 

2003). STICS was particularly useful in modelling perennial grasslands, being used to monitor and 

map real-time status of forage growth over France, namely Information and Objective Follow-up 

of Pastures (ISOP) (Ruget et al., 2006; Ruget et al., 2009). The ISOP system accurately estimated 

forage production shortage under summer water deficit and hot weather, and thus realistically 

quantified the impact of drought and heat stresses, which helped mobilizing forage reserves to 

affected areas (Ruget et al., 2009).  

To assess climate change impacts on agricultural yields, coupling crop models with climate models 

was a common approach. The European Coordinated Regional Downscaling Experiments (EURO-

CORDEX) initiative was established to provide daily high-resolution (12.5 km) regional climate 

change simulations (Jacob et al., 2014), using Regional Climate Models (RCM) to dynamically 

downscale Global Climate Models (GCM) outputs from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) (Samuelsson et al., 2011). Furthermore, these models also provided 
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simulations driven by different climate change scenarios, i.e. Representative Concentration 

Pathways (RCP) (Jacob et al., 2014; van Vuuren et al., 2011). The climate model adopted in 

present study was MPI-ESM-LR/SMHI-RCA4 from EURO-CORDEX (Jacob et al., 2014). This 

model has previously shown similar mean temporal patterns as the full EURO-CORDEX ensemble 

mean (Fraga et al., 2016), making it suitable to assess climate change impacts. 

Studies coupling STICS with climate models have already been carried out in France, with general 

findings highlighting that summertime forage production drastically decreased in the distant future, 

contrasting with enhanced production during winter, though the magnitude of climate effects on 

grassland varied among regions and future periods (Ruget et al., 2012; Ruget et al., 2013). In 

Portugal, a few studies have been devoted to assessing climate change impacts on perennial 

grasslands (Nóbrega, 2006; Valverde et al., 2015). However, those studies neither distinguished 

forage growing seasons nor operated crop models using climate data at high temporal and spatial 

resolution. Hence, our objectives were to evaluate the overall impacts of high-resolution climate 

change projections on grassland dry matter yield (DMY), in association with water and thermal 

stress conditions, for both short and long growing seasons. For the methods, STICS was run in 

three locations across Portugal (Northwest-, Central-inner and South-Portugal) and projected 

changes in temperature, precipitation and atmospheric CO2 concentration were retrieved from 

EURO-CORDEX projections. The impacts were quantified by comparing the differences between 

a historical baseline period (1985–2006) and future period (2021–2080).  

 

5.2 Data and methods 

      5.2.1 Study sites 

The selected three study sites were: “Vilar” (41.29°N, 8.68°W, 42 m a.s.l.) in northwestern 

Portugal (NP), “Quinta da Franca” (40.27°N, 7.43°W, 436m a.s.l.) in central-inner Portugal (CP) 

and “Monte do Tojal” (38.47°N, 8.01°W, 186m a.s.l.) in southern Portugal (SP) (Fig. 1a). In NP, 

the herbaceous community of local hay meadowlands were dominated by Dactylis genus 

(cocksfoot grass) over a wide geographic distribution, from coast to mountains (Lopes and Reis, 

1998). Some intensive non-grazing forage cropping systems received enhanced fertilization 

(organic slurry and mineral fertilizers) and irrigation (Trindade et al., 1997). In CP, permanent 

pasture (co-existence of natural and sown biodiverse grassland), managed by both grazing and 

cutting, covered approximately 60% of farm surface with frequent irrigation, which benefits from 
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the installed irrigation project of “Cova da Beira” (Pereira et al., 2004). The dominant grass species 

consisted of Vulpia spp (subset of fescue genus), genera Lolium (ryegrass), Chamaemelum spp 

(chamomiles genus), bromus spp (brome genus) (Carneiro et al., 2005). In SP, a study site was 

chosen to represent a semi-natural grassland type subject to sheep grazing or cutting for hay 

production. The local grassland was dominated by cool season C3 grass species and drought 

tolerant perennial C4 grass, including Vulpia bromoides and geniculate (subsets of fescue genus), 

Dactylis glomerata, Cynodon dactylon (Vilfa stellata) (Aires et al., 2008a; Aires et al., 2008b; 

Serrano et al., 2011). 

 

 

Figure 1 (a) Indication of three representative study sites of northwestern Portugal (NP), central-inner Portugal (CP), 

southern Portugal (SP). Monthly mean temperature (Tmean) and precipitation sum (Prec) were shown for sites of (b) NP; 

(c) CP; (d) SP over baseline (1985–2006). Dry season was highlighted with filled bar. 

 

      5.2.2 Soil parameters 

Information on soil characteristics at each site was mainly obtained from the Harmonized World 

Soil Database (HWSD), which incorporates the latest updates of soil information worldwide. 

HWSD provided high-resolution (30 arc-second, ~1 km near equator) soil profile data connected 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

138 
 

to each mapping unit, in which chemical-physical properties of topsoil (0-30 cm) and subsoil (30-

100 cm) were available (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Based on soil profiles, soil 

hydraulic properties (e.g. water retention capacity) were estimated as a function of soil texture and 

organic matter, adjusted by the influence of soil structure and salinity level (Table S1), which were 

calculated using soil hydraulic property calculator (Saxton and Rawls, 2006). The soil cumulative 

evaporation limit, a crucial model parameter for soil evaporation, was calculated as a function of 

clay or sand content  (Brisson et al., 2009) (Table S1). Concerning topography, the GTOPO30 

digital elevation model, distributed by U.S. Geological Survey, was employed to estimate the 

surface slope degree, essential for the calculation of surface runoff parameters in STICS (Brisson 

et al., 2009) (Table S1). 

 

      5.2.3 Climate data 

The input daily weather variables consisted of 2 m minimum and maximum air temperatures (ºC), 

solar radiation (MJ m-2 day-1), precipitation (mm), wind speed (m s-1), water vapour pressure (hPa), 

potential evapotranspiration (PET, mm) and atmospheric CO2 concentration (ppmv). Simulations 

were performed for the baseline period (1985–2006) and for three future periods (short-term: 

2021–2040; medium-term: 2041–2060; long-term: 2061–2080). For the baseline, temperatures 

and precipitation were obtained from the daily observational gridded dataset E-OBS (Haylock et 

al., 2008), while solar radiation, wind speed and water vapour pressure were obtained from the 

evaluation run of SMHI- RCA4 (RCM), developed by the Rossby Centre at the Swedish 

Meteorological and Hydrological Institute (Strandberg et al., 2015). The evaluation run was forced 

by ERA-Interim, a high-resolution daily observational gridded dataset of global atmosphere 

reanalysis (Dee et al., 2011). PET calculation was based on the Penman method (Penman, 1948). 

Atmospheric CO2 concentration was retrieved from the National Oceanic and Atmospheric 

Administration (NOAA) global records (https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html, 

Table S2). 

Regarding climate change projections (Table S2), SMHI-RCA4 was driven by MPI-ESM-LR 

(GCM) and retrieved from EURO-CORDEX (Jacob et al., 2014). The projections under RCP8.5 

were used herein, tending to incorporate the most noticeable climate change signal (van Vuuren et 

al., 2011). This scenario projected a continuous rise in atmospheric CO2 concentration until the 

end of 21st century (Table S2). Furthermore, the projected daily climate data was subjected to bias 
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corrections, i.e. differences (ratios) between observed and simulated monthly mean temperatures 

(precipitation, net solar radiation, wind speed and water vapour pressure) were calculated over 

baseline and applied as additive (multiplicative) correction factors to the full future period (2021–

2080). 

 

      5.2.4 Historical characteristics of climate 

Air temperatures and precipitation in the three study sites were shown for baseline (Fig. 1b–d). 

All sites showed typical Mediterranean climate features. NP presented a rainy and mild climate, 

CP showed relatively cool climate with intermediate precipitation level, and SP had the lowest 

precipitation with the highest temperatures. Monthly mean temperature varied from around 8ºC, 

6ºC and 9ºC, in January (coldest month), to 21ºC, 22ºC and 25 ºC, in July (warmest month), for 

NP, CP, SP, respectively (Fig. 1b–d). Annual mean temperatures were of 14.5ºC, 13.3ºC and 

16.6ºC for NP, CP, SP, respectively (Fig. 1b–d). Precipitation generally concentrated in autumn, 

winter and spring (September–April), with around 1500 in NP, 710 in CP and 540 mm in SP (Fig. 

1b–d). In contrast, summertime (June to August) precipitation were of 100, 40 and 20 mm for NP, 

CP, SP, respectively (Fig. 1b–d).  

 

      5.2.5 Application of STICS to grassland 

STICS can run at field, regional and national scales, with inputs from weather variables, soil 

characteristics and farming practices running at a daily time-step (Brisson et al., 2009). A brief 

description of the general model scheme was presented herein. More details were available in 

Brisson et al. (2003) and Brisson et al. (2009). Phenological development rate was calculated as a 

function of thermal accumulation (i.e. growing degree days – GDD). Note that the temperature 

thresholds that were used to define the thermal stress effect on plants varied among different 

processes: phenology, leaf growth and dry matter growth. In addition to water and nutritional 

stresses, the development rate may be slowed by non-compliance with vernalization requirement 

or sub-optimal photoperiodic effect. Subsequent phenology-driven leaf area growth determined 

photosynthetic active radiation, which was directly transformed into above-ground biomass, 

following a light utilization efficiency approach. In the model, plant roots acted as water and 

mineral N absorber, according to the growth dynamic of root length and efficient density profile. 

Additionally, soil water and nitrogen uptakes were simultaneously calculated, by comparing the 
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balance between crop requirements (considering functions of root growth) and soil water and 

mineral N availability of root zone. The resulting comparison leaded to the simulation of crop 

water and nitrogen stresses that inhibited canopy expansion, dry matter growth and plant 

transpiration (water uptake). For plant water requirement, if the modified effects of reduced 

stomatal conductance and transpiration by rising atmospheric CO2 level need to be incorporated, 

the option of resistance approach must be chosen inside the model to directly calculate water 

demand at plant level (Shuttleworth and Wallace, 1985), instead of choosing the Penman method 

to calculate PET for STICS. 

For grassland, STICS was able to simulate both annual (e.g. ryegrass) and perennial grass species 

managed by cutting or grazing for forage dry matter production, taking into account irrigation and 

fertilization practices (Ruget et al., 2009). Note that the current case was a simulation of established 

perennial grassland without considering the seeding year. At the beginning of each growing cycle, 

the model was initialized with plant characteristics (leaf area index, dry matter and root depth) and 

soil moisture status. Over the growing period, dry matter was accumulated as harvestable and the 

cutting date was determined by a given developmental stage, by pre-defined dates or by thermal 

accumulation (Ruget et al., 2009). In the present study, the choice of pre-defined cutting date was 

selected in order to represent locally existed harvest timings. Consequently, the estimation of 

associated residue dry matter and LAI after cutting was required to start a regrowth cycle. 

Following established simulation cycles, multi-year variation of growing seasonal outputs could 

be analysed. 

 

      5.2.6 Parameters of grassland systems  

Simulations were initialized at the first day of each year to account for active growth after the 

winter rest period (October to December), in compliance with overall observed growth conditions 

(Aires et al., 2008a; Carneiro et al., 2005). In addition, parameters linked to initial plant 

characteristics were defined according to standard literature values (Courault et al., 2010; Ruget 

et al., 2009) (Table S3). Initial soil water content was set at field capacity to represent soil moisture 

status after winter precipitation, which was common given the Portuguese winter-dominant 

precipitation.  

To reflect local heterogeneous botanic composition and community functions, the plant file (grass-

prairiep), which characterized average functional attributes (mainly phenology traits) of groups of 
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species (Ruget et al., 2008), was chosen to represent sward heterogeneity across study sites (Table 

S3). The plant parameters were sufficiently tested and validated using measured features of 

permanent grassland in France (mainly composed of a mixture of tall fescue and cocksfoot), and 

integrated into the ISOP system for widespread application (Ruget et al., 2006). To mimic local 

available practice and avoid potentially extreme water deficit under climate change scenarios (e.g. 

may cause numerous zero-production years with high uncertainties), the automatic irrigation 

strategy was assumed by the model equally among sites and periods. Whenever simulated plant 

water stress for stomatal function reduced actual transpiration to less than 25% of maximum 

transpiration requirement, corresponding to model parameter of ratiol=0.25, an irrigation event 

was automatically triggered to replenish depleted soil water content to field capacity down to the 

rooting depth, without exceeding the maximum daily allowable dose of 40 mm. The process 

attempted to follow the irrigation strategy with restrained water use. 

Two prescribed harvest regimes, including specific cutting dates with respective N fertilization 

rate, were primarily derived from available regional practices (Aires et al., 2008a; Carneiro et al., 

2005; Lopes and Reis, 1998; Lourenco and Palma, 2001; Trindade et al., 1997) (Table S3). For 

each site, the main difference between these two regimes was in cutting dates, leading to two 

grassland systems with contrasting growing season length:  

– Early spring cut system (ES): annual dry matter yield was obtained before June (winter and 

spring seasons), generally with one cut in the mid-season and another cut in the end of spring, thus 

corresponding to a short growing season aiming to avoid summer stress. 

– Late summer cut system (LS): annual dry matter yield was obtained in the end of May and in 

mid-September (winter, spring and summer seasons), generally with one cut in the end of spring 

and another one in the end of summer, thus having a long growing season for dry matter 

accumulation, but with higher senescence rate. 

Immediately following autumn rehydration (after second cut in LS), a pre-growth period (October 

to December) typically occurred, in which the growth rate of adapted C3 species in Portugal was 

indeed very small, largely owing to the low temperature (Aires et al., 2008a). Active growth for 

the following cycle mainly occurred in the beginning of next year. Parameters associated with 

residue dry matter and LAI after cutting were estimated combining field observations with 

standard literature values (Aires et al., 2008b; Ruget et al., 2009) (Table S3). 
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      5.2.7 Simulation setup 

After running STICS with the aforementioned input parameters, variations of seasonal cumulative 

DMY and associated stress conditions were analysed. Specific emphasis was given to the effects 

of warming and drought stresses on DMY growth, which were expressed as thermal stress index 

(FTEMP) and water stress index (SWFAC), respectively. FTEMP and SWFAC varied from 0, for 

extreme stress, to 1, for no stress, directly affecting daily DMY growth rate (Brisson et al., 2009). 

Additionally, it was important to analyse grassland response to extreme stress events under future 

climates (Cullen et al., 2012; Dumont et al., 2015; Zwicke et al., 2013).  

Thermal stress (FTEMP) was calculated as a function of daily mean crop temperature, with defined 

optimal temperature range, taking into account extreme thermal thresholds for halting growth 

progression (FTEMP=0.01: > 25ºC for extreme heat stress and < 0ºC for extreme cold stress) 

(Brisson et al., 2009). Crop water stress (SWFAC), was calculated as the ratio of root zone soil 

water content (cm3 cm-3), relying on a soil water balance approach, to a threshold of soil water 

requirement (cm3 cm-3). Such threshold was computed daily, depending on atmospheric 

evaporative demand, surface cover status (e.g. LAI and soil surface mulch), plant stomatal function 

and root distribution in the soil profile (Brisson et al., 2009). Since simulations were under 

irrigation, the occurrence of severe water stress was defined at the instant when irrigation was 

needed, for which the effect of severe water stress (0.25) was weaker than that of extreme thermal 

stress. 

 

      5.2.8 Statistical analysis 

Student’s t-test was applied for assessing the significance of differences in mean between baseline 

and each future period, as well as for assessing significance of correlation coefficients. The F-test 

was applied for the significance of linear trends.  

 

5.3 Results 

      5.3.1 Climate change projections 

Regarding climate change projections, a progressive and very significant increase of mean annual 

temperature up to 2.3, 2.8 and 2.7ºC until 2061–2080, were projected for NP, CP and SP, 

respectively (Table S4). With respect to mean annual precipitation in comparison to baseline 

period, NP presented a variable precipitation regime, while a sharp decrease with significant 
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reductions occurred for CP and SP during 2021–2040, followed by an increase (CP) or a 

continuous decrease (SP) in 2041–2060, before further significant reductions of 17–20% for both 

sites over 2061–2080 (Table S4). The inter-annual variability of annual precipitation, expressed 

as coefficient of variation (CV), ranged from 21% to 28% for NP, 23% to 28% for CP, and 26% 

to 30% for SP throughout all periods. CV of mean annual temperature generally varied from 3% 

to 5%.  

 

      5.3.2 Dry matter yield in baseline period (1985–2006) 

The simulated cumulative seasonal DMY showed differences among the three sites for baseline. 

For NP, DMY ranged from 7000 to 9500 kg ha-1 (mean of 8505 kg ha-1) for ES, while it varied 

from 8800 to 11300 kg ha-1 (mean of 10037 kg ha-1) for LS (Fig. 2). For CP, DMY varied from 

4500 to 6900 kg ha-1 (mean of 6097 kg ha-1) for ES, while it ranged from 8000 to 9300 kg ha-1 

(mean of 8539 kg ha-1) for LS (Fig. 2). Lastly, for SP, DMY varied from 5500 to 6300 kg ha-1 

(mean of 5888 kg ha-1) for ES and from 6000 to 8000 kg ha-1 (mean of 7021 kg ha-1) for LS (Fig. 

2). Overall, LS consistently exhibited higher DMY than ES across study sites in baseline, owing 

to the longer growing season and adequate irrigation.  

 

 

 

Figure 2 Box-plot analysis for simulated seasonal cumulative DMY of two grassland systems for three study sites 

(NP, CP, SP) over baseline (1985–2006). Minimum, 25th percentile, 50th percentile, 75th percentile and maximum 

values were respectively shown (horizon lines from bottom to top) in the box with indicated average mark (symbol of 

X). ES: early spring cut system; LS: late summer cut system. 
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      5.3.3 Climate change impacts on dry matter yield 

Apart from directly presenting changes in the mean (right panels), simulated seasonal total DMY 

for 2021–2080 under RCP8.5 was firstly shown in 11-year moving average series (smoothed curve) 

(left panels) to filter out high frequent inter-annual variability, thus emphasizing the inter-decadal 

variability (Fig. 3). In NP, no statistically significant trend was projected for ES regime, whereas 

a significant downward trend (–190 kg ha-1 decade-1) was found for LS regime (Fig. 3a). Mean 

seasonal DMY for ES fluctuated between 8243 and 8852 kg ha-1 throughout baseline and future 

periods, without significant changes, and inter-annual variability (CV) was maintained at around 

9% (Fig. 3b). In contrast, mean DMY of LS showed continuous and significant reductions of 506 

(–5%), 1233 (–12%) and 1325 kg ha-1 (–13%) over successive periods, in relative to baseline (Fig. 

3b). The CV increased from 8% in baseline to 10% during 2061–2080. 

In CP, a significant upward trend of seasonal DMY at 110 kg ha-1 decade-1 was projected for ES 

until 2080, whereas a significant declining trend at –330 kg ha-1 decade-1 was found in LS (Fig. 

3c). Mean DMY of ES maintained within the 5926–6406 kg ha-1 range, without significant changes 

throughout the periods, while CV was stable at 10% (Fig. 3d). Compared to baseline, mean DMY 

of LS showed progressive and significant decrease by 1165 (–14%), 1542 (–18%) and 2447 kg ha-

1 (–29%) over successive periods (Fig. 3d). CV increased from 5% in baseline to 14% in 2061–

2080. 

In SP, a weak rising trend was projected for ES, while a significant downward trend (–240 kg ha-

1 decade-1) was projected for LS (Fig. 3e). For ES, no significant changes were also identified for 

mean DMY over successive future periods, through which CV remained at about 7% (Fig. 3f). For 

LS, mean DMY displayed gradual and significant reductions of 1322 (–19%), 1590 (–23%) and 

2188 kg ha-1 (–31%) for successive periods (Fig. 3f). The CV increased from 9% in baseline to 

16% in 2061–2080. 

Projected mean seasonal DMY under ES was essentially maintained, whereas progressive 

reductions were obtained under LS, with a remarkable effect during 2061–2080. Therefore, the 

yield gap of ES regime from that of LS was gradually diminished, for which higher productivity 

of ES was projected in SP until 2061–2080 (Fig. 3f). 
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Figure 3 Projection of seasonal cumulative DMY for two grassland systems in (a,b) NP, (c,d) CP, (e,f) SP. Left panels: 

11-year moving average of DMY series with Fisher´s test on significance of linearity for trend analysis. Right panels: 

mean and standard deviation for successive study periods, with independent sample t-test performed between baseline 

and each future period means. Significance levels at p<0.05 (*) and p<0.01 (**) were labelled, respectively. 

 

      5.3.4 Variations of seasonal water use from baseline to future climate  

No statistically significant difference was discovered for winter-spring (ES) precipitation between 

baseline and each future period, featuring an overall high inter-annual variability (Fig. S1a–c). 

However, significantly increased seasonal irrigation requirement by 32% was projected for ES in 

SP during 2061–2080 (Fig. S1f). For LS (winter + spring + summer), seasonal precipitation was 

projected to decrease significantly in NP (–19%) and in SP (–19%) (Fig. S1a, c). As a result, 

seasonal irrigation of LS was projected to increase significantly by 6–30% during 2061–2080 

among sites (Fig. S1d–f). Over 2061–2080, significant increases were consistently projected in 

seasonal cumulative PET among sites, i.e. 30–57 mm increase in ES and 102–149 mm in LS (Fig. 

S1g–i). Consequently, small but significant increases by 3%–9% for actual ET were projected 
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among sites and regimes over 2061–2080 (Fig. S1j–l). The ratio of actual ET to PET, averaged 

over all the periods, were 0.94, 0.75 and 0.72 for ES in NP, CP and SP, respectively, which were 

consistently higher than that for LS (0.73, 0.64 and 0.63). 

 

      5.3.5 Enhancement of climatic water deficit under LS 

Fig. 4 presented the linear regression analysis between seasonal total DMY and cumulative 

climatic water deficit (Water supply – PET, expressed as positive values) during dry period under 

LS regime (1st May to 31st August). In comparison to baseline, the mean cumulative water deficit 

increased significantly by up to 31%, 28% and 28% in 2061–2080 for NP, CP and SP, respectively 

(Fig. 4). The gradually increased water deficit under climate change, could partially explain the 

significant DMY reductions of LS, i.e. decrease of 300, 1200, 1300 kg ha-1 for every 100 mm 

increase in dry period water deficit for NP, CP and SP, respectively (Fig. 4).  

 

 

 
Figure 4 Simulated seasonal total dry matter yield (DMY) as a function of cumulative climatic water deficit 

(Precipitation + Irrigation – Potential Evapotranspiration) during spring-summer dry period under LS regime for (a) 

NP, (b) CP, (c) SP. Student´s t-test was performed for examining correlation coefficient and for changes in mean water 

deficits of each future period compared to baseline. Significance levels at p<0.05 (*) and p<0.01 (**) were labelled, 

respectively. 

 

      5.3.6 Seasonal dynamics between baseline and the long-term period (2061–2080) 

For winter and spring seasons under ES, DMY growth rate progressively increased with two cuts 

imposed. Seasonal average growth rates for baseline were 66, 42 and 46 kg ha-1 day-1 for NP, CP 

and SP respectively, which were projected to increase significantly (paired sample t-test) by 10%, 

7% and 6% for the respective three sites over 2061–2080 (Fig. 5a–c). DMY growth rate was 
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initially inhibited by cold stress (FTEMP), but gradually relieved with subsequent seasonal shift, 

in which seasonal average FTEMP effects were quantified as negligible for NP (0.89) and SP 

(0.92), mild (0.80) in CP over baseline (Fig. 5d–f). As a result of climate warming, cold stress was 

alleviated and average FTEMP effects were significantly decreased by 5%, 9% and 2% for NP, 

CP and SP, respectively, over 2061–2080 (Fig. 5d–f). Due to initial maximum soil water reserve, 

water stress only occurred in the mid of the season, followed by stress variation and intensification 

until the end of spring, resulting from enhanced soil moisture depletion (Fig. 5d–f). In baseline, 

seasonal average SWFAC effects were negligible for NP (0.97) and CP (0.85) and mild for SP 

(0.81), which were projected to increase significantly by 4% and 2% for CP and SP respectively 

over 2061–2080, and remained unchanged for NP (Fig. 5d–f). Until the first cut in LS with 

primarily the same winter-spring season, average DMY growth rate was consistent lower than that 

of ES, owing to occurrence of senescence that approximately begun since April (Fig. 5g–i). 

However, the overall FTEMP and SWFAC effects for LS were similar to ES among sites and 

periods, largely due to the shared identical cool and wet seasons, despite different harvest intervals 

(Fig. 5d–f and Fig. 5j–l).  

Consider only summer in LS (between two successive cuts), baseline DMY growth rate in average 

was 71, 68 and 52 kg ha-1 day-1 for NP, CP and SP respectively, and was subject to significant 

decreases by 34%, 53% and 57% with strong day-to-day fluctuations during 2061–2080 (Fig. 5g–

i). Average summertime FTEMP effect, in the form of heat stress, was clearly more intense in SP 

(0.64) than in NP (0.89) and CP (0.84) for baseline (Fig. 5j–l). Subsequently, during 2061–2080, 

the significant increases of heat stress by 33%, 52% and 57% for NP, CP and SP respectively, 

were primarily associated with the markedly decreased growth rate in summer (Fig. 5j–l). Due to 

irrigation, average SWFAC effects over summer were generally moderate (~0.6) among sites 

during baseline (Fig. 5j–l). The reduced summertime DMY rate could be also explained by 

significantly increased SWFAC, i.e. 11%, 11% and 9% during 2061–2080 for NP, CP and SP, 

respectively (Fig. 5j–l). 

Moreover, the influence of the inter-annual variability of daily FTEMP and SWFAC in baseline 

and for 2061–2080 on daily DMY growth was also analysed by calculating the correlation 

coefficient (r) between seasonal anomalies (deviation from period mean) of two stress indices and 

anomalies of DMY growth rate for individual years in both periods (Fig. 6). Accordingly, a greater  
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Figure 5 Illustration of seasonal dynamics of daily mean thermal (FTEMP) and water stress (SWFAC) indices along 

with daily mean DMY in baseline (solid line) and long-term period of 2061–2080 (dash line) for (a–f) ES and (g–l) 

LS regime among study sites. Cutting dates were indicated by arrow symbols. 

 

positive r indicated that anomalously lower/higher stress value (stronger/weaker stress effect) was 

correlated to lower/higher seasonal DMY, and vice-versa. For ES, DMY growth tended to be less 

responsive to variations of FTEMP during baseline, but consistently subject to stronger effects of 

inter-annual variability of SWFAC, despite the large uncertainty in NP (Fig. 6a–c). During 2061–
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2080, DMY growth rate of ES revealed a similar response, except for SP where magnitude of 

response to FTEMP became stronger (Fig. 6d–f). In contrast, seasonal DMY growth rate under 

LS was clearly governed by variations of both FTEMP and SWFAC during baseline (Fig. 6a–c). 

During 2061–2080, seasonal DMY rate of LS shifted to be less responsive to variability of 

SWFAC, but consistently dominated by the factor of FTEMP (Fig. 6d–f). 

 

 

 
Figure 6 Statistical distribution of correlation coefficients between seasonal anomalies of daily dry matter yield (DMY) 

and anomalies of daily thermal (FTEMP) or water stress (SWFAC) indices for the (a–c) baseline and (d–f) long-term 

period of 2061–2080. Statistically significant correlations were highlighted outside the ±0.3 dashed lines. 

 

      5.3.7 Extreme thermal stress and severe water stress 

For winter and spring seasons, extreme FTEMP in the form of winter cold stress seemed unlikely 

to occur for NP and SP, but emerged for CP (mountainous terrain) over short time and low 

frequency (no greater than 14%) (Fig. 7a–c). Extreme heat stress generally occurred between April 

and May with low frequency level for all sites (no greater than 25%) (Fig. 7a–c). 

For summer season under LS regime, continuously increasing frequency of occurrence of extreme 

FTEMP in the form of heat stress over successive periods, accompanied by gradually prolonged 

seasonal duration, were consistently found for all sites (Fig. 7d–f). Extreme heat stress generally 

occurred at low frequency below 30% in NP and CP for baseline (Fig. 7d, e). Seasonal frequency  
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Figure 7 Daily frequency of occurrence of extreme thermal stress (FTEMP) over successive periods across study sites 

for (a–c) early spring (ES) and (d–f) late summer (LS) cut grassland systems. Cutting dates were indicated by arrow 

symbols. 

 

level was the highest in SP, with majority of summer already subject to probability of extreme heat 

stress between 30% and 60% in baseline (Fig. 7f). In contrast, extreme heat stress with high 

seasonal frequency of occurrence above 50% were consistently found for all sites during 2061–

2080 (Fig. 7d–f). Moreover, the number of days with high probability or frequency of occurrence 

(above 50%) for extreme temperatures also continuously increased from baseline to the 2061–

2080 (Fig. 7d–f and Table S5). The projected extension of days in summer that were subject to 
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high probability of extreme heat stress was greater in SP than the other two sites, with the most 

significant increase of 48 days during 2021–2040 (Table S5). In 2061–2080, these days were 

projected to cover most of the summer period in CP and SP (Table S5). 

 

 

Figure 8 Daily frequency of occurrence of severe water stress (SWFAC) over successive periods across study sites 

for (a–c) early spring (ES) and (d–f) late summer (LS) cut grassland systems. Cutting dates were indicated by arrow 

symbols. 

 

Concerning the defined extent of severe SWFAC (the day required for irrigation), NP presented 

negligible seasonal distribution with daily frequency well below 10% throughout each period for 
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the winter and spring seasons (Fig. 8a). Both CP and SP showed moderate stress conditions, in 

which daily frequency of occurrence of severe SWFAC throughout the growing season generally 

varied from 5% to 25% without significant changes from baseline to 2061–2080 period (Fig. 8b, 

c). Likewise, severe water stress also tended to occur more often in the summer under LS regime 

than winter and spring seasons under ES regime (Fig. 8d–f). Severe SWFAC mainly occurred at 

low frequency level (10% to 30%) in baseline, for all sites, without increase over successive 

periods in summer (Fig. 8d–f). This showed that severe water stress was clearly less intense than 

projected extreme heat stress, in terms of frequency. Nonetheless, an extension of summer days 

with severe water stress (low probability between 10% and 30%) was still projected (Table S6). 

The number of days markedly increased from baseline to 2021–2040 period over all sites, and 

stabilizes thereafter until 2061–2080 (Table S6).  

 

5.4 Discussion 

      5.4.1 Examination of DMY simulation and projection 

For baseline, higher mean seasonal DMY was simulated in NP, followed by intermediate values 

in CP and lower values in SP. In NP, higher DMY was a direct response to the exceptionally high 

N fertilization level used for intensive dairy farming and to the relatively high regional 

precipitation amount. The documented irrigated forage yield varied from 7500 to 10400 kg ha-1 

(Trindade et al., 1997), roughly in agreement with the simulated range from 7000 to 11300 kg ha-

1 (Fig. 2). With respect to CP, the simulated range (4500 to 9300 kg ha-1) (Fig. 2) were also in 

agreement with previous studies (5500 to 9000 kg ha-1) (Carneiro et al., 2005). In SP, a direct 

comparison between observed and simulated seasonal DMY was not available, as the forage DMY 

was only obtained under rainfed conditions, being 1570 kg ha-1 in a dry year and 5120 kg ha-1 in a 

normal year (Aires et al., 2008a; Aires et al., 2008b). However, our simulated irrigated forage 

DMY varied from 5500 to 8000 kg ha-1 (Fig. 2), showing a reasonable performance relative to 

rainfed condition. Therefore, the present study simulations were considered to roughly represent 

local grassland growth and herbage yield. A comprehensive analysis between observed and 

simulated data required more field data, which were not currently available. 

The winter-spring ES regime was projected to have a long-term increasing trend of seasonal DMY 

for CP and SP, though the mean DMY remained largely unchanged until 2061-2080 relative to 
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baseline (Fig. 3c-f). Conversely, consistent and significant reductions of mean seasonal DMY were 

projected in LS extended with summer season, mostly during 2061–2080 (Fig. 3b, d, f). The 

results were in close agreement with a similar study using STICS throughout France, which 

concluded that grassland winter production was consistently enhanced under projected future 

climate, while it decreased in summer (Ruget et al., 2010). Likewise, another modelling study, 

using a pasture system model under the Mediterranean-type climatic region of Australia, projected 

an increased biomass growth rate in winter and spring, in spite of a reduction on annual pasture 

production by up to 18% until 2070 (Cullen et al., 2009). Moreover, a simulation study conducted 

for a range of agro-climatic conditions in New Zealand, using a different grassland model, 

explicitly highlighted the contrasted response to the overall effects of climate change between 

growing seasons, i.e. increased biomass production in winter and decrease in summer (Keller et 

al., 2014). However, it should be noted that in the present study local standard practises were 

maintained in time, such as cutting dates for forage conservation. Such fixed management 

encompassed important uncertainties, since other possible adaptation measures, e.g. taken by local 

farmers, were not considered in the present modelling approach. 

 

      5.4.2 Resilience of winter-spring season to climate change 

Both regimes had the same seasonal length of winter and spring periods. The designed cool and 

wet seasons for ES benefited from low atmospheric evaporative demand, for which mean seasonal 

precipitation was largely adequate to meet the demand, with very little irrigation, particularly in 

NP (Fig. S1a–i). The simulations of overall stress conditions for ES regime in baseline (Fig. 5d–

f) reproduced the general recognition that forage growth of Mediterranean grassland during the 

winter-spring season, was mainly determined by temperature and, to a lower extent, limited by 

cold stress, when water supply was generally optimal (Lelièvre et al., 2010; Lelièvre et al., 2011; 

Lelievre and Volaire, 2009). Additionally, seasonal DMY growth rate in ES with two cuts were 

consistently higher than that in LS with one cut over the same winter-spring season (Fig. 5a–c and 

Fig. 5g–i). This may imply that early cut grassland for a quick re-establishment and regrowth, 

could be more preferable to a single late cut with which cumulative herbage yield was influenced 

by slowed growth rate late in the season (Belesky and Fedders, 1995; Oomes and Mooi, 1981). 

For the study sites during the long-term period of 2061–2080, beneficial effects of less cold stress 

by 2–9%, together with atmospheric CO2 enrichment, were expected to overcompensate the 
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negative effect of increased mean water stress up to 4% (Fig. 5d–f). Climate warming favoured 

biomass production during cool and wet periods by lowering cold stress, as well as by stimulating 

N mineralization with high soil N availability (Dumont et al., 2015; Wu et al., 2011). The enhanced 

production response by CO2 fertilization was calculated as a function of the exponential increase 

of atmospheric CO2 concentration, based on the relationship proposed by Stockle et al. (1992). 

Besides, only marginally increased water stress for ES mainly attributed to the lack of a significant 

difference of mean winter-spring precipitation between baseline and the future period (Fig. S1a–

c). However, even relatively small and short-term alterations to rainfall distribution can reduce 

productivity of grassland (Walter et al., 2012), hence highlighting the importance of significantly 

increased irrigation in SP to maintain the production (Fig. S1f). In effect, mean seasonal DMY 

growth rate of ES significantly increased by 6–10% (Fig. 5a–c). A review study concluded climate 

warming and CO2 fertilization effects could contribute to 10–25% increase in DMY production 

during winter and spring (Lee et al., 2013). Our findings also revealed that seasonal DMY growth 

over winter-spring season tended to be consistently more sensitive to the inter-annual variability 

of water stress effect than that of thermal stress effect, despite a larger uncertainty range in NP was 

identified (Fig. 6a–f). Mediterranean climate featured strong inter-annual variability of 

precipitation amount and distribution, which had direct impact on soil moisture and plant water 

stress and had been interpreted as the primary forcing factor to grassland´s forage production 

variation (Cullen et al., 2009; McKeon et al., 2009; Walter et al., 2012). Moreover, winter-spring 

season was projected to experience low frequent extreme thermal (cold and heat) stress with short 

seasonal span (Fig. 7a–c), together with low risk of exposure to severe water stress (Fig. 8a–c), 

which highlighted additional advantages of the ES regime as a potentially suitable adaptation 

measure.  

 

      5.4.3 Summer water deficits and stress 

The warm and dry summer in Portugal, with very high evaporative demand and scarce 

precipitation, required frequent and high amounts of irrigation (Fig. S1a–i) to alleviate the impact 

of climatic water deficit on LS regime. The accumulated water deficit during this dry period was 

previously shown to have a great negative impact on persistence and productivity of perennial 

forage species (Poirier et al., 2012). The calculated water deficits (Fig. 4) were less intense than 

the experimentally established water deficit (436–707 mm) at a Mediterranean site (Poirier et al., 
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2012), as comparatively more irrigation was applied in our simulation. On the other hand, the 

water deficits were generally lower (particularly in NP) than the identified critical threshold of 450 

mm, below which autumn tiller survival rate was little affected (80%–100%) (Poirier et al., 2012), 

which may avoid the risk of significant tiller mortality in the present study. Provided under rainfed 

conditions, drought impact was more pronounced in summer, for which adaptive traits shifted to 

ensure tiller survival rate without active growth before autumn rehydration (Lelievre et al., 2011; 

Lelievre and Volaire, 2009). Substantial summertime DMY production under LS were thus 

expected in baseline with weak to moderate intensities of drought and heat stresses (Fig. 5g–l).  

For Portugal, projections pointed to a decrease in summer precipitation, resulting in a continuously 

enhanced water deficit and summer aridity (Santos et al., 2016). This was clearly reflected by 

aggravated climatic water deficit during the dry period with LS (increased by up to 30% until 

2061–2080), in which SP presented moderate to severe drought conditions even with irrigation 

(337 to 547 mm, average of 429 mm) (Fig. 4c). Significantly increased seasonal irrigation by 6–

30% (Fig. S1d–f) was projected to cope with overall enhanced summer dryness, in agreement with 

projected increase of irrigation for permanent pasture by 11–19% in Guadiana River basin 

(encompassing CP and SP) until 2041-2070 (Valverde et al., 2015). Nonetheless, it was still not 

enough to counterbalance the impacts, as mean summertime water stress still increased by 9–11% 

(Fig. 5j–l). The enhanced climatic water deficit, and the resulting increased summer water stress 

among sites, should partially explain the significant decrease in DMY of LS during 2061–2080. 

Besides, the projected increase of irrigation requirements is likely to be constrained by low local 

water availability, driven by higher temperatures and lower precipitation in future climates 

(Mourato et al., 2015), as well as by growing economic competitions for water allocation to 

industry and domestic use (Wimmer et al., 2015). Should this occur, irrigated pastures may become 

less profitable, as production costs significantly increase with soaring water prices and with higher 

investment needs for better on-farm water management practices and facilities (Turral et al., 2011). 

Consequently, this may determine important land use changes through a conversion of irrigated 

grassland areas into more economically viable crops, e.g. bioenergy crops (Gomez-Casanovasa et 

al., 2018; Rounsevell et al., 2005).  

Further analysis revealed that no significant increases in the frequency of occurrence of severe 

water stress were projected (severe water stress was defined at the day that irrigation was required). 

Although irrigation was triggered more frequently throughout the drier growing season in the 
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future period, it was distributed randomly, leading to an overall similar frequency for a 20-year 

period (Fig. 8d–f), which also occurred in our previous study using STICS (Yang et al., 2017). 

Besides, an extension of the severe water stress period was still found in summer (Fig. 8d–f). This 

extension might be associated with earlier onset of spring growth in the future climate with earlier 

occurrence of soil moisture depletion. Shift in phenology of grass growth under future climate had 

been pointed out by multiple studies (Chang et al., 2017; Cullen et al., 2009; Ruget et al., 2010). 

Consequently, forage grass growth was predominantly governed by water consumption, for which 

the actual ET/PET ratio was highly and linearly correlated to actual/potential DMY ratio (Lelievre 

and Volaire, 2009). Actual ET/PET ratio was constantly higher in ES than in LS for the study sites 

and periods, suggesting the overall seasonal DMY production was less optimal in LS than in ES.  

 

      5.4.4 Vulnerability of summer season to heat stress 

In baseline, under LS, heat stress during the summer was more emphasized in SP (Fig. 5l), in 

which DMY growth rate was strongly governed by year-to-year changes of heat stress (Fig. 6c). 

A meta-analysis study based on numerous climate manipulation experiments confirmed the 

generally positive sensitivity of aboveground biomass to warming effect in herbaceous ecosystems 

(Wu et al., 2011). During 2061–2080, summer heat stress was significantly increased by 33–57% 

across sites (Fig. 5j–l), resulting from occurrence of many days with canopy temperature higher 

than the critical upper threshold (25 ºC). This largely leaded to markedly decreased growth rate by 

34–57% (Fig. 5g–i), which appeared to be the main reason for the significant reductions of DMY 

under LS (Fig. 3a–f). Seasonal DMY growth of LS became more vulnerable to heat stress than 

water stress variations in 2061–2080 (Fig. 6d–f), which should be related to increased frequency 

of extreme heat stress with extended time span (Fig. 7d–f). Projected summer warming was largest 

for the broad Mediterranean area, with enhanced inter-annual variability, leading to more frequent 

temperature extremes (Giorgi and Lionello, 2008; Kjellstrom et al., 2007; Strandberg et al., 2015).  

Heat stress was expected to play a more important role than water stress with prescribed irrigation 

strategy, in terms of both frequency of extremes and seasonal span (Fig. 7d–f) (Fig. 8d–f), thus 

being the main limiting factor for halting growth progression in summer. The upper temperature 

threshold of plant functional range used herein was 25ºC, above which extreme heat stress 

occurred and instantly stopped growth progression. Lee et al. (2013) referred that photosynthesis 

rate in C3 plants generally rose from 5 ºC to 25ºC, beyond which activity of photosynthesis enzyme 
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rapidly declined with severe function losses. In SP, where temperature already approached the 

upper limit conditions in summer of current conditions, our findings showed high temperature 

extremes were projected to dominate over the whole summer until 2061–2080 (Fig. 7f), which 

presented an enormous constrain for forage production. Nonetheless, as emphasized by a 

simulation study (Siebert et al., 2017), surface cooling effect by irrigation should be explicitly 

considered for reducing heat stress, which was not integrated into current study and may result in 

its overestimation. On the other hand, given the generally conservative behaviour of the upper 

temperature threshold for perennial grass growth (Lee et al., 2013; Zaka et al., 2017), the risk of 

heat stress could still be substantial in the context of particularly accentuated summer warming 

over the broad Mediterranean area. Therefore, suggested possible adaptation option include 

selection and breeding efforts for plant traits with increased heat tolerance, which enabled plant to 

grow under high temperature and rapid recovery following exposure to heat stress (Cullen et al., 

2014). For C3 grass species, plant traits with increased rooting depth and greater yield response to 

increased atmospheric CO2 concentrations were also shown to be effective adaptation options 

under projected warmer and drier climates (Cullen et al., 2014). 

 

5.5 Conclusion 

Our study aimed at simulating dry matter yield response of early spring (ES) and late summer 

cutting grassland systems (LS) to projected climate change at three study sites in Portugal. Under 

historical climate with mild stress conditions, LS, with extended growing season and irrigation 

requirement, seemed to be more productive and more profitable than ES (balance between 

production and irrigation water resource). However, the ES option, minimizing exposure to dry 

and warm summer, was more prone to meet potential dry matter yield with low irrigation demand. 

Under climate change projections, warmer climate for cool season together with CO2 fertilization 

effect were expected to overcompensate slightly increased water stress for ES, leading to 

significantly increased DMY growth rate. In contrast, continuous and significant productivity 

reductions were consistently found for LS, due to combined effects of summertime warming and 

drying. Besides, forage yield of LS was projected to be particularly vulnerable to heat stress 

variation, which was primarily linked to increased frequencies of high temperature extremes. 

Extreme heat stress may constitute a substantial threat and may outperform the impacts of severe 
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water stress, as the latter could be partially controlled under prescribed irrigation strategy. 

Improved heat tolerance of grass species for Mediterranean grassland deserved further attention 

and may represent the necessary step towards sustainability and resilience of grassland systems 

under climate change.  

 

Acknowledgments 

This work was supported by European Investment Funds by FEDER/COMPETE/POCI– 

Operational Competitiveness and Internationalization Programme, POCI-01-0145-FEDER-

006958, and by FCT - Portuguese Foundation for Science and Technology, UID/AGR/04033/2013. 

The authors also acknowledge the FCT scholarship given to Chenyao Yang, PD/BD/113617/2015, 

under the Doctoral Programme “Agricultural Production Chains – from fork to farm” 

(PD/00122/2012). The authors would like to thank Dr. Françoise Ruget, whose perspectives and 

advices shared on STICS-forum greatly help us completing this work.  



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

159 
 

References 

Aires, L.M., Pio, C.A. and Pereira, J.S., 2008a. The effect of drought on energy and water vapour 

exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agr Forest 

Meteorol, 148(4): 565-579. 

Aires, L.M.I., Pio, C.A. and Pereira, J.S., 2008b. Carbon dioxide exchange above a 

Mediterranean C3/C4 grassland during two climatologically contrasting years. Global 

Change Biol, 14(3): 539-555. 

Andrade, C., Fraga, H. and Santos, J.A., 2014. Climate change multi-model projections for 

temperature extremes in Portugal. Atmos Sci Lett, 15(2): 149-156. 

Andrade, C., Santos, J.A., Pinto, J.G. and Corte-Real, J., 2011. Large-scale atmospheric 

dynamics of the wet winter 2009-2010 and its impact on hydrology in Portugal. Clim 

Res, 46(1): 29-41. 

Belesky, D.P. and Fedders, J.M., 1995. Warm-Season Grass Productivity and Growth-Rate as 

Influenced by Canopy Management. Agron J, 87(1): 42-48. 

Brisson, N. et al., 2003. An overview of the crop model STICS. European Journal of Agronomy, 

18(3-4): 309-332. 

Brisson, N., Launay, M., Mary, B. and Beaudoin, N., 2009. Conceptual basis, formalisations and 

parameterization of the STICS crop model. Editions Quae, Versailles, France, 297 pp. 

Carneiro, J. et al., 2005. Relatório Final do Projecto AGRO 87. Estação Nacional de 

Melhoramento de Plantas, Universidade de Évora, Instituto Superior de Agronomia, 

Direcção Regional de Agricultura do Alentejo, Fertiprado, Laboratório Químico Agrícola 

Rebelo da Silva. 

Casella, E., Soussana, J.F. and Loiseau, P., 1996. Long-term effects of CO2 enrichment and 

temperature increase on a temperate grass sward .1. Productivity and water use. Plant 

Soil, 182(1): 83-99. 

Chang, J. et al., 2017. Future productivity and phenology changes in European grasslands for 

different warming levels: implications for grassland management and carbon balance. 

Carbon Balance and Management, 12(1): 11. 

Cop, J., Vidrih, M. and Hacin, J., 2009. Influence of cutting regime and fertilizer application on 

the botanical composition, yield and nutritive value of herbage of wet grasslands in 

Central Europe. Grass Forage Sci, 64(4): 454-465. 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

160 
 

Courault, D. et al., 2010. Combined use of FORMOSAT-2 images with a crop model for 

biomass and water monitoring of permanent grassland in Mediterranean region. Hydrol 

Earth Syst Sc, 14(9): 1731-1744. 

Cullen, B.R., Eckard, R.J. and Rawnsley, R.P., 2012. Resistance of pasture production to 

projected climate changes in south-eastern Australia. Crop Pasture Sci, 63(1): 77-86. 

Cullen, B.R. et al., 2009. Climate change effects on pasture systems in south-eastern Australia. 

Crop Pasture Sci, 60(10): 933-942. 

Cullen, B.R., Rawnsley, R.P., Eckard, R.J., Christie, K.M. and Bell, M.J., 2014. Use of 

modelling to identify perennial ryegrass plant traits for future warmer and drier climates. 

Crop Pasture Sci, 65(8): 758-766. 

Dee, D.P. et al., 2011. The ERA-Interim reanalysis: configuration and performance of the data 

assimilation system. Q J Roy Meteor Soc, 137(656): 553-597. 

Dumont, B. et al., 2015. A meta-analysis of climate change effects on forage quality in 

grasslands: specificities of mountain and Mediterranean areas. Grass Forage Sci, 70(2): 

239-254. 

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2), FAO, 

Rome, Italy and IIASA, Laxenburg, Austria. 

Fraga, H., García de Cortázar Atauri, I., Malheiro, A.C. and Santos, J.A., 2016. Modelling 

climate change impacts on viticultural yield, phenology and stress conditions in Europe. 

Global Change Biol, 22(11): doi:10.1111/gcb.13382. 

Giorgi, F. and Lionello, P., 2008. Climate change projections for the Mediterranean region. 

Global Planet Change, 63(2-3): 90-104. 

Gomez-Casanovasa, N., DeLucia, N.J., Hudiburg, T.W., Bernacchi, C.J. and DeLucia, E.H., 

2018. Conversion of grazed pastures to energy cane as a biofuel feedstock alters the 

emission of GHGs from soils in Southeastern United States. Biomass Bioenerg, 108: 312-

322. 

Haylock, M.R. et al., 2008. A European daily high-resolution gridded data set of surface 

temperature and precipitation for 1950-2006. J Geophys Res-Atmos, 113(D20). 

IPCC, 2013. The physical science basis. Contribution of working group I to the fifth assessment 

report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. 

Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

161 
 

Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA, 1-1535 pp. 

Jacob, D. et al., 2014. EURO-CORDEX: new high-resolution climate change projections for 

European impact research. Regional Environmental Change, 14(2): 563-578. 

Jongen, M., Pereira, J.S., Aires, L.M.I. and Pio, C.A., 2011. The effects of drought and timing of 

precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a 

Mediterranean grassland. Agr Forest Meteorol, 151(5): 595-606. 

Keller, E.D., Baisden, W.T., Timar, L., Mullan, B. and Clark, A., 2014. Grassland production 

under global change scenarios for New Zealand pastoral agriculture. Geosci. Model Dev., 

7(5): 2359-2391. 

Kjellstrom, E. et al., 2007. Modelling daily temperature extremes: recent climate and future 

changes over Europe. Climatic Change, 81: 249-265. 

Lee, J.M., Clark, A.J. and Roche, J.R., 2013. Climate-change effects and adaptation options for 

temperate pasture-based dairy farming systems: a review. Grass Forage Sci, 68(4): 485-

503. 

Lelièvre, F., Sala, S. and Volaire, F., 2010. Climate change at the temperate-Mediterranean 

interface in southern France and impacts on grasslands production. Option 

Méditerranéennes: 187-192. 

Lelievre, F., Seddaiu, G., Ledda, L., Porqueddu, C. and Volaire, F., 2011. Water use efficiency 

and drought survival in Mediterranean perennial forage grasses. Field Crops Research, 

121(3): 333-342. 

Lelièvre, F., Seddaiu, G., Ledda, L., Porqueddu, C. and Volaire, F., 2011. Water use efficiency 

and drought survival in Mediterranean perennial forage grasses. Field Crops Research, 

121(3): 333-342. 

Lelievre, F. and Volaire, F., 2009. Current and Potential Development of Perennial Grasses in 

Rainfed Mediterranean Farming Systems. Crop Sci, 49(6): 2371-2378. 

Lopes, V. and Reis, A., 1998. Altitude related agronomical traits among Dactylis glomerata 

germplasm. Pastagens e Forragens, 19: 5-17. 

Lourenco, M.E.V. and Palma, P.M.M., 2001. The effect of plant population on the yield and 

quality of annual rye-grass. Proceedings of the Xix International Grassland Congress: 

416-417. 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

162 
 

McKeon, G.M. et al., 2009. Climate change impacts on northern Australian rangeland livestock 

carrying capacity: a review of issues. Rangeland J, 31(1): 1-29. 

Mourato, S., Moreira, M. and Corte-Real, J., 2015. Water Resources Impact Assessment Under 

Climate Change Scenarios in Mediterranean Watersheds. Water Resources Management, 

29(7): 2377-2391. 

Nóbrega, C.M., 2006. Alterações climáticas em Portugal. Cenários, impactos e medidas de 

adaptação: Projecto SIAM II - 1ª edição. Silva Lusitana, 14: 281-281. 

Oomes, M.J.M. and Mooi, H., 1981. The Effect of Cutting and Fertilizing on the Floristic 

Composition and Production of an Arrhenatherion-Elatioris Grassland. Vegetatio, 46-

7(Nov): 233-239. 

Penman, H.L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of 

the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1032): 

120-145. 

Pereira, H., Domingos, T. and Vicente, L., 2004. Portugal millennium ecosystem assessment: 

state of the assessment report, Centro de Biologia Ambiental, Faculdade de Ciências da 

Universidade de Lisboa, Universidade de Lisboa. 

Poirier, M., Durand, J.L. and Volaire, F., 2012. Persistence and production of perennial grasses 

under water deficits and extreme temperatures: importance of intraspecific vs. 

interspecific variability. Global Change Biol, 18(12): 3632-3646. 

Rounsevell, M.D.A., Ewert, F., Reginster, I., Leemans, R. and Carter, T.R., 2005. Future 

scenarios of European agricultural land use II. Projecting changes in cropland and 

grassland. Agr Ecosyst Environ, 107(2-3): 117-135. 

Ruget, F. et al., 2012. Conséquences possibles des changements climatiques sur la production 

fourragère en France. I. Estimation par modélisation et analyse critique. Fourrages, 210: 

87-98. 

Ruget, F. et al., 2013. Impacts des changements climatiques sur les productions de fourrages 

(prairies, luzerne, maïs): variabilité selon les régions et les saisons. Fourrages, 214: 99-

109. 

Ruget, F., Godfroy, M. and Plantureux, S., 2008. Improved estimation of mountain grassland 

production by using local input data in a crop model, Biodiversity and animal feed: future 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

163 
 

challenges for grassland production. Proceedings of the 22nd General Meeting of the 

European Grassland Federation, Uppsala, Sweden, 9-12 June 2008, pp. 305-307. 

Ruget, F., Moreau, J., Cloppet, E. and Souverain, F., 2010. Effect of climate change on grassland 

production for herbivorous livestock systems in France, 23rd General Meeting of the 

EGF Grassland in a changing world, Kiel (Germany), Aug 29th-Sept 2th 2010, pp. 75-77. 

Ruget, F., Novak, S. and Granger, S., 2006. Du modèle STICS au système ISOP pour estimer la 

production fourragère. Adaptation à la prairie, application spatialisée. Fourrages, 

186(241): 256. 

Ruget, F., Satger, S., Volaire, F. and Lelievre, F., 2009. Modeling Tiller Density, Growth, and 

Yield of Mediterranean Perennial Grasslands with STICS. Crop Sci, 49(6): 2379-2385. 

Samuelsson, P. et al., 2011. The Rossby Centre Regional Climate model RCA3: model 

description and performance. Tellus A, 63(1): 4-23. 

Santos, J.A., Belo-Pereira, M., Fraga, H. and Pinto, J.G., 2016. Understanding climate change 

projections for precipitation over western Europe with a weather typing approach. J 

Geophys Res-Atmos, 121(3): 1170-1189. 

Saxton, K.E. and Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic 

matter for hydrologic solutions. Soil Sci Soc Am J, 70(5): 1569-1578. 

Serrano, J.M., Peca, J.O., da Silva, J.M. and Shahidian, S., 2011. Calibration of a capacitance 

probe for measurement and mapping of dry matter yield in Mediterranean pastures. 

Precis Agric, 12(6): 860-875. 

Shuttleworth, W.J. and Wallace, J.S., 1985. Evaporation from sparse crops-an energy 

combination theory. Q J Roy Meteor Soc, 111(469): 839-855. 

Siebert, S., Webber, H., Zhao, G. and Ewert, F., 2017. Heat stress is overestimated in climate 

impact studies for irrigated agriculture. Environ Res Lett, 12(5). 

Stockle, C.O., Williams, J.R., Rosenberg, N.J. and Jones, C.A., 1992. A Method for Estimating 

the Direct and Climatic Effects of Rising Atmospheric Carbon-Dioxide on Growth and 

Yield of Crops .1. Modification of the Epic Model for Climate Change Analysis. Agr 

Syst, 38(3): 225-238. 

Strandberg, G. et al., 2015. CORDEX scenarios for Europe from the Rossby Centre regional 

climate model RCA4, SMHI, Norrköping, Sweden. 



 

 

Chapter 5 - Modelling climate change impacts on perennial forage grassland with contrasted 

growth duration in Portugal 
 

164 
 

Teixeira, R.F.M. et al., 2011. Soil organic matter dynamics in Portuguese natural and sown 

rainfed grasslands. Ecological Modelling, 222(4): 993-1001. 

Trindade, H., 2015. Portuguese dairy farming systems, Grassland and forages in high output 

dairy farming systems. Proceedings of the 18th Symposium of the European Grassland 

Federation, Wageningen, The Netherlands, 15-17 June 2015, pp. 21-25. 

Trindade, H., Coutinho, J., VanBeusichem, M.L., Scholefield, D. and Moreira, N., 1997. Nitrate 

leaching from sandy loam soils under a double-cropping forage system estimated from 

suction-probe measurements. Plant Soil, 195(2): 247-256. 

Turral, H., Burke, J.J. and Faurès, J.-M., 2011. Climate change, water and food security, FAO, 

Rome, FAO Water Reports 36. 

Valverde, P. et al., 2015. Climate change impacts on irrigated agriculture in the Guadiana river 

basin (Portugal). Agr Water Manage, 152: 17-30. 

van Vuuren, D.P. et al., 2011. The representative concentration pathways: an overview. Climatic 

Change, 109(1-2): 5-31. 

Walter, J. et al., 2012. Increased rainfall variability reduces biomass and forage quality of 

temperate grassland largely independent of mowing frequency. Agr Ecosyst Environ, 

148: 1-10. 

Wimmer, F. et al., 2015. Modelling the effects of cross-sectoral water allocation schemes in 

Europe. Climatic Change, 128(3-4): 229-244. 

Wu, Z.T., Dijkstra, P., Koch, G.W., Penuelas, J. and Hungate, B.A., 2011. Responses of 

terrestrial ecosystems to temperature and precipitation change: a meta-analysis of 

experimental manipulation. Global Change Biol, 17(2): 927-942. 

Yang, C.Y., Fraga, H., Van Ieperen, W. and Santos, J.A., 2017. Assessment of irrigated maize 

yield response to climate change scenarios in Portugal. Agr Water Manage, 184: 178-

190. 

Zaka, S. et al., 2017. How variable are non-linear developmental responses to temperature in two 

perennial forage species? Agr Forest Meteorol, 232: 433-442. 

Zwicke, M. et al., 2013. Lasting effects of climate disturbance on perennial grassland above-

ground biomass production under two cutting frequencies. Global Change Biol, 19(11): 

3435-3448. 

 



 

 
 

 
 

  



  

 

166 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 

 

 

General Discussion



  

 

 
 

  



  

 

 

Chapter 6 - General Discussion 

 

168 
 

6.1 Summary of outcomes and implications 

      6.1.1 Climate change projections, vulnerabilities, impacts and associated uncertainties 

The Mediterranean basin has been widely identified as one of the most prominent climate change 

hotspots due to ongoing and projected changes in both climate means and variabilities, consisting 

of a robust climate change signal of annual mean temperature increase and precipitation reduction, 

accompanied by more frequent occurrence of extremely high temperature events and severe 

droughts (Diffenbaugh and Giorgi, 2012; Giorgi and Lionello, 2008; Mariotti et al., 2015; Saadi 

et al., 2015; Strandberg et al., 2015). The projected overall warming and drying trend is particularly 

pronounced in southern Europe (Giorgi and Lionello, 2008; Strandberg et al., 2015), for example 

in mainland Portugal, where annual mean temperature increased at a rate more than double the 

global warming rate over the past decades (Carvalho et al., 2014; Espírito Santo et al., 2014), along 

with observed decrease in precipitation and its increase of inter-annual variability (Carvalho et al., 

2014; Santo et al., 2014). These observed and projected changes suggest that Portugal is a country 

that is particularly vulnerable to climate change.  

Our research results suggest that future climate change (from mid to the end of the 21st century) is 

very likely (high confidence) to reduce harvestable grain yields of irrigated maize and rainfed 

wheat production systems in their current principal production regions (Yang et al., 2018; Yang et 

al., 2017), as well as constituting a threat to the primary productivity of perennial forage grassland 

across Portugal (Yang et al., 2019). Moderate or severe yield losses are obtained, depending on 

low or high emission scenarios and near-future or distant-future period, respectively. This suggests 

the evolution of human activities (e.g. social-economic development, technology trend and land 

use changes), and the associated pathway of global anthropogenic forcing, are crucial determinants 

of regional agriculture productivity for many regions worldwide, i.e. more intense global 

cumulative GHG emissions, more widespread negative impacts on agriculture production (IPCC, 

2018). The inter-annual yield variability steadily increased throughout the century as a result of 

enhanced climate variability, posing threats to future year-to-year stability of regional food crop 

supply (Asseng et al., 2014; Challinor et al., 2014). Furthermore, enriched atmospheric CO2 

concentration provides some positive effects for crop growth and yield increment for C3 species 

(C3 grass and wheat), but not enough to offset the yield reductions, whereas almost no positive 

effects are found for C4 plant, such as maize, except under drought conditions (Yang et al., 2018; 

Yang et al., 2019; Yang et al., 2017). The simulated magnitude of CO2 production response across 
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different species (photosynthesis stimulation and biomass growth) is broadly consistent with Free 

Air CO2 Enrichment (FACE) experiments (Kimball, 2016) and within the range of responses 

represented by a consortium of existing crop models (Vanuytrecht and Thorburn, 2017).  

Despite a high likelihood of an overall negative impact on yield, the projected magnitudes of the 

impacts remain highly uncertain. The identified cause of yield reductions for one cultivated species 

(irrigated maize) can bring positive effects for other cropping systems (rainfed wheat and perennial 

grassland). While higher temperature induced rapid development and shortened growth length 

(less time for photosynthesis and capture resources) clearly represent an adverse aspect for 

irrigated maize (Gabaldón-Leal et al., 2015; Meza et al., 2008; Tubiello et al., 2000), it brings an 

advantage for perennial grass species, for which advanced phenology shifting towards the cooler 

and wetter part of the year favors growth and biomass accumulation (Ergon et al., 2018; Graux et 

al., 2013; Lelievre and Volaire, 2009). Furthermore, early maturity with shorter growth duration 

under warmer climate, may allow winter wheat to finish lifecycle earlier prior to impending critical 

heat/drought stress that is more detrimental under dry Mediterranean conditions (Moriondo et al., 

2010; Wang et al., 2017). Although it is argued that the climate warming effect alone may not be 

enough to ensure the successful terminal stress escaping strategy for rainfed wheat crops, cultivar 

adjustment using early flowering cultivars/short-cycle genotypes can help achieving the goal 

(Shavrukov et al., 2017; Yang et al., 2019). In general, it illustrates that quantifying the climate 

change impact on the productivity of Mediterranean agriculture is complex, not only because the 

inherent vulnerability of Mediterranean climate but also the impacts are heavily dependent on the 

choice of cropping options, locations and the adopted management practices (irrigated or rainfed) 

(Iglesias et al., 2010; Ruiz-Ramos and Minguez, 2010; Saadi et al., 2015). In particular, the choice 

of analyzed cropping system represents the dominant source of uncertainty in modeling crop yield 

response to future climate change in Iberian Peninsula (Ruiz-Ramos and Minguez, 2010), which 

is part of the reason why we have decided at the beginning to study different crop species, with 

diversified responses and growth patterns, environment constraints and management practices. 

Other essential source of uncertainty is largely consistent with previous global analysis, arising 

from different crop models chosen, applied climate models (including the downscaled approaches), 

selected time periods of analysis and emission pathways (Asseng et al., 2013; Tao et al., 2018; 

Wang et al., 2018). Quantifying all these uncertainties, and develop methodologies and tools to 

better sample the range of possible yield response in a more contextual approach (e.g. by 
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calibrating crop models using local measured representative data), will provide a fundamental 

basis for reliable climate change impact assessments. Less uncertainty in describing how climate 

change may affect agriculture productivity will aid in developing, planning and implementing 

appropriate and target adaptation strategies (Asseng et al., 2013). 

 

      6.1.2 Recommended adaptation strategies 

Various adaptation measures provide potential to mitigate these negative impacts, but it overall 

indicates that a single adaptation measure might not be enough for any of the analyzed cropping 

systems under Mediterranean conditions, with high uncertainty and variability (Yang et al., 2018; 

Yang et al., 2019; Yang et al., 2017). It thus highlights the necessities to appropriately combine 

available options across various levels and scales for comprehensive adaptation strategy 

development (Challinor et al., 2018; Howden et al., 2007; Rotter et al., 2018; Ruiz-Ramos et al., 

2018). The primary research outcomes and its implications to support informed decisions on 

defining agricultural climate adaptation policies in Portugal, are summarized as below: 

 

(i) The recommended adaptation strategy for irrigated maize production in southern Portugal 

(Ribatejo region), should focus on promoting water-saving techniques to maximize crop WUE and 

stabilize yields (e.g. develop optimized deficit irrigation strategy with efficient irrigation facilities) 

(Farré and Faci, 2009; Geerts and Raes, 2009; Yang et al., 2017), while introducing longer-cycle 

maize cultivars and early sowing time to counterbalance the accelerated development and 

shortened growing season (Gabaldón-Leal et al., 2015; Meza et al., 2008; Tubiello et al., 2000). 

Although increased seasonal irrigation water amount to mitigate future yield reductions and 

maintain current yield level is possible (Yang et al., 2017), its implementation will be increasingly 

limited by the restrictions of water scarcity and decreasing portion of fresh water available for 

agriculture in the Mediterranean region (Iglesias et al., 2007). Moreover, crop WUE is expected 

to decline considerably with increased irrigation, as a result of diminished yield responsiveness to 

seasonal water input driven by reduced growth duration under a warmer climate (Gabaldón-Leal 

et al., 2015; Yang et al., 2017). However, the integrated adaptation strategy combining these 

options awaits to be further rigorously examined under Mediterranean conditions; 
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(ii) The recommended adaptation strategy for rainfed winter wheat production in southern Portugal 

(Alentejo region) should be based on early flowering cultivars, with less or no vernalization 

requirement (e.g. spring wheat), together with advocating early sowing and supplemental irrigation 

during the sensitive stages (Moriondo et al., 2010; Ruiz-Ramos et al., 2018; Shavrukov et al., 

2017). A stress escaping strategy has been recently proposed to reduce the duration of overlap 

between occurrence of terminal heat/drought stress and the sensitive anthesis and grain-filling 

stage (Farooq et al., 2011; Shavrukov et al., 2017; Yang et al., 2019). By using early flowering 

cultivars (short-cycle genotypes), the trade-off between lower risk of exposure to terminal stress 

and higher risk of reduced yield potential tends to be positive, leading to net yield gains (Yang et 

al., 2019). Early sowing is also expected to achieve the same stress escaping goal by anticipated 

growth cycle, but tends to be limited, to some extent, by slowed vernalization fulfilment with 

winter warming. Using wheat cultivars with less or no vernalization requirement (e.g. spring wheat) 

can thus help advocating early sowing practice. It is noteworthy the proposed stress escaping 

strategy is indeed more useful to avoid enhanced terminal heat stress (>38ºC concentrated over a 

short period) than prolonged terminal drought stress (Yang et al., 2019), whereas the latter can be 

alleviated by supplemental irrigation. For instance, Ruiz-Ramos et al. (2018) already demonstrated 

that effective adaptation for rainfed wheat cultivation in the Mediterranean south environment 

zone (Spain) is possible, based on the combination of supplementary irrigation, early sowing date 

and short-cycle spring wheat cultivar; 

 

(iii) The recommended adaptation strategy for perennial forage grassland scattered across Portugal 

should take advantage of the opportunity and tackle the challenge, both arising from climate 

change (Ergon et al., 2018; Graux et al., 2013; Lelievre and Volaire, 2009; Yang et al., 2018). 

Benefiting from the opportunity of advanced phenology towards favourable winter-spring period, 

with alleviated cold stress and enriched ambient CO2 concentration, adaptation measures should 

focus on maximizing growth potential for this period, including an optimized early fertilization 

strategy (balanced between production potential and nitrate leaching) and develop legume-grass 

mixture for flexible harvest timings and exploiting the stimulated CO2 responsiveness (Ergon et 

al., 2018; Lelievre and Volaire, 2009). In contrast, the challenge of exacerbated risks of summer 

stress highlights the need for continuous improvement of drought persistence and survival, such 

as introducing summer dormancy trait into plant materials with deeper root system (e.g. more of 
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tall fescue) (Ergon, 2017; Lelièvre et al., 2011). Nevertheless, the forage quality issue may arise 

(Dumont et al., 2015). The distinguished growth response patterns require adaptation measures 

with contrasting strategies (growth promotion vs survival), in which utilizing plant diversity is 

required at all level with inter- and intraspecific variations. Nonetheless, in a less probable scenario 

where summer drought survival can be sustained with unlimited irrigation, breeding efforts for 

adapted germplasm of forage species should be more targeted at heat tolerance, especially in 

southern Portugal (Yang et al., 2018).  

 

6.2 Summary of strengths and novelties 

      6.2.1 Fine-resolution regional climate projections 

Compared to many previous studies, a major strength and novelty of the present study consists in 

that we have consistently applied dynamically-downscaled and bias-corrected climate models to 

provide reliable and relevant inputs for impact models. Site-specific climate change impact 

assessments and development of locally relevant adaptation strategies require availability of high-

resolution regional climate simulations (Giorgi et al., 2009; IPCC, 2015; Jacob et al., 2014; Yang 

et al., 2010).  

While CGMs are powerful tools to study the Earth climate system, their coarse horizontal 

resolution (200–300 km) precludes them from capturing the effects of local forcing (e.g. complex 

topography and land-surface characteristics) that modulate climate signal at fine scales (Giorgi et 

al., 2009; Yang et al., 2010). Therefore, GCMs are also unable to provide accurate descriptions of 

extreme weather events, which are of fundamental importance for assessing impacts of regional 

climate change and variability (Giorgi et al., 2009). In other words, the mismatch in scale between 

GCMs and impact model, as well as the significant gap between coarse climate information 

provided by GCMs and needs of high-resolution unbiased climate input for regional impact 

assessment, must be addressed (Giorgi et al., 2009). However, these aspects were not well taken 

into account by the earlier studies, mostly because of limited developments of RCMs at that time 

(Rosenzweig and Tubiello, 1997; Santos and Miranda, 2006; Tubiello et al., 2000). These include 

studies in Portugal from the SIAM project, which directly used GCMs outputs as input for crop 

models (Santo et al., 2014), and in other Mediterranean regions (Italy) that generate climate 

projections at study sites based on the spatially linear-interpolated GCMs outputs (Tubiello et al., 

2000). In contrast, our successive studies have coherently considered a number of RCMs, with the 



  

 

 

Chapter 6 - General Discussion 

 

173 
 

finest spatial resolution to date (~12.5 km), to dynamically downscale the GCMs outputs under 

the latest generation of emission scenarios (i.e. RCPs) (Yang et al., 2018; Yang et al., 2019; Yang 

et al., 2017). RCMs, operating at fine spatial resolution (~12.5–50 km), perform better at 

representing local climate due to detailed description of geographic features and sub-grid 

parameterization of underlying physical processes (Hagemann et al., 2009; Jacob et al., 2014; 

Yang et al., 2010).  

 

      6.2.2 Bias-corrected GCMs-RCMs with preserved climate variability  

Despite improved spatial resolutions, there are still systematic biases of simulated long-term 

climate statistics deriving from GCMs-RCMs chain simulations as compared to observations 

(Yang et al., 2010). This is because all climate models are approximations of real climate systems 

and contain different simplifications (IPCC, 2015). Therefore, Bias Correction (BC) techniques 

(see section 2.2.6) have been consistently employed in our studies, not only to adjust raw climate 

projections for obtaining realistic time series of climate inputs, but also to generate future climate 

change projections with better preserved climate variability produced by RCMs (Giorgi et al., 2009; 

IPCC, 2015; Yang et al., 2010). This is an important and novel aspect when the downscaled climate 

change projections at our study sites are able to incorporate the potential changes in climate 

variability and associated frequency and intensity of extreme weather events, at which the simulate 

crop yield changes implicitly integrate the effects of such changes (Yang et al., 2018; Yang et al., 

2019; Yang et al., 2017). In contrast, very few studies attempt to account for this aspect across the 

globe, which is critical to assess the economic prospect on regional stability of food crop supply 

and price fluctuation (Asseng et al., 2014; Challinor et al., 2014). Furthermore, this is expected to 

be particularly important for Mediterranean region, as changes in the frequency and magnitudes 

of extreme climatic events are likely to have more influence on yield determination than mean 

climate changes (Moriondo et al., 2010). Recent crop yield impact (rainfed + irrigated) assessment 

studies in Portugal applied the Ensemble Delta technique to statistically-downscaled and bias-

corrected GCMs outputs, to create climate change projections that replicated in the future the same 

inter-annual variation patterns as in the historical baseline (Valverde et al., 2015a; Valverde et al., 

2015b). Another similar study conducted in southern Portugal explicitly used RCMs to produce 

regional climate change projections, but no BC approaches have been applied whilst keeping 

climate variance of future period the same as the reference period (Rolim et al., 2017). Moreover, 
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in the southern Spain under Mediterranean conditions, Ruiz-Ramos et al. (2018) used an ensemble 

of 17 process-based crop models to comprehensively calculate wheat yield response under a range 

of possible climate perturbations with various adaptation options, but the adopted Delta Change 

technique only allowed assessment of yield response to changes in mean climatic conditions, thus 

possibly underestimating the magnitude of yield losses. 

 

      6.2.3 Utilization of new generation of emission scenarios 

Climate models are valuable tools to simulate the processes that determine the response of climate 

system to anthropogenic forcings, such as increases in GHG concentrations, atmospheric aerosol 

loadings and land use changes (Giorgi et al., 2009). However, the future trajectory of these forcings 

cannot be easily projected, as they are strongly influenced by political, demographic, technical and 

social-economic factors (Asseng et al., 2013). Under the CMIP5 framework, climate change 

projections are driven by a set of new RCPs emission scenarios (see section 2.2.4) that cover a 

wide range of population growth, technological development and societal responses (Taylor et al., 

2012). In contrast to previously used SRES scenarios from CMIP3, without considering policy 

interventions (Nakicenovic et al., 2000), RCPs are mitigation scenarios that assume policy actions 

already taken to achieve the target radiative forcing at the end of 21st century (Moss et al., 2010; 

van Vuuren et al., 2011). These new emission pathways (RCPs) have been consistently adopted in 

our studies for more comprehensive and reliable assessments (Yang et al., 2018; Yang et al., 2019; 

Yang et al., 2017), in contrast to many previous studies in Portugal (Rolim et al., 2017; Santos and 

Miranda, 2006; Valverde et al., 2015a; Valverde et al., 2015b) that used the SRES scenarios, 

mainly focused on the social-economic changes. 

 

      6.2.4 Adapting STICS simulations to local cropping systems 

Like climate models, crop model simulations are also intrinsically uncertain (see section 2.3.2), 

with uncertainty sources deriving from variability of model structure among different models (e.g. 

adopted function forms), measurement errors of input data and eventually calibrated parameter 

values (Seidel et al., 2018; Wallach and Thorburn, 2017). To account for the structural uncertainty, 

the choice of crop model (if multi-model ensemble is not possible) is crucial as there is often a 

large variability between model predictions even when the same input information is used (model 

structural variations may also result in differently assigned values of input parameters among 
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models using the same observed variable) (Asseng et al., 2013; Ruiz-Ramos et al., 2018). The 

STICS model chosen in our studies previously showed satisfactory prediction performance with 

its standard parameters over a wide range of agro-climatic conditions (including Mediterranean-

type climate) for several important output variables of soil-crop system (Brisson et al., 1998; 

Brisson et al., 2002), measured by nRMSE, including yield (30%), biomass (35%) and soil water 

content (10%) (Coucheney et al., 2015). However, this feature of robustness will jeopardize 

prediction accuracy for a specific local study (Brisson et al., 2003). Quite often, when the model 

is applied to a particular condition in order to address the local research issue, the standard 

parameters need to be calibrated to improve fitting to available observations, a process used to 

address the input and parameter uncertainties (Seidel et al., 2018). This local calibration step has 

been consistently adopted in our studies, by first integrating local growing conditions, including 

observed weather data, dominant soil characteristics and representative agronomic practices (Yang 

et al., 2018; Yang et al., 2019; Yang et al., 2017). The trail-and-error approach is then applied to 

optimize the goodness-of-fit between simulated and observed productivity, by adjusting pertinent 

parameters in order to justify the representativeness of local cropping systems as simulated by the 

model. However, this important calibration step has been largely ignored in most previous studies 

conducted in Portugal (Santos and Miranda, 2006; Valverde et al., 2015a; Valverde et al., 2015b).  

 

      6.2.5 Improved adaptation simulations in Portugal 

Crop models are able to deal with multiple climatic factors and their interactions on crop growth 

and yield formation processes that are sensitive to climate (Asseng et al., 2014). Development of 

adaptation strategies requires understandings of contributions of various climate variables on crop 

yields, which need to be quantified and separated (Asseng et al., 2014; Asseng et al., 2011). For 

instance, changes in temperature would require a very different adaptation strategy than changes 

in precipitation. To explore underlying causes of potential negative climate change impacts (Rötter 

et al., 2018), particular attention has been given to separate the drought intensity from that of heat 

during the sensitive graining-filling stage for winter wheat (Yang et al., 2019), or to isolate the 

drought stress impacts from that of heat stress for perennial grassland during unfavorable summer 

season (Yang et al., 2018). Moreover, a variety of adaptation options at different levels have been 

tested in our studies to identify the target adaptation strategies. In contrast, the SIAM project 

carried out in Portugal, without paying attention to distinguish the impacts between heat and 
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drought stress, has led to a very different (probably questionable) adaptation recommendation from 

ours: the SIAM project findings advocate early sowing alone would be enough for maintaining 

wheat production in future climate (Santos and Miranda, 2006), whereas our study indicates that 

early sowing benefits are likely to be impeded by slowed vernalization fulfillment during a warmer 

winter, and effective adaptations should more focus on using early flowering cultivars with less or 

no vernalization requirement combined with supplemental irrigation during the sensitive grain 

filling stages (Yang et al., 2019). 

 

6.3 Summary of uncertainties and limitations 

      6.3.1 Uncertainties in climate change projections 

As illustrated before, uncertainties in projections of climate change impacts on future crop yield 

derive from different sources in modelling (Asseng et al., 2013). Firstly, the evolution of future 

GHG emissions and other aerosol loadings is highly uncertain, as they are the consequence of 

potential demographic changes, social-economic development, technological progress and policy 

interventions (IPCC, 2018). A range of plausible projections are used instead, characterized as 

different emission scenarios, in an attempt to encompass the anthropogenic forcing uncertainty 

(Moss et al., 2010; van Vuuren et al., 2011). Secondly, projecting the response of climate systems 

to potential increases in GHG concentrations, using GCMs and the associated downscaling 

methods (dynamic or statistical) to generate regional climate change projections, remain highly 

uncertain, as different models or methods give different results (Asseng et al., 2013). The choice 

of climate models is recognized as the largest contributor to the total uncertainty of projected 

climate change impacts in a short-term period (Kassie et al., 2015; Wang et al., 2018). Given the 

inherent variations of climate projections, a bias-adjusted multi-model, multi-scenario and multi-

initialization ensemble of GCMs-RCMs from EURO-CORDEX were employed in one of our 

study for a wide range of probable projections (Yang et al., 2019). However, this practice had not 

been applied for studies on irrigated maize (Yang et al., 2017) and perennial grassland systems 

(Yang et al., 2018), where only one climate model (MPI-ESM-LR – SMHI-RCA4) was considered 

by assuming its representative role over the westernmost Europe (Strandberg et al., 2015), leading 

to substantial impact uncertainties (e.g. less confidence about the range of projected yield losses). 

Moreover, though the new generation of RCPs scenarios are adopted in our analysis, our studies 
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only focus on two more plausible emission scenarios (i.e. RCP4.5 and RCP8.5), thus narrowing 

the possible range of potential outcomes on how alternative images of future might unfold.  

 

      6.3.2 Uncertainties in crop model structure and limited data availability 

Another important source of uncertainty in our studies derives from the lack of considerations for 

crop model structure uncertainties (see section 2.3.2). Using a variety of different crop models 

helps to make prediction more robust and enables quantifying the uncertainty, where the multi-

model ensemble median better reproduces the observed pattern than any single model (Asseng et 

al., 2014; Martre et al., 2015). Within the AgMIP pilot project, Asseng et al. (2013) explicitly 

concluded that the dominant source of uncertainty in projecting wheat yield changes arises from 

the variability among crop models with less uncertainty arising from variability among climate 

models. However, Wang et al. (2018) argued that the relative contribution of any single source of 

uncertainty to total uncertainty of yield impacts of projected climate change is heavily dependent 

on climatic locations (e.g. the dominant source of uncertainty would differ between temperate and 

Mediterranean climate). Nevertheless, model calibration using local representative measurements, 

can help greatly reduce structure-related uncertainty due to reduced range of yield response 

towards observations (Asseng et al., 2013), where a single-model based analysis should be more 

stimulated towards improved and more accurate calibration outcomes (Seidel et al., 2018). It is 

noteworthy though we have consistently calibrated the crop models with an overall agreement 

between simulations and observations, observation data at a more relevant field-scale is only 

available for rainfed wheat (Yang et al., 2019). For the other two cropping systems, model 

performance verification has been carried out either using regional averaged yield statistics (Yang 

et al., 2017) or empirical range of forage productivity (Yang et al., 2018). The limited quality and 

amount of observational data will add extra uncertainties in the simulated magnitude of impacts. 

 

      6.3.3 Uncertainties in assumptions of constant management and soil properties 

The response of cropping system to future climate change will depend on site-specific conditions, 

such as the management practices (e.g. frequency and amount of water and nitrogen) and soil types 

(e.g. water retention capacity) (Asseng et al., 2013; Folberth et al., 2016; Kassie et al., 2015; Wang 

et al., 2018). The inter-model uncertainty of simulated average yield response to climate change 

(i.e. spread in model response in simulated mean yield changes) has proved to vary with different 
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soil types and management practices irrespective of the study sites, adding to uncertainty in 

response coming from individual crop models (Asseng et al., 2013). For instance, simulated maize 

WUE and grain yields respond differently to projected climate change in the Central Great Plains 

of Colorado under full and deficit irrigation (Islam et al., 2012), as well as in Central Rift Valley 

of Ethiopia under full and limited N fertilizations (Kassie et al., 2015). In reality, farmers can 

autonomously respond to climate change by empirically making management decisions (e.g. crop 

choice, fertilizers, sowing time), based on profitability expectations averaged over the years of 

their own experience, but might miss substantial gains in favourable years (Rotter et al., 2018). 

Therefore, it is essential to dynamically consider adaptations assuming changes in management 

decisions will take place over time with sufficient flexibility to maintain near optimum economic 

performance (Meza and Silva, 2009). In such context, the constant assumption of local sowing 

dates and N fertilization strategy for irrigated maize production in Ribatejo (Yang et al., 2017), 

unadjusted standard cutting dates for grassland forage conservation across Portugal (Yang et al., 

2018) and standard cultivation practices for rainfed wheat cultivations in Alentejo (Yang et al., 

2019), all of which are defined over a reference historic period and will contribute to important 

uncertainties in projected impacts under future climatic period. On the other hand, only dominant 

soil types were considered at our study sites, neglecting a number of secondary important soil 

profiles, as well as ignoring potential land use changes with different soil types utilized for crop 

cultivations (Jones et al., 2011). Different soil types affect crop yield differently, as a consequence 

of differences in water and nutrient usages, acting as a buffer to maintain crop development and 

growth under various adverse climatic conditions (Wang et al., 2018). In particular, Folberth et al. 

(2016) revealed the accuracy of soil input has played an important role in determining the 

magnitude and direction of climate change impacts under extreme scenarios. 

  

      6.3.4 Limitations in lack of interactions with pest, disease and weeds  

The known deficiencies and limitations in the current studies are the absence of considerations in 

modelling the pest and disease damages on crop losses and the effect of weed infestations under 

climate changes. Process-based crop models so far have largely ignored these effects, assuming 

grown varieties already with pest-disease resistant traits and proper field preparations on weed 

controls has already been undertaken (e.g. pre-emergence herbicide application) (Rotter et al., 

2018). Quantifying the impacts of plant pests and diseases on crop performance still represents 
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one major challenge for the scientific community, especially the difficulties to define the pathogen 

dynamics temporally and spatially (Donatelli et al., 2017). This will eventually prevent accurate 

estimations of crop yields in regions where biotic stress is significant, possibly leading to 

underestimations of climate change impacts. From a qualitative point of view, drier climates may 

prompt pest outbreaks, whereas disease occurrence tends to decrease, because it relies on rainfall 

and humidity to spear, attack and produce damages on crops (uncertainty is high) (Meza et al., 

2008). Elevated CO2 favours growth of C3 weed species over C4, likely resulting in increased 

herbicide usage (Meza et al., 2008).  

 

      6.3.5 Limitations and uncertainties in representing possible adaptations 

In practice, the adaptation effects could be smaller or higher than those simulated in many studies. 

Overestimation is possible as in reality famers (especially smallholder farmers) sometimes lack 

capacity to fully implement proposed adaptations due to economic constraints or cultural 

inappropriateness (Challinor et al., 2014). The co-limitations, such as increasingly restricted water 

resource for agriculture is expected to limit irrigation-based adaptation strategies (Iglesias et al., 

2007), are also expected to overestimate adaptation benefits. This has already been illustrated 

before where optimized water-saving techniques, e.g. deficit (maize) or supplemental (wheat and 

grassland) irrigation strategy during the sensitive crop growth stages (Yang et al., 2018; Yang et 

al., 2019; Yang et al., 2017), are essential, but will create additional pressures for water resources. 

Yet, the positive effects of adaptation could be underestimated, as the array of adaptation options 

typically investigated is limited by the assessment tools available, in which the tested adaptation 

options using the crop model could be just a subset of fully available field-level adaptations 

(Challinor et al., 2014). Moreover, Challinor et al. (2018) suggest new methods are required to 

explicitly account for technology development to avoid underestimating the effectiveness of 

available adaptation options. Our studies are clearly unable to incorporate all these external factors, 

resulting in either over- or underestimations of adaptation benefits. In particular, the adaptation 

strategies are only qualitatively explored and suggested for perennial grassland systems at the three 

selected sites across Portugal (Yang et al., 2018). In addition, more systemic (e.g. grazing 

integration) or transformational adaptations (e.g. crop relocation) (Challinor et al., 2014), have 

also been omitted. But if small adjustments of management practices are enough to mitigate 

potential negative climate change impacts, more drastic changes would be unnecessary.  
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7.1 Conclusion Remarks 

1. Climate change projections show high confidence of continuous warming and drying trend from 

the mid until the end of 21st century in Portugal. Portugal is a Mediterranean country that is 

particularly vulnerable to climate change, due to ongoing and projected changes in climate means 

and variability. The climate change signal of increased annual mean temperature and deceased 

annual precipitation is robust in Portugal, accompanied by higher frequency and intensity of 

extreme high temperature events, particularly in the south (e.g. Alentejo region).  

 

2. A high likelihood of an overall negative climate change impact is obtained for the three studied 

crop production systems in Portugal, creating risks for regional food security. The negative impact 

comprises moderate-to-severe yield loss with increased year-to-year variability throughout the 21st 

century. Yield losses are greater in magnitude with higher inter-annual variability, in the second 

half of the century than in the first half, and in a high emission pathway than in a low emission 

scenario. Enriched ambient CO2 concentration help alleviate the yield declines, but not enough to 

reverse the yield reductions. Majority of these negative impacts are caused either by the shortened 

growth duration for irrigated maize under a warmer climate, or exacerbated risks of drought and 

heat stresses during the susceptible growth stages for both rainfed wheat and perennial forage 

grassland. These aspects correspond to the vulnerabilities of studied cropping systems facing 

climate change under typical Mediterranean conditions. 

 

3. Simulated magnitudes of impacts remain highly uncertain, varying substantially with different 

cropping systems (dominant source of uncertainty in Mediterranean region), locations and 

management practices, applied climate models (including downscaling approaches) and crop 

models (including partial or full calibration), selected time periods and emission pathways. 

Research should be continuously directed towards site-specific studies with a locally tailored 

approach, e.g. using representative measured dataset for model calibrations and verifications, as 

well as efforts to develop the multi-model ensemble (both crop and climate models) for robust and 

reliable estimations. 

 

4. Development of appropriate and risk-focused adaptation policies should clearly address the 

identified vulnerability of cropping systems and prioritize available options. In particular, a 
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combination of multiple potential adaptation measures analyzed in a local context, should be 

envisaged to assist in developing integrated and comprehensive adaptation strategies to cope with 

climate change under Mediterranean conditions. The recommended adaptation strategies for the 

three crop production systems in Portugal remain uncertain on their quantitative effectiveness, but 

may represent appropriate opportunities to maintain and improve crop yields under future climate.   

 

7.2 Future Outlooks 

1. Research efforts should be directed towards using the ensembles of multiple crop and climate 

models for simulating climate change impacts and explore adaptations at a detailed local context, 

however, this would require sustained international collaboration and exchange of high-quality 

observational data for model testing. Using multi-model ensembles make more robust and reliable 

the estimations and allow quantifying the uncertainties, which help better conveying the 

information for evaluating potential risks to gain the trust of general public. 

 

2. Stronger linking of field experimentation with crop modelling to promote mutual understandings 

and facilitate upscaling of experimental findings. More mechanic understandings of crop response 

to climate change are required by target field experimentations to propose improved and robust 

model function forms and parameterization schemes, particularly in dealing with the interactions 

of CO2 response with drought and high temperature episodes (i.e. extreme climate events). In turn, 

improved crop models that applied to grid-based large scale simulations are useful to extrapolate 

experimental findings to an aggregated (e.g. regional) level that is relevant for policy makings. But 

this should be assisted by provisions of high-quality and fine-resolution soil and climate datasets.   

 

3. For a more practical relevance to farmers and policymakers to have effective adaptations at 

various levels, crop modellings should be integrated into economic modelling framework to better 

reflect the whole farm and complex production systems. A wide array of adaptation options will 

be available in a more relevant social-economic and environmental context, where the simulated 

adaptation options based on the biophysical modelling approach, are subject to profitability and 

environment-friendly considerations.
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Online Resource 1. Characterization of physical and chemical properties of dominant soil type 

(Vertisol) at Beja 

Depth  

(cm) 

Soil 

texture 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

q0 (mm) 

estimated by 

sand or clay 

content (Brisson 

et al. 2008) 

Bulk 

density 

(g/cm3) 

Organic 

carbon 

(%) 

Calcium 

Carbonate 

(%) 

pH 

(H2O) 

 

Soil hydraulic properties Ruisolnu (%) 

estimated by 

slope classes 

(Brisson et al. 

2008) 

FC 

(% 

vol) 

WT 

(% 

vol) 

TAWsoil 

(mm) 

SHC 

(cm/ 

day) 

Top soil 

(0-30) 
Clay 

29 23 48 

8.1 

1.56 1.2 0.2 

7.3 

33 18 

122 

3.7 

0 
Subsoil 

(30-100) 
27 28 45 1.60 0.6 - 32 21 3.4 

Note: q0 is the daily evaporation threshold. FC, WT, TAWsoil, SHC respectively denote soil water content at field capacity and wilting point, soil 

total available water and saturated hydraulic conductivity. Surface slope degree is estimated using GTOPO30 digital elevation model developed 

by U.S. Geologic Survey. Ruisolnu is a STICS parameter describing Hortonian component of runoff, derived from USDA Runoff Curve number 

method. 
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Online Resource 2. Summary of observational yield data for model calibration and of input 

parameters for crop characteristics and local prevailing agronomic practices 

Table OR2.1. Observational final grain yields of winter wheat over five consecutive seasons (1981–1986) in the 

experimental Farm of Almocreva at Beja used for STICS calibration (Carvalho and Basch 1995) 

N fertilization  

(equally split 

between sowing 

and beginning of 

stem elongation) 

Years 
Yield of cultivar 

Etoile (kg ha-1) 

Yield of cultivar 

Mara (kg ha-1) 

Analysis of variance 

(Two-way ANOVA) Average yield 

of two cultivars 

(kg ha-1) Factors p-value 

0 kg ha-1 

1981–1982 2740 2618 

N 

fertilization 
<0.05 

2679 

1982–1983 999 916 958 

1983–1984 1712 1747 1730 

1984–1985 2015 1600 1808 

1985–1986 1728 1342 1535 

100 kg ha-1 

1981–1982 3830 3480 

Cultivar 0.77 

3655 

1982–1983 906 1003 955 

1983–1984 3254 3691 3473 

1984–1985 3588 2967 3278 

1985–1986 3620 3534 3577 

200 kg ha-1 

1981–1982 3070 4862 

N 

fertilization 

X Cultivar 

0.64 

3966 

1982–1983 741 880 811 

1983–1984 3234 3760 3497 

1984–1985 3969 3760 3865 

1985–1986 3074 4146 3610 

 Note: measured yield was the average yield obtained between two common sowing dates (Nov 20th and Dec 10th), at which simulations were 

respectively performed to derive mean yield under individual growing season and N level. 

 

 

Table OR2.2. Summary of calibrated crop parameters and local prevailing agronomic practices (Carvalho and Basch 

1995) 

General plant 

parameter 
Cultivar parameters 

Initial soil water 

content at 

sowing 

Sowing dates 

Sowing 

density 

Initial soil 

mineral N 

amount 

N Fertilization strategies 

Other 

assumptions Mean 

Two 

common 

sowing 

dates 

Amount 

(kg/ha) 

Application 

stages 

RUEveg=RUErep

=2.8 

g MJ-1 

Built-in cultivar 

(No.7–Thetalent) with 

standard setting: 

GDDemg-amf=245 ℃.d 

GDDemg–lax=505 ℃.d 
GDDemg–drp=837 ℃.d 

GDDdrp–mat=700 ℃.d 

Pgrain=0.0521 g 

Pnum=3000 

50% field 

capacity + 

supplementary 

irrigation 

(20 mm) 

Nov 

30th 

Nov 20th 

120 

plants 

m-2 

44 kg ha-1 

50 Sowing 
Not consider 

influence of 

pest, disease 

and weeds 
Dec 10th 50 

End of 

tillering 

Note: RUEveg and RUErep are radiation use efficiency of winter wheat during vegetative and reproductive phases, respectively. Growing Degree 

Days (GDD) are calculated with base temperature at 0 C°. GDDemg–amf, GDDemg–lax, GDDemg–drp and GDDdrp–mat are required growing degree days 
from emergence to beginning of stem elongation, emergence to maximal leaf area index, emergence to beginning of grain-filling and beginning 

of grain-filling to maturity, respectively. Pgrain and Pnum are genetic potential of grain weight and number, respectively. Mean sowing date is used 

for climate change impact assessment. Settings of initial soil water at sowing is prescribed to mimic common situation and practice for dryland 
cropping system in Mediterranean region.  
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Online Resource 3. Linear regression analysis between daily surface shortwave radiation (MJ 

m-2 day-1) from dataset of ERA–Interim global atmospheric reanalysis (ERA–Interim, X–axis) 

and from dataset of Satellite Application Facility on Climate Monitoring (CM SAF, Y–axis) in 

Beja over 1983–2010 period 
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Online Resource 4. List of employed bias–adjusted Global Climate Model–Regional Climate 

Model (GCM–RCM) chains from EURO–CORDEX 

Short name of 

GCM–RCM 
Driving GCM 

Ensemble 

Group 
RCM 

Institution 

(Abbreviation) 

Bias Adjustment 

(BA) method 

(Abbreviation) 

Observational 

source for BA 

CNRM–CLM 
CNRM–CERFACS–

CNRM–CM5 
r1i1p1 

CLMcom–CCLM4–8–17 

Climate Limited–

area Modelling 

Community 

(CLMcom)  

 

Distribution–Based 

Scaling from Swedish 

Meteorological and 

Hydrological Institute  

(SMHI–DBS45) 

(Yang et al. 2010) 

Regional 

reanalysis of 

MESoscale 

ANalysis 

(MESAN) over 

1989–2010 

(Dahlgren et al. 

2016; Landelius 

et al. 2016) 

ICHEC–CLM ICHEC–EC–EARTH r12i1p1 

MPI–CLM MPI–M–MPI–ESM–LR r1i1p1 

ICHEC–DMI ICHEC–EC–EARTH r3i1p1 DMI–HIRHAM5 

Danish 

Meteorological 

Institute  

(DMI) 

ICHEC–KNMI ICHEC–EC–EARTH r1i1p1 KNMI–RACMO22E 

Royal Netherlands 

Meteorological 

Institute  

(KNMI) 

MPI–MPICSC(r1) MPI–M–MPI–ESM–LR r1i1p1 

MPI–CSC–REMO2009 

Max Planck 

Institute–Climate 

Service 

Centre 

(MPI–CSC) 

MPI–MPICSC(r2) MPI–M–MPI–ESM–LR r2i1p1 

CNRM–SMHI 
CNRM–CERFACS–

CNRM–CM5 
r1i1p1 

SMHI–RCA4 

Swedish 

Meteorological and 

Hydrological 

Institute (SMHI) 

ICHEC–SMHI ICHEC–EC–EARTH r2i1p1 

MPI–SMHI MPI–M–MPI–ESM–LR r1i1p1 
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Online Resource 5. Cumulative distribution function (CDF) of monthly mean minimum, 

maximum temperature and precipitation sum between observation and model simulations over 

1989–2010 period (during which bias adjustment of model outputs were performed) 

 
Figure OR5.1. Cumulative distribution function (CDF) of monthly mean minimum temperature (Tmin) between Beja 

weather station data (Observation) and outputs of all used GCM–RCM models over 1989–2010 period 
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Figure OR5.2. Cumulative distribution function (CDF) of monthly mean maximum temperature (Tmax) between 

Beja weather station data (Observation) and outputs of all used GCM–RCM models over 1989–2010 period 
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Figure OR5.3. Cumulative distribution function (CDF) of monthly precipitation sum (Precip) between Beja weather 

station data (Observation) and outputs of all used GCM–RCM models over 1989–2010 period 
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Online Resource 6. Projected range of average changes among all used GCM–RCM models for 

(a, b) mean temperature (Tmean, C°), (c, d) precipitation sum (%) and (e, f) cumulative potential 

evapotranspiration (PEP, mm) at monthly and annual scales over near-future (2021–2050) and 

distant-future (2051–2080) periods as compared with weather records over baseline period. 
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Online Resource 7. Simulated average annual mean temperature and precipitation over baseline 

along with their corresponding changes by climate projections over Alentejo region (Southern 

Portugal) as represented by multi-model ensemble means  

 

Figure OR7.1. Ensemble mean simulation of average annual mean temperature (°C) for (a) baseline period (1981–

2010) and for projected corresponding changes (°C) in future periods under (b,c) RCP4.5 and (d,e) RCP8.5 based on 

the bias-adjusted outputs of all selected (10) GCM–RCM models 
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Figure OR7.2. Ensemble mean simulation of average annual precipitation sum (mm) for (a) baseline period (1981–

2010) and for projected corresponding changes (%) in future periods under (b,c) RCP4.5 and (d,e) RCP8.5 based on 

the bias-adjusted outputs of all selected (10) GCM–RCM models 
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Online Resource 8. Simulated effects of elevated atmospheric CO2 levels on mitigating mean 

yield reductions between RCP4.5 and RCP8.5 over near- and distant-future period (mean 

baseline CO2 concentration is set to be 362 ppm)  

 

  

 GCMs-RCMs 

RCP4.5  RCP8.5 

Mean yield reductions (%) Mean increased 

atmospheric CO2 

concentration 

relative to baseline 

(ppm) 

 

Mean yield reductions (%) Mean increased 

atmospheric CO2 

concentration 

relative to baseline 

(ppm) 

Witho

ut CO2 

effect 

With 

CO2 

effect 

Mitigati

on 

Without 

CO2 

effect 

With 

CO2 

effect 

Mitigation 

2021–

2050 

CNRM-CLM –17% –13% 4% 

87  

–8% –2% 6% 

111 

CNRM-SMHI –16% –12% 4% –5% 1% 6% 

ICHEC-CLM –11% –6% 5% –24% –19% 5% 

ICHEC-DMI –28% –25% 3% –14% –8% 6% 

ICHEC-KNMI –20% –15% 5% –22% –17% 5% 

ICHEC-SMHI –16% –13% 3% –25% –22% 3% 

MPI-CLM –16% –12% 4% –22% –17% 5% 

MPI–MPICSC(r1) –22% –18% 4% –23% –17% 6% 

MPI–MPICSC(r2) –11% –5% 6% –2% 5% 7% 

MPI-SMHI –14% –9% 5% –19% –13% 6% 

Ensemble mean –18% –14% 4% –19% –14% 5% 

           

2051–

2080 

CNRM-CLM –37% –31% 6% 

153  

–37% –27% 10% 

284 

CNRM-SMHI –33% –27% 6% –36% –27% 9% 

ICHEC-CLM –31% –25% 6% –41% –33% 8% 

ICHEC-DMI –26% –19% 7% –30% –22% 8% 

ICHEC-KNMI –31% –24% 7% –42% –32% 10% 

ICHEC-SMHI –40% –33% 7% –46% –39% 7% 

MPI-CLM –13% –6% 7% –36% –26% 10% 

MPI–MPICSC(r1) –9% 0% 9% –33% –22% 11% 

MPI–MPICSC(r2) –2% 6% 8% –33% –23% 10% 

MPI-SMHI –16% –9% 7% –37% –27% 10% 

Ensemble mean –24% –17% 7% –37% –27% 10% 
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Online Resource 9. Simulated impacts of adaptation option of early sowings on (increase) the 

growth duration from germination to beginning of stem elongation or to beginning of grain-

filling over future periods 

 

 

Figure OR9.1. Effects of early sowings (10, 20 and 30 days earlier than the prescribed common sowing date) on 

extending the growth duration (days) between germination (IGER) and beginning of stem elongation (IAMF) over 

near–future (2021–2050) and distant–future (2051–2080) periods under (a, b) RCP4.5 and (c, d) RCP8.5 among all 

used GCM–RCM models (including ensemble mean) (Developmental process of fulfilling vernalization requirement 

generally occurs within this development stage) 
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Figure OR9.2. Effects of early sowings (10, 20 and 30 days earlier than the prescribed common sowing date) on 

extending the growth duration (days) between germination (IGER) and beginning of grain-filling (IDRP) over near–

future (2021–2050) and distant–future (2051–2080) periods under (a, b) RCP4.5 and (c, d) RCP8.5 among all used 

GCM–RCM models (including ensemble mean) 
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Figure S1. Simulated mean and standard deviation of seasonal quantities (mm) of (a–c) 

precipitation, (d–f) irrigation, (g–i) potential evapotranspiration (PET) and (j–l) actual 

evapotranspiration (ET) over successive periods in study sites. Blank and dark bars were for 

early spring (ES) and late summer (LS) cut grassland systems, respectively. Independent sample 

t-test was performed in means between baseline and each future period, with significance levels 

at p<0.05 (*) and p<0.01 (**) respectively. 
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Table S1. Summary of soil parameters for three study sites, along with respective dataset source 

and documented literatures for calculation approach. 

Soil parameter 

description 

Locations Dataset source / 

Reference literature NP CP SP 

Soil layer division 30 cm of topsoil and 70 cm of subsoil HWSD 

Soil structure normal soil compaction and low gravel content HWSD 

Soil salinity level Extremely low HWSD 

Soil organic matter 

(% weight) 

2.72 topsoil 

1.07 subsoil 

0.70 topsoil 

0.27 subsoil 

0.40 topsoil 

0.24 subsoil 
HWSD 

Topsoil pH (H2O) 5.3 5.1 6.5 HWSD 

Topsoil carbonate 

content (%) 
0 0 0 HWSD 

Topsoil USDA 

texture 
Loam Sandy loam Loamy sand HWSD 

Topsoil fraction (%) 

41% sand 

36% silt 

23% clay 

75% sand 

15% silt 

10% clay 

82% sand 

8% silt 

10% clay 

HWSD 

Subsoil USDA 

texture 
Loam Sandy loam Sandy loam HWSD 

Subsoil fraction (%) 

44% sand 

32% silt 

24% clay 

68% sand 

17% silt 

15% clay 

75% sand 

8% silt 

17% clay 

HWSD 

Estimation of soil 

hydraulic 

parameters 

FC1= 29% 

WP1= 16% 

FC2= 28% 

WP2= 15% 

TAWsoil= 130 mm 

FC1= 13% 

WP1= 6% 

FC2= 17% 

WP2= 9% 

TAWsoil= 77 mm 

FC1= 11% 

WP1= 6% 

FC2= 17% 

WP2= 10% 

TAWsoil= 64 mm 

Soil texture and 

structure, 

organic matter content, 

salinity / (Saxton and 

Rawls 2006) 

Estimation of 

cumulative 

maximum soil 

evaporation without 

energy limit (mm) 

q0= 9.84 q0= 8.75 q0= 9.6 
Topsoil fraction / 

(Brisson et al. 2009) 

Estimation of slope 

degree (%) 
0 – 4.5% 0 – 6.1% 0 – 2.1% GTOPO30 

Estimation of 

surface runoff 

coefficient 

ruisolnu= 0.03 ruisolnu= 0.03 ruisolnu= 0 
Slope degree / (Brisson 

et al. 2009) 
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Table S2. Mean atmospheric CO2 concentration for study periods of historical global record and 

climate change scenario (RCP8.5).  

Study Periods 
Mean CO2 

concentration (ppm) 
Data source 

Baseline  

(1985–2006) 
362.6 NOAA  

Short term  

(2021–2040) 
451.9 

RCP8.5 
Medium term 

(2041–2060) 
545.4 

Long term  

(2061–2080) 
682.3 
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Table S3. Summary of defined grassland system parameters with supported references. 

Grassland 

system 

parameters 

Parameter values 
Relevant 

references 

Initial status 
Plant initialization (LAI = 1 m2m-2, dry matter = 1.5 t ha-1, root 

depth= 60 cm) 

(Ruget et al. 2009; 

Courault et al. 2010) 

Grass features 

Grass-prairiep with standard value:  

GDD from emergence to end of juvenile stage = 116 ºC, 

GDD from emergence to end of leaf initialization = 1500 ºC, 

GDD from emergence to grain filling = 1000 ºC 

(Ruget et al. 2006) 

Farming practices Locations 

NP 

50 kg/ha mineral N per cut 

and 

216 kg/ha slurry (with 65 

kg/ha ammonium nitrogen) 

applied in winter  

Early cut dates 

(DOY1=73,  

DOY2=143) 

Late cut dates 

(DOY1=143,  

DOY2=250) 

(Trindade et al. 1997; 

Lopes and Reis 1998) 

CP 25 kg/ha mineral N per cut  

Early cut dates 

(DOY1=91,  

DOY2=152) 

Late cut dates 

(DOY1=155,  

DOY2=260) 

(Carneiro et al. 2005) 

SP 25 kg/ha mineral N per cut  

Early cut dates 

(DOY1=80,  

DOY2=144) 

Late cut dates 

(DOY1=144,  

DOY2=250) 

(Lourenco and Palma 

2001; Aires et al. 

2008a) 

Residue matter 
Estimated residue matters after cutting (LAI = 0.2 m2m-2, dry 

matter = 1 t ha-1) 
(Aires et al. 2008b; 

Ruget et al. 2009) 
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Table S4. Summary of variations in mean annual temperature (Tmean) and mean annual 

precipitation sum (Prec) of future periods in relative to baseline. Student’s t-test was performed 

for changes in the mean values of each future period compared to baseline (* and ** indicated 

significance level at p<0.05 and p<0.01, respectively). 

 

Future periods in 

RCP8.5 

Location of NP Location of CP Location of SP 

Tmean (ºC) Prec (%) Tmean (ºC) Prec (%) Tmean (ºC) Prec (%) 

2021–2040  

(short-term) 
+0.7** –12 +0.9** –15* +0.9** –16* 

2041–2060  

(medium-term) 
+1.4** –4 +1.8** –8 +1.7** –15* 

2061–2080 

 (long-term) 
+2.3** –9 +2.8** –17* +2.7** –20* 
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Table S5. Summary of number of days in summer with frequency above 50% for the occurrence 

of defined extreme heat stress in each study period (figures in brackets indicate the increased 

days).  

Periods 
Extreme heat stress in summer (days) 

NP CP SP 

Baseline 0 0 20 

short-term 3 (+3) 19 (+19) 68 (+48) 

medium-term 14 (+11) 46 (+27) 71 (+3) 

long-term 35 (+21) 71 (+25) 83 (+12) 
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Table S6. Summary of number of days in summer with frequency between 10% and 30% for the 

occurrence of defined severe water stress in each study period (figures in brackets indicate the 

variations of days). 

Periods 
Severe water stress in summer (days) 

    NP   CP    SP 

Baseline     22   34    42 

short-term   36 (+14)  64 (+30)   51 (+9) 

medium-term 44 (+8)   69 (+5)   57 (+6) 

long-term 47 (+3)   73 (+4)   48 (–9) 
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