INÍCIO

COMPORTAMENTO HIDRÁULICO DE UM MACIÇO CRISTALINO ANISOTRÓPICO COM MÚLTIPLAS TRANSMISSIVIDADES

F. PACHECO ${ }^{1}$, M. R. PORTUGAL FERREIRA ${ }^{2}$

RESUMO

Foi possivel estabelecer uma relação entre a fracturação, a distribuição de nascentes e o comportamento hidráulico de um maciço de rochas metamórficas.

A zona estudada compreende o sector da Serra da Padrela entre Tinhela de Baixo e Lagoa (Vila Pouca de Aguiar), numa área total de $25 \mathrm{Km}^{2}$. No contexto geotectónico, a área localiza-se na Sub-Zona Galiza Média Trás-os-Montes, que corresponde a um sub-domínio da Zona Centro Ibérica. A geologia regional caracteriza-se, fundamentalmente, por corpos graníticos, de diversas fácies e idades, intruidos em formações metassedimentares pertencentes, principalmente, ao Complexo Xistoso do Grupo Peritransmontano definido por Ribeiro (1974).

Na zona de Balugas (aldeia que se localiza no centro da área de estudo), pode definir-se uma estrutura em que diversas formações do Sub-Grupo Peritransmontano Inferior se apresentam como lâminas tectónicas empilhadas, sendo constituidas, fundamentalmente, por filádios, grauvaques, xistos carbonosos e quartzitos. As diferentes lâminas são separadas por carreamentos, materializados por gossanas, que se distribuem sob a forma de cortinas descontínuas. A fracturação é intensa, sendo importantes as direcções N10-30E, N50E, N70-80E e N40-50W (Portugal Ferreira \& Pacheco, 1993ab).

O número de nascentes que foi possivel associar a cada uma das familias de fracturas apresenta-se no Quadro 1. Nesse quadro mostra-se, ainda, a extensão total, em kilómetros, ocupada por cada sistema de fracturas, e o número de nascentes por kilómetro linear de fractura (N_{k} - quociente entre as segunda e a primeira colunas). O valor de N_{k} de uma familia de fracturas é usado como uma medida da favorabilidade dessa familia à circulação de água subterrânea.

Quadro 1: Favorabilidade das familias de fracturas à circulaçỉo de agua subterranea (N_{k}). S.R. $=$ nascentes sem
relaçāo evidente com nenhum sistema de fracturas

Familia	Extensão total (Km)	N^{0} de nascentes associadas	Nascentes por Km $\left(\mathrm{N}_{\mathrm{k}}\right)$
N10-30E	51.2	5	0.097
N50E	66.9	22	0.329
N70-80E	28.8	5	0.174
N40-50W	34.4	12	0.348
S.R.		20	

A circulação subterrânea parece estar preferencialmente relacionada com as fracturas $\mathrm{N} 40-50 \mathrm{~W}$ e N 50 E , que apresentam, respectivamente, valores de N_{k} iguais a

[^0]0.348 e 0.329 ; o sistema $\mathrm{N} 70-80 \mathrm{E}$ é de circulação intermédia $\left(\mathrm{N}_{\mathrm{k}}=0.174\right)$ e as fracturas regionias N10-30E são de circulação reduzida.

Na Figura 1 está representada a curva de rebaixamentos/tempos de um ensaio de caudal realizado sobre um furo com 110 m de profundidade existente na aldeia de Balugas. A figura põe em evidência a presença de 4 famílias de fracturas com comportamento hidráulico distinto (transmissividades T_{1} a T_{4}). Tratando-se da curva de um ensaio prolongado (10 dias), a um caudal considerável ($31 / \mathrm{s}$), pode especular-se que o primeiro troço da Figura 1 (transmissividade mais elevada) é representativo da transmissividade do sistema N40-50W (familia com o maior número de nascentes associadas por kilómetro linear de fractura, cf. Quadro 1). Pelos mesmos motivos, as transmissividades T_{2}, T_{3} e T_{4} são representativas dos sistemas N70-80E, N10-30E e N50E, respectivamente.

Figura 1: Curvas de rebaixamentos/tempos (\oplus) e recuperaçઠesitempos (O) dos ensaios de bombagem realizados nos dias 11/12/92 e 19-29/1/93; as recuperaçōes sâo referidas ao nivel dinâmico no final da bombagem. $Q=3 / \mathbf{s}$

A individualização de 4 transmissividades deve-se, em nosso entender, ao facto do maciço em estudo ser anisotrópico, predispondo-se, por isso, a apresentar um padrão de fracturação perfeitamente sistemático. A atribuição de transmissividades a famílias de fracturas, pela metodologia que aqui se apresenta, poderá ter resultados mais modestos no caso de maciços graníticos que, sendo inicialmente isotrópicos, apresentam padrões de fracturação com carácter menos sistematizado.

Referências

[^1]
[^0]: 'Eng ${ }^{0}$ Geólogo. Lic. - Assistente Estagiário da Seç̧ão de Geologia da Universidade de Trás-os-
 Montes e Alto Douro, 5000 Vila Real.
 ²Gcólogo. Lic., M Sc., Doutor, Agregação - Prof. Cat. da Universidade de Coimbra. 3000 Coimbra.

[^1]: Portugal Ferreira. M.R. \& Pacheco, F., 1993a. Hidrogeologia em quartzitos peritransmontanos carreados da Serra da Padrela: a recarga e a produtividade. In Seminario de Águas Subterràneas e Ambiente, Associaçāo Portuguesa de Recursos Hidricos (APRH).

 Portugal Ferreira, M. R. \& Pacheco, F. , 1993b. Prospecção e pesquisa de água para abastecimento público: zona de Balugas (Vila Pouca de Aguiar) . Relatório interno da Universidade de Tras-os-Montes e Ato Douro (UTAD). referente a um projecto de abastecimento de água encomendado pela Câmara Municipal de Vila Pouca de Aguiar (CMVPA).

