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Spectroscopic Methods for Fresh Food 
Authentication: An Overview

Maria Joã o Pinho Moreira, Cristina Maria Teixeira Saraiva, 
and José  Manuel Marques Martins de Almeida

6.1  Introduction

Consumers recognize the value of the information supplied on food labels, 
including the description of the ingredients and information about the pro-
duction processes applied to the final product. The food consumer’ s choice 
often reflects lifestyle, religion, awareness of the nutritional properties of 
food and health concerns. In fact, the identification and authentication of 
food play an important role in a healthy diet. The verification and reporting 
of food product components is therefore needed to prevent the practice of 
adulteration [40].

Consumers have, in particular, become more demanding in their meat 
and fish consumption, in terms of quality, safety, and the origin of the prod-
ucts they consume. Recent reports into the occurrence of food fraud suggest 
that an effective identification of the species as part of food authentication is 
required (André e et al. 2010, Ballin 2010, Standal et al. 2010, Lin et al. 2014).
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Animal products, particularly meat and fish, can be targets of adulteration, 
such as the substitution or removal of ingredients, addition of other pro-
teins from various origins, and the addition of food additives and genetically 
modified organisms (GMO) not described on the label, often contributing to 
increased financial profits. The authentication and determination of quality 
meat and fish is of great importance in preventing fraud which negatively 
impacts the food industry and causes health problems for the consumer 
(Meza-Má rquez et al. 2010, Cawthorn et al. 2013). For example, the substitu-
tion of fresh meat and fish for frozen-then-thawed products is a typical com-
mercial fraud which may cause economic loss and food safety and quality 
issues for consumers. These products are characterized by an increased sus-
ceptibility to microbial grow and color changes. Temperature fluctuations 
can result in the formation of ice crystals (Cozzolino and Murray 2004, Ballin 
and Lametsch 2008, Fajardo et al. 2010, Standal et al. 2010, Alamprese et al. 
2013, Ottavian et al. 2013, Lin et al. 2014) due to the migration of water vapor 
from the product to the surface, resulting in poor quality food products. This 
defect is recurrently found in frozen foods which have been inadequately 
controlled.

Food authentication depends on the establishment of databases that con-
tain information about the origin of food including the biological and geo-
graphic origin, species, production methods, and other critical information. 
However, there is a need for reliable analytical methods that can verify the 
geographic origin of food apart from their biological origin. Un-targeted 
spectroscopy approaches combined with chemometric analysis were inves-
tigated for their potential to classify the geographical origin of meat and 
predict its value (Sun et al. 2012b). An overview of analytical methods for 
determining the geographical origin of food products can be found in Luykx 
and van Ruth’ s (2008) paper.

Modern food inspection is under an ever increasing demand for efficiency 
in the use of resources, either human or material, and for achievement of 
purpose through optimal inspection planning and the use of new meth-
odologies. Spectroscopy, based on analytical technology tools, in combina-
tion with dynamic predictive models may bring these goals closer to reality 
(Thygesen 2012). Dynamic chemometric methods have been used in food 
inspection for quality monitoring in food processing industries (Singh and 
Jayas 2013). Singh and Jayas (2013) present a discussion on three broad cat-
egories of optical sensing techniques, namely, spectroscopic, fiber optic, and 
imaging. In their work, they describe the working principles, instrumenta-
tion, advantages, disadvantages, and the limitations of these techniques. For 
instance, an ultra-low field magnetic resonance imaging (MRI) system using 
a high-temperature superconducting quantum interference device (HTS-
SQUID) for food inspection was reported in Kawagoe et al.(2016).

There are several methods for the detection of low levels of adulteration 
(Ballin and Lametsch 2008). Replacement products are often similar to the 
main material from a biochemical point of view and therefore, adulterant 
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identification can be particularly difficult (Ghovvati et al. 2009). Recently, 
researchers have applied various analytical techniques in the detection of 
food industry fraud. The protein-based methods (Al Ebrahim et al. 2013, 
Mamani-Linares et al. 2012), the deoxyribonucleic acid (DNA) based meth-
ods (Ali et al. 2012, Cammà  et al. 2012, Mamani-Linares et al. 2012, Sakaridis 
et al. 2013, Zhang 2013, Karabasanavar et al. 2014, Lin et al. 2014), the real-time 
polymerase chain reaction (PCR) techniques and analysis of triacylglycerol 
(Kesmen et al. 2009, Fajardo et al. 2010, Soares et al. 2010, Druml et al. 2015) 
and methods based on fat (Abbas et al. 2009, Rohman et al. 2011), have become 
increasingly important. However, these methods are laborious, technically 
demanding, slow, invasive, expensive, destructive, and require sophisticated 
laboratory procedures and highly qualified employees. Moreover, they are 
not suitable for real-time applications (Damez and Clerjon 2008).

The various multidimensional analytical approaches that permit authen-
tication of food can be divided into targeted and un-targeted methods. The 
classical authenticity assessment of food is usually based on the analysis of 
specific marker compounds, which are indicative for a certain property of 
the product (Herrero et al. 2012). Given that most adulterants are unknown, 
they are difficult to recognize using the targeted screening approaches typi-
cally used in food laboratories. The industry needs non-targeted methods to 
analyze samples for adulterants to provide proof of origin or to prevent delib-
erate or accidental undeclared admixture of food samples (Garcí a-Cañ as 
et al. 2012). Food fingerprinting approaches are based on a high-throughput 
screening of samples with the purpose of differentiation or classification 
of samples. The investigation of food fingerprints provides high potential 
with regard to the characterization and verification of food identity. These 
approaches are usually based on spectroscopic and spectrometric data, pro-
viding the ability for a comprehensive characterization of the investigated 
matrices. The aim is to differentiate various food fingerprints in terms of, 
for instance, possible adulterations or their botanical or geographical origin 
(Esslinger et al. 2014).

There is a growing interest in methods based on spectroscopic techniques 
because they offer several advantages. Emerging nondestructive mapping 
technologies for authentication and traceability include nuclear magnetic 
resonance (NMR) imaging, fluorescence (FS), visible (VIS), near infrared 
(NIR), mid infrared (MIR), and Raman (RS) spectroscopy, sometimes coupled 
with Fourier transform technique, and multispectral (MSI) and hyperspec-
tral (HIS) imaging. These are simple, non-destructive, non-invasive, low cost, 
and allow real-time analysis [32]. All spectroscopic techniques require small 
samples and no further preparation is necessary. They are powerful tools 
for conducting adulteration tests (Mamani-Linares et al. 2012). The methods 
presented in this work might be used as a complement or even constitute an 
alternative to PCR based DNA (Schmutzler et al. 2015).

The techniques NIR and MIR combined with Fourier transform (the latter 
so called FTIR— Fourier transform infrared) (Cozzolino and Murray 2004, 
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Ortiz-Somovilla et al. 2005, Rodriguez-Saona and Allendorf 2011, Mamani-
Linares et al. 2012, Alamprese et al. 2013, Morsy and Sun 2013b, Rohman 
et al. 2011, Meza-Má rquez et al. 2010), RS (Abbas et al. 2009, Boyaci et al. 2014, 
Zają c et al. 2014, Zhao et al. 2015) and NMR (Rezzi et al. 2007, Aursand et al. 
2009, Standal et al. 2010) combined with multivariate statistical methods 
were largely applied in the authentication of foodstuffs.

In addition, ultraviolet (UV) based spectroscopic methods were used in 
meat and fish adulteration studies (Alamprese et al. 2013). In recent years, these 
techniques have received much attention for safety inspection and the quality 
of food and meat and related products (Kamruzzaman et al. 2013, Barbin et al. 
2013, Kamruzzaman et al. 2016, Kamruzzaman et al. 2012, Ma et al. 2015).

This work is an up-to-date literature revision applied to the detection of 
fresh meat and fish adulteration using spectroscopic methods which could 
be important for future research and in the development of equipment and 
methods for commercial markets, allowing detection of adulteration analy-
sis very quickly.

6.2  Methods of Vibrational Spectroscopy

6.2.1  Visible and Near Infrared Spectroscopy

VIS and NIR spectroscopies offer a number of important advantages when 
compared to traditional chemical methods. These methods deal with the 
VIS and the NIR region of the electromagnetic spectrum, from about 750 
to 2500  nm, corresponding to a photon of energy from 4000 to 13000  cm–1  
(Huck 2015). When using the NIR region, the spectra can be recorded in 
reflection or transmission. The interaction of the radiation with matter pro-
vides information about the presence of functional groups (Lohumi et al. 
2015, Huck 2015, Porep et al. 2015).

In comparison with other vibrational spectroscopic methods, NIR is con-
sidered a time consuming procedure and the detector is often a source of 
noise. However, the use of an interferometer reduces the time of analysis 
through the single output signal (spectrum) which has all the infrared fre-
quencies encoded therein. A Fourier transform is also necessary to extract 
the information from the spectrum. The interferometer coupled to Fourier 
transform has started to receive great attention for its use in the quantitative 
analysis of edible fats and oils (Gouvinhas et al. 2015). The attenuated total 
reflectance (ATR), diffuse reflectance, high-yield transmission and diffuse 
transmission cells are measuring methods used together with Fourier trans-
form (Lohumi et al. 2015).

Diffuse reflectance or trans-reflectance spectroscopy has also gained atten-
tion in the control of fraud in the food industry. However, adequate overall 
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reflectance is the most widely adopted method for analyzing the quality and 
authenticity of the final food product (Porep et al. 2015). Reflectance infrared 
spectroscopy has allowed discrimination between fresh meat and fish prod-
ucts from frozen-then-thawed and mixtures of species that are not permitted 
in the final product (Mamani-Linares et al. 2012).

NIR spectroscopy has been applied in industrial online setups using a 
fiber optic probe and in the laboratory to detect different veal meat adultera-
tion with pork parts (Schmutzler et al. 2015). Samples of veal meat with dif-
ferent percentages of pork parts were analyzed using chemometric methods. 
Control samples without adulteration (100% veal) and samples with increas-
ing levels of adulteration were prepared in 10% steps from the original until a 
composition of 50% veal and 50% pork parts was obtained. Figure  6.1 shows 
the second derivative of spectra from 6200 to 5480  cm–1  measured with the 
laboratory setup as a function of the adulteration of the veal meat with pork. 
Close connection between the signal intensity and the level of adulteration 
from genuine (no adulteration) samples up to 50% adulteration were found 
at 5940  cm–1  (1683  nm), 5908  cm–1  (1693  nm), 5892  cm–1  (1697  nm), 5868  cm–1  
(1704  nm), 5776  cm–1  (1731  nm), 5756  cm–1  (1737  nm), 5668  cm–1  (1764  nm), 
5648  cm–1  (1770  nm) and 5492  cm–1  (1821  nm). Principal component analy-
sis (PCA) was used to obtain a tridimensional projection of samples and to 
observe the relation between the genuine product and samples with adul-
teration. It was possible to notice an absence of associations from 20% to 50% 
of adulteration, with one and two principal components (PC), for laboratory 
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FIGURE  6.1
Second derivative of spectra (from 6200 to 5480  cm–1 ) measured with the laboratory setup as a 
function of the adulteration of the veal meat with pork. Adulteration levels from genuine (no 
adulteration) up to 50%, in 10% steps. (Reprinted with permission from Schmutzler M. et al., 
Food Control , 57, 258– 267, 2015.)
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and the industrial setups, respectively. However, three PCs were necessary 
for models applied to the on-site setup. Data from PCA was used as input for 
classification and validation using support vector machines (SVM). The SVM 
allowed correct calibration values of discrimination of 94.4% for the labora-
tory, 91.7% for the industrial and 77.8% for the on-site analyses to be achieved 
(Schmutzler et al. 2015).

In a study conducted by Mamani-Linares et al. ( 2012), VIS and NIR reflec-
tance spectroscopy or trans-reflectance methods were used to discriminate 
meat and meat juices from three livestock species. Meat samples from beef, 
llamas, and horses were purchased from different butcher shops and super-
markets. 79 samples of Longissimus lumborum , 500  g each, were used: 31 of 
beef, 21 from llama and 27 from horse were thawed at 4° C for 24  h and stored 
for 4– 6  h before measuring the spectra. Another 58 samples of the same 
muscle (20 of beef, 19 from llama, and 19 from horse) were used to obtain the 
meat juice. They concluded that the VIS-NIR spectroscopy coupled to PCA, 
and with partial least squares regression (PLS-R), is a useful tool to discrimi-
nate between different species. In addition, it is useful to discriminate the 
geographical origin and the production system (Mamani-Linares et al. 2012).

The potential of UV-VIS, NIR, and MIR spectroscopies coupled with the 
chemometric techniques PCA, PLS-R, and linear discriminant analysis 
(LDA) enabled the detection of minced beef adulteration with turkey meat 
(Alamprese et al. 2013). Each batch was separately minced and then used 
to prepare (in duplicate) seven mixtures of bovine meat added with differ-
ent percentages of turkey meat: 5%– 50%, in 5% steps. With NIR, two PCs 
explained 98% of the total variance and for MIR the first two PCs explained 
82.3%. LDA correctly classified 78.6% in the UV-VIS, 88.3% in the NIR and 
84.8% in the MIR. PLS-R allowed construction of models with the root mean 
square error of cross-validation (RMSECV) and the root mean square error 
of prediction (RMSEP) slightly smaller than for NIR (Alamprese et al. 2013).

NIR has the potential to detect and quantify different adulterants in fresh 
and frozen-then-thawed minced beef. In addition to the pure beef and pork, 
fat trimming and offal samples, a series of mixed samples in the range of 
10%– 90% (w/w) from pork (n   =  144) and 10%– 80% of fat trimming (n   =  112) 
was prepared (Morsy and Sun 2013a). The mixtures of samples adulterated 
with offal were prepared in the range of 2.5%– 30%. The PLS-R had deter-
mination coefficients (R2 ) of 0.96, 0.94, and 0.95 with standard error of pre-
diction (SEP) of 5.4%, 5.1%, and 2.1%. Models based on PLS-R/DA and LDA 
distinguished between the unadulterated and adulterated classes with a 
classification of 100% (Morsy and Sun 2013b).

The NIR combined with chemometric analysis was used for data analysis 
to classify the geographical origins of lamb meat (Sun et al. 2012a). The δ 13° C 
and δ 15° N values of defatted lamb meat (Alxa League [37° 53’ N, 105° 23’ E, 
n   =  20], XilinGol League [42° 21’ N,115° 08’ E, n   =  19] Chongqing City [30° 50’ N, 
108° 24’ E, n   =  20] and Heze City [34° 48’ N, 116° 04’ E, n   =  20] and Hulunbuir 
City [49° 06’ N, 119° 40’ E, n   =  20]) were determined by isotopic ratio mass 
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spectrometry (IRMS).The analytical precision was lower than 0.2‰  for both. 
FDA/PLS-R and LDA gave a total correct classification of 88.9% and 75% to 
the five individual region samples, respectively. The PLS-R/DA and LDA cor-
rectly classified 100% of the samples from pastoral and agricultural regions. 
For PLS-R calibration models, the obtained R2  value was 0.76 and 0.87 for 
predicting δ 13° C and δ 15° N, respectively. The first three PCs explained 98% 
of the total variance.

The adulteration of beef with pork and chicken was studied by Bilge et al. 
(2016). The beef samples were adulterated with pork and chicken (concentra-
tions between 10% and 50%). The PLS-R method was used for evaluating 
laser-induced breakdown spectroscopy (LIBS) spectral data and RMSEC and 
R2  values of 2.67 and 0.994 were obtained for beef adulterated with pork. 
A 83.4% correct discrimination rate between beef, pork, and chicken was 
achieved by PCA (Bilge et al. 2016).

The samples (43 adulterated and 12 controls), originating from dismantled 
criminal networks by the Brazilian Police, were analyzed using chemical 
parameters and ATR in conjunction with FTIR spectroscopy (Nunes et al. 
2016). This fraud consisted of injecting aqueous solutions of non-meat ingre-
dients (NaCl, phosphates, carrageenan, maltodextrin, collagen) into bovine 
meat. The PCA model of ATR-FTIR spectroscopy data was obtained with 4 
latent variables (LV), accounting for 95.7% and 26.7% of variance in X and Y 
blocks, respectively. The PLS-R/DA model correctly detected 91.0% of the 
adulterated samples (Nunes et al. 2016).

Several strategies have been proposed for determining the substitution of 
fresh fish with frozen-then-thawed fish (Ottavian et al. 2013). One of the first 
strategies consists of using the PLS-R/DA method to classify the fresh and 
frozen-then-thawed status of each sample considering the species altogether. 
In another approach, a two-level cascade arrangement of PLS-R/DA was 
developed. In the first level, a PLS-R/DA was used to classify the samples 
according to their species and in the second level, a different PLS-R/DA dis-
criminated between fresh and frozen-then-thawed samples. In a third strat-
egy, an orthogonal PLS-R/DA was used to remove the information from the 
spectral data which is not related to the fresh and frozen-then-thawed status 
of the samples. Depending on the strategy, the overall obtained calibration 
accuracies ranged between 80% and 91%. The PCA explained 97% of the total 
variability (Ottavian et al. 2013).

NIR and VIS-NIR spectroscopy has also been used to distinguish fresh 
from frozen-then-thawed swordfish cutlets (Fasolato et al. 2012). Thirty spec-
imens of swordfish were caught using traditional hooks and fishing. The rel-
evant data was recorded to maintain sample traceability. The samples were 
vacuum-packed in polyethylene bags and three of them were refrigerated 
at 2° C. The remaining samples were frozen and stored: 30 samples at − 18° C 
and the remaining 30 samples at − 10° C for 30  days. Before analysis, the fro-
zen samples were thawed overnight in the lab at 2° C. The first three PCs of 
the PCA explained 87.2% of the variability and with milling treatment the 
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first three PCs explained a higher value (94.8%). The samples were classified 
using VIS-NIR spectroscopy with a correct classification of 96.7%, whereas 
this value for NIR was higher than 90.0%.

In another study to distinguish fresh from frozen-then-thawed fish, Pagrus 
major  fish were divided into two equal groups and used for further evalu-
ation (Uddin et al. 2005). For fresh or frozen-then-thawed fish, 54 samples 
were used soon after being killed, whereas the second lot of 54 fish was kept 
at − 40° C. After 30  days, fish were removed and thawed then evaluated as 
frozen-then-thawed samples. The fresh or frozen-then-thawed status was 
investigated and discrimination was carried out by soft independent model-
ing of class analogy (SIMCA), LDA based on PCA. The investigators obtained 
a classification of 100%. However, the high percentage of water in the fish is a 
major limitation for the analysis of samples with this application.

Real-time measurement and noise reduction using NIR spectroscopy 
requires Fourier transform. While this methodology allows detection of 
small molecules, water interference is a major drawback. However, this 
method does allow reading through glass or polypropylene containers.

6.2.2  Mid-Infrared Spectroscopy

MIR spectroscopy is fast, non-destructive and does not involve laborious 
sample preparation. It is an attractive option to identify and quantify adul-
teration and chemical composition of samples (Rohman and Man 2011). The 
absorption bands in the MIR region are characteristic of functional groups 
of molecules (Meza-Má rquez et al. 2010, Zhao et al. 2014). The MIR region can 
be divided in the functional group region, from 4000 to 1500  cm–1 , and the 
fingerprint region, from 1500 to 500  cm–1 (Lohumi et al. 2015). MIR spectros-
copy associated with FTIR spectroscopy and multivariate analysis require 
low sample volume and are environmentally friendly. Furthermore, FTIR 
spectroscopy in combination with PLS-R regression technique and PCA are 
powerful tools for quantification and classification of adulterants (Rahmania 
et al. 2015).

Overall, these methods are fast and effective in the detection of contami-
nants and adulterants (Meza-Má rquez et al. 2010, Rodriguez-Saona and 
Allendorf 2011). Some countries have regulations to determine whether 
foods are safe, authentic and protect consumers requiring Halal and as such, 
investigators have conducted studies into the detection of adulterants in this 
type of food (Kurniawati et al. 2014).

In research investigating the adulteration of Gamo meat (Dama dama ) with 
different percentages of goat meat (0%, 25%, 50%, 75% and 100%), samples 
were stored at 3° C for periods of time between 12– 432  h. The methods used 
were microbiological analysis, measurement of color, lipid oxidation based 
on the thiobarbituric acid reactive substances method (TBARS), FTIR, sen-
sory analysis, and statistical methods of multivariate analysis. In Figure  6.2, 
the average FTIR spectrum of different mixture proportions stored at 3° C 
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for 0  h between 2000 and 900  cm–1  can be observed. A peak at approximately 
1639  cm–1  due to the presence of water (O-H stretch) with simultaneous con-
tribution of amide I (C=O) is also visible. A second peak at 1550  cm–1  can 
be associated with the amide II (N-H, C-N). The peak at approximately 
1460  cm–1  can be assigned to fat (ester CO). The absorptions in the region 
of 950– 1200  cm–1  may reflect the content of carbohydrates, especially mus-
cle glycogen. The amide content III can be viewed at about 1300  cm–1  and 
amino acid side chains between 1480 and 1800  cm–1 . Figure  6.3 shows the 
graph of observations of a LDA, where the discriminant factors F1 and F2 
explain 96.63% of the total variance. With this analysis, the authors obtained 
a clear distinction between each blending percentage. The accuracy and 
performance of the model that relates the current and estimated values 
obtained from FTIR spectra is shown in Figure  6.4 and at t   =  27 and t   =  0  h 
432  h, respectively. The PLS-R was used in order to validate and calibrate the 
model used. The PLS-R model was conducted to determine the relationship 
between the predicted values and the measured values of the mixtures. The 
R2  coefficient shows high values and the RMSEC and RMSECV show low 
values which demonstrates that the PLS-R model has good predictive accu-
racy and performance.

In separate research, the adulteration of beef meatballs with the meat of 
rat (Rattus argentiventer ) was studied by Rahmania et al. (2015). Rat meat was 
obtained from farmers while beef was purchased from several local markets. 
During the preparation of calibration samples, rat meat and beef was pre-
pared by mixing rat meat at concentrations of 0%, 10%, 20%, 35%, 50%, 65%, 
80%, and 100% in beef. The FTIR spectroscopy in combination with PLS-R 
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and PCA multivariate calibrations were used for the differentiation between 
rat meat and beef meatballs. The frequency region from 750 to 1000  cm− 1  was 
selected during PLS-R and a R2  value of 0.993 and root mean square error 
of calibration (RMSEC) of 1.79% was obtained. The PCA modeling method 
correctly classified the meatball sample with 100% rat meat and 100% beef.

In a similar study, the investigators prepared oils of pig (lard), lamb, beef, 
and chicken. FTIR and GC analyses were performed. For calibration, a 
training set of 30 samples consisting of lard, body fats of beef, chicken, and 
mutton with certain concentrations were prepared. Each sample was sub-
jected to FTIR analysis and gas chromatography (GC). PCA showed that PC1 
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accounted for 57% of the variation, while PC2 explained 25% of the varia-
tion, and PC3 contributed to 13% of the variation. These three first PCs can 
describe more than 95% of the overall variation (Rohman et al. 2012).

A separate research study by Rohman et al (2011) investigated the adul-
teration of beef meatballs with pork. The calibration sets were prepared by 
spiking pork to beef meatball in the concentrations of 1.0%, 3.0%, 5.0%, 10.0% 
and 25.0%. Samples containing 100% beef and 100% pork were also made 
to observe the spectral differentiation. The adulteration was detected using 
FTIR spectroscopy and PLS-R. This regression method was used to develop 
a calibration model and a R2  value of 0.999 was obtained.

In another similar research study, pork fat (lard) and beef fat were obtained 
through a rendering process of the corresponding animal (Kurniawati et al. 
2014). The fatty acid composition of lard and beef fat was carried out using 
GC with a flame ionization detector (GC-FID). A set of standards consisting 
of lard in beef fat was prepared by mixing both types of fat in the concen-
tration range of 0%– 100%. FTIR spectroscopy in combination with PLS-R 
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FIGURE  6.4
Illustration of the quality of the PLS-R model conducted to determine the relationship between 
the predicted values and the measured values of the mixtures. (Reprinted from Silva, A.C.C. 
da, Study of adulteration of fresh meat using spectroscopic, microbiological, chemical, physi-
cal and sensory methods. B.Sc., School of Agrarian and Veterinary Sciences, University of 
Trá s-os-Montes e Alto Douro, Portugal, 2014.)
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and PCA was used for the detection of the substitution of beef fat with lard. 
PLS-R was characterized by a high R2  value (0.998). while PCA was used suc-
cessfully in the region from 1200 to 1000  cm–1 .

The adulteration of high quality beef steak with horse meat, beef fat trim-
ming and soybean protein was studied by Meza-Má rquez et al. (2010). The 
beef steak samples were minced using a food processor. Horse meat sam-
ples and beef fat trimming were minced separately in the same way as lean 
beef. Textured soybean protein was rehydrated according to instructions on 
the packet label. Samples of each type of adulterated mixture (minced lean 
beef-horse meat, minced lean beef-textured soy bean, and minced lean beef 
fat trimmings) ranging from 2% to 90% w/w adulterant concentration were 
prepared in increments of 2%. A methodology using MIR spectroscopy in 
tandem with chemometrics was developed to discriminate between pure 
minced meat and adulterated samples. The results of the developed PLS-R 
models showed, in the region 1800– 900  cm− 1 , values of R2  greater than 0.99. 
The SIMCA model showed 100% correct classification for minced beef and 
for beef adulterated with horse meat, beef fat trimmings or soy protein.

A common adulteration process is the substitution of fresh food by 
frozen-then-thawed food. Fresh and frozen-then-thawed samples of offal-
adulterated beef burgers were analyzed using ATR-FTIR technique and 
chemometrics methods (Zhao et al. 2014). The authentic beef burgers were 
produced in two groups, called lean and fat, which correspond to higher 
(lean) and lower (fat) quality levels. The beef burgers in each of the two 
groups were made on separate occasions beginning with the highest lean 
meat content and moving to the lowest. A total of 82 fresh beef burger sam-
ples (36 authentic  +  46 adulterated) and 82 frozen-then-thawed beef burger 
samples (36 authentic  +  46 adulterated) were prepared. The first three PCA 
components accounted for 72.9%, 11.3%, and 8.4% of the variability. From the 
PLS-R models, 100% were accurately classified in calibration and in valida-
tion. The SIMCA efficiency values varied from 0.57 to 0.87 for fresh and from 
0.62 to 0.91 for frozen-then-thawed beef burgers.

MIR spectroscopy requires the preparation and dilution of samples. In 
this methodology the interference of water contained in the food may occur. 
However, MIR with chemometric methods is a promising technique that 
allows detection of larger functional groups.

6.2.3  Fluorescence Spectroscopy (FS)

Fluorescence is a physical process associated with the emission of photons 
upon molecular transition from the electronic excited state to the ground 
state. The emission of photons occurs at a higher wavelength than the wave-
length of the incident excitation source (Bridier et al. 2015). FS involves the 
application of a light beam in the sample, causing excitation of electrons in 
molecules of certain compounds and the emission of low energy light. It’ s 
a fast, sensitive, and non-destructive technique (Karoui et al. 2006, Damez 
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and Clerjon 2008). A stable fluorescent label is of crucial importance for the 
sensitivity of quantitative and qualitative detection as well as for the contrast 
of fluorescent microscopic imaging. Covalently bound fluorescent labels are 
a promising tool for obtaining highly stable fluorescent labeled particles for 
a considerable period of time. However, negligible leakage and low signal 
intensity have also been reported (Weiss et al. 2006).

This method, combined with multivariate statistical analysis, is an effec-
tive tool for the discrimination of different beef muscles in relation to the age 
of the animal, while chemical and mechanical properties make it possible to 
evaluate the quality and adulteration of the food (Sahar et al. 2016). There are 
different applications of FS: heterocyclic particular aromatic amines (HAA), 
tryptophan fluorescence, and nicotinamide adenine dinucleotide phosphate 
oxidase (NADPH) (Karoui et al. 2006). The NADPH fluorescence spectrum 
enables differentiation of fresh from frozen-then-thawed fish and the sim-
plicity of this method also allows the extension of the VIS spectroscopy char-
acterization efficiency of the fish (Karoui et al. 2006).

FS also enables aromatic acids of the amino acids to be observed. When 
using excitation at 250  nm the emission will be at 305– 400  nm. For obser-
vation of proteins folding, tryptophan fluorescence can use excitation at 
290  nm and emission at 305– 400  nm (Albani 2012).

This technique can therefore use the presence of fluorescent molecules 
such as tyrosine, phenylalanine and tryptophan in proteins to detect the 
environmental and biological origin of samples (Karoui et al. 2006). Adipose 
tissue contains fluorescent molecules that are specific for fat. Few studies 
have been conducted with this method in food. However, NADH/FS and 
tryptophan fluorescence in combination with chemometric methods enables 
identification of both fresh and frozen-then-thawed fish fillets (Karoui and 
Blecker 2011, Karoui et al. 2006). Regarding the PCA of tryptophan fluores-
cence spectra, the first two PCs explained 55.9%and 36.9% of the total vari-
ance. On the other hand, the PCA of NADH fluorescence spectra led to 84.9% 
and 12.1% variance for the first two PCs. Then, PCA applied to the factorial 
discriminant analysis (FDA) method obtained a 100% accuracy when using 
the calibration set (Karoui et al. 2006).

The conventional and the synchronous fluorescence spectroscopic method 
of excitation-emission in combination with chemometric methods, namely 
predictive and descriptive methods, determines the changes in foodstuffs 
during technological process and storage. Front-face FS has the potential to 
reduce the analysis time and costs compared to the enzymatic and biochemi-
cal methods (Karoui and Blecker 2011).

6.2.4  Raman Spectroscopy

Raman spectroscopy can be used to observe vibrational, rotational, and other 
low-frequency modes in a molecule and/or a system. The vibrational modes 
provide a major contribution to knowledge of the chemical constitution of a 
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specific analyte. Raman spectroscopy depends upon the inelastic scattering 
of monochromatic light, usually from a laser in the ultraviolet, visible or near 
infrared wavelengths (Li-Chan 1996).

Raman spectroscopy was used to determine authentication and quality of 
foodstuffs (Lohumi et al. 2015). This technique provides specific information 
about and allows the determination of lipids, proteins, and carbohydrates, 
and it can be employed to classify microorganisms (Argyri et al. 2013). It has 
the capacity to provide information on the chemical structure of molecules 
without causing changes in the samples (Boyacı  et al. 2014). It is a very prom-
ising method and has high potential for evaluating the quality of foodstuffs 
during handling, processing, and storage (Boyacı  et al. 2014, Zają c et al. 2014).

There are techniques that can be used to improve the Raman signal, in par-
ticular scattering Raman spectroscopy (SRS) (Tipping et al. 2016), coherent 
anti-stokes Raman (CARS) (Roy et al. 2010), resonance Raman spectroscopy 
(RRS) (Wä chtler et al. 2012), shifted excitation Raman difference spectros-
copy (SERDS) (Sowoidnich and Kronfeldt 2012), and surface-enhanced 
Raman scattering (SERS) (Hakonen et al. 2015). Reducing the Raleigh scat-
tering allows high-quality spectra extension to be obtained. SERS is a pow-
erful tool for characterizing a wide range of analytes when combined with 
biologically relevant nanostructures (Shrestha et al. 2014). The combination 
of RS with Fourier transform provides high spectral resolution with effective 
wavelength accuracy and allows the degree of opening of fatty acids in foods 
to be estimated (Lohumi et al. 2015).

The RS coupled with PCA was developed for the rapid determination of 
beef adulteration with different concentrations of horse meat. The beef sam-
ples were provided from local supermarkets while horse meat samples were 
bought from local markets. In the scope of study, beef samples containing 
0%, 25%, 50%, 75%, and 100% by weight of horse meat were investigated 
(Boyaci et al. 2014). The PCA exhibited a first PC explaining 96.3% and a 
second PC explaining 3.2% of the total variance. The developed model sys-
tem was good enough to differentiate adulterated samples. This method has 
shown good results because of the short time analysis and simple prepara-
tion of the sample (Boyaci et al. 2014). Figure  6.5 illustrates the Raman spectra 
of meat samples collected between 200 and 2000  cm–1 . Raman bands at 555, 
678, 815, 1032, 1265, 1392, 1611, and 1706  cm− 1  were observed in the spectra of 
both horse and beef samples. The spectral difference between the samples 
arose from the unique bands of horse fat that were positioned at 919, 974 and 
1215  cm− 1 .

In another study, fresh meat species (cattle, sheep, goat, buffalo, pig, fish, 
chicken, and turkey) were purchased from the local markets and slaughter-
houses and kept in refrigerated conditions (Boyaci et al. 2014). These were 
utilized in the preparation of salami products and fat was extracted from 
each meat sample. Raman spectroscopy coupled with PCA differentiated 
the origin of the meat and meat products. Principal components PC1 and 
PC2 explained 85.1% and 6.4% of the variance, respectively. After the third 
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derivative was applied to the spectra, PC1 and PC2 explained the variance of 
96.3% and 2.2%, respectively (Boyaci et al. 2014).

In a similar study, fresh samples of horse back muscles were purchased 
from a local butcher (Zają c et al. 2014). The meat mixture was prepared from 
horse meat and beef in a composition of 1:4, 1:2, 3:4, respectively. The content 
of horse meat in the samples with beef was detected using the Raman bands 
at 937, 879, 856, 829, and 480  cm–1  (Zają c et al. 2014).

Al Ebrahim et al. (2013) applied a 671  nm (50  mW) microsystem diode laser 
to study the applicability of the RS in the distinction of beef and horse. The 
fresh muscles of beef and horse were purchased from local butcher shops. 
The muscles were cut into 2  cm thick slices and packed separately. All slices 
were stored at 5º C for a period of 12 days in a laboratory refrigerator. The 
PCA method was applied for data evaluation and presented the PC1 and 
the PC2 explaining 79% and 18% of the total variance, respectively. Raman 
spectroscopy showed changes in the spectra for proteins, lipids, and water 
muscle meat.

In another study, SERDS was applied for separation of the meat samples 
into distinct groups (Sowoidnich and Kronfeldt 2012). For each animal spe-
cies, beef (rump steak), pork (loin chops), chicken (breast), and turkey (breast), 
12 randomly chosen slices of fresh meat were bought in a local supermarket 
and measured at the day of purchase for separation of the meat species into 
four distinct groups with the PCA. The SERDS method showed enormous 
potential and demonstrated a quick breakdown for classification of different 
species of meat.

In a study conducted by Ellis et al. (2005), RS was applied to the identi-
fication of meat and poultry based products and showed potential for the 
rapid assessment of adulteration of food. Samples of pre-packed meat (lamb, 
beef, pork) and poultry (chicken [skinless breast fillets] and turkey [skinless 
breast fillets]) were acquired, and for the subsequent experiments, chicken 
(skinless breast fillets and legs with skin) and turkey (skinless breast fillets 
and legs with skin) were purchased from retail outlets and stored at 4° C. 
Raman spectra were collected using an infrared diode laser at 785  nm, using 
a Renishaw 2000 Raman probe system together with the Renishaw WiRE 
Grams software package and a CCD detector. Spectra were collected for 10  s 
and 1 accumulation over the wave number range 100 cm–1  to 3000  cm–1 . PCA 
and genetic algorithms multiple linear regression (GA-MLR) and discrimi-
nant multiple linear regression (D-MLR) were used.

The Fourier transform Raman spectroscopy (FT-RS) was chosen for 
the discrimination of animal fat (Abbas et al. 2009). To assess the tech-
nique, four mixtures were analyzed: mixture 1 contained 50% bovine, 50% 
ovine– porcine; mixture 2 contained 80% bovine, 20% porcine; mixture 3 con-
tained 50% bovine, 50% ovine– porcine– avian– former foodstuffs; and mix-
ture 4 contained 55% bovine, 15% ovine, 30% porcine, and traces of avian 
fat. PCA was applied and the first PC represented 67% of the variance while 
the second one explained 24% of the variance. PLS-R/DA model allowed 
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discrimination between poultry samples and other components (porcine, 
bovine, ovine fats, and fish oils) obtained a sensitivity and specificity of 0.917 
and 1.000, respectively

In a study by Beattie et al. (2007), RS was used to classify adipose tissue 
from four different species (chicken, beef, lamb, and pork). The samples 
used in this investigation were from beef, lamb, pork, and from the breast 
of chicken. In order to obtain a wide range of variation within each spe-
cies, the samples were obtained from a number of commercial outlets and 
encompassed a wide variety of breeds and feeding regimes. Complementary 
fatty acid composition was determined by GC. PCA data reduction on the 
adipose Raman spectral data set was followed by LDA and allowed 97.6% 
correct classification of the samples, while using the PLS-R/DA method fur-
ther improved the correct classification rate to 99.6%

Beef offal adulteration of beef burgers was studied using dispersive Raman 
spectroscopy and multivariate data analysis to explore the potential of these 
analytical tools for detection of adulterations in comminuted meat products 
with complex formulations (Zhao et al. 2015). Fresh beef (brisket), beef offal 
(kidney, liver, lungs, and heart) and beef fat were purchased from local stores 
and stored overnight at 4° C. Authentic beef burgers comprised two groups, 
higher quality burgers contained only lean beef and beef fat; lean meat con-
tent varied between 80% and 100% of the burger in 2.5% increments, with 
fat accounting for the remainder and lower quality burgers contained rusk 
(5%) and water (20%) in addition to lean beef (45%– 65% in 2.5% increments) 
and beef fat (30%– 10% in 2.5% increments). Adulterated beef burgers were 
formulated with lean beef, beef fat, water, rusk, and offal (liver, lung, kid-
ney, and heart). Multivariate data analysis methods of the DRS spectra com-
prised PLS-R/DA, SIMCA, and PCA. In relation to the PCA, the first three 
PCs described 61%, 34%, and 3% of variance, respectively, in the frozen-then-
thawed beef burger spectral data set. PLS-DA models correctly classified 
89%– 100% of authentic and 90%– 100% of adulterated samples. The SIMCA 
has a specificity of 0.64– 0.89 and a sensitivity of 0.95– 1. In comparison with 
other studies by these authors (Zhao et al. 2014), using the model of PLS-R/
DA, adulterated samples obtained a 74%– 91% value for NIR, 73%– 100% for 
Fourier transform-NIR, and 81%– 100% for RS. The SIMCA efficiency was 
0.62– 0.91 for NIR, 0.81– 0.94 for Fourier transform-NIR and 0.88– 0.97 for DRS.

Raman spectroscopy provides a high rating of detection of adulteration 
compared to other spectroscopic methods. Water interference doesn’ t occur 
when using the RS technique, providing specific information on the matrices 
of the samples. Samples can be read through glass or polymer packaging. 
However, the heating from the laser radiation can destroy the samples or 
hide the Raman spectrum. This process requires only a small sample. It has 
the ability to supply information about the chemical structure of molecules 
without causing any alterations. This technique is a new approach to the 
determination of meat adulteration and showed reasonable results for the 
determination of fraud meat mixtures.
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6.2.5  Nuclear Magnetic Resonance Spectroscopy

NMR is based on the emission and absorption of energy in the radio fre-
quency range of the electromagnetic spectrum. The most commonly mea-
sured nuclei are 1 H and 13 C, the first for proteins because they are rich in 
hydrogen and the second for larger proteins and lipids (triglycerides) 
(Aursand et al. 2009, Jakes et al. 2015). The shielding effect of electrons, which 
decreases resonance frequencies of nuclei, varies with the chemical envi-
ronment and is, therefore, characteristic of specific structural fragments of 
organic compounds (e.g., methyl, methylene, or methine1 H nuclei) and their 
substituents (e.g., OH, NH2 , NH, COOH, CONH) (Mlyná rik 2016).

This technique presents advantages compared with other spectroscopic 
methods for foods with a high water percentage because the protons are easily 
detected. However, it is expensive and time consuming (Aursand et al. 2009, 
Jakes et al. 2015, Santos et al. 2014). Low-resolution NMR or time-domain 1 H 
nuclear magnetic resonance (TD-NMR) is an excellent alternative to tradi-
tional methods because it is rapid, simple, and has the potential for online and 
in situ measurements and using permanent magnet technologies, significantly 
reduces the overall system and running costs (Santos et al. 2014). These benefits 
make NMR particularly interesting for analyzing the safety of food and conse-
quently, there has been an increase in its use in the food industry (Damez and 
Clerjon 2013). For example, NMR has shown high sensitivity in differentiating 
between the structure of muscles in wildlife and farmed animals (Standal et 
al. 2010). The 1 H NMR is also an effective technology for analysis and quantifi-
cation of triglyceride samples and the use of high resolution (HR) 13 C NMR in 
the analysis of lipids is increasing with lipid analysis being a potential tool for 
authentication of fish and marine oils (Standal et al. 2010). However, there are 
few studies with NMR for authentication of meat or fish products.

In a study by Santos et al. (2014), TD-NMR spectroscopy, when combined 
with univariate and multivariate analysis, provided a valuable tool for tracing 
the sex and bull race of beef samples. It has been demonstrated that NMR is a 
fast and accurate method for measuring conjugated linoleic acid (CLA) content 
in beef samples (Manzano Maria et al. 2010). The beef samples were collected 
from calves (43 heifers and 56 steer) from different bull race (Angus, Bonsmara, 
and Canchim) and cows (Simmental-Nellore and Angus-Nellore for cows). The 
calves were designated according to the bull race and sex, resulting in 14 Angus 
heifers, 21 Angus steer, 17 Bonsmara heifers, 19 Bonsmara steer, 12 Canchim heif-
ers, and 16 Canchim steer. Carr-Purcell-Meiboom-Gill (CPMG) and Continuous 
Wave Free Precision (CWFP) pulse sequences were used to obtain time-domain 
1 H NMR. The PLS-R/DA showed a correct classification higher than 79% either 
for CPMG or CWFP decays (validation set). The k-nearest neighbor (KNN) 
showed a correct classification of 75% and 76%, while SIMCA showed a correct 
classification 66% and 78%, respectively, for the CWFP and CPMG dataset. The 
SIMCA method obtained a best predictability for the CWFP dataset with correct 
classification between 85% and 89% for beef samples. 1 H NMR coupled CPMG 
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CWFP and with univariate and multivariate methods obtained a correct classi-
fication of more than 80%. The 1 H TD-NMR method allowed for authentication 
and traceability when applied to meat samples.

The 60  MHz 1 H NMR method was used to differentiate samples of fresh 
beef and horse. Peak integration was sufficient to differentiate samples of 
fresh beef (76 extractions) and horse (62 extractions) using Naï ve Bayes clas-
sification. Fresh meat samples were purchased from a variety of outlets. It 
was possible to obtain 100% correct classification of the different samples 
of beef and horse, exploiting the differences in triglyceride compositions. In 
relation to the PCA, principal components 1 and 2 described 83% and 12% 
for lab 1 and 81% and 13% for lab 2, respectively, of variance in fresh beef and 
horse spectral data set (Jakes et al. 2015). The first two PC scores are plotted 
against one another in Figure  6.6(a) and (b), with symbols coded according 
to species. In both cases, the first dimension contains most of the relevant 
information relating to the difference between the two species. Furthermore, 
regions of the loading corresponding to the olefinic and bis -allylic peaks are 
positively associated with horse samples in Figure  6.6 (c) and (d).

The differences in quality and price between different species of fish are 
reasons for falsification and therefore, it is necessary that methods are able to 
verify the traceability of the correct information to protect consumer rights 
(Aursand et al. 2009).

The following species and stocks of lean fish were caught outside the coast 
of Vikna, Nord-Trondelag: Norway north-east arctic cod, Norwegian coastal 
cod (G. morhua L .), haddock (M. aeglefinus ), saithe (P. virens ), and pollack 
(P. pollachius ). Approximately 90  mg of the oil sample was transferred to 5  mm 
NMR tubes and diluted with 0.6  mL deuterated chloroform (CDCl3 , 99.8% 
purity, Isotec Inc., Matheson). Lipid was extracted from white fish muscle under 
the back dorsal fin according the Bligh and Dyer method (Bligh and Dyer 1959). 
Before analyzing the lipid extract by NMR, parts of the chloroform phase were 
removed by evaporation. 13 C NMR spectroscopy coupled with chemometric 
methods PCA, LDA and Bayesian belief networks (BBN) authenticated five dif-
ferent gadoid fish species. With PCA, groupings were obtained and the first 
two principal components accounted for 36% and 9% of the variance. PCA was 
used as input variables in the LDA. LDA with the three PCs obtained 21/27 cor-
rect classifications (78% correctly classified) and the Bayesian belief networks 
(BBN) showed 100% correct classifications (Standal et al. 2010).

13 C NMR spectroscopy in tandem with chemometrics methods classified 
the Atlantic salmon in relation to its geographical origin and to its identity as 
wild or farmed. The probabilistic neural networks (PNN) and support vector 
machines (SVM) showed an excellent breakdown of 98.5% and 100%, to wild 
and farmed salmon. The geographical origin obtained correct classification 
of 82.2% to 99.3% for PNN and SVM, respectively (Aursand et al. 2009).

A similar study with NMR and chemometrics methods tried to classify 
Gilthead pargo  in accordance with wild or farmed and geographical origin 
(Rezzi et al. 2007). The LDA and PCA made a clear distinction between wild 
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and farmed samples. This method showed a rating of 100% of the samples in 
accordance with wild or farmed and 85%– 97% for the geographical origin.

Fourier transform spectroscopy and micro 1 H NMR LF are used in stud-
ies of changes in the structure of proteins and secondary water distribution 
(Rezzi et al. 2007, Damez and Clerjon 2013). The NMR technique permits an 
easy reading of the characteristics of foods with large amounts of water but 
is highly sensitive, expensive and time consuming. It is a method that can 
cause spectra with many peaks. However, TD-NMR is fast, simple and has 
the potential for online measurement.

6.2.6  Multispectral and Hyperspectral Imaging

Currently, many researchers are using hyperspectral imaging (HIS) methods 
because they are powerful techniques which can provide spectral data of an 
object with certain chemical characteristics in a spatially resolved manner 
(Pu et al. 2015). HIS methods, with the aid of image processing techniques 
that allow visualization, allow detection of attributes by spectral analysis of 
the samples. This method is a non-conventional analytical technique, nonde-
structive, using few reactants and it is fast.

This method allows simultaneous analysis of several samples and was 
introduced to integrate images and spectroscopy in a system for providing 
spectral and spatial information of an object (Ma et al. 2015, Lohumi et al. 
2015). The images originate three-dimensional data sets that can be analyzed 
to characterize the object in greater detail than the imaging or spectroscopy 
techniques (Kamruzzaman et al. 2016). HIS is composed of hundreds of dis-
crete spectral bands for each spatial position for the object (Kamruzzaman 
et  al. 2012). The spectroscopy is used to detect or quantify the biological, 
chemical and physical properties of samples based on their spectral signa-
ture images and transform chemical information steps to viewing space 
(Kamruzzaman et al. 2013). HIS can be used to ascertain the amount of cer-
tain attributes and where they are located in the sample. Spectra can be used 
to characterize, identify and discriminate classes and types of materials in 
the image. The most commonly used spectral bands are in NIR, VIS-NIR and 
VIS (Lohumi et al. 2015). NIR HIS is involved in acquiring a spectrum for each 
image pixel in micro- and macroscopic scale (Kamruzzaman et al. 2016).

In a study by Kamruzzaman et al. (2013), the identification of the adultera-
tion was conducted using pure minced lamb meat and lamb meat mixed with 
potential adulterants including pork, heart, kidney, and lungs in 20% propor-
tions. The lamb samples were adulterated by mixing pork in the range of 
2%– 40%. Both minced lamb (28% fat) and pork (15% fat) were acquired from 
a local supermarket and transported to the laboratory. NIR HIS detected the 
level of adulteration of minced lamb using a PLS-R method. PCA was used 
to interpret and visualize the spectral data to highlight their properties. The 
first PC represents 87.5% of the variance while the second one explains 8% 
of the variance. (The two first PCs explained 95.7% variation).With PLS-R 
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prediction results, it was possible to detect adulteration in minced lamb with 
high performance in both calibration and cross-validation conditions using 
five latent variables (LV). The coefficient of determination in calibration (R2 c ) 
of 0.99, RMSEC of 1.08%, coefficient of determination in cross-validation (R2 cv ) 
of 0.99, and RMSECV of 1.37% were obtained for PLS-R. The calibration model 
was also evaluated based on the ratio of percentage deviation (RPD) and 
this value for adulterate detection was 8.51. The multiple linear regression 
(MLR) model was then built using the reduced spectral data and the results 
of MLR for predicting adulteration are R2 c  of 0.99, RMSEC of 1.25%, R2 cv  of 
0.98, RMSECV of 1.45%, and RPD of 8.04. The prediction ability of PLS-R with 
selected wavelengths was equivalent to the PLS-R with full spectra, with R2 cv  
(0.99 vs. 0.99), RMSECV (1.42% vs. 1.37%), and RPD (8.51 vs. 8.21).

In a different study, meat samples originating from Longissimus dorsi  mus-
cles of pork, beef, and lamb were analyzed by Kamruzzaman et al. (2012). The 
muscles were dissected and then sliced by a mechanical slicer. The slices were 
labeled and vacuum-packed and transported under refrigerated conditions 
to the laboratory. HIS with PCA and PLS-R/DA was used for identification 
and authentication of different red meat species. The first three PCs resulting 
from PCA explained 99.7% of the variation among samples. The PC1 and PC2 
were particularly representative and accounted for 98.9% of the total variance 
(PC1 –  88.9% and PC2 –  10.1%). The PLS-R/DA showed a classification accu-
racy of 93.3%, 98.7%, and 97.3% for pork, beef, and lamb, respectively.

NIR HIS coupled with PLS-R/DA was used to distinguish between fresh 
and frozen-then-thawed samples (Barbin et al. 2013). Fresh samples of pork 
from the loin muscle were obtained from a commercial food retailer and 
transported to the laboratory for storage at 4° C. After 24  h, each fresh sample 
was removed from cold storage and scanned in the NIR hyperspectral sys-
tem. Pork samples were then vacuum-packed and frozen at –18° C. PLS-R/
DA with full cross-validation had coefficients of prediction of 0.97 and 0.89 
for R2 C  and R2 CV , respectively, with standard error of calibration (SEC) of 0.23 
and standard error of cross-validation (SECV) of 0.46. To verify the poten-
tial information carried by the selected wavelengths, frozen-then-thawed 
samples were correctly identified (sensitivity  =  1.00), and no fresh sample 
was misclassified as frozen-then-thawed (specificity  =  1.00). The overall 
correct classification for this method was 100% to discriminate fresh from 
frozen-then-thawed samples. The classification of pork samples according 
to freezing treatment are: fresh samples (85.4%), frozen once (77.9%), frozen 
twice (60%), frozen three times (70%) and frozen four times (90%). The fresh 
pork meat and frozen-then-thawed meat was detected with PLS-R/DA and 
obtained 97.9% accuracy, and with colorimeter method achieved 75% accu-
racy. The discriminant model PLS-R/DA obtained a variance to LV1 of 58% 
and LV2 of 39% to identify the fresh and frozen-then-thawed samples. This 
method can be applied for the benefit of the retail sector and the consumer. 
Figure  6.7 shows the main configuration of the push room NIR hyperspec-
tral imaging system, reprinted from Barbin et al. (2013).
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In other research, the potential of VIS and NIR HIS with PNN was used 
for classification of fresh and frozen-then-thawed pork muscles (Pu et al. 
2015). Animals with similar conditions (age, weight, feeding environment 
from the same farm) were obtained for the experiment. The pork samples 
were divided into three groups: the first group without any freezing treat-
ment was designated as fresh pork meat, the second group was frozen-
then-thawed-once, and the third group was frozen-then-thawed-twice. The 
PC images from HIS were obtained using histogram statistics (HS), gray 
level co-occurrence matrix (GLCM) and gray level-gradient co-occurrence 
matrix (GLGCM). For fresh, frozen-then-thawed once and frozen-then-
thawed twice meats, PNN showed a correct classification rate of 100% 
and 97.73% for calibration and validation sets, respectively. The successive 
projections algorithm (SPA) showed a correct classification rate of approxi-
mately 100% for calibration and validation sets. The correct classification 
rate was reduced to 86.36% and 86.36% for calibration and validation sets, 
when six optimum wavelengths were used alone. The average classifica-
tion accuracy of PNN using optimum wavelengths (OW)-GLGCM was the 
highest (92.0%), followed by OW-GLCM (91.3%), OW-HS (91.3%) and OW 
(86.4%).

The multispectral imaging (MSI) coupled with PLS-R/DA and LDA was 
used for the detection of minced beef fraudulently substituted with pork 
(Ropodi et al. 2015). Different levels of adulteration of minced beef and pork 
were prepared; fillets were cut into smaller pieces and grinded separately 
one at a time, using a domestic meat-mincing machine. To achieve different 
levels of adulteration, ranging from 10% to 90% with a 10% increment, the 
appropriate amount of each type of meat was used and mixed in conditions 
that simulate industrial processing. The class of adulteration obtained an 
overall correct classification, mean per-class recall and precision of 83.3%, 
83.3%, and 84.5%, respectively. The classification error for 98.48% of the 
samples was, at most, 10% for LDA. The overall correct classification, mean 
per-class recall and precision of pure pork, adulterated and pure beef was 
over 94% (mean recall, precision and overall correct classification was 

Camera

Computer

Illumination
Translation stage

Spectrograph

FIGURE  6.7
Hyperspectral imaging system setup. (Reprinted with permission from Barbin, D.F. et al., 
Innovative Food Science and Emerging Technologies , 18, 226– 236, 2013.)
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94.4%, 99.4%, and 98.5%, respectively). The PLS-R/DA showed a correct 
classification of 98.5% using 12 PLS-R components after cross-validation.

In a study by Ma et al. (2015), VIS-NIR HIS was used to classify the fresh 
and frozen-then-thawed pork meats. The pork Longissimus dorsi  muscles 
were obtained from a local market. The first group of fresh samples were 
divided without any freezing treatment, the second group of meat sam-
ples were frozen at − 18° C for 24  h and then thawed at 20° C for 2  h, and the 
third group were frozen and then thawed twice. The correct classification 
rate was applied to assess the performance of the PLS-R/DA classifier for 
model establishment. The correct classification rate of 97.7% was achieved, 
confirming the high potential of textures for fresh and frozen-then-thawed 
meat discrimination. The PCA with three components explained 99.9% 
of variance and the first three PC images (the optimal GLGCM images) 
explained 98.1%, 1.3%, and 0.4%, respectively. This method is a powerful 
tool and allows the analysis of the quality of food and its authenticity.

In a 2016 study, chicken adulteration in minced beef was detected with VIS-
NIR HIS (400– 1000  nm) and HIS was acquired in the reflectance mode (RM) 
(Kamruzzaman et al. 2016). The pure minced beef and minced chicken were 
collected from a local supermarket. The minced beef samples were adulter-
ated by mixing minced chicken in the range of 0% at 50%. Hyperspectral 
images were transformed into absorbance (A) and used the Kubelka-Munk 
(KM) function (Nobbs 1985). The performance of PLS-R developed using raw 
and pre-treatment spectra (1st derivative, 2nd derivative, MSC, and SNV). 
The percentage of chicken adulteration in minced beef was predicted with 
R2 c  of 0.97, 0.97, and 0.95 with the corresponding RMSEC values of 2.5%, 
2.6%, and 3.3% for RM-PLS-R, A-PLS-R, and KM-PLS-R, respectively. When 
applied to an independent validation set, they were capable of predicting 
adulteration with R2 p  of 0.97, 0.97, and 0.96 and the corresponding RMSEP 
of 2.67%, 2.45%, and 3.18%, for RM-PLS-R, A-PLS-R, and KM-PLS-R, respec-
tively. The ratio of percentage deviation values obtained were 5.84, 6.24, and 
4.81 for RM-PLS-R, A-PLS-R, and KM-PLS-R, respectively.

Multispectral and hyperspectral imaging are quick techniques that allow 
a large number of samples to be analyzed at the same time and provide spec-
tral data on the chemical, biological, and physical characteristics of samples. 
However, the instrumentation is costly and data processing can limit the use 
of this method in real time.

6.3  Spectral Data Processing

Spectroscopic methods associated with chemometric methods are tools for 
the identification of species and foodstuffs that are not on the label. However, 
identifying regions of interest and features in the spectrum, sometimes 
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called regions of interest, of the tested substances is important for the opti-
mization of the methodologies (De Jong 1990).

Univariate methods that can be used, namely, the averages and standard 
deviations, descriptive statistics, box plots, analysis of variance (ANOVA), 
pair-wise comparisons of mean values with Fisher’ s LSD test, and t– test. 
These methods were applied, for example, by Pillonel et al. (2005) in the 
study of geographic origin of European Emmental cheese. A comparison 
between univariate and multivariate methods was performed by Moustafa 
et al. (2015) for evaluating the efficiency of spectral resolution when manipu-
lating ratio spectra applied to ternary mixtures in common cold prepara-
tions. Multivariate regression techniques have been widely used to study 
food authentication. A comprehensive introduction and review on multi-
variate regression procedures can be found in Higgins (2005), van den Hout 
et al. (2007), and Cruyff et al. (2016) and references therein.

The application pre-treatment may remove the effects of unsystematic 
spectral data and eliminate variations, light scattering, random noise, exter-
nal factors, and base line changes (Rinnan et al. 2009). The most common 
pre-treatment methods are the standard normal variate (SNV) (Barnes et al. 
1989), the multiplicative scatter correction (MSC) (Dhanoa et al. 1994), the 
Norris-Williams derivation (Rinnan et al. 2009), and the Savitzky-Golay 1st 
and 2nd derivatives (Savitzky and Golay 1964).

The SNV is an accurate and reliable method for ranking in the spectro-
scopic field. The SNV is also an ideal technique for classification and vali-
dation of the results of PCA (Alamprese et al. 2013, Schmutzler et al. 2015, 
Ropodi et al. 2015). The MSC method is a simple processing step that attempts 
to account for scaling effects and offset (baseline) effects. This correction is 
achieved by regressing a measured spectrum against a reference spectrum 
and then correcting the measured spectrum using the slope (and possibly 
intercept) of this fit (De Jong 1990). The Norris-Williams derivation is a basic 
method developed to avoid the noise inflation in finite differences. This tech-
nique was elaborated on by Norris and Williams in 1984 as a way to calculate 
the derivative of NIR spectra. The NW derivation includes two steps, smooth-
ing of the spectra and first-order derivation (Norris and Williams 1984). The 
Savitzky-Golay method reveals a larger structure of spectral data resulting 
in an easy interpretation of the chemical basis of the observed signals. The 
derivatives can also be used in conjunction with SNV (Press and Teukolsky 
1990).

After pre-treatment of the spectral data a few simple statistic methods 
allow extraction of information from the spectral data.

The PCA method is applied to spectral data to reduce the dimensionality, 
to classify samples, and to identify outliers. The original variables are trans-
formed into new uncorrelated variables called PC that are a linear combina-
tion of the original variables. The main components are linearly independent 
and represent variations in the dataset in descending order with PC1 describ-
ing the largest variance, PC2 the second largest variance, and so on.
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The LDA method is a probabilistic classification technique that allows for 
maximum separation of samples between categories. The number of samples 
must be greater than the number of variables. This method allows the recog-
nition of supervised patterns where the number of categories and the sam-
ples belonging to each category defined above is based on the assumption 
that samples of the same group are more similar than samples belonging to 
different groups. This method also allows a linear transformation maximiz-
ing the variance between classes and minimizing the variance within the 
class (Morsy and Sun 2013b, Uddin et al. 2005, Alamprese et al. 2013).

The PLS method permits an associate set of independent variables (pre-
dictors, X) to response variables (observations, Y) by reducing the original 
number of descriptors to a new set of data based on a reduced number of 
orthogonal factors called latent variables. The PLS-DA method accounts for 
the maximum separation between the classes in the data where the vari-
able is dependent and categorized (Morsy and Sun 2013b). PLS-R is used to 
reduce the original predictors to a new variable which has better predictive 
power (Sun et al. 2012a, Morsy and Sun 2013b).

The SIMCA method provides a useful classification of high dimensional 
variations and incorporates PCA to reduce the dimensions of spectral informa-
tion. The computing speed of SIMCA with PCA can be increased by calculat-
ing the covariance matrices and the indices. The MIR ATR spectroscopy with 
SIMCA makes it possible to successfully detect and quantify adulterants(Meza-
Má rquez et al. 2010, Zhao et al. 2015). The mean difference, standard devia-
tion of difference, RMSECV, and R2  are used for validation. Generally, a good 
model should have high R2  and RPD and low RMSEC and RMSEP.

The PNN method consists of establishing decision limits in feature space 
with distinct patterns belonging to different classes. This method improves 
the standards of classification and enables faster speed training (Cheng et al. 
2015). The PNN method showed potential for the analysis of the NMR data 
technique. PNN can be used as a classifier and to find variables with the high-
est impact in classification (Standal et al. 2010). For the MLR, it is necessary 
to establish the wavelength that can relate two or more explanatory variables 
and the response variable (Kamruzzaman et al. 2013). The GLCM method is 
an image processing method for resource collection textural analyzing the 
relationship of levels and slope between 2 pixels (Karoui et al. 2006).

6.4  Discussion and Conclusions

Authentication of foodstuffs is crucial due to design food with adulteration 
by substitution of species, geographical origin, or freshness. NIR spectros-
copy detects the number of bands of smaller molecules OH, CH, and NH 
compared to mid-infrared spectroscopy which detects a greater number of 
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the molecules in the food matrix in more detail. This involves stretching, 
bending, and shaking movements of functional groups, such as CC, CH, OH, 
C = O and NH (Mamani-Linares et al. 2012, Alamprese et al. 2013, Zhao et al. 
2014).

MIR spectroscopy in conjunction with Fourier transform and chemomet-
ric methods proves to be a promising technique for the analytical determi-
nation of adulteration of Halal food (Rahmania et al. 2015). However, the 
results of the ATR technique are affected by water content contained in food 
producing noise (signal). The method is fast, non-destructive and does not 
involve a lot of sample preparation, giving sufficiently reliable results. MIR 
spectroscopy requires dilution of samples unlike NIR, however this tech-
nique has difficulty in reading samples with large amounts of water, such 
as fish (Uddin et al. 2005, Zhao et al. 2014). NIR spectroscopy is a powerful 
technique for rapid analysis in line applied to inspections of foodstuffs and 
discrimination of linear and nonlinear allowing adulteration to be detected 
with ease (Morsy and Sun 2013b). FS reduces the time and cost of the mea-
surements and analysis of enzymatic bio-analytic chemistry. This method 
can identify fish and detect fresh from frozen-then-thawed samples (Karoui 
et al. 2006). In a study by Jakes et al. (2015), investigators used a simple, quick, 
and inexpensive basic extraction with chloroform to obtain triglycerides in 
NMR spectra and found that 60  MHz  1 H  NMR is a viable approach in high 
yield for the determination of adulteration in meat.

To obtain vibrational spectroscopic results, it is necessary to use chemomet-
ric models. The PCA, LDA, SIMCA, and PLS-R/DA methods demonstrated 
that, combined with spectroscopy methods, these techniques are useful tools 
for authentication and detection of adulteration in food (Kamruzzaman et al. 
2013, Meza-Má rquez et al. 2010, Zhao et al. 2014). RS is a promising technique 
in providing specific information on the identification of sample matrices 
based compounds (lipids, proteins, carbohydrates), it is sensitive to smaller 
components such as microorganisms responsible for spoilage and it provides 
detailed information on molecular vibrations and the chemical structure of 
molecules without causing damage to the small sample required for analysis 
(Boyaci et al. 2014, Argyri et al. 2013, Al Ebrahim et al. 2013).

Water interference does not occur with RS and results in water samples 
can be analyzed by glass or polymer packaging. However, analyzing sam-
ples using FS can hide the impurities and heat from the intense laser radia-
tion can destroy the sample or hide the spectrum. To alter this effect, the 
use of a NIR laser reduces or prevents the fluorescence of the samples. It is 
a method with a high potential for identification purposes (Lohumi et al. 
2015). Although NMR is a technique that allows the detection and analysis 
of different types of fat, it is an expensive technique, can yield spectra with 
too many peaks, and requires very concentrated solutions. While NIR, MIR 
and RS are well-established techniques, they are based on a sample point, a 
relatively small area of a species, which is not capable of providing the com-
position gradients yielding mean results compared with the multispectral 

9781138070912_C006.indd   157 06-06-2017   18:28:53



158 Trends in Food Safety and Protection

TABLE  6.1

Detection Techniques of Different Types of Meat and Fish Species

Type of 
Adulteration

Food 
Products Detection Method

Chemometric 
Method References

Substitution 
or removal 
of 
ingredients

Halal and 
non-Halal 
Chinese 
Ham 
sausages

FTIR PLS-R/DA and 
PCA

(Xu et al. 2012)

Veal Fourier transform 
-NIR

PCA (Schmutzler et al. 
2015)

Lamb NIR hyperspectral 
imaging

PCA and PLS-R (Kamruzzaman 
et al. 2013)

Iberian pork 
sausages

NIR PCA and MLSD (Ortiz-Somovilla 
et al. 2005)

Beef or 
bovine meat

UV– VIS, NIR and 
MIR

PCA, LDA and 
PLS-R

(Alamprese et al. 
2013)

Raman PCA (Boyaci et al. 2014)
Raman PCA and PLS-R (Ebrahim et al. 

2013)
60  MHz 1H NMR Naï ve Bayes 

classification 
model, PCA

(Jakes et al. 2015)

FTIR PLS-R and PCA (Kurniawati et al. 
2014)

Mid-infrared PLS-R and 
SIMCA

(Meza-Má rquez 
et al. 2010)

ATR-FTIR PLS-R/DA (Nunes et al. 2016)
FTIR PLS-R and PCA (Rahmania et al. 

2015)
FTIR PLS-R (Rohman et al. 

2011)
Multispectral 
imaging

LDA and 
PLS-R/DA

(Ropodi et al. 
2015)

TD-NMR SIMCA, KNN 
and PLS-R/DA

(Santos et al. 2014)

Fourier 
transform-Raman

(Zają c et al. 2014)

Mid-infrared ATR SIMCA, PCA 
and PLS-R/DA

Carp fish 
fillets

Hyperspectral 
imaging

SIMCA and 
PNN

(Cheng et al. 2015)

Chicken VIS NIR 
hyperspectral 
imaging

PLS-R (Kamruzzaman 
et al. 2016)

(Continued)

AU:  Please 
provide in-text 
citation for Table 
6.1.
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image. HIS and MS are important methods for food inspection as analysis 
is more convenient, fast and they analyze a larger number of samples simul-
taneously. However, the high initial costs and difficulties in data acquisition 
have limited the use of this real-time technology (Kamruzzaman et al. 2012) 
(Table 6.1).

Within this research area of the food industry, the future perspective is the 
application of multispectral imaging to many foodstuff samples to determine 

AU:  Please con-
firm whether the 
inserted citation 
for Table 6.1 is 
appropriate.
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Type of 
Adulteration

Food 
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Chemometric 
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Substitution 
or removal 
of 
ingredients
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sausages

FTIR PLS-R/DA and 
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(Xu et al. 2012)

Veal Fourier transform 
-NIR

PCA (Schmutzler et al. 
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Lamb NIR hyperspectral 
imaging

PCA and PLS-R (Kamruzzaman 
et al. 2013)

Iberian pork 
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NIR PCA and MLSD (Ortiz-Somovilla 
et al. 2005)
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bovine meat

UV– VIS, NIR and 
MIR

PCA, LDA and 
PLS-R

(Alamprese et al. 
2013)

Raman PCA (Boyaci et al. 2014)
Raman PCA and PLS-R (Ebrahim et al. 

2013)
60  MHz 1H NMR Naï ve Bayes 

classification 
model, PCA

(Jakes et al. 2015)

FTIR PLS-R and PCA (Kurniawati et al. 
2014)

Mid-infrared PLS-R and 
SIMCA

(Meza-Má rquez 
et al. 2010)

ATR-FTIR PLS-R/DA (Nunes et al. 2016)
FTIR PLS-R and PCA (Rahmania et al. 

2015)
FTIR PLS-R (Rohman et al. 

2011)
Multispectral 
imaging

LDA and 
PLS-R/DA

(Ropodi et al. 
2015)

TD-NMR SIMCA, KNN 
and PLS-R/DA

(Santos et al. 2014)

Fourier 
transform-Raman

(Zają c et al. 2014)

Mid-infrared ATR SIMCA, PCA 
and PLS-R/DA

Carp fish 
fillets

Hyperspectral 
imaging

SIMCA and 
PNN

(Cheng et al. 2015)

Chicken VIS NIR 
hyperspectral 
imaging

PLS-R (Kamruzzaman 
et al. 2016)

(Continued)

AU:  Please 
provide in-text 
citation for Table 
6.1.

TABLE  6.1 (CONTINUED)

Detection Techniques of Different Types of Meat and Fish Species

Type of 
Adulteration

Food 
Products

Detection 
Method

Chemometric 
Method References

Fresh vs. 
thawed 
meat

Porcine NIR hyperspectral 
imaging

PLS-R/DA (Barbin et al. 2013)

VIS– NIR 
hyperspectral 
imaging

PCA (Ma et al. 2015)

Hyperspectral 
imaging

(Pu et al. 2015)

VIS and NIR 
hyperspectral 
imaging

PNN (Pu et al. 2015)

Beef NIR spectroscopy LDA and 
PLS-R/DA

(Morsy and Sun 
2013a)

Mid-infrared ATR 
spectroscopy

PCA and LDA (Zhao et al. 2014)

Fish Front-face 
fluorescence

PCA and FDA (Karoui et al. 
2006)

NIR PCA and 
PLS-R/DA

(Ottavian et al. 
2013)

Classification 
of species or 
origin

Gadoid fish 
species

13C NMR PCA and BBN (Standal et al. 
2010)

Lamb NIR LDA, PCA and 
PLS-R/DA

(Jakes et al. 2015)

Different 
meat species

Raman 
spectroscopy

PCA (Boyaci et al. 2014)

VIS and NIR PLS and PCA (Cozzolino and 
Murray 2004)

Hyperspectral 
imaging

PCA and 
PLS-R/DA

(Kamruzzaman 
et al. 2012)

VIS and NIR 
spectroscopy

PCA and PLS-R (Mamani-Linares 
et al. 2012)

Deer Shifted excitation 
Raman difference 
spectroscopy

PCA (Sowoidnich and 
Kronfeldt 2012)
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the quantity of contaminants and the application of spectroscopy techniques 
to determine adulteration of food (Raman ).
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