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Abstract: In this paper, we introduce the bicomplex generalized tribonacci quaternions. Furthermore,
Binet’s formula, generating functions, and the summation formula for this type of quaternion are
given. Lastly, as an application, we present the determinant of a special matrix, and we show that the
determinant is equal to the nth term of the bicomplex generalized tribonacci quaternions.
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1. Introduction

Corrado Segre introduced bicomplex numbers in 1892. The bicomplex numbers are defined by
four elements 1, i, j, ij, where i, j and ij satisfy the properties:

i2 = −1, j2 = −1, ij = ji. (1)

Thus, a bicomplex number q can be expressed as follows:

q = q1 + iq2 + jq3 + ijq4 = q1 + iq2 + j(q3 + iq4),

where q1, q2, q3, q4 ∈ R.
For any q = q1 + iq2 + jq3 + ijq4 and p = p1 + ip2 + jp3 + ijp4, the addition, subtraction,

and multiplication of the bicomplex quaternions are defined by the following:

q + p = q1 + p1 + i(q2 + p2) + j(q3 + p3) + ij(q4 + p4),

q− p = q1 − p1 + i(q2 − p2) + j(q3 − p3) + ij(q4 − p4),

q× p = q1 p1 − q2 p2 − q3 p3 + q4 p4 + i(q1 p2 + q2 p1 − q3 p4 − q4 p3)

+ j(q1 p3 + q3 p1 − q2 p4 − q4 p2) + ij(q1 p4 + q4 p1 + q2 p3 + q3 p2),

respectively.
Bicomplex numbers have three different conjugations as follows:

q∗i = q1 − iq2 + jq3 − ijq4,
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q∗j = q1 + iq2 − jq3 − ijq4,

q∗ij = q1 − iq2 − jq3 + ijq4.

For more details about the bicomplex numbers, the readers can refer to [1–4].
On the other hand, the Irish mathematician William Rowan Hamilton introduced quaternions as

an extension of complex numbers. A quaternion q is defined in the form:

q = q0 + q1i + q2j + q3k,

where q0, q1, q2, q3 are real numbers and 1, i, j, k are the standard orthonormal basis in R4, which satisfy
the quaternion multiplication rules as:

i2 = j2 = k2 = ijk = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik.

Immediately, we note that quaternions and bicomplex numbers are generalizations of complex
numbers, but one of the important differences between them is that quaternions are non-commutative,
whereas bicomplex numbers are commutative. Furthermore, the bicomplex quaternions can be defined
by the basis 1, i, j and ij that satisfy the rules (1).

The nth Fibonacci and Lucas quaternions were defined by Horadam for n ≥ 0,

Qn = Fn + Fn+1i+Fn+2j+Fn+3k,

Kn = Ln + Ln+1i+Ln+2j+Ln+3k,

where Fn and Ln denote the nth Fibonacci and Lucas numbers, respectively [5]. There are many
generalizations of the Fibonacci, and Fibonacci-like quaternions have been studied in the literature
(see for example [5–18]).

The generalized tribonacci sequence, {Tn = Tn(r, s, t; a, b, c)}n≥0 , is defined by the following
recurrence relation:

Tn = rTn−1 + sTn−2 + tTn−3 (2)

where T0 = a, T1 = b, T2 = c are arbitrary integers and r, s, t are real numbers. The Binet formula for
the generalized tribonacci sequence is given by the following relationship:

Tn =
Aαn

(α− β)(α− γ)
− Bβn

(α− β)(β− γ)
+

Cγn

(α− γ)(β− γ)
, (3)

where A = c− (β + γ)b + βγa, B = c− (α + γ)b + αγa and C = c− (α + β)b + αβa. The following
are some special cases of the generalized tribonacci sequence Tn(r, s, t; a, b, c) :

1. for r = s = t = 1 and a = 0, b = c = 1, the generalized tribonacci sequence Tn(1, 1, 1; 0, 1, 1)
becomes the tribonacci sequence Tn;

2. for r = s = t = 1 and a = 3, b = 1, c = 3, the generalized tribonacci sequence Tn(1, 1, 1; 3, 1, 3)
becomes the tribonacci–Lucas sequence Kn;

3. for r = 0, s = t = 1 and a = 3, b = 0, c = 2, the generalized tribonacci sequence Tn(0, 1, 1; 3, 0, 2)
becomes the Perrin sequence Qn;

4. for r = 0, s = t = 1 and a = b = c = 1, the generalized tribonacci sequence Tn(0, 1, 1; 1, 1, 1)
becomes the Padovan (Cordonnier) sequence Pn;

5. for r = 0, s = t = 1 and a = 1, b = 0, c = 1, the generalized tribonacci sequence Tn(0, 1, 1; 1, 0, 1)
becomes the Van der Laan sequence Rn;

6. for r = 1, s = 0, t = 1 and a = 0, b = c = 1, the generalized tribonacci sequence Tn(1, 0, 1; 0, 1, 1)
becomes the Narayana sequence Bn;
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7. for r = s = 1, t = 2 and a = 0, b = c = 1, the generalized tribonacci sequence Tn(1, 1, 2; 0, 1, 1)
becomes the third-order Jacobsthal sequence J(3)n ;

8. for r = s = 1, t = 2 and a = 2, b = 1, c = 5, the generalized tribonacci sequence Tn(1, 1, 2; 2, 1, 5)
becomes the third-order Jacobsthal–Lucas sequence j(3)n ;

Therefore, the generalized tribonacci sequences are the generalization of the well-known
sequences, which have been studied extensively in the literature (see [19–27]).

The tribonacci quaternion sequences and some generalizations have been studied by many
researchers in their papers (see for example [9]).

In [28], the authors defined the bicomplex Fibonacci and Lucas numbers. Moreover, they gave
some algebraic properties of these numbers. In [29], Aydın studied the bicomplex Fibonacci
quaternions. Recently, in [30], Catarino defined the bicomplex k-Pell quaternions and examined
some properties involving these quaternions.

Motivated by the above papers, in this paper, we introduce the bicomplex generalized tribonacci
quaternion, and we obtain Binet’s formula, generating functions, and summation formula, as well as
some other properties. We explain that the new bicomplex generalized tribonacci quaternions include
the bicomplex tribonacci quaternions, the bicomplex tribonacci–Lucas quaternions, the bicomplex
Perrin quaternions, the bicomplex Padovan quaternions, the bicomplex Van der Laan quaternions,
the bicomplex Narayana quaternions, the bicomplex third-order Jacobsthal quaternions, and the
bicomplex third-order Jacobsthal–Lucas quaternions, respectively.

2. Bicomplex Generalized Tribonacci Quaternions

In this section, we introduce the bicomplex generalized tribonacci quaternions.

Definition 1. The bicomplex generalized tribonacci quaternions {BCTn}∞
n=0 are defined by the following

recurrence relation:
BCTn = Tn + iTn+1 + jTn+2 + ijTn+3, (4)

where Tn is the generalized tribonacci quaternion and 1, i, j, ij satisfy the rules (1).

From (2), taking into account (4), we have the recurrence relation of the bicomplex generalized
tribonacci quaternions as follows:

BCTn+2 = rBCTn+1 + sBCTn + tBCTn−1, n ≥ 1 (5)

with the initial conditions BCT0 = a + ib + jc + ij(rc + sb + ta), BCT1 = b + ic + j(rc + sb + ta) +
ij((r2 + s)c + (t + rs)b + rta), and BCT2 = c + i(rc + sb + ta) + j((r2 + s)c + (t + rs)b + rta) + ij((r3 +

2rst + t)c + (r2s + s2 + rt)b + (r2t + st)a).
For two bicomplex generalized tribonacci quaternions BCTn and BCTm, addition, subtraction,

and multiplication are defined by the following:

BCTn ±BCTm = Tn ± Tm + i(Tn+1 ± Tm+1) + j(Tn+2 ± Tm+2) + ij(Tn+3 ± Tm+3),

BCTn ×BCTm = (TnTm − Tn+1Tm+1 − Tn+2Tm+2 + Tn+3Tm+3)

+ i (TnTm+1 + Tn+1Tm − Tn+2Tm+3 − Tn+3Tm+2)

+ j (TnTm+2 + Tn+2Tm − Tn+1Tm+3 − Tn+3Tm+1)

+ ij (TnTm+3 + Tn+3Tm + Tn+1Tm+2 + Tn+2Tm+1)

= BCTm ×BCTn.
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The multiplication of a bicomplex generalized tribonacci quaternions by the real scalar λ is defined
as follows:

λBCTn = λTn + iλTn+1 + jλTn+2 + ijλTn+3.

Furthermore, three different conjugations for the bicomplex generalized tribonacci quaternions
are presented by the following:

(BCTn)
∗
i = Tn − iTn+1 + jTn+2 − ijTn+3,

(BCTn)
∗
j = Tn + iTn+1 − jTn+2 − ijTn+3,

(BCTn)
∗
ij = Tn − iTn+1 − jTn+2 + ijTn+3.

Now, we define the generating function:

GFBCTn(x) =
∞

∑
n=0

BCTnxn.

Theorem 1. The generating function for the bicomplex generalized tribonacci quaternions sequence is as follows:

BCT0 + (BCT1 − rBCT0)x + (BCT2 − rBCT1 − sBCT0)x2

1− rx− sx2 − tx3 .

Proof. Using the definition of generating function:

GFBCTn(x) = BCT0 +BCT1x + · · ·+BCTnxn + · · · . (6)

Multiplying both sides of (6) by (1− rx− sx2 − tx3) and using (5), we have:

(1− rx− sx2 − tx3) = BCT0 + (BCT1 − rBCT0)x + (BCT2 − rBCT1 − sBCT0)x2.

Thus, the proof is completed.

Theorem 2. The Binet formula for the bicomplex generalized tribonacci quaternions is:

BCTn =
Aα̂αn

(α− β)(α− γ)
− Bβ̂βn

(α− β)(β− γ)
+

Cγ̂γn

(α− γ)(β− γ)
, n ≥ 0

where α̂ = 1 + iα + jα2 + ijα3, β̂ = 1 + iβ + jβ2 + ijβ3, and γ̂ = γ + iγ + jγ2 + ijγ3.

Proof. Using the definition of bicomplex generalized tribonacci quaternion and (3), we have:

BCTn =

(
Aαn

(α− β)(α− γ)
− Bβn

(α− β)(β− γ)
+

Cγn

(α− γ)(β− γ)

)
+ i
(

Aαn+1

(α− β)(α− γ)
− Bβn+1

(α− β)(β− γ)
+

Cγn+1

(α− γ)(β− γ)

)
+ j
(

Aαn+2

(α− β)(α− γ)
− Bβn+2

(α− β)(β− γ)
+

Cγn+2

(α− γ)(β− γ)

)
+ ij

(
Aαn+3

(α− β)(α− γ)
− Bβn+3

(α− β)(β− γ)
+

Cγn+3

(α− γ)(β− γ)

)
After some basic calculation, the proof is completed.
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Theorem 3. For n ∈ N, the exponential generating function for the bicomplex generalized tribonacci
quaternions is:

∞

∑
n=0

BCTn
xn

n!
=

Aα̂eαx

(α− β)(α− γ)
− Bβ̂eβx

(α− β)(β− γ)
+

Cγ̂eγx

(α− γ)(β− γ)
,

where α̂ = 1 + iα + jα2 + ijα3, β̂ = 1 + iβ + jβ2 + ijβ3, and γ̂ = γ + iγ + jγ2 + ijγ3.

Proof. By using the Binet formula for the bicomplex generalized tribonacci quaternions given in
Theorem 2, we have:

∞

∑
n=0

BCTn
xn

n!
=

Aα̂

(α− β)(α− γ)

∞

∑
n=0

(αx)n

n!
− Bβ̂

(α− β)(β− γ)

∞

∑
n=0

(βx)n

n!

+
Cγ̂

(α− γ)(β− γ)

∞

∑
n=0

(γx)n

n!

=
Aα̂eαx

(α− β)(α− γ)
− Bβ̂eβx

(α− β)(β− γ)
+

Cγ̂eγx

(α− γ)(β− γ)
.

Thus, the proof is completed.

Lemma 1. [9] (Page 239, Lemma 2.3) For the generalized tribonacci numbers, the following equation holds for:

n

∑
l=0

Tl =
1

δ(r, s, t)
(Tn+2 + (1− r)Tn+1 + tTn + λ(r, s, t)) , (7)

where δ(r, s, t) = r + s + t− 1 and λ(r, s, t) = (r + s− 1)a + (r− 1)b− c.

Theorem 4. The summation formula for the bicomplex generalized tribonacci quaternions is given by the following:

n

∑
l=0

BCTl =
1

δ(r, s, t)
[BCTn+2 + (1− r)BCTn+1 + tBCTn + λ(r, s, t)] .

Proof. Using (4), we have:

n

∑
l=0

BCTl =
n

∑
l=0

Tl + i
n

∑
l=0

Tl+1 + j
n

∑
l=0

Tl+2 + ij
n

∑
l=0

Tl+3.

Using the Lemma 1, the proof is completed.

3. An Application of Bicomplex Generalized Tribonacci Quaternions in Matrices

In this section, we give another method to obtain the nth term of the bicomplex generalized
tribonacci quaternion sequence as the calculation of the determinant of a special matrix. For this
purpose, we give the following theorem.

Theorem 5. Let {xn} be any third-order linear sequence, defined recursively as:

xn+1 = rxn + sxn−1 + txn−2, n ≥ 2

with the initial values x0 = a, x1 = b, and x2 = c. Then, for all n ≥ 0,
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xn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0 0
b 0 −1 0 0 · · · 0 0
c 0 0 −1 0 · · · 0 0
0 t r s −1 · · · 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . s −1

0 0 0 0 0
. . . r s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

Proof. For the proof, we use the induction method on n. The equality holds for n = 0, 1, 2. Namely,

x0 =
∣∣∣ a

∣∣∣
1×1

= a,

x1 =

∣∣∣∣∣ a −1
b 0

∣∣∣∣∣
2×2

= b,

x2 =

∣∣∣∣∣∣∣
a −1 0
b 0 −1
c 0 0

∣∣∣∣∣∣∣
3×3

= c.

Now, suppose that the equality is true for 2 < k ≤ n. Then, we can verify it for n + 1 as follows:

xn+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0 0 0
b 0 −1 0 0 · · · 0 0 0
c 0 0 −1 0 · · · 0 0 0
0 t r s −1 · · · 0 0 0
...

. . . . . . . . . . . . . . .
...

...
...

0 0 0 0 0
. . . s −1 0

0 0 0 0 0
. . . r s −1

0 0 0 0 0 t r s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+2)×(n+2)

= s (−1)(n+2)+(n+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0 0
b 0 −1 0 0 · · · 0 0
c 0 0 −1 0 · · · 0 0
0 t r s −1 · · · 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . s −1

0 0 0 0 0
. . . r s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

+ (−1) (−1)(n+2)+(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0 0
b 0 −1 0 0 · · · 0 0
c 0 0 −1 0 · · · 0 0
0 t r s −1 · · · 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . s −1

0 0 0 0 0 t r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)
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xn+1 = s xn + r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0
b 0 −1 0 0 · · · 0
c 0 0 −1 0 · · · 0
0 t r s −1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0
. . . s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0
b 0 −1 0 0 · · · 0
c 0 0 −1 0 · · · 0
0 t r s −1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= s xn + r xn−1 +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0
b 0 −1 0 0 · · · 0
c 0 0 −1 0 · · · 0
0 t r s −1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= s xn + r xn−1 + t (−1)n+n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a −1 0 0 0 · · · 0
b 0 −1 0 0 · · · 0
c 0 0 −1 0 · · · 0
0 t r s −1 · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)

= s xn + r xn−1 + t xn−2.

Thus, the proof is completed.

Using the above theorem, we have the following result, which gives a different way to obtain the
nth term of bicomplex generalized tribonacci quaternions.

Theorem 6. For n ≥ 0, we have:

BCTn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BCT0 −1 0 0 0 · · · 0 0
BCT1 0 −1 0 0 · · · 0 0
BCT2 0 0 −1 0 · · · 0 0

0 t r s −1 · · · 0 0
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0
. . . s −1

0 0 0 0 0
. . . r s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(n+1)×(n+1)

.

Proof. By using (5) and the previous theorem, the proof can be easily shown.

4. Conclusions

In this paper, we defined the bicomplex generalized tribonacci quaternions. Some properties
involving this sequence, including the Binet formula, generating function, exponential generating
function, and the summation formula, were presented. Moreover, a special matrix whose entries are
bicomplex generalized tribonacci quaternions was presented as a different way to obtain the nth term
of the bicomplex generalized tribonacci quaternions sequence. One of the aims of this work is to obtain
bicomplex quaternion versions of tribonacci or tribonacci-like sequences in the literature.
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