
The Ramanujan Journal (2021) 54:555–569
https://doi.org/10.1007/s11139-019-00210-8

Variations around a general quantum operator

J. L. Cardoso1

Received: 7 May 2019 / Accepted: 26 August 2019 / Published online: 17 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Let I ⊆ R be an interval and β : I → I a strictly increasing and continuous function
with a unique fixed point s0 ∈ I that satisfies (s0 − t)(β(t) − t) ≥ 0 for all t ∈ I ,
where the equality holds only when t = s0. For appropriate choices of the function

β, the quantum operator defined by Hamza et al., Dβ [ f ](t) := f
(
β(t)

)− f (t)

β(t) − t
if

t �= s0 and Dβ [ f ](s0) := f ′(s0) if t = s0, generalizes both the Jackson q-operator
Dq and the Hahn (quantum derivative) operator, Dq,ω. With respect to the inverse of
this general quantum difference operator, the β-integral, we study properties of the
corresponding Lebesgue spaces L

p
β ([a, b]).

Keywords General quantum difference operator · β-Derivative · β-Integral ·
β-Lebesgue spaces · q-Analogues · Jackson q-integral

Mathematics Subject Classification 33E20 · 33E30 · 40A05 · 40A10

1 Introduction

Fixed 0 < q < 1 and ω ≥ 0, the (forward difference) ω-derivative,

�ω[ f ](x) := f (x + ω) − f (x)

ω

and the Jackson q-derivative

Dq [ f ](x) := f (qx) − f (x)

(q − 1)x
,
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are particular cases of the (q, ω)-derivative operator (the Hahn’s quantum operator),

Dq,ω[ f ](x) := f
(
qx + ω

)− f (x)

(q − 1)x + ω
, (1)

which, in turn, aswe shall see, is a particular case of themore general quantumoperator
Dβ described in the abstract.
The importance of these operators can be assessed through the numerous pub-

lications and its different approaches and perspectives: far from being exhaustive,
for instance, the Hahn quantum variational calculus and the q-difference equations
properties [6,7,10,13,32,37] or, new characterizations and new properties related with
families of orthogonal q-polynomials or q-exponential families [27,33,38].

Of particular relevance are the corresponding inverse operators, which enable one
to define, the following integrals, respectively: the Nörlund integral

∫ b

a
f Δω := ω

+∞∑

k=0

[
f (b + kω) − f (a + kω)

]
,

the Jackson q-integral

∫ b

a
f dq := (1 − q)

+∞∑

k=0

[
b f (bqk) − f (aqk)qk

]
qk

and the Jackson–Thomae–Nörlund (q, ω)-integral

∫ b

a
f dq,ω :=

∫ b

ω0

f dq,ω −
∫ a

ω0

f dq,ω.

For the introduction of this concepts see [29–31] and for more details over the q-
integrals see, for example [11].

Regarding or involving these inverse operators one can find a large variety of
publications. For instance: properties of the Jackson q-integral for q-commuting
variables were studied in Sect. 7 of [35]; q-type sampling theorems with q-versions
of the classical sampling theorem of Whittaker, Kotel’nikov and Shannon, where the
Fourier transform is replaced by a q-type one defined in terms of Jackson’s q-integral
[1,8,9,12,26,28]; Paley–Wiener theorems in [3,21,22] by considering q-transforms
(see for instance [36]) defined in terms of the Jackson’s q-integral; in p. 31, Sect. 6, of
[34], a q-analogue of the Weyl fraction integral operator is introduced. It is remarked
there that this q-analogue can be represented in terms of an iterated infinite q-integral
of Jackson; basic Fourier expansions [5,14–18] where each orthogonality was estab-
lished via an inner product associated with the Jackson’s q-integral. In [19], properties
involving the Jackson and the Hahn operators, as well as its inverse operators, respec-
tively, the Jackson q-integral and the Jackson–Thomae–Nörlund (q, ω)-integral were
obtained. Regarding these topics and closely related ones see also [2,4].
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Variations around a general quantum operator 557

In 2015, Hamza et al. [24] introduced a general quantum difference operator, the
β-derivative, generalizing the Hahn’s quantum operator (for certain functions β), and
its inverse operator, the β-integral. Also in 2015 [23], β-Hölder, β-Minkowski, β-
Gronwall, β-Bernoulli and β-Lyapunov inequalities were proved. Later, in [25], the
exponential, trigonometric and hyperbolic functions were introduced and, in [20], a
new variational calculus was developed, being both publications based in the above
mentioned general quantum difference operator.

The target of the present work is to obtain properties for the β-integral, more pre-
cisely, after establishing sufficient conditions in order to guarantee that q-type Hölder
and Minkowski inequalities hold, we consider a q-analogue of the Lebesgue function
space associated with the β-integral, and we assure that it becomes a Banach space,
separable and reflexive. We also introduce the versions of the β-integrals defined over
unbounded intervals.

In Sect. 2 we collect the definitions and the results that are required to proceed to
Sect. 3,where the outcomeof the presentwork is exhibited.Webelieve that Theorems 3
and 4 are original. We also point out the definitions of the infinite β-integrals in
Remark 1, the Proposition 2 and the less restrictive statements of Theorems 5 and 6.

2 Theˇ-derivative and theˇ-integral

2.1 Theˇ-derivative

In the following, I ⊆ R will denote an interval and β : I → I a strictly increasing
and continuous function with a unique fixed point s0 ∈ I satisfying

(t − s0)(β(t) − t) ≤ 0 (2)

for all t ∈ I , where the equality holds only when t = s0 .
For functions f : I → K where K is either R or C 1, Hamza et al. [24] defined

the general quantum difference operator

Dβ [ f ](t) :=
⎧
⎨

⎩

f
(
β(t)

)− f (t)

β(t) − t
if t �= s0,

f ′(s0) if t = s0.
(3)

provided that f ′(s0) exists. Dβ [ f ](t) is called the β-derivative of f at t ∈ I . One
says that f is β-differentiable on I if f ′(s0) exists.

It is clear that the Hahn operator (1) corresponds to the choice β(t) = qt+ω being
the fixed point given by s0 = ω

1−q .
Accordingly to [24], one can replace condition (2) by (t − s0)(β(t) − t) ≥ 0 for

t ∈ I .

1 In fact, K = X can represent any Banach space [24, p.2]
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558 J. L. Cardoso

2.2 Theˇ-integral

Consider the notation βk(t) := (β ◦ β ◦ . . . ◦ β
︸ ︷︷ ︸

k times

)(t) and β0(t) := t, for t ∈ I and

k = 1, 2, 3, · · · , as well as the β-interval with extreme points a and b,

[a, b]β := {
βn(x) | (x, n) ∈ {a, b} × N0

}
.

Clearly, for every real numbers a and b, the following property holds:

a, b ∈ I ⇒ [a, b]β ⊂ I .

We state here the following proposition:

Proposition 1 [24,Lemma2.1, p. 3]The sequenceof functions
{
βk(t)

}
k∈N0

converges

uniformly to the constant function β̂(t) := s0 on every compact interval J ⊂ I
containing s0.

The quantum difference inverse operator, the β-integral, with a, b ∈ I , is defined
by

∫ b

a
f dβ :=

∫ b

s0
f dβ −

∫ a

s0
f dβ, (4)

where

∫ x

s0
f dβ :=

+∞∑

k=0

(
βk(x) − βk+1(x)

)
f
(
βk(x)

)
. (5)

Thus,

∫ b

a
f dβ =

+∞∑

k=0

(
βk(b) − βk+1(b)

)
f
(
βk(b)

)−
+∞∑

k=0

(
βk(a) − βk+1(a)

)
f
(
βk(a)

)
.

(6)

If the infinite sum in the right side of (5) is convergent then we say that the function
f is β-integrable in [s0, x]. The β-integral in the left side of (4) is well defined
provided that at least one of the β-integrals in the right side is finite and we say that
f is β-integrable in [a, b] if it is both β-integrable in [s0, a] and in [s0, b].
When β(t) = qt+ω with 0 < q < 1 and ω ≥ 0, the resulting q-integral is precisely
the Jackson–Thomae–Nörlund integral, where the corresponding fixed point is given
by s0 = ω0 = ω

1−q ; if either ω = 0 then one obtains the Jackson q-integral, being
s0 = 0 the fixed point of the relative β function.
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Remark 1 If 1 ∈ I , β(I ) ⊂ I , β−1(I ) ⊂ I and s0 < 1 , it is possible to consider
the infinite β-integral

∫ +∞

s0
f dβ :=

+∞∑

k=−∞

(
βk(1) − βk+1(1)

)
f
(
βk(1)

)
(7)

and, in a similar way, if ±1 ∈ I , ±β(I ) ⊂ I , ±β−1(I ) ⊂ I and −1 < s0 < 1 one
can define

∫ +∞

−∞
f dβ :=

+∞∑

k=−∞

(
βk(1) − βk+1(1)

)[
f
(
βk(1)

)+ f
(− βk(1)

)]
, (8)

whenever the corresponding series converges. Here, for a positive integer k, we take
β−k(t) := (β−1 ◦ β−1 ◦ . . . ◦ β−1

︸ ︷︷ ︸
k times

)(t).

If β(t) = qt , 0 < q < 1, then we recover the infinite Jackson’s q-integrals∫ +∞
0 f dq := (1 − q)

∑+∞
n=−∞ f (qn)qn and

∫ +∞
−∞ f dq := (1 − q)

∑+∞
n=−∞[ f (qn) +

f (−qn)]qn .
We notice that, under appropriate conditions, the properties that will be presented in
the following for the β-integral in [a, b] may be extended to the infinite β-integrals
(7) and (8).

3 The spaces L
p
ˇ [a,b] and Lpˇ[a,b]

The β-integral in [a, b] verifies a list of properties ([24, Lemma 3.5, p. 13]) such as
the linearity whereas

∫ b

a
( f + g) dβ =

∫ b

a
f dβ +

∫ b

a
g dβ

and, for any fixed k,

∫ b

a
(k f ) dβ = k

∫ b

a
f dβ.

Since
∫ b
a f dβ = − ∫ a

b f dβ and
∫ a
a f dβ = 0 we can admit in the definition of the

β-integral (4) that a < b. Using identity (6) and the linearity properties, one can
prove the following important monotony property for the β-integral.

Proposition 2 If s0 is the fixed point of β and a and b are elements of I such that
a ≤ s0 ≤ b, then

f ≤ g in [a, b]β �⇒
∫ b

a
f dβ ≤

∫ b

a
g dβ. (9)
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560 J. L. Cardoso

In particular,
∫ b
a f dβ ≥ 0 whenever f ≥ 0 in [a, b]β .

This important property (9) is crucial to prove the Hölder inequality involving the
β-integral.

3.1 The spaceL p
ˇ [a, b]

For a, b ∈ I , we will denote by L
p

β [a, b] the set of functions f : I → C such that
| f |p is β-integrable in [a, b], i.e.,

L
p

β [a, b] =
{
f : I → C

∣∣
∣
∫ b

a
| f |pdβ < ∞

}
.

We also set

L ∞
β [a, b] =

{

f : I → C

∣
∣∣ sup

k∈N0

{∣
∣ f
(
βk(a)

)∣∣,
∣
∣ f
(
βk(b)

)∣∣
}

< ∞
}

.

The next theorem shows that a β-type Hölder inequality holds, provided we take
a ≤ s0 ≤ b and p > 1. As usual, by p′ we denote the conjugate exponent of a real
number p ≥ 1, i.e., 1

p + 1
p′ = 1, with the convention p′ = ∞ if p = 1. Its proof will

be omitted since, by (9), it can be carried out using an argumentation similar to the
one used to prove the corresponding classical Hölder inequality for the Riemann or
Lebesgue integrals. A similar proof can be found in [23].

Theorem 1 If a ≤ s0 ≤ b and 1 < p < ∞, then

∫ b

a
| f g| dβ ≤

(∫ b

a
| f |p dβ

) 1
p
(∫ b

a
|g|p′

dβ

) 1
p′

, (10)

whenever f ∈ L
p

β [a, b] and g ∈ L
p′

β [a, b].
Remark 2 When p = 1 and a ≤ s0 ≤ b, it follows immediately from (4)–(5) and (9)
that the inequality

∫ b

a
| f g| dβ ≤ sup

k∈N0

{∣∣g
(
βk(a)

)∣∣,
∣∣g
(
βk(b)

)∣∣
} ∫ b

a
| f | dβ

holds, provided f ∈ L 1
β [a, b] and g ∈ L ∞

β [a, b].
The following theorem is a β-type version of the Minkowski’s inequality and is an

important outcome of (10).

Theorem 2 If a ≤ s0 ≤ b and 1 ≤ p < ∞, then

(∫ b

a
| f + g|p dβ

) 1
p

≤
(∫ b

a
| f |p dβ

) 1
p

+
(∫ b

a
|g|p dβ

) 1
p
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Variations around a general quantum operator 561

for all f , g ∈ L
p

β [a, b].
As an immediate consequence of the β-Minkowski inequality we may state the fol-
lowing important property (the case p = ∞ is trivial).

Corollary 1 If a ≤ s0 ≤ b and 1 ≤ p ≤ ∞, then the set L p
β [a, b], with the usual

operations of addition of functions and multiplication of a function by a number (real
or complex), becomes a linear space over K.

3.2 The space Lpˇ[a, b]

For f , g ∈ L
p

β [a, b], we write f ∼ g if

f
(
βk(a)

) = g
(
βk(a)

)
and f

(
βk(b)

) = g
(
βk(b)

)
(11)

holds for all k = 0, 1, 2, . . ., i.e., we say that f ∼ g if f = g in [a, b]β . Clearly,
∼ defines an equivalence relation in L

p
β [a, b]. We will represent by L p

β [a, b] the
corresponding quotient set:

L p
β [a, b] := L

p
β [a, b]/ ∼ .

Theorem 3 If a ≤ s0 ≤ b and 1 ≤ p ≤ ∞ then L p
β [a, b] is a normed linear space

over K with norm

‖ f ‖L p
β [a,b] :=

⎧
⎪⎪⎨

⎪⎪⎩

(∫ b

a
| f |p dβ

) 1
p

if 1 ≤ p < ∞,

sup
k∈N0

{ ∣∣∣ f
(
βk(a)

)∣∣∣ ,
∣∣∣ f
(
βk(b)

)∣∣∣
}

if p = ∞.

(12)

Remark 3 As usual, on the right-hand side of (12), f denotes any representative (i.e.,
a function in L

p
β [a, b] ) of the class f ∈ L p

β [a, b] appearing in the norm on the left-
hand side. Of course, in view of (6) and (11), the definition of the norm ‖ f ‖L p

β [a,b] is

independent of the chosen representative.

Proof – Case 1 ≤ p < ∞.

The triangle inequality is precisely the β-Minkowski’s inequality (Theorem 2),
while

‖λ f ‖L p
β [a,b] = |λ| ‖ f ‖L p

β [a,b]

holds trivially for every λ ∈ R(C) and every f ∈ L p
β [a, b].

On one hand, by the definition (12) and by (9), we have

‖ f ‖L p
β [a,b] = 0 �⇒ f = 0 in L p

β [a, b].
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562 J. L. Cardoso

In fact, s0 is the unique fixed point of β , this function is strictly increasing in I
and satisfies the condition (2) hence, it follows immediately

s0 < βk+1(x) < βk(x) whenever x > s0 (13)

and2

βk(x) < βk+1(x) < s0 whenever x < s0. (14)

By (12) and (6) the value of ‖ f ‖p
L p

β [a,b] is given by

+∞∑

k=0

(
βk(b) − βk+1(b)

)
| f (βk(b)

)|p −
+∞∑

k=0

(
βk(a) − βk+1(a)

)
| f (βk(a)

)|p,

(15)

thus, when a < s0 < b, by (13) and (14), we have that ‖ f ‖L p
β [a,b] = 0 implies

necessarily

f
(
βk(a)

) = 0, k = 0, 1, 2, . . . and f
(
βk(b)

) = 0, k = 0, 1, 2, . . . ,

which proves that

‖ f ‖L p
β [a,b] = 0 �⇒ f = 0 in [a, b]β.

– Case p = ∞.

In this case it is trivial to check the axioms of a norm.
Therefore, (12) indeed defines a norm in L p

β [a, b] for 1 ≤ p ≤ ∞. ��
The following theorem generalizes Theorem 3.8 of [19, p. 347].

Theorem 4 If a ≤ s0 ≤ b and 1 ≤ p ≤ ∞, then the following holds:

(i) L p
β [a, b], endowed with the norm (12), is a Banach space for 1 ≤ p ≤ ∞, which

is separable if 1 ≤ p < ∞ and reflexive if 1 < p < ∞.
(ii) L2

β [a, b] is a Hilbert space with inner product

〈 f , g〉β :=
∫ b

a
f g dβ, f , g ∈ L2

β [a, b]. (16)

Proof During the proof we will fix a, b ∈ I .
(i) By Theorem 3, L p

β [a, b] is a normed space.

2 This shows that, for every fixed x ∈ I , the sequence {βk (x)}k is strictly monotone decreasing or strictly
monotone increasing according to x > s0 or x < s0, respectively. Proposition 1 shows that it converges
in both cases to the fix point s0.
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Variations around a general quantum operator 563

– Let one assume that 1 ≤ p < ∞ and consider the space �
p
β,a of all sequences

x = (ξn)n such that

+∞∑

k=0

(
βk+1(a) − βk(a)

)
|ξk |p < ∞. (17)

Then, gifted with the norm

‖x‖�
p
β,a

:=
(+∞∑

k=0

(
βk+1(a) − βk(a)

)
|ξk |p

) 1
p

,

�
p
β,a becomes a Banach space if 1 ≤ p < ∞ , separable if 1 ≤ p < ∞
and reflexive if 1 < p < ∞. This is an outcome of the following event: for
any sequence x = (ξn)n , we have x ∈ �

p
β,a if and only if xβ,a ∈ �p , where

xβ,a := ((βn+1(a) − βn(a))
1
p ξn)n , and, in such a case, the equality

‖x‖�
p
β,a

= ‖xβ,a‖�p

holds. In fact, the mapping Uβ,a : �
p
β,a → �p (x �→ xβ,a) is an isometric

isomorphism.
Arguing identically one can show that the space �

p
β,b of all sequences y = (ζn)n

such that

+∞∑

k=0

(
βk(b) − βk+1(b)

)
|ζk |p < ∞,

endowed with the norm

‖x‖�
p
β,b

:=
(+∞∑

k=0

(
βk(b) − βk+1(b)

)
|ξk |p

) 1
p

,

is also a Banach space if 1 ≤ p < ∞ , separable if 1 ≤ p < ∞ and reflexive if
1 < p < ∞. In fact, for any sequence, x = (ζn)n , we have x ∈ �

p
β,b if and only

if xβ,b ∈ �p , where xβ,b := ((βn(b) − βn+1(b))
1
p ξn)n , and, in such a case, the

equality

‖x‖�
p
β,b

= ‖xβ,b‖�p

holds. This is true because the mapping Uβ,b : �
p
β,b → �p (x �→ xβ,b) is an

isometric isomorphism.
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Furthermore, taking into account (4), (5), (12) and (15), we see that

f ∈ L p
β [a, b] if and only if

(
f (βn(a)

)
n ∈ �

p
β,a ∧ (

f (βn(b)
)
n ∈ �

p
β,b.

Therefrom, the equality

‖ f ‖L p
β [a,b] =

(∥∥∥
(
f
(
βn(b)

))

n

∥∥∥
p

�
p
β,b

+
∥∥∥
(
f
(
βn(a)

))

n

∥∥∥
p

�
p
β,a

)1/p

(18)

holds.
Now, consider the product space �

p
β,a × �

p
β,b endowed with the norm

‖(x, y)‖�
p
β,a×�

p
β,b

:=
(

‖y‖p
�
p
β,b

+ ‖x‖p
�
p
β,a

)1/p

.

Then �
p
β,a × �

p
β,b is a Banach space if 1 ≤ p < ∞, separable if 1 ≤ p < ∞ and

reflexive if 1 < p < ∞. In addition, the mapping S : L p
β [a, b] → �

p
β,a × �

p
β,b

defined by

S f :=
((

f
(
βn(a)

))

n
,
(
f
(
βn(b)

))

n

)

is an isometric isomorphism. As a matter of fact, S is linear and, by (18), it is an
isometry. To prove that S is onto, take any pair of sequences (x, y) ∈ �

p
β,a ×�

p
β,b.

Set x = (ξn)n and y = (ζn)n and take f : I → C such that f |[a, b]β is defined
by

f (t) :=
{

ξn, if t = βn(a), n = 0, 1, 2, . . .
ζn, if t = βn(b), n = 0, 1, 2, . . . .

(It does not matter how one defines the function f (t) for t �= βn(a) and t �=
βn(b).) Since x = ( f (βn(a)))n ∈ �

p
β,a and y = ( f (βn(b)))n ∈ �

p
β,b then, from

(18), we derive that f ∈ L p
β [a, b] , and, of course, S f = (x, y). This completes

the proof of (i) for 1 ≤ p < ∞.
– The proof for p = ∞ is now easy.

(ii) Its proof is a consequence of the following fact: the complex function 〈., .〉β
defined in L2

β [a, b] × L2
β [a, b] by 〈 f , g〉β := ∫ b

a f g dβ satisfies the axioms of an
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Variations around a general quantum operator 565

inner product space. For instance, for any f ∈ L2
β [a, b],

〈 f , f 〉β = ‖ f ‖2β =
∫ b

a
| f |2 dβ

=
+∞∑

k=0

(
βk(b) − βk+1(b)

)
| f (βk(b)

)|2

−
+∞∑

k=0

(
βk(a) − βk+1(a)

)
| f (βk(a)

)|2 ≥ 0

being the last nonnegativity guaranteed by the assumption a ≤ s0 ≤ b alongwith (13)
and (14). Also, with the same argumentation, if f �= 0 in [a, b]β then 〈 f , f 〉β =
‖ f ‖2 = ∫ b

a | f | dβ > 0. The remaining axioms of an inner product space are trivial to
verify which shows, together with part (i) for p = 2, that L2

β [a, b] is a Hilbert space
with respect to the inner-product (16). ��

3.3 Properties of theˇ-derivative and of theˇ-integral

We go back to the introduction of Sect. 2, where the definition of the β-derivative
operator (3) was introduced in Sect. 2.1:

Dβ [ f ](t) :=
⎧
⎨

⎩

f
(
β(t)

)− f (t)

β(t) − t
if t �= s0,

f ′(s0) if t = s0.

Notice that if f is differentiable at a point t ∈ I , then

lim
β(t)→t

Dβ [ f ](t) = f ′(t),

hence Dβ is a beta-analogue of the standard derivative operator.
The β-derivative satisfies properties which may be regarded as β-analogues of the
corresponding properties for the usual derivative. For instance, the quantum operator
(3) is linear, i.e.,

Dβ [α f + βg](t) = αDβ [ f ](t) + βDβ [g](t),

where α and β are any real or complex numbers, and satisfies the following β-product
rule: for t ∈ I ,

Dβ [ f · g](t) = Dβ [ f ](t) · g(t) + f
(
β(t)

) · Dβ [g](t)
= Dβ [g](t) · f (t) + g

(
β(t)

) · Dβ [ f ](t) (19)

if f and g are β-differentiable in I . Also, f will be the constant function such that
f (t) = f (s0) for all t ∈ I whenever Dβ [ f ](t) = 0 for all t ∈ I . For these and
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other properties of the general quantum difference operator Dβ see [20,24]. These
equalities hold for all t �= s0, and also for t = s0 whenever f ′(s0) and g′(s0) exist.

3.4 The fundamental theorem ofˇ-calculus

The next proposition states a β-analogue of the fundamental theorem of calculus for
the Riemann integral.

Theorem 5 Let β : I → I be a function satisfying the conditions described in
Sect. 2.1. Fix a, b ∈ I and let f : I → K be a function such that Dβ [ f ] ∈ L 1

β [a, b].
Then:

(i) The equality

∫ b

a
Dβ [ f ] dβ =

[
f (s) − lim

k→+∞ f
(
βk(s)

)]b

s=a

holds, provided the involved limits exist.
(ii) In addition, assuming that a < s0 < b, if f has a discontinuity of first kind at

s0 then

∫ b

a
Dβ [ f ] dβ = f (b) − f (a) −

(
f (s+

0 ) − f (s−
0 )
)
.

Of course, if f is continuous at s0 then

∫ b

a
Dβ [ f ] dβ = f (b) − f (a).

Proof (i) From (6), we may write

∫ b

a
Dβ [ f ] dβ

=
+∞∑

k=0

[(
βk(b) − βk+1(b)

)
Dβ [ f ](βk(b)

)−
(
βk(a) − βk+1(a)

)
Dβ [ f ](βk(a)

)]
.

Now, using the definition of the β-derivative (3) and simplifying, one obtains

∫ b

a
Dβ [ f ] dβ =

+∞∑

k=0

[
f
(
βk(b)

)− f
(
βk+1(b)

)−
(
f
(
βk(a)

)− f
(
βk+1(a)

))]
.

Telescoping the infinite sum of the right side it results

∫ b

a
Dβ [ f ] dβ = f (b) − lim

k→+∞ f
(
βk+1(b)

)−
(
f (a) − lim

k→+∞ f
(
βk+1(a)

))
,

(20)
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and this proves (i).
(ii) Using (13) and (14) together with the hypothesis a < s0 < b, and introducing

it in (20) the result follows. ��

3.5 Theˇ-integration by parts formula

Now we state the β-analogue of the integration by parts formula.

Theorem 6 Let β : I → I be a function satisfying the conditions described in
Sect. 2.1. Fix a, b ∈ I and two functions f : I → K and g : I → K. Then:

∫ b

a
f · Dβ [g] dβ =

[
( f · g)(s) − lim

k→+∞( f · g)(βk(s)
)
]b

s=a
−
∫ b

a

(
g ◦ β

) · Dβ [ f ] dβ

holds, provided f , g ∈ L 1
β [a, b], Dβ [ f ] and Dβ [g] are bounded in [a, b]β , and

the limits exist.
If, in addition, f and g are continuous at s0 then

∫ b

a
f · Dβ [g] dβ =

[
f · g

]b

a
−
∫ b

a

(
g ◦ β

) · Dβ [ f ] dβ.

Proof By the β-product rule (19) one has

f (t)Dβ [g](t) = Dβ [ f · g](t) − g
(
β(t)

) · Dβ [t](t),

therefore, β-integrating both sides of this equality over the interval [a, b] and taking
into account Theorem 5, the result follows. (Notice that the above equality and the
hypothesis on f and g gives Dβ [ f · g] = f · Dβ [g] + (

g ◦ β
) · Dq [ f ] ∈ L 1

q [a, b],
hence the assumptions of Theorem 5 are fulfilled.) ��
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