

Coview: A Cooperative
Architecture for Digital Video
Editing

By Benjamim Fonseca and Eurico Carrapatoso

Benjamim Fonseca Eu rico Carrapatoso

Desktop vídeo editing plays an important
role in the digital vídeo market, and coop­
erative applications are important for
organizations. Cooperative vídeo editing
tools can be an interesting solution for
large broadcasters or for remo te report­
ing, and such commercial products are
lacking. This paper describes a coopera­
tive vídeo editing too/, Coview, which
uses Web services to provide the cooper­
ative functionalities. For this purpose, an
overview is given of the basic issues of
Web Services and Computer Supported
Cooperative Work. Then, the Web
Services-based cooperative infrastructure
and the Coview prototype is described.
Finally, some experimental results and
concluding remarks are presented.

One technological development that has revolu­
tionized the professional and leisure activities in

the last decade is the interne!, particularly the

world wide web (WWW). lts ease of utilization and its

potential regarding information retrieval and business
and leisure activities have led to an exponential growth

of the users' community, fostered by the recent availabili­

ty of mobile access to lhe Web. The dawn of this century
witnessed the emergence of a new technology that

enables the exchange of messages between remate

applications or services, using Web protocols and data

formats widely supported. This technology, known as

Web services, has capabilities that ease lhe interaction

between peers in heterogeneous environments.

ln the current organizational context of companies and
institutions, one success factor is the ability to effectively

realize teamwork. This fact has raised the interest of

organizations in applications of computer supported
cooperative work (CSCW). ln this kind of application,

usually referred to as groupware, interoperability issues,
familiarity with applications, and users' mobility support

assume significant importance. A common requirement
for cooperative applications is the ability to synchronous­

ly notify lhe occurrence of events produced as lhe result

of cooperative activities.

The main field in which Web services are currently

used is business-to-business (828) applications and in

the vast set of groupware categories, workflow manage­
ment is the only one that has shown significant develop­

ments in the use of Web services. This fact, along with

the issues referred to in the previous paragraph, motivat­
ed the authors to define a model for the creation of coop­

erative applications that uses Web services technology

to provide the mechanisms that support the cooperative

482 SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

activities, relying on the asynchronous notification of

events to reflect them. The main objective of this model

was to define a set of core services that enabled lhe

development of cooperative applications that use these
services to provide features such as sharing of coopera­

tive events and shared data consistency.
Earlier video editing activities involved walking into the

archive, searching for the desired tapes, and carrying

them out to the editing room. Then, the editor would use

videotape recorders and TV monitors to go through the

tapes, select the desired sequences, and record the

result on a new tape. Finally, it was necessary to take

the tapes back to the archive. Furthermore, ali these
video manipulations used analog technology, with the
disadvantages it encompasses. The evolution in comput­

er technology has led to the use of digital techniques to

handle video material. The first step was to convert the

video sequences into digital formal and store and manip­

ulate them in a computer-based editing station (nonlinear

editing). Nevertheless, the source and the final result
were kept in analog formal (tape). Recently, the evolu­

tion in acquisition equipment, high-speed networks, and

compression techniques brought about a novel concept:

the digital studio, where video sequences are acquired,

stored, transmitted, and manipulated digitally.1-3

Cooperation in video editing activities is usually done

presentially. However, in large broadcasters, or produc­

ers, or in remate reporting activities, it can be useful to
have a desktop application that enables the cooperative

editing of digital video sequences involving editors or

journalists remotely situated.
This paper presents a prototype of a cooperative desk­

top video editing tool, COooperative Vldeo Editing on lhe

Web (Coview). This application uses lhe functionalities of

a cooperative framework, Services Architecture for

Groupware Applications (SAGA),4 composed by a set of

Web services that provide lhe features required by coop­

erative applications. Among these features, the asyn­
chronous notification of cooperative events assumes

particular importance. For this purpose, some theoretical

issues concerning Web services and CSCW are first out­

lined. Then, the SAGA architecture is presented and the

main implementation details of lhe prototypes of SAGA's

services and of Coview are described. Finally, some

experimental results concerning lhe use of SAGA and

Coview are exposed and some conclusions are drawn.

Web Services
The concept of service is frequently associated with

the idea of an application accessible through interfaces,
which tell us how to use the operations they provide.

These applications are usually referred to as applications

with a Service Oriented Architecture (SOA).5-7 The Web

has a utilization paradigm and a protocol set for commu­

nications and data representation that were easily

accepted and are widely supported. The ability to build

services accessible using Web protocols is very attrac­

tive for a significant part of the software industry and the

international scientific community. The convergence of
SOA and Web protocols, under lhe guidance of lhe

World Wide Web Consortium (W3C),8 produced lhe
technology currently known as Web services_7,9 A simple

definition of a Web service is an application that is acces­

sible through an interface, using common Web protocols,

such as the HyperText Transfer Protocol (HTTP),10 and

use data representations that follow the de facto stan­

dard XML (eXtensible Markup Language). 11 As a com­

ponent, a Web service represents a functionality that can

be reused without knowledge of its implementation

details.
The use of widely adopted protocols and data repre­

sentations gives Web services a highly appreciated and

desirable feature that other distributed processing archi­

tectures had difficulties achieving efficiently: interoper­

ability. lndeed, the use of Web protocols for communica­
tion provides platform independence and the use of XML

for data representation provides independence at the

programming language levei. The latter also has lhe abil­

ity to transform legacy applications into services accessi­

ble through Web servers, facili tating the interaction

between systems. This feature gives organizations the

ability to increase the profitability of their investments in
information systems and expand business opportunities.

Thus, the tendency will be for any kind of application to

be offered as a Web service and become accessible

anywhere.
Web services use XML to describe service interfaces

and encode the messages exchanged in the invocations.

The description of the interfaces is contained in a file

using the Web Services Description Language
(WSDL).12 That description contains information regard­

ing the available operations, the data types manipulated,
the formal of the exchanged messages, the protocols

that are supported, and at least one access point (an

SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org 483

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

1<•>1 SOAP Messege

1. Servlce registe r

Cllent

4. lnteractlon wlth Servlce

,

SOAPMe' "'9•

OAP Message

AP Message

address), known as a Uniform Resource
ldentifier (URI). The messages exchanged in
lhe invocations use a packet formal and a
data encoding mechanism defined by lhe
Simple Object Access Protocol (SOAP).13 ln

addition to lhe message exchange model,
SOAP formalizes a remate procedure call
model. Another important feature of Web ser­

vices is lhe availability of a service, Universal
Description Discovery and lntegration
(UDD1),14 that enables other services to reg­

ister and publish their interfaces, making it Figure 1. Web services-based system architecture.

possible for a user to discover and know how
to use them. The classification of services is also possi­
ble, facilitating lhe processes of discovery and utilization.
For each Web service registered, UDDI stores its name,
its operations, and its access point, that is lhe informa­
tion contained in lhe WSDL description. The description
of a service interface can be used to build lhe service's
client applications. Figure 1 shows lhe generic architec­
ture of a system based on Web services and lhe
sequence of activities, since a service registers until it is
used by a cl ient.

cscw
The scientific field known as CSCW15,16 investigates

how teamwork can be supported by information and
communications technologies, in arder to improve lhe
performance of a group of persons involved in lhe exe­
cution of common or interrelated tasks . CSCW is an
interdisciplinary scientific domain, involving lhe scientific
areas of distributed systems, multimedia communication,
telecommunications, information science, and socio­
organizational theory. The impact of utilization of CSCW
applications (usually referred to as groupware) is not
always positive with socio-professional issues being an
important consideration . lndeed, lhe utilization of CSCW
applications can substantially modify work practices or

dissolve organizational aspects of the team, which can
bring negative consequences to their adoption. lt his

highly recommended to use methodologies that enable
understanding of lhe way people usually work or that

enable discovery of ways to improve it.
Some examples of successful groupware applications

are workflow applications, such as IBM Lotus Notes17
and Microsoft Exchange.1B

An important issue in groupware is lhe existence of an

environment that is shared among lhe team members.

This environment may include documents, shared white­
boards, and shared pointers, among others. Groupware
applications must have mechanisms to distribute cooper­
ative events produced by members in lhe shared envi­
ronment. Usually, lhe shared environment coexists with
lhe private environments of each member, imposing lhe
availability of diverse management mechanisms to con­
trai lhe access to information. To ensure consistency of
lhe data being shared, special care must be taken
regarding concurrency contrai, through lhe implementa­
tion of mechanisms such as atomic transactions, locks,
versioning, token passing, or voting systems. Potential
targets for groupware are software project and engineer­
ing teams, coordination of work processes in large orga­
nizations, distance learning, telemedicine, and coopera­

tive editing.

SAGA

The diversity and complexity of work methodologies in

organizations is increasing, and lhe participants' respon­
sibilities are not always statically defined. Hence, lhe
execution of tasks by several persons, who may not
always play lhe sarne role in lhe execution of a certain
type of task, is relatively frequent. Furthermore, during
the execution of a task, one person may want to consult
others regarding specific issues, or obtain approval from
upper leveis ofthe organization.

Usually, groupware tries to support teamwork in lhe
most successful way, providing a means for information
sharing, for its joint manipulation and communication
among cooperating participants. However, the architec­
ture of cooperative applications is often based on propri­
etary solutions that do not address issues such as flexi-

484 SMPTE Motion lmaging Journal, November!December 2006 • www.smpte.org

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

bility, interoperability, and support of legacy
systems.

The internei is now present in nearly ali orga­
nizations, through popular applications such as
e-mail and Web browsers. Java technology

enables the construction of applications that
make the most of this situation. However, it
does not satisfy severa! security and privacy

issues, or the interoperability between diverse
systems, written in different programming lan­
guages. Developing cooperative applications
based on Web services can be an attractive
choice, enabling applications to take advantage
of the potential of the technology regarding dis-

tribution issues, such as interoperability, securi-

G«>upSIOf'a9'

~ --
~

Hctm>alionR~IOIY

~
Al.lholonloeallon

Q!8l _.,._
~

"""""""'-·
~

E....,..~

8 ~

T~ I !1>
s

D [§) .

~

-~
ty, and legacy systems reuse. Furthermore, the
Web services technology is supported by the

Figure 2. SAGA archítecture.

major actors in the software industry and academic com­
munity. Usually, Web services are used mainly in B2B
applications. ln the CSCW domain, work has been car­
ried out on workflow management, under lhe workflow
management coalition (WfMC).19 But the features of

Web services make them suitable to support other class­
es of cooperative applications. Thus, lhe authors defined
a model for building cooperative applications based on
Web services, which was designated SAGA-Services
Architecture for Groupware Applications.

The main goal of SAGA was to constitute a framework
that enables the development of cooperative applications
through lhe composition of severa! core functionalities
available through Web services. These must provide a

set of operations suitable to fi! the requirements of every
class of cooperative applications.

Because the tasks assigned to each participant in a
cooperative session may vary more or less frequently, it
is desirable to have the ability to download applications

as needed and execute them immediately. This feature
provides the system with a high degree of flexibility and
the users with the latest version of the required applica­

tion. Figure 2 depicts SAGA's overall architecture, show­
ing lhe generic services that provide support for various
kinds of cooperative applications and their interactions
with lhe client-side components. ln lhe SAGA architec­

ture, users can access the services using various kinds
of Web-enabled devices. The applications on the client­

side act as Web services' clients that invoke the opera­
tions available on the services interfaces. The SAGA

architecture encompasses a set of core services that
provide applications with cooperative functionalities:
Applications Repository Service, lnformation Repository
Service, Authentication Service, Users Directory Service,
Concurrency Contrai Service, and Events Notification
Service.

The user, after authentication by the Authentication

Service, visualizes the list of the applications available in
the Applications Repository Service and may then select,
download, and execute them immediately. These appli­
cations may, in runtime, use the lnformation Repository
Service to access the information resources and down­
load the ones needed. When one user wants to cooper­
ate with another one, the user accesses lhe Users
Directory Service to view lhe list of available potential
partners. Then, lhe user sends an invitation to the poten­

tial partner, who is informed of that fact and has the
choice to accept or reject lhe invitation. Upon accep­
tance, users register their interest in being notified of
cooperative events and can start a cooperative work

session. The invitation process and lhe notification of
cooperative events are intermediated by the Events
Notification Service. This service is an interface to the
functionalities provided by the events notification system,
allowing lhe adoption of the most convenient one (e.g.,

an organization can have a legacy system that it wants
to reuse).

The group storage module is a database that stores
the applications and information resources that will be

manipulated by cooperative users. Local storage is used

SMPTE Motíon fmagíng Journaf, November/December 2006 • www.smpte.org 485

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

CNenl's computar

Client

]r.i§i@MII! 11'
Appllcatlon's activator

: 8 ..________.,1_ J.l

• J . r Transfar's clienl J I AuthenUca.!:, Service's I Appllcatlons Raposltoly

resources by several simultaneous processes
and restriction to a few or even to a single

process (e.g., locks). For this purpose, the SAGA

architecture contemplates a Concurrency Control

Service, w hich has methods to obta in and

release locks and tokens, to assign version num­
bers, and to manage voting systems .

.... ~, Service'sproiCY

LooaiSOO<age ~·_r .,~ r--y--

~~ -~~= ~I .. -~L6QJ ~ -

The Events Notification Service interface pro­

vides operations to register interest in receiving

cooperative events and to remove that interest,

as well as to be notified of the events produced

during a cooperative session. For each user join­

ing a cooperative session, an instance of the
Events Notification Serv ice is created. This

instance is registered in the Events Notification

Service as an event consumer. Each coopera­
tive event fires the invocation of the notification

;.~~{__ ..
8

GroupStorage

Figure 3. Client's architecture.

to store the resources downloaded from lhe server and

the resources produced by the local user. The resources
information contained in lhe group storage is stored in

object databases, which manage data such as the na me

of the resource, its type, its version , a brief description,

and some keywords to simplify queries. For information

resources, the identification of their creators are also

stored.
The Client module refers to an application that is an

access point to the system and corresponds conceptual­

ly to the client of both lhe Authentication Service and the

Applications Repository Service. lndeed, clients of Web

services interact with service proxies instead of directly

with service instances. These proxies run on lhe client
computer and intermediate communications between

clients and services. Hence, the Client module in the

SAGA architecture uses proxies for the Authentication

and Applications Repository services. Figure 3 shows

the block diagram of the Client module.

Cooperative activities usually incorporate at least one

of the following functionalities: communication among

team elements, information sharing, and joint visualiza­

tion of activities or work environments. For lhe latter two,

it may be highly relevant to ensure exclusive access to

shared resou rces, using concurrency control mecha­
nisms. These mechanisms include free manipulation of

operation , which delivers it to the Events

Notification system, which in tum will propagate it

to ali registered consumers.

Since SAGA adopts generic architectural solu­

tions, it has features that make it suitable for a vast set of

cooperative applications, namely:

• The features provided by Web services offer a high
degree of interoperability and the ability to integrate lega-

cy systems.
• The Events Notification Service enables lhe creation

of multiple cooperative sessions and the propagation of
any type of events.

• The Concurrency Control Service provides diverse
mechanisms that enable the adoption of the concurrency

control policy that best suites the application needs.

Coview

An important component of a video production chain is

video editing, which allows users to modify a video clip
by changing the order of its sequences; cut some parts

or the combination of severa! clips into a new one; and

add new audio tracks, subtitles, or special effects.
Current commercial products for nonlinear editing of digi­

tal video allow only a single user at a time. When a user

requires the involvement of someone else, users must

be physically co-located or must establish a conversa­

tional communication (e.g., phone call). The idea of hav­

ing a digital video editing system that allows various

users to share some parts of an editing environment,

staying in their rooms and using their computers, can be

486 SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

both operationally and financially attractive.
Coview was created to test lhe viability of

an innovative cooperative video editing appli­

cation. This prototype is a simplified applica­
tion, in terms of lhe functionali ty ii offers,

because lhe aim was mainly to determine if

cooperative video editing is viable and if Web

services can support it. Therefore, Coview

implements only lhe definition of editing points

(ln and Out) and lhe reproduction of both lhe

original clips and lhe clips produced as a

result of lhe editing process. These operations

fire events to be propagated to cooperators,
who can then properly manipulate them. The

implementation of a complete cooperative
video editing tool is a quite complex task and

would require lhe involvement of a large multi-

AuthOI'I!fe;).
l10n

(flom11'M:e)

Võllld:nor
(l•omacr;ot.,lo.)

(tlomaur.ount:o)

lnfom1ahon Application
Roposi tory sRopo Story

(foon•otuc(') thomoraee) {T<om11~Cl

COVIEW lnformauonlir.t App loeationsLi«
(fromvodE:.dol) (lromrepostto<y) (toom<epos~ooy)

ovcntsNohfle:~toon informotionRopos.tory appl i co 11 onsRo poStory

oporOOUsor$
(lfomilCCOW>I!OJ

thomusers)

(CromevtHIIScrv)

Sy!ilamMan:agor
(l oomaccounts)

M:>nogor
(I tom u~crs)

(l rom«:posoto•vl

lnfotm ohon
(l10111f""O .. Cetl)

(loom repos.tory)

opg~Reso;,.rces
(1oomo&D0511ory}

Apptic 3tion
(fiOI» If!'!<OUICC•)

Rcsourco
(1rom•eso...-ces)

disciplinary team. lndeed, lhe choice of events Figure 4. SAGA generic cfass diagram.

to be propagated and what to do with lhe

events lha! are received is a su bject lha! deserves

appropriate attention by a team with professional exper­

tise in video production and also in lhe area of social sci­

ences, which was not lhe case. Nevertheless, for the

purposes mentioned above, the authors believe it was

sufficient.

Prototypes of lhe services specified by SAGA were

also implemented. The intention was not to have an

implementation covering lhe entire system, but to intro­

duce some simplifications lha! would make lhe imple­

mentation feasible and still address lhe main features
required by Coview. Ali services and applications were

developed in Java, since it is an object-oriented lan­

guage with good semantics and syntax capabilities and it

has a sei of frameworks in areas crucial to this applica­

tion, namely those related to events notification, Java
Shared Data Toolkit (JSDT);2o media playback, Java

Media Framework (JMF);21 and object database man­

agement, Java Data Objects (JD0).22 For lhe Web ser­
vices infrastructure, Systinet WASP Developer23 was

chosen because it has a mature implementation and a

vast programmers' community and can be integrated
with major Java development environments, such as

Sun Microsystems NetBeans24 and IBM Eclipse,25

enabling automatic generation of severa! useful code
fragments. Figure 4 shows lhe generic class diagram of

lhe SAGA prototype implementation that was created; it

shows:

• Client applications-implemented by lhe classes val­

idator, Coview, lnformationlist, Applicationslist.

• Proxies to lhe Web services-implemented by lhe

classes Authentication, EventsNotification,

lnformationRepository, ApplicationsRepository.
• Web services-implemented by lhe classes authenti­

cation, EventsNotification, lnformationRepository,

ApplicationsRepository.

• Management applications-implemented by lhe

classes SystemManager, operDBUsers,

operDBResources.
• Databases' classes-implemented by lhe classes

User, Client, Manager, Resources, lnformation,
Application.

To manage lhe data required by services and applica­

tions, there are two main object databases: one for stor­
ing users' information and olhe r to store both information

and application resources. The information stored in lhe

users' database is used in lhe authentication process.
The resources database stores resource objects, which

can be applications or multimedia information resources,

as well as lhe associaled metadata. There are two types
of users: lhe common user (Ciient) and lhe system man­

ager (Manager). Both have specific attributes and opera­

tions and inherit others from lhe superclass user. A simi­
lar situation occurs for lhe resources database, which

has a superclass (Resource) and two subclasses,

lnformation and Application, as can be seen in Fig. 5.

SMPTE Motion fmaging Journaf, November/December 2006 • www.smpte.org 487

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

Use r
(trom u...-.) Resource

~userType : S tring
~name: S tring
v.e-passwd : S tring

~~'7n%~
~resourceType : S tring
'i'l.c:;overs io n : S tri ng
'i.oi11Ascrlp tlo n : S trl ng
ik?metada ta(J : S tring
'il.o-b lob: B Job

• g e tNa m e()
•getPasswd()
..,sotNa rne()
•setPasswd()

;- C lient
(fl"om user.)

lllt>activ : Bool~an

•getAc tiv()
•setActiv()

I
l Manag~' (from u•era)

I •Change N amePasswd()
~erifyNamePasswd()

•getName()
•getResourceType()
•getVersion()
• g e tD e scriptio n()
•getMetad ata()
•getB ytes()
•setBytes()
•setDescrlp tio n ()
•setMetadata()

F1gure 5. Databases ' class d1agram.

The repositories provide operations to list, add, remove,
and search for resources in lhe databases. The proto­

type implementation of SAGA contemplates search oper­

ations by name and keywords, which are performed
using Object Query Language (OQL)26 statements.

A management application allows system managers to

create, destroy, or change application and informational

resources, as well as user accounts.

Cooperative applications, such as Coview, can be

downloaded as JAR files (because graphical interfaces

usually produce several class files) and instantly activat­
ed on lhe client side, using a class loader for this pur­

pose. Figure 6 shows lhe window containing lhe list of
informational resources available to lhe users. Clicking
the resource entry and then lhe "OK" button opens a

window showing lhe characteristics of lhe selected

resource.
The Concurrency Contrai Service and lhe Events

Notification Service are particularly important for cooper­

ative activities. The prototype of lhe Concurrency Contrai
Service implements a versioning mechanism, because it

was sufficient for lhe application that was chosen to vali­

date SAGA. Moreover, lhe main interest was in testing
lhe performance of lhe system and lhe Events

Notification Service is crucial to this issue. This service

follows a publish-subscribe model, in which applications

(event producers) publish their interest in propagating

their events and other applications manifest their inten­
tion (subscribe) of receiving these events. When an

application starts its execution, it registers as a consumer

of system events, so that its user may be invited for a

cooperative session. Upon acceptance, it is also regis­

tered as a consumer of lhe specific events of that ses-

I

OK

Figure 6. List of informational resources.

sion. The registration of one application creates an

instance of lhe Events Notification Service that is used to
asynchronously notify it of lhe events in which it is inter­

ested. This instance mediates lhe registration and notifi­
cation processes between lhe applications and lhe

events notification system (supported by JSDT). Each

user may be engaged with several other users in one
cooperative session or in several ones. lndeed, user A

may have a cooperative session with user B and another

cooperative session with users C and D, without mixing
cooperative events from distinct sessions. The notifica­

tions are asynchronous to avoid the need for applications

to be Web services with public operations. Ali coopera­
tive events are distributed as strings, making lhe system
suitable for any kind of event produced by any kind of

cooperative application.

Figure 7 shows lhe main classes involved in lhe event
notification process, namely l he Events Notification

Service (eventServ) and its client-side proxy (I_Event),

some JSDT classes and interfaces that helped to imple­
ment the notification mechanism, lhe test application

(Coview), and lhe classes related with lhe asynchronous
notification feature of lhe Web services infrastructure

(GenericAsyncCallback and AsyncConversation). Beside

lhe operations to register in sessions, to qui! them, to

invite/accept cooperation and to send/receive events,

there is an operation that shows the list of active users.

This operation is used to search for potential partners to
invite for cooperation. lt corresponds to lhe Users

Directory Service, which was not implemented separate­

ly, but integrated with lhe Events Notification Service,
because their functionality is closely related.

Figure 8 shows lhe main window of lhe Coview appli-

4S8 SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

cation, where the various menus and buttons available

and a video clip being played can be observed.

Figure 9 shows the options available in two of the
Coview menus. The "File" menu has options for loading

or saving video clips, locally or in the lnformation

Repository, as well as a search by keyword facility-the

window is shown in Fig. 10. The "Cooperation" menu

(Fig. 9) has operations to control the cooperation

[~sun~r Chamei
{tomew~ Data (fromjsdt)

~name : Stnng ! · (fl"om jsdt)

ChanoeiC
1 "dataRecei~ • sen:::tToCiient()

onsLXnmer "'seOOToOthers()
(fmmJsdt)

eventServ
l GenencAsyrcCant>ac] (tom ewnls} dent

(tom asyr.c) (tomewnts)

COVIEW •register() ~name : String

(ttlm VidEdit) "quitO
"getName() "i mAte()

• accept() • autheriicate()
AsyncConversation • users_Hst(} -sessionlrMted()

(from async) • getE"'•11() ~hannelhwited()
•setE~nto

I_Event Cfient

(from iface)
Session ! (fromjsdt) ClientAdaptor
(from jsdt) (tom ewnts)

Figure 7. Events Notification's c/ass diagram.

R: COVIEW

File CooperMion EOL Help

El

~original I!_ PrtMewEdlliofJ

., ~n j

Figure 8. Coview: main window.

List of rernote cliJJS

Keywor!l search

Save locally

Villeoconference

Save remotely

Exit

Figure 9. "Fíle" and "Cooperation" menus.

process.

The keyword introduced in the window shown
in Fig. 10 is used to perform a query in the

lnformation Repository, and lhe result is pre­
sented in a window similar to that of Fig. 6,

showing only the resources that match the spec­

ified keyword. lf an informational resource is
selected in the list, a window is shown display­

ing lhe resource's features, as can be seen in

Fig. 11 . This window enables any client to
download the selected resource and the

resource's author to change the description and

metadata.

The manipulation of video clips is achieved

with the help of the JMF framework.

Cooperation can be started by choosing the cor­
responding entry in the Cooperation menu. This

action fires the invitation process described pre­

viously. Figure 12 shows a sequence of mes­
sages that are displayed in a cooperative ses­

sion: invitation, acceptance, notification of a
cooperative event, and abandon.

Experimental Results

The operation of the system was subjected to

both qualitative evaluation and quantitative mea­

surements. The qualitative evaluation of
Coview, when used by severa! cooperators in a

near real-world scenario, was very positive,
because it performed quite well as far as

response time and did not show any errors or

locks related to cooperative activities.
Measurements were also made to register the

delay introduced by the propagation of coopera­

tive events provided by SAGA. These measure­
ments were carried out by building small appli­

cations that simulate the massive production of

cooperative events at predefined time intervals.

The results of this performance test are summa­
rized in Table 1, where i! can be observed that

the system performed rather well in almost ali

situations, except for the case of a production of

events a! time intervals of only 0.1 sec, which is

SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org 489

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING

~ lnformation Search 1?5]
lnsert keyword

MPEG

OK 11 Cancel

Figure 10. Search by keyword.

Resource's features

Na me !LOTR_Fellowship_trailer.mpg

Verslon

Type
r
IMPEG

Brief description Trailer ofThe Lord of the Rings- The Fell
owship ofthe Ring

Metadata

Author

(Only author can changeJ

Figure 11. Resources features window

ltfiiiTATION lz• a~cepted tl'\e lnYitltJon
[Povou a«eDt an lrN!tóllion ttom P3ultl0 • tal181 eooPtratNO •esslon?

~~~-"'-""] r OK J 

~'"" ""''"" ovo~g <lip Uof•(1).mp•ol 
tl:elert cooperattve sesston 

[o."" 

Figure 12. Windows showing cooperation messages. 

I 
Delay (ms) (61=1 s) 

350 ,---

300 

250 . 

200 

150 

100 

50 -

Figure 13. Performance results for a time interval of 1 sec. 

a most unlikely situation in any realistic utiliza­
tion scenario. Furthermore, for almost ali situa­

tions, the average delay was less than 100 ms 

and the minimum delay was below 1 ms; the 
test applications were not able to record it. 

Figure 13 shows a chart with the perfor­

mance results produced for a time interval of 1 
sec between consecutive cooperative events. 

Other time intervals, except for 0.1 sec, exhibit 

a similar chart. 

Conclusion 
This paper described Coview, a prototype of 

a cooperative desktop video editing application 
that uses a set of Web services to achieve the 

cooperative functionalities. These Web ser­

vices constitute a framework, SAGA, and pro­
vide a set of core functionalities that can be 

composed to build severa I classes of coopera­

tive applications. lndeed, Web services have 
features lha! make them suitable to support 

cooperative applications, namely those related 

to interoperability; also, the message-oriented 
approach is adequate to the exchange of 

event notifications. 

Cooperative video editing can be very 
important for the television and video produc­

ing markets. lndeed, it can facilitate coopera­

tion among journalists, management staff, and 
video editors in large video producers and 

broadcasters, as well as for supporting remate 

reporting activities. The lack of commercial 
solutions for cooperative video editing has 

made possible, the opportunity to develop the 

innovative Coview prototype. 
SAGA is an open, distributed, interoperable, 

modular, and evolutionary architecture that 

proved to be viable, allowing lhe interaction 

between applications and support services as 
well as the exchange of events produced dur­

ing cooperative sessions. The prototype ser­
vices that were built, based on the SAGA 

architecture , performed robustly and their 
architectural solutions are generic enough to 

allow lheir usage in diverse cooperative appli­

cation scenarios. 
The Coview prototype performed quite well 

490 SMPTE Motion lmaging Journal, November!December 2006 • www.smpte.org 



 

COVIEW: A COOPERA TIVE ARCHITECTURE FOR DIGITAL VIDEO EDITING 

Table 1-Results of the Performance Tests Guides, ed. D. Chappel l, Addison­

.it-Time interval between consecutive events (s) 
Wesley Professional: Boston, 2002 . 

10. W3C, HTTP, 1999 [accessed 2004]; 
www.w3.org/Prolocols/. 0.1 0.5 2 

Average 49.498 0.326 0.073 0.059 

Maximum 111.701 2.433 0.320 0.281 

Minimum 1.713 o o o 

and has capabilities that can tum it into a powerful tool , 

because remote and collaborative vídeo editing is an 

activity that could be envisaged in many situations in 

which a reporter sends the raw material to the TV head­

quarter but wants to be involved in the final editing. 

Several improvements of the services and applications 

described in this article are being planned, namely the 

addition of metadata to the resources stored in databas­

es and a more accurate specification of the user require­

ments, resulting from the involvement of multidisciplinary 

teams (with programmers, human interface designers, 

sociologists, and audiovisual professionals) in the devel­

opment process and testing of the final product in real­

world situations. The unavailability of commercial prod­

ucts similar to Coview offers the potential to develop the 

prototype. ln this context, the hope is to find partners in 

defining the real application requirements and in devel­

oping a commercially viable product. 

References 
1. B. Fonseca, P. Oliveira, and E. Carrapatoso, "Non Linear 

Ediling in an MPEG2 Studio, XV Simpósio Brasileiro de 
Telecomunicações," Recife, Brasil: Sociedade Brasileira de 
Telecomunicações, 1997. 

2. P. Oliveira, B. Fonseca, and E. Carrapatoso, "An MPEG-2 
Distributed Studio Architecture Based on ATM," MELE­
COM'98, Tel Aviv, Israel: IEEE, 1998. 

3. T. A . Ohanian, Digital Nonlinear Editing, Second Edition, 
Focal Press: Boston, 1998. 

4 . B. Fonseca and E. Carrapatoso, "SAGA: A Web Services 
Architecture for Groupware Applications," in Groupware: 
Design, lmplementation and Use, eds. Y. Dimitriadis, I. 
Zigurs, and E. Gómez-Sánchez, Springer-Verlag: Medina 
dei Campo, Spain. p. 246-261 , 2006. 

5. R. N agappan , R. Skoczylas, and R. P. Sriganesh, 
Developing Java Web Services, Wiley: lndianapolis, 2003. 

6 . B. Associates, Service-Oriented Architecture (SOA) 
Definition 2005 [accessed 2005]; www.service-architec­
ture .com/web-services/articles/service-orienled_architec­
ture soa definition.html. 

7. W3C, w-;;b Services Architecture, 2004 [accessed 2005]; 
www.w3.org/TR/ws-arch/. 

8. W3C, W3C, 2004 [accessed 2004]; www.w3c.orgl. 
9. E. Newcomer, "Understanding Web Services: XML, WSDL, 

SOAP, and UDDI," First Edition, lndependent Technology 

5 10 

0.055 0.061 

0.331 

o 

11. W3C, XML, 2004 [accessed 2004]; 
www.xml.org/. 

0.241 

o 
12. W3C, WSDL, 2001 [accessed 2004]; 

www.w3.org/TR/wsdl. 
13. W3C, SOAP, 2003 [accessed 2004]; 

www.w3.org/TR/soap/. 
14. OASIS, UDDI, 2004 [accessed 2004]; www.uddi.org/. 
15. U. M. Borghoff and J. H. Schlichter, Computer-Supported 

Cooperative Work, Springer-Verlag: Berlin Heidelberg, 
1998. 

16. M. Beaudouin-Lafon, et ai., Computer Supported Co-opera­
tive Work. Trends in Software, ed. B. Krishnamurthy, John 
Wiley & Sons: Chichester, 1999. 

17. IBM, Lotus Notes, 2004 [accessed 2004]; www.lotus.com/. 
18. Microsoft, Microsoft Exchange, 2003 [accessed 2004]; 

www.microsoft.com/exchangeldefault.asp. 
19. W3C, WfMC, 2004 [accessed 2004]; http://www.wfmc.org/. 
20. Sun, Java Shared Data Toolkit, 2002 [accessed 2003]; 

http://java.sun.com/products/java-media/jsdt/. 
21. Sun, Java Media Framework, 2002 [accessed 2003]; 

http:/{java.sun.com/products/java-media/jmf/. 
22. Sun, Java Data Objects (JDO), 2004 [accessed 2004]; 

http:/{java.sun.com/products/jdo/. 
23. Systinet , Systinet WASP, 2003 [accessed 2003]; 

www.systinet.coml. 
24. Sun , NetBeans, 2003 (accessed 2003]; 

www.netbeans.org/. 
25. IBM, Eclipse, 2003 [accessed 2003]; www.eclipse.org/. 
26. ODMG. ODMG OQL User Manual [PDF], 2004 [accessed 

2004]; www.odmg.org/oqlg.zip. 

A contribution received January 2006. Copyright © 2006 by SMPTE. 

THEAUTHORS 
Benjamim Fonseca is an assistant professor in lhe engi­
neering department at Universidade de Trás-os-Montes e 
Alto Douro (UTAD), Vila Real, Portugal. H is current research 
interests include computer-supported cooperative work 
(CSCW), collaborative virtual environments (CVE), middle­
ware, Web services, and digital video processing . He 
received a Licenciatura in electrical engineering from UTAD, 
an MSc in computer and electrical engineering from lhe 
engineering faculty of the University of Porto (FEUP), and a 
PhD in electrical engineering from UTAD. Fonseca can be 
contacted ai benjaf@utad.pt. 

Eurico Carrapatoso is an assistant professor at Faculdade 
de Engenharia da Universidade do Porto (FEUP), Porto, 
Portugal. His current research interests include distributed 
multimedia applications, service creation methodologies, 
digital libraries, E-Learning, and simulation. He received a 
Licenciatura in electrical engineering from FEUP and a PhD 
in information systems engineering from lhe University of 
Bradford , U .K. Carrapatoso can be contacted ai 
emc@fe.up.pt. 

SMPTE Motion lmaging Journal, November/December 2006 • www.smpte.org 491 


