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ABSTRACT 

 

Zones of mixing between shallow groundwaters of different composition were unravelled by 

“two-way regionalized classification”, a technique based on Correspondence Analysis, 

Cluster Analysis and Discriminant Analysis, aided by gridding, map-overlay and contouring 

tools. The shallow groundwaters are from a granitoid plutonite in the Fundão region (central 

Portugal). Correspondence Analysis detected three natural clusters in the working data set: 1 – 

weathering; 2 - domestic effluents; 3 - fertilizers. Cluster Analysis set an alternative 

distribution of the samples by the three clusters. Group memberships obtained by 

Correspondence Analysis and by Cluster Analysis were optimized by Discriminant Analysis, 

gridded over the entire Fundão region, and converted into “two-way regionalized 

classification” memberships as follows: codes 1, 2 or 3 were used when classification by 

Correspondence Analysis and Cluster Analysis produced the same results; code 0 when the 

grid node was first assigned to cluster 1 and then to cluster 2 or vice-versa (mixing between 

weathering and effluents); code 4 in the other cases (mixing between agriculture and the other 

influences). Code-3 areas were systematically surrounded by code-4 areas, an observation 

attributed to hydrodynamic dispersion. Accordingly, the extent of code-4 areas in two 

orthogonal directions was assumed proportional to the longitudinal and transverse 

dispersivities of local soils. The results (0.7-16.8 m and 0.4-4.3 m, respectively) are 

acceptable at the macroscopic scale. The ratios between longitudinal and transverse 

dispersivities (1.2-11.1) are also in agreement with results obtained by other studies. 

 

KEY WORDS: Correspondence Analysis, Cluster Analysis, Discriminant Analysis, Surface 

Mapping Tools, Regionalized Classification, Hydrodynamic Dispersion 
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NOTATION 

 

Below is the alphabetical list of mathematical symbols used throughout this paper. 

 

Latin Symbols 

 

d - geometric mean diameter of a granular material (e.g. soil sample) 

D (DL, DT) - Coefficient of hydrodynamic dispersion (longitudinal and transverse) 

Ei - classification score of group i 

fi(x) - score of vector x in the frequency curve (f) of group i 

F - factor 

grad(h) - hydraulic gradient 

h - number of rows along the height of a grid 

k - number of groups present in a multivariate site-related data set 

K - hydraulic conductivity 

l - number of columns along the width of a grid 

mt - total porosity 

me - effective porosity 

n - number of samples (or sites) in the working database 

p - number of variables describing the samples (or sites) in the working database 

probi - prior probability of group’s i membership 

Probi - posterior probability of group’s i membership 

S - matrix of within-group variances and covariances 

t - time 

v - velocity of a solute dissolved in water along the mean direction of flow 

xp - vector containing the values of the p original (or X) variables 

x' - transpose of x 

x  - mean of x 

x ' - transpose of x  

X - set of original variables in the working data set 

wij - loading of variable j in factor i 

w%-Pollution - hydrochemical parameter discriminating between waters with weathering-

dominated chemistries and waters with chemistries controlled by anthropogenic inputs 

w%-Agriculture - hydrochemical parameter discriminating between waters with fertilizer-

dominated chemistries and effluents-dominated chemistries 
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Greek Symbols 

 

 (L, T) - mechanical dispersivity (longitudinal and transverse) 

 - log standard deviation of a grain size distribution 

 - identification code of a hybrid region 

standard deviation of a membership probability distribution 

specific retention of a porous material 
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INTRODUCTION 

 

Regionalized Classification (RC) is defined as the probabilistic assignment of sites to groups 

by using Discriminant Analysis (DA). Following Olea (1999) and his predecessors Harff and 

Davis (1990), we see nothing conceptually new in RC but agree that some novelty is 

introduced by this joint application of a number of well known mathematical, statistical and 

geostatistical techniques. 

The start of RC requires a training set that usually is provided by Cluster Analysis 

(ClA). However, with conventional clustering algorithms the number of groups (k) is defined 

subjectively, either on the basis of external information or iteratively until a certain function is 

optimized. A second difficulty in applying RC is the assignment of sites to groups when 

probabilities are similar among clusters. Again, the problem is solved by assigning to group 

zero (i.e. by setting to hybrid) all sites for which the difference between the two highest 

probabilities are less than a pre-established (subjective) threshold. 

The primary objective of this study is to clean RC from the reported drawbacks. To 

define k objectively we propose that it is selected by natural clustering. To identify the hybrid 

sites precisely, we propose that a RC based on the natural groupings (first-way RC) is 

combined with another RC based on the ClA groupings (second-way RC). By looking 

simultaneously at two different perspectives of a same reality, we expect that the typical sites 

maintain their group memberships no matter which clustering method is used, whereas the 

atypical ones alternate among groups when the clustering technique is changed. 

Consequently, the atypical sites are recast as hybrid sites and demarcated on a map as hybrid 

regions. 

The spatial relation between true and hybrid regions of groundwater data sets may, in 

some cases, unravel the mixing between waters of different compositions. The distribution of 

membership probabilities within regions of fertilizer-dominated water chemistries resembles 

the distribution of solutes inside pulse-like contaminant plumes. Using the appropriate 

contaminant transport models, it is possible to quantify processes such as hydrodynamic 
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dispersion from solute distributions inside plumes. As a secondary objective we wished to 

assess hydrodynamic dispersion across the soils of our study area (Fundão region, central 

Portugal) using the membership distributions as analogs for solute distributions. 

 

THE TWO-WAY RC APPROACH 

 

The flowchart in Figure 1 summarizes the method of two-way RC. The sites of a 

multivariate database are initially assigned to k groups by natural clustering, and then the 

groups are interpreted in terms of controlling sources and/or processes. When working with 

groundwater databases, the selected method of natural clustering can be the RST algorithm 

used by Pacheco and Van der Weijden (1996), Pacheco (1998a) or Pacheco and others (1999), 

or can be the technique based on Correspondence Analysis (CA) that Pacheco (1998b) 

developed. The first-way RC can pass through an optimization process using Discriminant 

Analysis (DA) or terminates. To start the second-way RC we run a conventional clustering 

algorithm like Ward’s method (1963) to obtain a sub-optimal non-natural distribution of the 

sites by the k groups that subsequently is optimized using DA. Node Analysis (NA) is a last 

step in two-way RC whereby the natural and non-natural group memberships are interpolated 

over grids of regularly spaced nodes. Nodes are then compared among grids, maintaining 

their original assignments or being reclassified as hybrid in a combined grid. Finally, constant 

membership contours are drawn across the study area that work as boundaries between 

different groups as well as between groups and hybrid regions. 

The next sections outline the mathematical, statistical and geostatistical procedures 

involved in two-way RC. Detailed and more mechanically oriented descriptions of these 

methods are beyond the scope of this paper and can be found elsewhere (Kaufman and 

Rousseeuw, 1990; Jackson, 1991; Jobson, 1992; among many other neat textbooks). It also 

should be mentioned that we used Pacheco’s (1998b) approach to CA to define the natural 

clusters and Ward’s method to represent the technique of non-natural clustering. 

 



 7 

Correspondence Analysis 

 

In this study, CA is used as a natural clustering technique. As usual, the set of p 

original or X variables are first transformed onto a set of p factors or F variables in a manner 

that a major portion of the data variation is concentrated on just a few of the latter, the so-

called k common factors. The relation between the F and X variables is set on the basis of a 

linear equation: 

Fi = wi1X1 + wi2X2 + ... + wipXp. (1) 

If the signs of factor loadings (wi coefficients) are equal, the corresponding X variables are 

correlated positively in Fi, otherwise they are correlated negatively. From the observation of 

these “sympathies” and “antipathies” among signs of factor loadings, Equation (1) may be 

rewritten in forms that encompass some physical or chemical meaning. That was the approach 

used by Pacheco (1998b). Working with a shallow groundwater database from a granitoid 

plutonite (Fundão, central Portugal), he separated waters with weathering-dominated 

chemistries from waters with compositions controlled by anthropogenic inputs, using the 

following hydrochemical parameter: 
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Square brackets denote molar concentrations of chloride, sulphate, nitrate, bicarbonate and 

silica in a spring. Springs with w%-Pollution less than 50% have weathering-dominated water 

chemistries and springs with w%-Pollution greater than 50% have pollution-dominated water 

chemistries. The extent to which each component contributes to w%-Pollution is determined 

by the w1 values. Contaminated spring waters were further linked to sources such as farmland 

fertilizers or domestic effluents by the following hydrochemical parameter: 
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Springs with w%-Agriculture greater than 50% were assigned to agricultural activities and 

springs with w%-Agriculture less than 50% were attributed to urban pollution plus 

atmospheric inputs. 

In total, the hydrochemical parameters defined above accounted for about 80% of the 

system variance. The bi-univocal association (extent and significance) between 

hydrochemical parameters and factors was checked by Multiple Linear Regression (MLR) 

with satisfactory results. Because the Fundão’s spring water chemistries have been explained 

by three different sources (weathering, agriculture and domestic effluents), Pacheco (1998b) 

classified his data set as a system of triple influence. In this study, these sources or influences 

provide a value for k, the number of natural clusters feeding Ward’s method of ClA. 

 

Cluster Analysis (Ward’s Method) 

 

ClA in this study is used as an alternative clustering technique. The adopted Ward’s 

method (1963) belongs to the category of agglomerative hierarchical methods. The aggregate 

is gradually built on a similarity coefficient between samples or sites. First the algorithm 

gathers all most-similar pairs and then aggregates the other samples/sites or already-formed 

groups according to their similarities until k groups are formed. Distinct from other 

hierarchical methods, Ward’s method is a minimum variance agglomerative technique 

because the two clusters to be joined in each round of clustering are those generating the 

smallest increase in the within-cluster variation. 
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Discriminant Analysis 

 

For the present case study, DA is used as a classification tool, namely for optimizing 

the location of sites pre-assigned by CA or ClA. A general approach to the problem of 

(re)classifying an observation x may be stated as follows: 

)ln( ii probE  

i

1

ii
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where Ei is the classification score of group i; x' is the transpose of x; x i and x 'i are the mean 

of group i observations and the transpose of that vector, respectively; S-1
 is the inverse of the 

within-group variance-covariance matrix; probi is the prior probability of group membership 

manifest in the observed ni/n proportion, where ni is the number of observations in group i and 

n the number of observations in the dataset. According to this criterion, an observation x will 

be (re)classified into the group for which the E value is highest. The new (posterior) 

probability of group membership (Probi) is given by: 
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where fi(x) is the score of x in the frequency curve of group i. The relation between prior and 

post assignments is frequently reported in a confusion matrix that shows the number of 

correctly classified cases in the main diagonal and the number of misclassified cases in the 

off-diagonals. Confusion matrices are also useful to compare classification results obtained by 

different approaches [Eq. (2), Eq. (3), and Ward’s method]. 

 

Node Analysis 

 

The scope of NA, as employed in this study, is threefold. First we looked at this 

procedure as a gridding tool. Using methods such as kriging, gridding produces a regularly 
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spaced array of z values from randomly spaced (x,y,z) observation points. When the (x,y,z) 

observations are spaced randomly over the study area, there are usually many holes in their 

distribution. Gridding fills in the holes by extrapolating or interpolating z values in those 

locations where no data exists. We interpolated the CA/DA group memberships to be used in 

NA over a grid with lh nodes, where l is the number of columns along the width and h the 

number of rows along the height of the study area, and did the same with the ClA/DA results. 

After gridding we compared nodes between the CA/ClA or one-way RC grids and constructed 

a combined or two-way RC grid. If the membership of a node was equal in the first grids, then 

the node stayed in its group in the combined grid. Otherwise the node was reclassified as 

group- node (hybrid), where  is an arbitrary identification code. In the last stage of NA we 

drew constant membership contours across the grids that became boundaries between 

different groups and between groups and hybrid regions. 

 

THE TWO-WAY RC MODEL FOR THE FUNDÃO AREA 

 

 In this study we used the set of 160 spring water samples that were collected in the 

Fundão area (central Portugal) by Van der Weijden and others (1983). The sampling was 

carried out in June-July. The samples’ locations are plotted in Figure 2 and the chemical 

analyses are given in the Appendix. 

 

Results of CA/DA 

 

 CA was applied by Pacheco (1998b) to the Fundão data set using the major anions 

and dissolved silica as variables (concentrations in mol/l). The results are shown in Table 1. 

 From the observation of sympathies and antipathies between factor loadings, the first 

two factors were represented by: 

- the w%-Pollution (factor one), with  
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Pollution=443.0Cl-+370.8SO4
2-+748.9NO3

- 

Weathering=313.4HCO3
-+421.0SiO2 

- the w%-Agriculture (factor two), with 

Agriculture=63.4SO4
2-+591.6NO3

- 

Dom. Effluents/Atm. Input=377.0Cl-. 

 The water samples were assembled into three groups: 1 – weathering (w%-Pollution 

< 50%); 2 - domestic effluents (w%-Pollution > 50% and w%-Agriculture < 50%); 3 - 

farmland fertilizers (w%-Pollution > 50 % and w%-Agriculture > 50%). The results of this 

classification are listed in the Appendix under the heading CA/DA-Prior. 

 The relation between hydrochemical parameters and factors was set on the basis of 

MLR and the results are summarized in the last two rows of Table 1. The MLR model for 

w%-Pollution holds a R2 = 99.1% indicating a tight regression between this parameter and F1, 

but no similar link exists between the w%-Agriculture parameter and F2 (in the latter case R2 

= 77.9%). In view of such uncertainty, we used DA to optimize the location of the samples 

with respect to the three pre-defined groups. The results are in column CA/DA-Post of the 

Appendix and reveal that 15 samples (9.4%) were reclassified into a different group. Using 

the optimized memberships of the samples and gridding as explained above, we drew Figure 

3 that illustrates the areas of influence of each CA group. 

 

Results of ClA/DA 

 

 The results from Ward’s method are described in detail in the Appendix (column 

ClA/DA-Prior). These groupings were used as a training set for DA which provided the post 

assignments listed in column ClA/DA-Post. 

 The confusion matrix comparing the CA/DA and ClA/DA results is shown in Table 2. 

There is little doubt that group A is equivalent to group 1 (the weathering group), but the 

associations between groups 2/3 and B/C are less evident. The medians of w%-Pollution and 
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w%-Agriculture suggest that group B and group 3 are influenced by farmland fertilizers, 

whereas group C, although falling in the field of weathering, has a median w%-Agriculture 

compatible with group 2 (influence by domestic effluents). Based on these associations we 

drew Figure 4 to show the areas of influence of each ClA/DA group. 

 

Results of Node Analysis 

 

 Employing NA we combined Figures 3 and 4 obtaining Figure 5. The grids used were 

rectangles with l = 400 columns and h = 300 rows. The recasting of grid nodes was performed 

as follows: (1) when nodes in the one-way RC grids (Fig. 3 and 4) had the same value (1, 2 or 

3 depending on whether their group memberships were 1/A, 2/C or 3/B) they preserved this 

value in the two-way RC (Fig. 5); (2) when group memberships in the original grids differ but 

one had the a value of 3 (fertilizer’s influence) they were recast as 4 (mixing between 

fertilizer and other influences) in the combined grid; (3) in all other cases the two-way RC 

nodes were recast as 0 (mixing between weathering and domestic effluents). 

 The areas with weathering-dominated water chemistries occupy most of the studied 

region, working out as areas of background hydrochemistry. The dominance of effluents is 

restricted to the region of Alcaria, where the Meimoa river intersects the Zêzere river and 

some streamlets intersect the Meimoa river (Fig. 2). However, a substantial surface area 

upstream from the Meimoa river is occupied by regions where effluents blur the background 

compositions generated by weathering (white areas). Apparently the direct discharge of 

domestic effluents into streams and streamlets produces regions of mixing that are converted 

by some concentration process into a region of effluent-dominated water chemistries south of 

Alcaria. In all cases the areas with fertilizer-dominated water chemistries are spots surrounded 

by a zone of fluid mixing. 
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TWO-WAY RC AND THE ASSESSMENT OF HYDRODYNAMIC DISPERSION 

 

 Hydrodynamic dispersion of a solute in groundwater occurs as a consequence of two 

different processes: mechanical dispersion and molecular diffusion. Mechanical dispersion is 

a process of fluid mixing that causes a zone of mixing to develop between a fluid of one 

composition that is adjacent to or is being displaced by a fluid of another composition. It 

occurs as a result of variations around some mean velocity of flow. These variations are 

caused by the porous medium heterogeneities at the microscopic, macroscopic and 

megascopic scales (e.g. variations in the hydraulic conductivity, grain’s sorting, etc). 

Molecular diffusion originates because of mixing caused by random molecular motions due to 

the thermal kinetic energy of the solute, i.e. it is a chemical rather than a physical (advective) 

process. 

 The results of two-way RC regarding the areas with fertilizer-dominated water 

chemistries (cross-hatched areas in Figure 5) suggest that some dispersion of the fertilizers 

took place after their application on farmland, because these areas are completely surrounded 

by a region of mixing (dark grey areas). It seems like the fertilizers applied in Spring (starting 

in early March) to feed the Summer crops have moved downstream and formed pulse-like 

contaminant plumes, which in turn have grown large and get diluted in their outer rims due to 

hydrodynamic dispersion. The sampling made in June-July worked out as a snapshot of the 

plumes when they were four months old. The purpose now is to quantify the hydrodynamic 

dispersion, but first some mathematical background must be introduced. 

 

Mathematical Background on Hydrodynamic Dispersion 

 

 When a solute is subject to effective leaching, as usually happens in soils and 

saprolites derived from granites, mechanical dispersion grows several orders of magnitude 

higher than molecular diffusion, swamping the effects of this latter phenomenon (Pfannkuch, 

1962). In such cases hydrodynamic dispersion is represented mathematically by: 
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 vD  (6a) 

with 

em

hgradK
v

)(
  (6b) 

where D is the coefficient of hydrodynamic dispersion, v is the solute’s velocity in the mean 

direction of flow and   is a characteristic property of mechanical dispersivity; K, grad(h) and 

me are the hydraulic conductivity, hydraulic gradient and effective porosity. Hydrodynamic 

dispersion may be expressed by longitudinal (in the direction of flow) and transverse (at right 

angles) spreadings where the D and  coefficients are represented with L or T subscripts (e.g. 

DL or T). 

 Assessment of the dispersion coefficients is essential for models of contaminant 

transport to work. Among the models in use, we focus on those dealing with localized and 

non-continuous sources of contamination, like the periodic application of fertilizers to 

farmland. According to these pulse-type models, the movement of a contaminant (e.g. 

sulphate) across the porous medium generates a growing plume due to hydrodynamic 

dispersion. One important feature of the concentration distribution inside the plume is that 

after a short period of time it becomes normal. The mean of the distribution describes the 

position of the plume and the variance (
2

L  or 
2

T ) of the longitudinal and transverse 

dispersions. The corresponding coefficients of hydrodynamic dispersion are given by 

(Domenico and Schwartz, 1990): 

t
D

t
D

T
T

L
L

2

2
2

2









 (7) 

where t is the time passed since the contaminant entered the system. 
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The Analog Pulse-Type Model Based on Group Memberships 

 

 Application of pulse-type models [estimation of  in Equation (7)] requires that 

concentration distributions within contaminant plumes are well defined. This occurs when 

plumes are composed of a solute introduced artificially in the system (a tracer). In these cases 

solute concentrations inside and outside the plumes usually contrast. Contrarily, when plumes 

result from dissolution of fertilizers in ground waters also affected by weathering and 

domestic effluents (present case), the overlapping of several and sometimes similar sources of 

solutes masks the boundaries between plumes and the natural environment, making it difficult 

to quantify the mass transport parameters. In these cases we would need first to define a sharp 

boundary around the plumes and then use a proxy to describe the concentration distributions 

inside them. We believe that this is performed adequately by the two-way RC approach: the 

boundary of a plume is defined by the outer limit of a dark grey area enclosing a cross-

hatched area (Fig. 5). The concentrations are represented by the membership probabilities of 

groups linked to the agriculture influence (1/2(group 3+group B)), listed in the Appendix 

under the heading Prob-3/B. 

 In total there are four contaminant plumes in Figure 5, which were termed Telhado, 

South of Alcaria, Fundão and North of Valverde in reference to the closest town. From data in 

column Prob-3/B of the Appendix, we drew contours of membership probability inside the 

plumes and shaded the space between those corresponding to the means and means minus 

standard deviations (Fig. 6a-d). The thicknesses of the shaded areas in the directions of 

elongation and at right angles are measures of L and , respectively. 

 

Hydrology of the Fundão Soils 

 

 Apart from the estimation of , quantification of dispersivities [Eq. 6a] requires that 

some hydrologic information is available on the studied porous media, namely mean 
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velocities of flow, which in turn are dependent on hydraulic gradients, hydraulic 

conductivities and effective porosities [Eq. 6b]. Hydraulic gradients may be approached by 

topographic gradients. The other necessary hydrologic information is compiled in the next 

paragraph. 

 Costa and others (1971) collected a set of 37 soil samples from the region of Fundão 

and analysed them for grain size (Table 3). Hydraulic conductivities were estimated from the 

grain size distributions using the formula of Krumbein and Monk (1943): 

31.12760  edK  (8) 

where K is the hydraulic conductivity given in darcys (conversion to m/s implies a division by 

104000), d is the geometric mean diameter (in millimeters) and  the log standard deviation of 

the grain size distribution. The log(K) values are listed in the last column of Table 3 and their 

spatial distribution is shown in Figure 7. Effective porosities have been estimated by an 

analytical method cited in Custodio and Llamas (1983): 

clayloamsand

 -  m m te





65.135.003.0
 (9) 

where mt and me are the total and effective porosities of the soil and  is its specific retention; 

sand, loam and clay are the proportions of the sand, loam and clay fractions in the sample 

(Table 3). For mt we assumed a value of 50%, which is common for soils derived from 

granites. The me values obtained by Equation (9) were interpolated across the Fundão area 

and some contours were drawn (Fig. 8). 

 

Dispersivities of the Fundão Soils 

 

 From Figures 6a-d we estimated the plumes’ 
2

L  and 
2

T  and then calculated the 

plumes’ hydrodynamic dispersions using Equation (7), assuming that t = 4 months (the age of 

the plumes). From Figures 7 and 8 we averaged the plumes’ hydraulic conductivities and 

effective porosities. Using this information in combination with hydraulic gradients deduced 
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from Figures 6a-d, we determined flow velocities [Eq. 6b] that when combined with the 

previously calculated hydrodynamic dispersions gave estimates for the longitudinal and 

transverse dispersivities [Eq. 6a]. All results are shown in Table 4. 

 The values of L range from 0.7 to 16.8 m. They are acceptable because in this study 

we are dealing with the assessment of dispersivities at the macroscopic scale. As expected, the 

T values are always smaller than the L values. The ratios L/T are within the interval [1.2, 

12.6] m, a range that has already been found by other authors. The use of a single t is 

obviously a source of uncertainty because application of fertilizers is not restricted to a single 

day. The value of 4 months is the largest gap between the actions of fertilizing and water 

sampling. A value for the smallest gap would be 2 months or so, for crops seeded in late 

April. Adoption of t = 2 months would raise the L and T dispersivities by a factor of 2, but 

their ranges would be kept under acceptable values. 

 

CONCLUSIONS 

 

 Hydrodynamic dispersion at the macroscopic and larger scales is an interesting and 

still unsolved research topic. In the previous sections of this paper we showed how the shapes 

and concentration distributions of contaminant plumes can be assessed by the application of 

our two-way RC and, notwithstanding limitations in accounting for the age of the plumes, 

demonstrated that quantification of mechanical dispersivities by this method leads to reliable 

results not only at the level of absolute values of the longitudinal and transverse components 

but also at the level of the ratios between them.
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APPENDIX: Location of the sampling sites (Hayford-Gauss M and P coordinates). Concentrations of 

major anions and silica in the 160 spring water samples collected by Van der Weijden and others 

(1983); the values were scaled to mol/l. For some reason, some of the values in this appendix were 

transferred incorrectly from the original data set to Pacheco and Van der Weijden (1996) and Pacheco 

(1998b). Some values regarding the cations (not shown in this appendix) are also incorrect in those 

papers, and the correct values are (mol/l): K(215)=34, Mg(226)=65, Mg(269)=861, Ca(42)=107, 

Ca(85)=171, Ca(226)=131, Ca(267)=327, Ca(271)=128, and Ca(439)=157, where values within 

brackets represent sample numbers. The chart shows prior and post assignments of samples to the CA 

and ClA groups. Prob-3/B is the sample’s average posterior probability of group 3 (CA) and group B 

(ClA) memberships (agriculture influence). 

 

Identification Raw data CA/DA ClA/DA Prob-3/B 

nr M (m) P (m) [HCO3
-] [Cl-] [SO4

2-] [NO3
-] [SiO2] Prior Post Prior Post 

28 253614 353895 780 440 356 371 656 3 1 C C 0.21 

30 253789 353965 844 485 458 460 639 3 3 C C 0.33 

31 253263 353298 490 423 185 387 506 3 3 A A 0.27 

32 253228 353579 390 282 129 371 558 3 1 A A 0.24 

35 252491 352105 729 347 341 221 614 1 1 C C 0.13 

39 252631 354666 619 231 129 216 260 3 3 A A 0.23 

41 251789 355052 261 189 198 55 463 1 1 A A 0.12 

42 252526 355754 370 130 127 139 421 1 1 A A 0.16 

45 254526 358596 1280 668 464 121 571 1 2 C C 0.03 

51 253474 358982 780 499 458 189 100 2 2 C C 0.06 

59 252281 358526 2260 2115 635 150 674 2 2 B C 0.02 

60 253614 357403 560 248 158 63 524 1 1 A A 0.05 

61 254105 357684 580 231 83 18 560 1 1 A A 0.02 

63 253754 353298 229 790 735 998 399 3 3 B B 1.00 

66 251579 353719 480 296 325 366 474 3 3 A A 0.37 

67 251754 353509 1052 243 4 0 684 1 1 C C 0.00 

71 250526 353263 639 183 433 0 626 1 1 C C 0.07 

72 250421 352947 239 164 56 1 478 1 1 A A 0.05 

74 249930 353123 660 149 44 32 609 1 1 A A 0.02 

75 249719 352772 480 138 62 0 399 1 1 A A 0.05 

76 249754 352421 810 155 92 0 503 1 1 C C 0.02 

77 252035 352140 851 550 237 258 499 2 1 C C 0.11 

78 251474 351930 918 1664 473 874 438 2 2 B B 0.61 

79 250737 352035 410 181 125 121 634 1 1 A A 0.05 

84 251649 353158 451 307 323 211 426 3 3 A A 0.27 

85 251579 352982 590 169 94 82 606 1 1 A A 0.03 

86 255017 353403 870 279 35 60 663 1 1 C C 0.01 

87 256316 353158 451 243 177 1 613 1 1 A A 0.03 

90 257438 355474 760 248 125 47 506 1 1 C A 0.03 

92 258000 356737 580 186 117 0 552 1 1 A A 0.03 

96 258386 355228 480 336 58 32 652 1 1 A A 0.01 

99 259123 354982 600 567 366 37 353 2 2 C C 0.06 

202 250175 355017 239 1297 1307 839 573 3 3 B B 0.91 

203 250210 355579 610 372 417 185 440 2 3 C C 0.23 
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Identification Raw data CA/DA ClA/DA Prob-3/B 

nr M (m) P (m) [HCO3
-] [Cl-] [SO4

2-] [NO3
-] [SiO2] Prior Post Prior Post 

204 251895 356807 352 254 172 158 657 1 1 A A 0.07 

205 252561 357052 716 536 404 379 485 3 3 C C 0.30 

206 251052 356281 472 677 289 37 441 2 1 C A 0.05 

207 250421 354737 244 621 580 500 489 3 3 B C 0.50 

208 250666 355298 328 181 171 92 474 1 1 A A 0.12 

209 250456 353895 367 231 323 240 532 3 3 A A 0.28 

210 250386 353368 388 183 76 82 626 1 1 A A 0.03 

211 251789 356035 1080 395 383 71 587 1 1 C C 0.04 

212 251930 355544 357 85 173 144 603 1 1 A A 0.10 

213 252702 356351 429 691 431 855 405 3 3 B B 0.92 

214 252351 354702 215 220 437 203 437 3 3 A A 0.38 

215 252702 354877 690 121 173 18 564 1 1 C C 0.03 

216 250245 352035 1113 189 227 53 660 1 1 C C 0.02 

217 251298 352456 787 243 90 3 654 1 1 C C 0.01 

218 252000 353754 2994 485 228 181 635 1 1 C C 0.00 

219 250140 354561 167 762 139 871 465 3 3 B A 0.55 

220 253403 359158 3655 2482 1047 1081 264 2 2 B B 0.50 

221 254456 357438 477 209 137 3 522 1 1 A A 0.04 

222 253544 357544 642 259 194 216 634 1 1 A A 0.08 

223 253158 356947 326 254 371 435 485 3 3 A A 0.44 

224 253509 356035 1155 130 138 77 411 1 1 C C 0.04 

225 253263 355474 372 133 227 58 472 1 1 A A 0.13 

226 253684 355579 436 113 158 85 545 1 1 A A 0.08 

227 253965 355895 367 124 154 226 581 1 1 A A 0.15 

228 252526 352245 836 268 342 177 750 1 1 C C 0.05 

229 255684 351684 557 536 162 205 666 1 1 A A 0.04 

230 257544 352456 664 203 318 21 546 1 1 C C 0.07 

231 255193 352351 626 178 448 124 508 1 1 C C 0.22 

232 254561 353333 334 175 81 435 745 3 1 A A 0.17 

233 254456 353965 690 790 514 2903 687 3 3 B B 1.00 

234 253579 354807 433 158 278 132 670 1 1 A A 0.09 

235 255403 356947 523 155 70 65 668 1 1 A A 0.02 

236 255649 357088 601 1354 1144 1387 586 3 3 B B 0.99 

237 254877 356175 400 118 96 248 207 3 3 A A 0.35 

238 255158 356386 438 141 135 68 535 1 1 A A 0.06 

239 254772 355193 600 324 274 500 558 3 3 A A 0.38 

241 260210 357193 231 79 24 61 514 1 1 A A 0.06 

242 259754 357509 136 65 10 71 445 1 1 A A 0.09 

243 254105 359333 1529 874 515 435 776 2 1 C C 0.07 

244 255859 355824 323 265 336 250 476 3 3 A A 0.33 

245 254912 354702 692 310 173 131 608 1 1 A C 0.04 

246 254631 356351 564 127 151 131 519 1 1 A A 0.09 
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Identification Raw data CA/DA ClA/DA Prob-3/B 

nr M (m) P (m) [HCO3
-] [Cl-] [SO4

2-] [NO3
-] [SiO2] Prior Post Prior Post 

247 254947 357193 454 282 372 166 532 3 1 A C 0.21 

248 250596 355789 526 195 384 500 415 3 3 A C 0.47 

249 248877 352947 408 107 170 52 560 1 1 A A 0.06 

250 258561 357614 187 268 279 324 579 3 3 A A 0.32 

251 258842 357368 203 93 15 35 467 1 1 A A 0.06 

252 259088 356842 128 104 7 66 414 1 1 A A 0.10 

253 259438 356175 249 90 66 61 619 1 1 A A 0.04 

254 260000 355509 295 116 75 29 600 1 1 A A 0.03 

255 260105 355509 293 124 72 66 672 1 1 A A 0.03 

256 259614 356140 236 130 75 35 520 1 1 A A 0.06 

257 259438 355930 243 144 99 140 613 1 1 A A 0.07 

258 259193 356000 59 96 9 66 237 1 1 A A 0.21 

259 258456 353824 723 262 173 190 740 1 1 A C 0.03 

260 255403 353438 647 141 62 44 760 1 1 A A 0.01 

261 256140 353965 675 931 365 452 620 2 1 C C 0.21 

262 256035 354070 1047 3328 749 1516 617 2 2 B B 0.51 

263 256105 354281 1721 3159 1450 1242 740 2 2 B B 0.50 

264 255930 354737 451 333 204 250 550 3 1 A A 0.16 

265 256000 354526 567 152 43 9 697 1 1 A A 0.01 

266 256000 355052 533 1297 1784 532 486 2 2 B B 0.54 

267 256456 354877 1278 564 113 182 739 1 1 C C 0.01 

268 256526 355263 526 527 439 282 581 2 3 C C 0.25 

269 256316 354105 877 6770 1117 1048 567 2 2 B B 0.50 

270 257088 354702 1169 1326 675 726 452 2 2 B B 0.58 

271 257754 354386 449 214 50 139 842 1 1 A A 0.01 

272 257158 353789 367 259 12 187 573 1 1 A A 0.06 

273 252877 351684 652 164 24 4 723 1 1 A A 0.01 

274 255930 352631 470 305 105 150 530 1 1 A A 0.07 

275 256316 352316 516 282 25 105 662 1 1 A A 0.02 

276 256737 351895 531 480 71 176 615 1 1 A A 0.03 

277 256877 352596 606 361 119 113 736 1 1 A A 0.02 

278 257965 352210 375 203 37 113 760 1 1 A A 0.02 

279 258526 352631 688 592 134 118 692 1 1 C A 0.01 

280 259614 350912 434 152 23 13 583 1 1 A A 0.02 

402 256631 350421 150 115 14 22 211 1 1 A A 0.16 

404 256982 350526 308 188 19 32 399 1 1 A A 0.06 

406 254281 359684 853 623 151 60 692 1 1 C C 0.01 

407 254807 359474 2081 745 399 106 757 1 1 C C 0.00 

408 257088 359052 551 268 140 113 711 1 1 A A 0.02 

410 260666 354386 272 107 25 74 530 1 1 A A 0.05 

411 261333 353579 214 199 93 30 209 1 1 A A 0.18 

415 248631 355824 470 244 34 8 612 1 1 A A 0.01 
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Identification Raw data CA/DA ClA/DA Prob-3/B 

nr M (m) P (m) [HCO3
-] [Cl-] [SO4

2-] [NO3
-] [SiO2] Prior Post Prior Post 

420 254702 350947 390 209 46 14 340 1 1 A A 0.07 

421 255859 350842 353 188 45 23 339 1 1 A A 0.08 

423 260421 354245 262 88 32 29 352 1 1 A A 0.10 

424 258596 351298 365 232 79 81 445 1 1 A A 0.08 

425 258596 351088 819 91 21 11 812 1 1 C C 0.00 

427 259649 351333 433 162 10 30 534 1 1 A A 0.03 

430 248702 357017 725 241 324 34 464 1 1 C C 0.09 

432 260596 352807 338 161 19 25 689 1 1 A A 0.01 

433 260386 352351 280 107 82 24 524 1 1 A A 0.05 

434 260772 352456 292 79 16 13 524 1 1 A A 0.03 

435 260456 351859 421 64 10 5 581 1 1 A A 0.02 

438 256035 359298 430 152 60 30 487 1 1 A A 0.04 

439 253719 351474 714 128 25 0 709 1 1 A A 0.01 

440 254140 351228 636 127 58 7 729 1 1 A A 0.01 

441 256702 351298 956 166 67 8 875 1 1 C C 0.00 

442 258561 352175 607 832 50 75 838 1 1 C A 0.00 

443 259649 354386 549 378 65 33 569 1 1 A A 0.02 

444 259649 353333 351 157 27 36 442 1 1 A A 0.05 

446 256526 354175 651 255 28 33 887 1 1 A A 0.00 

447 256105 353438 974 533 189 107 548 1 1 C C 0.02 

452 252631 352281 838 338 351 105 774 1 1 C C 0.03 

453 251579 354386 1123 276 92 17 752 1 1 C C 0.00 

457 250666 350631 566 93 3 1 568 1 1 A A 0.02 

458 255509 351438 526 195 18 22 670 1 1 A A 0.01 

463 248947 350386 231 241 67 31 366 1 1 A A 0.09 

514 254737 356035 558 161 133 27 497 1 1 A A 0.05 

522 253824 356281 1149 181 95 32 600 1 1 C C 0.01 

523 252702 353579 650 302 299 34 860 1 1 C C 0.01 

524 252842 354982 918 248 228 21 679 1 1 C C 0.01 

525 251754 355649 503 126 138 48 554 1 1 A A 0.05 

530 256140 353614 643 454 356 62 742 1 1 C C 0.03 

534 257509 353123 310 277 162 100 604 1 1 A A 0.06 

535 257754 352281 625 725 286 105 568 2 1 C C 0.04 

536 255824 351719 529 236 111 42 431 1 1 A A 0.06 

539 257509 354912 600 685 226 150 375 2 1 C A 0.08 

540 256491 354105 520 224 46 63 806 1 1 A A 0.01 

573 259298 355789 96 195 20 19 280 1 1 A A 0.13 

574 258561 356105 652 914 189 29 515 2 1 C A 0.01 

575 258842 355193 875 426 261 30 514 1 1 C C 0.03 

583 248947 357895 305 2350 269 284 415 2 2 B A 0.19 

589 256316 352316 501 205 39 24 679 1 1 A A 0.01 

591 250421 357403 572 412 418 20 228 2 2 C C 0.08 
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TABLE LEGENDS 

 

Table 1. Results of the CA procedure. Adapted from Pacheco (1998b). Symbols: %Fi - 

percentage of data variation explained by Fi; Cum-%F - cumulative %Fi; Bi - standardized 

regression coefficient of factor Fi; R
2 - adjusted coefficient of multiple determination; w%-

Pollution and w%-Agriculture – hydrochemical parameters calculated by Equations (2) and 

(3). 

 

Table 2. Confusion matrix comparing the results obtained by CA/DA (1, 2 and 3) and 

ClA/DA (A, B and C) groupings. Associated medians of the w%-Pollution and w%-

Agriculture parameters as determined by Equations (2) and (3). 

 

Table 3. Grain size distributions, hydraulic conductivities and effective porosities of 37 soil 

samples from the Fundão region. Original data (grain sizes) compiled from Costa and others 

(1971). Hydraulic conductivities estimated by the method of Krumbein and Monk (1943), 

and effective porosities by a method cited in Custodio and Llamas (1983) assuming an 

average total porosity of 50%. Symbols: nr - number of the soil sample; M, P - Hayford-

Gauss coordinates of the soil samples (locations in Figures 7 and 8); K - hydraulic 

conductivity; me - effective porosity. 

 

Table 4. Results of the procedures used to estimate the longitudinal and transverse 

dispersivities of the Fundão soils. Symbols: me - effective porosity; K - hydraulic 

conductivity; grad(h) - hydraulic gradient; v - mean velocity of flow; L, 'L, T, 'T  - 

standard deviations of group-3/B membership probabilities (spatial representation); DL, DT - 

coefficients of hydrodynamic dispersion; L,T - mechanical dispersivities. 
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FIGURE CAPTIONS 

Figure 1. Flowchart illustrating two-way regionalized classification of multivariate data sets. 

 

Figure 2. Location of the Fundão area and water sampling sites. Adapted from Pacheco 

(1998b). Original drawings in Van der Weijden and others (1983). 

 

Figure 3. Spatial distribution of group memberships determined by the results of CA 

optimized by DA. 

 

Figure 4. Spatial distribution of group memberships determined by the results of ClA 

optimized by DA. 

 

Figure 5. Results of node analysis. 

 

Figure 6. Topography around the contaminant plumes: (a) Telhado, (b) South of Alcaria, (c) 

Fundão, and (d) North of Valverde. The plumes are represented by dashed thick polygons. 

The shaded areas describe the regions inside the plumes where group-3/B membership 

probabilities range from the mean to the mean minus standard deviation. The thickness of the 

shaded areas is a measure of Eq. (7)]. The samples’ group-3/B memberships are listed in 

the Appendix. 

 

Figure 7. Spatial distribution of the Fundão soils' hydraulic conductivities. The numbers near 

the dots are sample numbers as listed in Table 3. The labelled polygons are the four 

contaminant plumes. 

 

Figure 8. Spatial distribution of the Fundão soils' effective porosities. The numbers near the 

dots are sample numbers as listed in Table 3. The labelled polygons are the four contaminant 

plumes.
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TABLE 1 

 

 

 

Factor F1 F2 F3 F4 

 Distribution of variance 

Eigenvalue (x1000) 190.5 74.8 44.9 34.6 

%Fi 55.3 21.7 13.0 10.0 

Cum-%F 55.3 77.0 90.0 100.0 

 Correspondence factor loadings (x1000) 

HCO3
- 313.4 92.0 -202.6 164.6 

Cl- -443.0 377.0 178.3 14.6 

SO4
2- -370.8 -63.4 -346.5 -394.1 

NO3
- -748.9 -591.6 35.7 235.5 

SiO2 421.0 -160.3 210.3 -114.7 

 MLR model relating hydrochemical parameters with factors 

 B1 B2 B3 R2(%) 

w%-Pollution 51.4 1.4 0.6 99.1 

w%-Agriculture 22.1 68.5 12.0 77.9 
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TABLE 2 

 

 

 

 

 A B C Total w%-Pollution w%-Agriculture 

1 88 0 36 124 29.0 35.6 

2 1 7 5 13 74.2 36.1 

3 12 5 6 23 63.3 64.4 

Total 101 12 47 160   

w%-Pollution 30.5 78.4 40.8    

w%-Agriculture 37.5 56.7 38.7    
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TABLE 3 

 

 

Identification Grain Size Distribution (ranges in mm, values in wt%) 
Physical 

Parameters 

nr M (m) P (m) 
Sand Loam Clay 

LOG (K) me 
>2 2-0.05 0.05-0.02 0.02-0.002 <0.002 

1 251980 355554 24.6 51.0 6.2 10.4 5.7 -2.08 0.32 

2 253424 352614 5.9 36.9 14.5 24.1 18.4 -2.52 0.05 

3 253144 352897 11.4 63.9 6.3 9.6 3.4 -2.17 0.36 

4 253271 354764 25.1 52.9 4.7 12.1 5.0 -2.06 0.33 

5 251206 351810 18.5 67.1 5.7 6.4 1.5 -2.06 0.41 

6 254266 353084 28.4 51.4 6.2 10.0 2.2 -2.03 0.38 

7 250099 354408 18.2 65.3 3.8 8.0 3.2 -2.07 0.38 

8 249208 351786 10.0 71.7 5.3 7.8 4.3 -2.14 0.36 

9 254393 354426 9.2 72.1 4.9 11.4 1.5 -2.15 0.39 

10 254490 353072 29.1 49.5 5.0 10.3 4.2 -2.04 0.35 

11 254691 353406 8.9 71.7 5.0 11.2 1.3 -2.15 0.40 

12 251966 356192 18.1 65.7 4.3 7.6 3.4 -2.07 0.38 

13 248191 352669 12.5 77.8 1.8 5.2 2.5 -2.07 0.41 

14 253926 355384 2.2 80.6 6.0 8.3 1.7 -2.19 0.40 

15 255549 353221 3.0 65.2 10.0 15.0 4.8 -2.30 0.31 

16 253636 356950 18.8 69.6 3.8 4.2 2.8 -2.04 0.40 

17 255132 356889 18.5 66.8 3.5 7.4 3.2 -2.06 0.38 

18 257768 354582 1.6 80.3 5.0 10.5 2.2 -2.20 0.38 

19 257059 355671 2.3 81.0 1.3 9.8 5.3 -2.19 0.35 

20 250432 355914 7.2 67.8 11.5 4.8 4.6 -2.21 0.34 

21 252911 351265 3.2 82.2 4.7 7.8 1.1 -2.16 0.41 

22 251028 350888 5.2 50.9 10.4 20.3 11.7 -2.39 0.18 

23 256420 355492 3.0 65.9 7.1 12.1 10.2 -2.29 0.24 

24 257132 356479 1.3 76.8 5.9 10.9 4.5 -2.23 0.34 

25 254075 358061 5.2 74.8 2.4 10.3 6.8 -2.19 0.32 

26 259283 353968 2.1 68.7 4.3 12.7 11.5 -2.28 0.23 

27 257763 353661 21.4 63.4 3.0 6.8 4.4 -2.05 0.37 

28 255701 352352 1.6 66.3 7.0 16.4 8.0 -2.31 0.26 

29 257728 352449 3.5 65.1 7.4 13.2 7.6 -2.29 0.27 

30 254891 359752 17.0 53.1 9.8 14.3 4.8 -2.17 0.31 

31 260713 354768 10.8 30.2 9.8 29.9 14.9 -2.48 0.08 

32 248056 355286 13.2 61.0 5.8 12.0 7.0 -2.17 0.30 

33 250026 352255 3.9 73.7 3.8 11.5 6.1 -2.21 0.32 

34 250539 353009 7.8 69.7 5.4 10.9 5.6 -2.18 0.33 

35 254066 358209 6.0 71.7 6.6 10.6 4.4 -2.20 0.34 

36 257749 359193 24.6 51.0 6.2 10.4 5.7 -2.08 0.32 

37 259381 356181 4.9 68.0 7.1 12.6 6.4 -2.24 0.30 
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TABLE 4 

 

 

 

Direction Parameter 

Contaminant Plume 

A B C D 

Telhado South of Alcaria Fundão North of Valverde 

 

Mean group-3/B probability 0.4 0.4 0.6 0.5 

Associated standard deviation 0.1 0.2 0.1 0.1 

me 0.35 0.38 0.35 0.33 

LOG (K) -2.13 -2.08 -2.15 -2.18 

grad(h) 0.041 0.0068 0.0382 0.0094 

v x10-4 (m/s) 8.5 1.5 7.7 1.9 

Longitudinal 

L (m) 328.75 445.47 117.85 276.54 

'L (m) 200.18 13.21 92.8 202.47 

DL (cm2/s) 33.7 25.4 5.3 27.7 

L (m) 3.9 16.8 0.7 14.8 

Transverse 

T (m) 129.16 124.3 98.76 237.58 

'T (m) 29.46 5 94.84 20.74 

DT (cm2/s) 3.0 2.0 4.5 8.0 

T (m) 0.4 1.3 0.6 4.3 

Cross DL/DT 11.1 12.6 1.2 3.4 



 11 

FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6A 
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FIGURE 6B 
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FIGURE 6C 
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FIGURE 6D 
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FIGURE 7 
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FIGURE 8 
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