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ABSTRACT 

 

Correspondence Analysis was used to determine the sources and processes that may explain the 

variation observed in data sets of groundwater analyses. The following method was adopted: (1) 

based on the observation of “sympathies” and “antipathies” between loadings signs, 

correspondence factors were represented by parameters with some pertinent geochemical 

meaning; (2) the relation between factors and parameters was then checked by Multiple Linear 

Regression, where factors acted as independent variables and parameters as dependent variables. 

Sample scores of the selected parameters gave us the ability to separate polluted from non-

polluted waters, to identify areas where pollution is dominated by agriculture and areas where 

contamination is controlled by domestic effluents, and to describe weathering and agricultural 

activities in the sampled area. The practical example presented here anticipates the impact of 

agriculture and urban pollution on the chemistry of 160 water samples collected in a granitoid 

area at central Portugal (Fundão). 

 

Key words: Correspondence Analysis, Multiple Linear Regression, hydrogeochemistry, 

weathering, pollution. 
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INTRODUCTION 

 

The composition of groundwaters is affected by a several processes that include wet and dry 

deposition of atmospheric salts, evapotranspiration, and water-soil and water-rock interactions. In 

inhabited areas, especially where there is intensive agriculture or industry, the water composition 

may be affected by fertilizers and manure, by solid waste leachates, and by domestic and 

industrial effluents. 

The contribution of each source or process to the groundwater chemistry may be 

quantitatively assessed by mass balance models, as early recognized by Garrels and Mackenzie 

(1967) in the study of a pristine area (Sierra Nevada, USA) and lately by Pacheco and Van der 

Weijden (1996) in the study of an area with sizeable anthropogenic input (Fundão, Portugal). 

Correspondence Analysis and other eigenvector techniques may be used as methods for 

assessing the controls on groundwater composition, especially in the study of large 

hydrochemical data sets. Frequently, the approach is strictly statistical and although the analysis 

can select several factors more or less objectively the interpretation of these factors in terms of 

actual controlling sources and processes is highly subjective. 

Pacheco and Portugal Ferreira (1996) studied the groundwaters from a pristine area in 

Portugal and established simple linear regression models between correspondence factors and 

several relevant hydrochemical parameters (e.g., the molar bicarbonate to silica ratio, which is 

characteristic for particular water-mineral interactions, as pointed out by Garrels, 1967). Based 

on the meaning of these parameters, Pacheco and Portugal Ferreira (1996) concluded that the 

variation in the concentrations of major cations, major anions and dissolved silica could be 

approximately attributed to silicate weathering of metamorphic rocks-forming minerals and soil 
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fertilization (a minor contribution), and classified their data set as a system of double influence. 

Alencoão, Sousa Oliveira, and Pacheco (1996) applied a similar methodology to a small set of 

stream waters draining granites and schists and found that the direct discharge of domestic 

effluents into streams and rivers could be demarcated by Correspondence Analysis as a third 

independent influence. Therefore, they classified their stream water data set as a system of triple 

influence. The present paper (1) corroborates the results obtained by the above cited authors in 

the case of a large groundwater data set (160 samples), (2) provides a comprehensive review of 

the rationale for the selection of hydrochemical parameters, (3) argues about the option for 

Correspondence Analysis in detriment of more standard eigenvector techniques such as Principal 

Components Analysis or Factor Analysis, (4) and discusses the choice of variables to include in 

the model. 

 

METHODOLOGY 

 

Eigenvector Techniques 

 

In general, variables in hydrochemical data sets are intercorrelated, but the correlations are hard 

to see and the data are difficult to interpret as they stand. For instance, the number of variables 

with which the investigator has to grapple is frequently large and the common scatter diagrams 

between pairs of variables fail to show a complete or at least comprehensive picture of the whole 

data variation. Eigenvector techniques such as Correspondence Analysis (CA), Principal 

Components Analysis (PCA) or Factor Analysis (FA) transform these original variables onto a 

new set of variables  (generally called vectors; or correspondence factors, principal components 
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or factors, respectively for CA, PCA and FA) so that a major portion of data variation is 

concentrated on just a few of them  (commonly two or three). This reduced set of vectors may 

then be represented on a single diagram and the groupings formed interpreted in terms of some 

physical or chemical process. Basically, vectors are a new set of orthogonal axes geometrically 

characterized by the eigenvectors and eigenvalues: (1) the elements of the eigenvectors are the 

cosines of the angles between the original and transformed axes; (2) the eigenvalues measure the 

spread of the data in the direction of the vectors. For example, the first eigenvector is the 

direction of maximum spread of the data in terms of a p-dimensional space (where p is the 

number of original variables) and this spread is measured by the first eigenvalue; the second 

vector has maximum spread at right angles to the first vector, and so on. Eigenvalues are used to 

measure the proportion of data used by each vector. The first vector will contain the most 

information and succeeding vectors will contain progressively less information. The methods 

used to decide about the number of vectors that should be retained and submitted to interpretation 

are frequently called stopping rules (Jackson, 1991). One of the most popular is the SCREE test 

(Cattell, 1966). This is a graphical technique which plots the p eigenvalues in ordinate and their 

ranks in abscissa. In a typical SCREE plot, the k highest eigenvalues will nearly fit to a straight 

line of high slope and the lowest p-k eigenvalues to a straight line of low slope. The break in 

slope between these two lines is sometimes called an elbow and is used as stopping rule. 

According to it, only the k highest eigenvectors should be considered for interpretation. 

The mechanics of CA is briefly outlined below. The details of this technique are beyond 

the scope of this paper and can be found elsewhere, for example in the original work of Benzecri 

(1973, 1977), or in later studies such as the analytical discussion of Heiser and Meulman (1983), 

the geometric interpretation of Greenacre and Hastie (1987), or the tutorial paper of Van der 
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Heijden, Falguerolles and Deleeuw (1989). The initial raw data for CA consist of a matrix Xnxp, 

where n is the total number of observations and p the total number of variables. Traditionally, X 

is a matrix of qualitative data or quantitative data treated as qualitative (categorical data), but no 

practical objections exist to the use of “raw” quantitative data (Davis, 1986). In the present paper, 

the observations are represented by water samples and the variables by the analytical 

concentrations of major inorganic compounds in those samples. The method of CA comprises 

four consecutive steps: 

1)  X is scaled in a manner that treats rows and columns identically. This is done by dividing 

the elements of X (xij) by the product of the square roots of the row and column totals: 

 z
x

x x
ij

ij

iji

n

ijj

p


 
 

1 1
 x 

 (1) 

 Scaled values are saved in the matrix Znxp. 

2)  A similarity matrix, Rpxp, is obtained by multiplying Z by its transpose (Z
T
): 

 R Z ZT  x  (2) 

3)  The p eigenvalues and eigenvectors are calculated from R (some eigenvector extracting 

techniques are described in Press and others, 1989). By definition, eigenvectors have unit 

length and must be scaled in order to be converted onto correspondence factors. This is 

done by multiplying each eigenvector by its corresponding singular value, which is the 

square root of the corresponding eigenvalue. Factor elements are called loadings and 

measure the extent to which the original variables are associated with the factors. Besides, 

if two loadings have the same sign the variables are positively correlated and if they have 

opposite signs the variables are negatively correlated. Factor loadings are saved in the 

matrix Wpxp. 
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4)  The samples coordinates (the so-called correspondence factor scores) are finally computed 

and saved in the matrix Fnxp: 

F Z W  x  (3) 

PCA and FA are two major competitors of CA. The original works date back to the turn 

of the century (Pearson, 1901; Spearman, 1904; respectively for PCA and FA) and  later 

derivations of FA (especially the method of Principal Factor Analysis - PFA - of  Thompson, 

1934) are widely used in hydrogeochemistry (Reeder, Hitchon and Levinson, 1972; Klovan, 

1975; Jöreskog, Klovan and Reyment, 1976; Likens and others, 1977; Miller and Drever, 1977a; 

Drever, 1988). The mathematics of PCA is in most similar to that of CA. Basically, the methods 

differ in the matrix that is used to calculate the eigenvalues and eigenvectors (R). In PCA, this is 

a variance-covariance matrix when the p variables are all measured in the same units or a 

correlation matrix otherwise. FA also uses variance-covariance or correlation matrixes to 

calculate the eigenvalues and associated eigenvectors, but is somehow a different technique.  For 

a better understanding of the differences between PCA and FA, a few concepts must be 

introduced:  

System variability and system structure: System variability measures data variation and 

is equal to the sum of the variances of the original variables. System structure 

measures the interdependencies between original variables and is equal to the sum of  

the covariances. The diagonal elements of a variance-covariance matrix describe 

system variability and the off-diagonal elements describe system structure. 

Common vectors are the k vectors obtained by the stopping rule. 

Common variability, common structure and communality: Common variability and 

common structure are the proportions of the system variability and system structure 
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explained by the common vectors. Communality is the contribution of each original 

variable to the common variability. These quantities are calculated by multiplying a 

matrix of loadings, Wpxk, by its transpose: 

R*=WxW
T
 (4) 

The diagonal elements of R* are the communalties, the sum of these elements is the 

common variability and the sum of the off-diagonal elements is the common 

structure. 

Residual variability and residual structure are the part of the system variability and 

system structure unexplained by the common vectors. These are calculated by: 

E=R-R* (5) 

where E is the matrix of residuals. 

 Equation 5 may be turned around and written as: 

R=R*+E (6) 

This equation says that the variance-covariance matrix is made up of the part explained by the 

common vectors (first term of the right-hand side) plus the proportion unexplained by them 

(second term). The main difference between PCA and FA stands on the fact that PCA continues 

extracting principal components until the residual variability has been reduced to some 

prescribed amount determined by the stopping rule, while the residual structure is left 

unconstrained. On the other hand, FA tries to reduce the residual structure as much as possible. 

The minimization of residual covariances cannot be done by any direct method and for that 

reason FA has to be carried out iteratively. There are a number of methods to do this, generally 

called estimation procedures (Jackson, 1991). PFA is one of these methods and operates as 

follows: (1) The diagonal elements of R are replaced with estimates of the communalities. A 
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number of initial estimates for the communalities have been proposed over the years, but the 

square multiple correlation coefficient of each original variable with all the others is the most 

widely used at this point in time.; (2) The eigenvalues and associated eigenvectors are obtained 

from the resultant matrix on the basis of the stopping rule; (3) From these, new estimates of the 

communalities are obtained (Equation 4) and placed at the diagonals of R. The process is 

repeated until convergence is attained between “old” and “new” communalities; (4) At this point, 

the common variability and structure are calculated as well as the residuals (Equations 4 and 5). 

If full convergence has been attained, matrix E is diagonal (all off-diagonals are equal to zero), 

meaning that the system structure has been completely explained. It is important to mention that 

once the diagonals of E are minimized (PCA) the off-diagonals are going to be reduced, and vice 

versa (FA). Each method does best what is supposed to do, but the results obtained by the two 

methods will generally be very similar. For that reason, only CA and PCA will be further 

considered. 

 

The Option for CA 

 

CA and PCA belong to that category of methods in which utility is judged by performance and 

not by theoretical considerations (Davis, 1986). In this study, three performance criteria were 

tested in order to select the most appropriate technique to use in the assessment of groundwater 

chemistry: (1) The interpretability of vector one. Despite the fact that interpretability of vectors 

may not be considered an objective matter (whatever method is used), this seems a reasonable 

criterion as in most cases vector one explains about half of the system variability; (2) 
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Reproducibility of results in identical situations; (3) Robustness regarding the units in which data 

are expressed.  

Four hydrochemical data sets were selected for the performance analysis: Sousa Oliveira 

(1995), Pacheco and Portugal Ferreira (1996), Alencoão, Sousa Oliveira and Pacheco (1996), 

Pacheco and Van der Weijden (1996); this last data set (the Fundão data set) is given in the 

Appendix. In all cases the bedrocks were silicate (granites and/or metamorphic) rocks and land 

use affected the groundwater chemistry to a certain extent. The original variables were the major 

inorganic compounds Na
+
, K

+
, Mg

2+
, Ca

2+
, HCO3

-
, Cl

-
, SO4

2-
, NO3

-
 and dissolved silica (SiO2). 

The results obtained when data are expressed in mg/l are shown in Figures 1a,b (changing the 

measurement scale from mg/l to mol/l had little effect on the results). As expected, the results 

obtained with both methods are identical for all data sets. The exception is the loading of SiO2 

when PCA is applied to the data set of Alencoão, Sousa Oliveira and Pacheco (1996).  

CA plots the loadings of HCO3
-
and SiO2 at the positive side and the loadings of Cl

-
, SO4

2-
 

and NO3
-
 at the negative side of the first factor axis (Figure 1a). This means that the 

concentrations of bicarbonate and silica are positively correlated on factor one (F1) and the same 

is true for the concentrations of chloride, sulphate and nitrate. Na
+
 has always very low factor 

loadings and the distribution of the other cations depends on the data set: K
+
 is at the negative 

side of the F1 axis for Sousa Oliveira (1995) and at the positive side for the other data sets, and 

the distributions of Mg
2+

 and Ca
2+

 are reversed. The results of CA are consistent with the 

generally held assumptions about the sources of dissolved components in contaminated 

groundwaters from silicate rocks: (1) All dissolved HCO3
-
 and SiO2 are assumed to be products 

of chemical weathering of silicate minerals (Garrels and Mackenzie, 1967; Barnes and O´Neil, 

1971; Miller and Drever, 1977b; Pacheco, 1995; Pacheco and Van der Weijden, 1996; among 
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others). Alkalinity of groundwater may vary due to sizeable input of limestone dust, application 

of calcium carbonate on agricultural land, dissolution of trace amounts of calcite in joint planes, 

secondary precipitation of carbonate, selective uptake of nitrate or cations in exchange with 

bicarbonate or protons (respectively), but in the vast majority of cases these processes are 

assumed to produce little effect on the level of alkalinity acquired by water-rock interaction 

under soil PCO2. The SiO2 concentrations may change by secondary precipitation of silica but that 

can be neglected for dilute shallow groundwaters; (2) The Cl
-
, SO4

2-
 and NO3

-
 concentrations are 

mostly attributed to atmospheric and pollution sources, especially fertilizers and domestic 

effluents (Zobrist and Stumm, 1981; Matthess, 1982; Appelo and Postma, 1993; Frapporti, 1994; 

Pacheco, 1995; Pacheco and Van der Weijden, 1996; and references therein). Contributions made 

by dissolution of trace amounts of Cl- and S-minerals (e.g., halite, gypsum, pyrite), frequently 

present in metamorphic rocks, are swamped by the anthropogenic contributions and may be 

ignored; (3) The cation concentrations are related to both natural and anthropogenic/atmospheric  

sources as the negative electric charge associated with HCO3
-
, Cl

-
, SO4

2-
 and NO3

-
 has to be 

compensated by an equivalent positive charge derived from Na
+
, K

+
, Mg

2+
 and Ca

2+
. In brief, 

when results are obtained by CA, F1 may be easily interpreted as a “source factor” which can be 

used separate between samples with pollution-dominated chemistries and samples with 

weathering-dominated chemistries, respectively the ones with negative and positive F1 scores. 

 An equivalent interpretation for the first principal component (pc1) is hardly attained. 

Figure 1b shows that 8 (of 9) original variables have positive moderate to high pc1 loadings, 

meaning that they are all positively correlated. Besides, for all data sets but one (Pacheco and 

Portugal Ferreira, 1996), the pc1 scores were found to be highly correlated with the samples 

electroconductivities (Ec). The relation between pc1 and Ec was already noticed by Van der 
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Weijden and others (1983). Chemical weathering, use of fertilizers on farmland, pollution by 

sewage systems, apart or in combination, can produce waters with different Ec values. Different 

degrees of evapotranspiration will also give rise to differences in these values. But there is no 

easy way to estimate the contribution of each process to the Ec just looking to the samples pc1  

scores. For that reason, the interpretation of pc1 will depend on prior knowledge about the 

geology, land use and human occupation of the study area. For instance, Pacheco and Van der 

Weijden (1996) identified 13 groups of water samples using the RST algorithm, a clustering 

algorithm based on the mathematical concept of equivalent relations between objects. Using a 

mass balance algorithm (the SiB algorithm), seven of these groups were associated with 

petrological units (bedrock groups), two with basic dikes (structure groups), and one with 

pollution (pollution group); the remaining three groups could not be associated with any source 

or process. Figure 2 plots the Ec values of Fundão water samples against the corresponding pc1 

scores. Different symbols were used to represent the bedrock, structure and pollution groups, 

respectively circles, bullets and diamonds. The distribution of these symbols suggests that 

chemical weathering is responsible for the low (bedrock groups) to moderate (structure groups) 

electroconductivities and pollution for the high electroconductivities. When the relation between 

pc1 and Ec is checked for the Alencoão, Sousa Oliveira and Pacheco (1996) data set one finds 

that granite waters are responsible for the lower conductivities and schist waters for higher 

conductivities. For the other two data sets no simple explanation could be found for the variation 

in Ec. The exigency of a detailed background knowledge about the study area for the 

interpretation of pc1 reduces the  applicability of PCA as an “exploratory” technique for the 

assessment of groundwater chemistry, and for that reason CA was used in this paper. 
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Choice of Variables for the CA model 

 

As previously mentioned, the concentrations of major dissolved components are constrained by 

the charge balance condition, which is represented by the following equality (concentrations in 

the equivalent scale): 

[Na
+
]+[K

+
]+[Mg

2+
]+[Ca

2+
]=[HCO3

-
]+[Cl

-
]+[SO4

2-
]+[NO3

-
] (7) 

This “closed sum” condition demands that the sources and processes responsible for the variation 

in the anion concentrations match those which are responsible for the variation in the cation 

concentrations (and vice versa). In fact, because the negative electric charge in water is not free 

to vary without the corresponding variation in the positive charge, one could define the cations as 

the “positive face” of the inorganic groundwater chemistry and the anions as its “negative” 

counterpart. This means that, in principle, there should be no further gain when CA is applied to 

a data set using both the cations and anions, with respect to those cases where only the cations or 

the anions are used. In other words, the conclusions taken from the interpretation factors should 

be the same no matter the model in use. To test this hypothesis, three separate analyses were 

carried out using the Fundão data set: (1) All the 9 major inorganic compounds were included in 

the analysis (global model); (2) Just the four major anions and silica were used (anions model); 

(3) Just the four major cations and silica were used (cations model). The SCREE plots are shown 

in Figure 3a. The five circles representing the anions model almost coincide with the first five 

black bullets of the global model. Further correspondence between the anions and the global 

models exist regarding the loadings in the first four factors (the common factors according to the 

SCREE test); in Figure 3b, the trends in the anions model (white ribbons) follow the anions 

trends in the global model (dashed ribbons). A different set of factors is obtained with the cations 
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model (diamonds in Figure 3a). A single factor accounts for about 80% of the data variation and 

three “satellite” factors explain the remaining 20%. It was also found that the first factor is highly 

correlated with Ec (Pearson coefficient of 0.8 for 99.999% of probability). The cleavage between 

the cations model and the anions/global models is very striking. It seems like the variation in the 

anion concentrations swamps the variation in the cation concentrations so that when both the 

cations and the anions are taken together (global model) only the variation in the anions is seen. 

The results obtained with the anions and the global models support the working 

hypothesis. They are identical and therefore the interpretation of the four common factors leads 

to the same conclusions. The main advantage of the anions model with respect to the global 

model is that the first explains 100% of the system variability and structure while the second 

leaves unexplained the variability and structure associated with the last five correspondence 

factors (cf. Figure 3a). The results of the cations model do not contradict the initial hypothesis. In 

this case, a major portion of the system variability is connected to a physical parameter (Ec) 

which, as previously seen (Figure 2), is related to a number of sources and processes, but its 

variation is not readily interpretable. 

For the reasons presented above, the definition of hydrochemical parameters discussed 

below will stand on the results obtained with the anions model. 

 

Rationale for  the Selection of Hydrochemical Parameters 

 

The application of CA to a set of n groundwater samples from crystalline rocks that were 

analytically measured for HCO3
-
, Cl

-
, SO4

2-
, NO3

-
 and SiO2 may result in four common factors 



 14 

(Figure 3a). The relation between factor i (Fi) and the original variables is described by Equation 

3 which can be re-written as: 

         F
i

w
i,HCO

3

HCO
3

w
i,Cl

Cl w
i,SO

4

SO
4

2
 + w

i,NO
3

NO
3

  + w
i,SiO

2

SiO
2








   (8) 

As mentioned, the wi-coefficients (factor loadings) measure the extent to which each variable is 

associated with Fi. It was also told that if two loadings have the same sign the variables are 

positively correlated and if they have opposite signs the variables are negatively correlated. From 

the observation of these “sympathies” and “antipathies” between factor loadings, Equation 8 may 

be transformed onto other equations which have some real geochemical meaning. 

 A common observation for the first factor is that bicarbonate and silica are sympathetic, 

and antipathetic in regard to chloride, sulphate and nitrate (cf. Figure 1a). In other words, 

weathering is in opposition to pollution on factor one. The hydrochemical parameter selected to 

represent this factor was the w%-Pollution defined by: 

w% Pollution
Pollution

Weathering Pollution
x100 


 (9) 

where, 

     

   

Pollution w Cl w SO w NO

Weathering w HCO w SiO

1,Cl 1,SO 4

2

1,NO 3

1,HCO 3 1,SiO 2

4 3

3 2

  

 

  


 

Samples with w%-Pollution scores less than 50% will have weathering-dominated water 

chemistries and samples with w%-Pollution scores greater than 50% will have pollution-

dominated water chemistries. The extent to which each component contributes to the w%-

Pollution is determined by the w1 values. 

 In general, silica and bicarbonate have different loading signs on the second factor. This 

antipathy between natural components suggests that factor two may describe weathering in the 
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study area. Garrels (1967) showed that the ratio [HCO3
-
]/[SiO2] (in mole values) is a good 

diagnostic parameter for particular water-mineral interactions and for that reason this ratio was 

chosen to represent factor two. 

 In the third factor, chloride is frequently in opposition to sulphate and nitrate. All three 

components are present in common fertilizers, but chloride may in a great deal be derived from 

domestic effluents and atmospheric input. For this reason, factor three was interpreted as the 

factor that discriminates sources of pollution, and the parameter chosen to perform this separation 

was the w%-Agriculture defined by: 

w% Agriculture
Agriculture

Dom. Effluents / Atm. Input Agriculture
x100 


 (10) 

where,  

   
 

Agriculture w SO w NO

Dom.  Effluents / Atm.  Input w Cl

2,SO 4

2

2,NO 3

2,Cl

4 3
 



 


 

Samples with w%-Agriculture greater than 50% are assigned to agricultural activities and 

samples with w%-Agriculture less than 50% are attributed to urban pollution plus atmospheric 

input. 

 Finally, in factor four, sulphate and nitrate have opposite loading signs and the sulphate to 

nitrate ratio ([SO4
2-

]/[NO3
-
]) was proposed to represent this factor. The antipathy between 

components derived from fertilizers suggests that factor four may describe land use in the study 

area. For example, the [SO4
2-

]/[NO3
-
] ratio may be used to separate areas occupied by dry 

farming from those used for irrigated crops or vine yards as these crops are normally fertilized by 

products with different sulphur and nitrogen compositions. 

 Hydrochemical parameters represent sources or chemical processes whose impact on 

groundwater chemistry is related with the portion of variation explained by the corresponding 
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factors. This variation decreases from factor one to factor four, which means that the impact of 

selected parameters also declines from the w%-Pollution to the ratio [SO4
2-

]/[NO3
-
]. Furthermore, 

the “low variation” parameters represent particular features of the “high variation” parameters. In 

brief, (a) The w%-Pollution describes a general feature, the separation between polluted and non 

polluted waters; (b) The ratio HCO3
-
/SiO2 and the w%-Agriculture furnish more detailed 

information about polluted and non-polluted waters (HCO3
-
/SiO2 characterizes weathering 

and the w%-Agriculture discriminates sources of pollution); (c) Finally, the mole ratio [SO4
2-

]/[NO3
-
] characterizes one specific source of pollution, namely agriculture. This hierarchical (or 

tree) structure of hydrochemical parameters is represented in the dendogram of Figure 4. 

 There are several exceptions to the sympathies and antipathies commonly observed 

between factor loadings: 

Factor absence: Sometimes, the sympathies and antipathies of a particular factor cannot be 

identified. For example, Alencoão, Sousa Oliveira and Pacheco (1996) were not able to 

identify the sympathy between bicarbonate and silica that is commonly observed for 

factor one. Factor absence is related to what one may call "variance deficit", which 

occurs when parameter scores are all very similar. In the case of Alencoão, Sousa 

Oliveira and Pacheco, the w%-Pollution could not be used to represent factor one 

because all water samples were heavily polluted. 

Factor exchange: Sometimes, factor two exchanges with factor three, which means that, in 

these cases, the bicarbonate to silica ratio is attributed to factor three whereas the w%-

Agriculture is assigned to factor two. Factor exchange is inherently associated to 

parameter variation. In general, (a) If water samples are collected from a large number 

of rock types that are affected by different weathering rates, the variance in the 
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bicarbonate to silica ratio may be high, and this ratio may then represent factor two, 

otherwise, it will represent factor three; (b) Similarly, if pollution is essentially the result 

of atmospheric input, it might be expected that w%-Agriculture is assigned to factor 

three (or be absent), but if domestic effluents and agriculture are also important sources 

of contamination, variance in the w%-Agriculture will increase and, in principle, this 

parameter will be attributed to factor two. 

Factor summation occurs when two factors are condensed onto a single factor. Summed 

factors are represented by summed parameters. For example, factor three may in some 

cases be the sum of (common) factors three and four. In this case, the parameter w%-

Agriculture + [SO4
2-

]/[NO3
-
] (or HCO3

-
/SiO2 + [SO4

2-
]/[NO3

-
], if factor exchange 

occurs) will be chosen to represent factor three. The reason for this summation may be 

purely statistical: (1) When all factors have a definite interpretation, there is no factor 

left to represent the variation associated with analytical errors or other sources of 

variability not related to chemical processes (the residuals); (2) In case this residual 

variation is high, it may swamp the variance associated with factor four; (3) 

Consequently, factors three and four will join, and the new factor four will gather the 

non-process variations. 

Parameter substitution: In some cases, the antipathy between sulphate and nitrate in factor 

four (or factor three, when factor summation occurs) may not be clear. This probably 

means that fertilization is not dominated by the pair sulphate-nitrate, but by the sulphate-

chloride or nitrate-chloride pairs. In these cases, the sulphate to chloride ([SO4
2-

]/[Cl
-
]) 

or the nitrate to chloride ([NO3
-
]/[Cl

-
]) ratios will be chosen to represent factor four, in 

substitution for the sulphate to nitrate ratio. 
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Changes in the use of fertilizers may also affect the w%-Agriculture parameter. If 

the fertilizers composition is largely dominated by nitrate, the sulphate loading in factor 

three may change its sign, becoming equal to the chloride’s sign. In these cases, it may 

be more realistic to compute the w%-Agriculture with sulphate attributed to Dom. 

Effluents/Atm. Input instead to Agriculture (cf. Equation 10). 

Significance of Hydrochemical Parameters 

 

Despite the number of exceptions, the selected parameters are chemically sound because they are 

reasonably attributed to sources or chemical processes. It is important to mention, however, that 

this set of parameters is not unique. In general, a parameter is suited for selection (or is 

significant) if correlated to one (and just one) factor. 

 Multiple Linear Regression (MLR) may be used to test the significance of hydrochemical 

parameters (for details about MLR, see Jobson, 1991). The MLR model for the w%-Pollution is 

represented by: 

w% Pollution b b F b F b F b F0 1 1 2 2 3 3 4 4       (11) 

(where the b values are model coefficients and the F values are factors) and similar equations 

may be written for the other parameters. After solving Equation 6 in regard to the b-coefficients, 

each bj may be standardized in order to represent the impact that Fj has on the variance of w%-

Pollution. Then, the goodness-of-fit of the model is estimated by the Adjusted Coefficient of 

Multiple Determination (R
2
) which measures the variation in w%-Pollution explained by the 

factors. When all the standardized b values (the so-called B values) are close to zero except B1, 

the w%-Pollution is qualified to represent factor one if R
2
  100%. In general, when all the B 

values except Bi are close to zero, a parameter Pi is suited to represented factor Fi. 
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Factor Representation of Systems of Double and Triple Influence 

 

The main difference between systems of double and triple influence stands on the number of 

pollution sources that affect the water chemistry, two sources (atmospheric input plus soil 

fertilization) in the first case and three sources (plus domestic effluents) in the second case. 

Because the separation between waters with fertilizer-dominated chemistries and those with 

effluent and/or atmosphere-dominated chemistries is based on the w%-Agriculture parameter, the 

distinction between systems of double and triple influence are expected to become visible 

through the analysis of factor three (Equation 10), or factor two if exchange occurs. In general, 

the factor associated with the w%-Agriculture should be absent when systems are of double 

influence (Pacheco and Portugal Ferreira, 1996) and present when systems are of triple influence 

(Alencoão, Sousa Oliveira  and Pacheco, 1996). 

 When systems are of triple influence, it should be possible to classify the water samples 

according to their dominant influence. A method is suggested that takes into account the scores in 

the w%-Pollution and w%-Agriculture parameters (Table 1): a) The class weathering includes all 

samples with w%-Pollution less than 50%; b) The class effluents, all the polluted samples (w%-

Pollution > 50%) that have w%-Agriculture less than 50%; c) And the class fertilization, the 

remaining samples (w%-Pollution > 50% and w%-Agriculture > 50%). 

 

APPLICATION 
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A set of 160 groundwater samples were collected in the Fundão area (central Portugal, Figure 5a) 

by Van der Weijden and others (1983). The samples locations are plotted in Figure 5b and the 

chemical analyses are given in the Appendix. This data set was extensively studied by Pacheco 

and Van der Weijden (1996) who used a combination of a novel grouping algorithm (the RST-

algorithm) and a novel weathering algorithm (the SiB-algorithm) to assess the contributions 

made by chemical weathering and anthropogenic inputs to groundwater composition in this 

granitoid area. Using the grouping algorithm, they identified groups of waters with similar 

chemistries in the data set, and with the weathering algorithm they related the medians of each 

identified group to water-mineral interactions in the area. Background information on the 

mineralogy of rocks and soils of the area (Costa and others, 1971; Portugal Ferreira, 1982; 

Portugal Ferreira, Alves and Macedo, 1985) allowed them to chose the most realistic water-

mineral interactions. Despite the high background concentrations derived from pollution, 

Pacheco and Van der Weijden (1996) obtained realistic results, later corroborated by Pacheco 

(submitted, 1996) using the classical plot - mole ratio HCO3
-
/SiO2 vs. HCO3

-
 (mg/l) - of 

Garrels (1967). In the present paper, the impact of individual sources of pollution is briefly 

evaluated on the basis of results obtained by CA. 

 

The Fundão CA-model 

 

CA was applied to the 160 groundwater samples collected in the Fundão area The computer 

program used to perform the analysis was adapted from Benzecri (1973). The variables included 

in the CA model were the major anions and dissolved silica (concentrations in mg/l). The results 

are shown in Table 2. 
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 From the observation of sympathies and antipathies between factor loadings (Table 2), 

and taking into account the significance of hydrochemical parameters as tested by MLR (Table 

3), the factors are represented by: 

The w%-Pollution (factor one), with  

  Pollution=443.0Cl
-
+370.8SO4

2-
+748.9NO3

-
 

  Weathering=313.4HCO3
-
+421.0SiO2 

The w%-Agriculture (factor two), with 

  Agriculture=63.4SO4
2-
+591.6NO3

-
 

  Dom. Effluents/Atm. Input=377.0Cl
-
 

The HCO3
-
/SiO2 + SO4

2-
/Cl

-
 (factor three) 

Residuals (factor four) 

 

Areal Distribution of Influences 

 

The distribution of element concentrations in the Fundão area has been visualized by Van der 

Weijden and others (1983) using SYMAP plots (Dougenik and Sheenan, 1976). In these plots, 

the concentration ranges are divided into ten equal steps with the darkest shading depicting the 

highest concentrations. The distribution maps obtained for the pollutants chloride, sulphate and 

nitrate show a set of small spots of very high concentrations which coincide with the main 

villages in the area. Pacheco and Van der Weijden (1996) measured the percentage of pollution 

in the Fundão groundwater samples using the parameter %-Pollution = (Cl
-
+SO4

2-
+NO3

-

)/(HCO3
-
+Cl

-
+SO4

2-
+NO3

-
)x100. They plotted the %-Pollution scores on a map and 

separated the areas where water composition is dominated by water-rock interaction (%-Pollution 
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< 50%) from those where the composition is dominated by pollution (%-Pollution > 50%). The 

results confirmed that the polluted areas roughly coincide with the local villages and densely 

farmed areas, but it was also seen that these areas were further extended in the direction of the 

main tributaries of the Meimoa river (cf. the drainage pattern of the Fundão area in Figure 5b). In 

the present paper, a detailed version of the map obtained by Pacheco and Van der Weijden (1996) 

is produced by applying the methodology described in Table 1. In Figure 6, the areas with 

pollution-dominated water are further separated into areas where pollution is mainly produced by 

domestic effluents and areas where pollution is caused by agriculture. The results suggest that 

pollution caused by agriculture is essentially concentrated near the villages whereas pollution 

caused by domestic effluents basically follows the direction of streams and streamlets in the area. 

 

Distribution of the SO4
2-/Cl

- Ratios in the Samples with Agriculture-Dominated Chemistries 

 

The climate in the Fundão area is very good for agriculture. Four main types of agriculture may 

be distinguished: dry farming (rye, barley, etc), irrigated crops (potato, bean, etc), fruit orchards 

(apple, cherry), and other crops (vine and olive yards, etc). Fertilizers commonly applied in the 

first three types of cultures have SO4
2-
/Cl

-
 ratios of 0.0, 1.4 and 0.9, respectively (Van der 

Weijden and others, 1983). Figure 7 shows the distribution of the SO4
2-
/Cl

-
 ratios for the 

samples with agriculture-dominated chemistries (26 samples, as determined by the methodology 

specified in Table 1). The significance of this distribution should be critically considered given 

the reduced number of samples that have been used to produce the histogram, but it may be 

provisionally stated that the impact of agriculture on the groundwater chemistry is determined by 

the fruit orchards, followed by the irrigated crops, dry farming and other cultures. 
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CONCLUSIONS 

 

The chemical parameterization of groundwater data sets, as performed by relating hydrochemical 

parameters with correspondence factors, is very effective. It is remarkable how the variation in 

the chemical composition of large groups of water samples can be imputed to a small set of 

sources and chemical processes represented by straightforward parameters. The application of 

this methodology to the 160 Fundão groundwater samples produced promising and mostly 

convincing results, as the areas with weathering-dominated water chemistries were clearly 

demarcated from those where water is affected by fertilization or domestic effluents, and the 

relative impact of specific crops could be evaluated. 
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APPENDIX: Fundão data set.  Chemical analyses (in mol/l) of 160 water samples from the 

Fundão area. The sample numbers are given in the first column and their locations are shown in 

Figure 5b. In the second column (T) the type of sampled water is given: 2-fresh wells; 3-springs. 

Reproduced from Pacheco and Van der Weijden (1996). 

Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

28 3 613 39 245 433 447 178 371 780 656 

30 3 691 38 242 468 493 229 460 844 639 

31 2 613 15 129 315 430 93 387 490 506 

32 3 491 31 100 260 287 65 371 390 558 

35 3 639 25 183 320 353 171 221 729 614 

39 2 406 17 121 128 235 65 216 620 260 

41 3 332 19 74 180 192 99  55 261 463 

42 3 396 8 58 8 132 63 139 370 421 

45 2 1070 55 387 488 680 232 121 1280 571 

51 2 817 36 275 650 508 229 189 780 100 

59 2 1683 52 683 1142 2152 318 150 2260 674 

60 3 433 13 126 217 252 79 63 561 524 

61 3 439 11 93 158 235 42 18 580 560 

63 2 704 76 300 622 803 367 998 229 399 

66 3 530 7 192 325 301 162 366 480 474 

67 3 591 9 129 236 247 2 »0 1052 684 

71 3 470 16 192 199 186 217 5 639 626 

72 3 330 6 19 13 166 28 1 239 478 

74 3 424 14 80 146 152 22 32 661 609 

75 2 313 7 105 88 141 31 1 480 399 

76 2 374 11 150 200 158 46 5 810 503 

77 3 792 20 204 405 560 119 258 851 499 

78 2 1796 197 400 630 1693 236 875 918 438 

79 3 407 11 113 136 184 63 121 410 634 
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Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

84 3 509 7 171 221 313 161 211 451 426 

85 3 425 9 88 221 172 47 82 590 606 

86 3 570 25 183 200 284 18 60 870 663 

87 3 470 2 92 123 247 89 1 451 613 

90 3 535 11 150 181 252 63 47 761 506 

92 2 452 14 92 145 189 58 »0 580 552 

96 2 591 11 75 73 341 29 32 480 652 

99 2 752 21 171 248 577 183 37 600 353 

202 2 856 43 419 708 1320 654 840 139 573 

203 2 677 25 196 272 379 209 185 610 440 

204 2 527 11 114 126 258 865 158 352 657 

205 2 748 23 296 375 545 202 380 716 485 

206 2 731 21 156 207 689 145 37 472 441 

207 2 708 13 236 422 631 238 500 244 489 

208 3 433 11 75 88 184 86 92 328 474 

209 2 567 21 107 213 235 161 240 367 532 

210 3 362 11 45 75 186 38 82 389 626 

211 2 716 69 232 381 402 192 71 1080 587 

212 3 397 27 70 130 86 86 143 357 603 

213 2 830 32 337 556 703 216 855 429 405 

214 3 528 11 112 229 224 219 203 215 437 

215 3 457 345 125 170 123 87 18 690 564 

216 3 518 14 213 356 192 113 53 1113 660 

217 3 541 11 90 225 247 45 3 787 654 

218 2 604 88 302 1306 493 114 181 2995 635 

219 3 710 53 238 457 775 69 877 167 465 

220 2 1968 155 2163 1133 2524 524 1081 3656 264 

221 2 495 11 94 139 212 68 3 477 522 

222 3 538 23 172 285 264 97 216 642 634 

223 3 530 11 218 308 258 185 435 326 485 
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Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

224 3 359 57 162 386 132 69 77 1156 411 

225 3 393 15 71 155 135 113 58 372 472 

226 2 387 16 132 66 114 79 85 436 545 

227 3 409 27 80 186 126 77 226 367 581 

228 3 667 41 201 328 272 171 177 836 750 

229 3 880 40 140 230 545 81 205 557 666 

230 3 666 11 136 210 206 159 21 664 546 

231 3 592 15 127 330 181 224 124 626 508 

232 2 565 33 75 213 178 40 435 334 745 

233 2 1227 82 603 1165 803 257 2903 690 687 

234 3 443 11 89 215 161 139 132 433 670 

235 3 473 25 43 147 158 35 65 523 668 

236 2 1265 74 503 1192 1377 572 1387 602 586 

237 3 427 12 74 154 120 48 248 400 207 

238 3 403 11 68 109 143 68 68 438 535 

239 3 633 62 219 392 330 137 500 600 558 

241 3 256 12 33 41 80 12 61 231 514 

242 3 215 11 9 22 66 5 71 136 445 

243 2 1097 109 486 763 890 258 435 1529 776 

244 3 656 18 105 254 270 168 250 323 476 

245 2 536 29 153 265 316 87 131 692 608 

246 3 493 11 99 170 129 76 131 564 519 

247 3 593 13 125 269 287 186 167 454 532 

248 2 656 24 196 347 198 192 500 526 415 

249 3 418 12 83  83 109 85 52 408 560 

250 3 711 31 163 124 273 139 324 187 579 

251 3 316 16 15 24 95 8 35 203 467 

252 3 283 11 12 23 106 3 66 128 414 

253 2 356 11 24 31 92 33 61 249 619 

254 3 345 16 69 45 118 37 29 296 600 
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Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

255 3 383 11 66 47 126 36 66 293 672 

256 3 385 11 38 32 132 38 35 236 520 

257 3 474 11 72 60 146 50 140 243 613 

258 3 184 11 12  14 98  5  66 59 237 

259 3 635 29 210 234 267 87 190 723 740 

260 3 481 12 102 140 143 31  43 648 760 

261 2 1177 93 296 517 947 183 452 675 620 

262 2 2312 113 700 1254 3385 375 1516 1048 617 

263 2 1846 93 1051 1827 3213 725 1241 1724 740 

264 3 549 16 114 252 338 102 250 451 550 

265 3 407 11 59 90 155 22 9 567 697 

266 2 1123 36 586 1018 1320 892 532 1278 486 

267 2 938 46 294 78 574 56 182 1278 739 

268 2 740 27 231 377 537 220 282 526 581 

269 2 3889 193 663 1794 6886 559 1048 877 567 

270 2 1016 55 799 855 1348 338 726 1169 452 

271 3 481 18 72 856 218 25 139 449 842 

272 3 365 26 85 126 264  6 187 367 573 

273 3 359 19 65 144 166 12 4 554 723 

274 3 492 11 108 105 310 52 150 470 530 

275 3 417 27 89 107 287 13 105 516 662 

276 3 547 15 135 223 488 35 176 531 615 

277 3 447 49 143 191 367 59 113 606 736 

278 3 359 11 54 75 207 18 113 375 760 

279 3 690 22 158 212 602 67 118 688 692 

280 3 271 43 43 90 155 11 13 434 583 

402 3 165 24 25 34 116 7 22 150 211 

404 3 266 24 43 105 192 10 32 308 399 

406 3 987 33 127 195 634 75 60 853 692 

407 2 1152 67 446 676 757 200 106 2081 757 
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Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

408 3 430 34 181 76 273 70 112 551 711 

410 3 290 27 78 47 109 12 74 272 530 

411 2 177 48 122 75 202 46 30 214 209 

415 3 465 6 115 42 248 17 8 470 612 

420 3 313 15 53 108 213 23 14 390 340 

421 3 317 31 70  97 192 22 23 353 339 

423 3 241 18 93  29 89 16 29 262 352 

424 3 468 26 78 119 236 39 81 365 445 

425 3 375 32 115 183 92 10 11 819 812 

427 3 354 38 61 101 165 5 30 433 534 

430 3 645 29 89 302 245 162 34 725 464 

432 3 368 39 43 57 164 9 25 338 689 

433 3 327 11 59 64 108 41 24 280 524 

434 3 239 31 48 52 80 8 13 292 524 

435 3 293 38 39 67 65 5 5 421 581 

438 2 454 47 68 57 155 30 30 430 487 

439 3 448 55 68 134 130 13 »0 714 709 

440 3 398 36 68 134 129 29 7 636 729 

441 3 472 47 129 237 172 33 8 957 875 

442 3 680 58 166 283 846 25 75 607 838 

443 3 475 45 156 147 384 33 33 549 569 

444 3 301 38 95 60 160 13 36 351 442 

446 3 488 34 102 171 260 14 33 651 887 

447 2 707 72 207 373 542 95 107 974 548 

452 3 669 50 198 332 344 176 105 838 774 

453 3 607 36 197 253 280 46 17 1124 752 

457 3 304 36 62 146 94 1 1 566 568 

458 3 330 35 66 148 196 9 22 526 670 

463 2 313 37 71 82 245 33 31 231 366 

514 2 371 31 96 188 164 66 27 558 497 
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Nr T Na
+
 K

+
 Mg

2+
 Ca

2+
 Cl

-
 SO4

2-
 NO3

-
 HCO3

-
 SiO2 

522 2 442 30 241 294 184 47 32 1150 600 

523 2 600 39 118 282 307 149 34 650 860 

524 2 576 63 145 293 252 114 21 919 679 

525 2 400 47 86 142 128 69 48 503 554 

530 2 669 37 168 316 462 178 62 643 742 

534 2 471 36 95 150 281 81 100 310 604 

535 2 548 113 245 404 737 143 105 625 568 

536 2 370 41 99 254 240 55 42 529 431 

539 2 566 51 100 289 697 113 150 600 375 

540 2 319 84 124 186 228 23 63 520 806 

573 2 177 35 28 29 199 10 19 96 280 

574 3 634 80 223 241 930 95 29 652 515 

575 2 596 81 223 224 433 130 30 876 514 

583 2 880 166 738 452 2390 134 284 305 415 

589 3 302 88 121 146 208 19 24 502 679 

591 2 450 134 183 285 419 209 20 572 228 
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TABLE LEGENDS: 

 

Table 1: Weathering, effluents and fertilization classes of influence as established by the w%-

Pollution and w%-Agriculture scores (Equations 9 and 10). 

Table 2: Results obtained with CA (eigenvalues and factor loadings were multiplied by 1000). 

Table 3: MLR model relating hydrochemical parameters with factors. 
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FIGURE CAPTIONS 

 

Figure 1a: Distribution of the CA F1 loadings in four different data sets. n = Number of 

groundwater samples; %F1 = Percentage of data variation explained by F1 

Figure 1b: Distribution of the pc1 loadings in four different data sets. N = Number of 

groundwater samples; %pc1 = Percentage of data variation explained by pc1. 

Figure 2: Relation between the pc1 and the Ec scores of the Fundão groundwater samples. 

Figure 3a: SCREE plots obtained for the Fundão data set. 

Figure 3b: F1-F4 loadings trends of the global and anions models. 

Figure 4: Dendogram showing the tree structure of hydrochemical parameters. Adapted from 

Alencoão, Sousa Oliveira and Pacheco (1996). 

Figure 5a: Geographical map of central Portugal indicating the position of the Fundão area. 

Reproduced from Van der Weijden and others (1983). 

Figure 5b: Blow-up of the Fundão area with the major villages (dashed polygons) and 

connecting roads (double lines), the rivers Zêzere and Meimoa and their tributary 

streams and streamlets. Distribution of 160 springs and wells water samples (labeled 

circles). Modified after Van der Weijden and others (1983). 

Figure 6: Areas with weathering-, urban pollution- and agriculture-dominated groundwater 

chemistries as established by the method outlined in Table 1. 

Figure 7: Distribution of the ratios SO4
2-
/Cl

-
 in the samples with agriculture-dominated 

chemistries (samples with w%-pollution > 50% and w%-Agriculture > 50%). 
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Table 1 

 

 

 

 

 

 

 

Class w%-Pollution w%-Agriculture 

Weathering <50  

Effluents >50 <50 

Fertilization >50 >50 
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Table 2 

 

 

 

 

 

 

 

Variance distribution Correspondence factor loadings (x1000) 

F  
(x1000) 

%F Cum-%F HCO3
- Cl- SO4

2- NO3
- SiO2 

1 190.5 55.3 55.3 313.4 -443.0 -370.8 -748.9 421.0 

2 74.8 21.7 77.0 92.0 377.0 -63.4 -591.6 -160.3 

3 44.9 13.0 90.0 -202.6 178.3 -346.5 35.7 210.3 

4 34.6 10.0 100.0 164.6 14.6 -394.1 235.5 -114.7 
Symbols: F - factor;  - eigenvalue; %F- percentage of data variation explained by F; Cum-%F - cumulative %F. 
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Table 3 

 

 

 

 

 

 

 

Hydrochemical parameter B1 B2 B3 R
2
(%) 

w%-Pollution 51.4 1.4 0.6 99.1 

w%-Agriculture 22.1 68.5 12.0 77.9 

HCO3
-
/SiO2+SO4

2-
/Cl

-
 0.2 0.2 3.2 81.4 

Symbols: Bi - standardized regression coefficient for factor i; R2 - adjusted coefficient of multiple 

determination; w%-Pollution and w%-Agriculture are calculated by Equations 9 and 10, 

respectively. 
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Figure 1a 
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Figure 1b 
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Figure 2 
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Figure 3a 
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Figure 3b 
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Figure 4 
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Figure 5a 
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Figure 5b 
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Figure 6 
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Figure 7 
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