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a b s t r a c t

As an improvement of a previous work [Cabecinha, E., Cortes, R., Cabral, J.A., 2004. Per-

formance of a stochastic-dynamic modelling methodology for running waters ecological

assessment. Ecol. Modell. 175, 303–317], the present paper examined the applicability of

a holistic stochastic-dynamic methodology (StDM) in predicting the tendencies of benthic

macroinvertebrate metrics from mountain streams facing expected scenarios either: (1) of

pollution increase due to the agricultural intensification; or (2) of farming activity abandon-

ment becoming less pollutant as a non-point source. The StDM is a sequential modelling

process developed in order to predict the ecological status of changed ecosystems, from

which management strategies can be designed. These procedures focus on the interactions

between conceptually isolated key-components, such as some relevant trophic and taxo-

nomic metrics and changes in local environmental conditions. The dataset recorded from

the field included true gradients of environmental changes. The samples of aquatic macroin-

vertebrate, environmental and physical–chemical data were collected from four watersheds

of mountain rivers in Northeast Portugal, between 1983 and 1985. The dynamic model

developed was preceded by a conventional multivariate statistical procedure performed

to discriminate the significant relationships between the selected components of the stud-

ied watersheds. The model validation was based on independent data from a watershed
not included in the model construction. Overall, the simulation results are encouraging

since they seem to demonstrate the StDM reliability in capturing the stochastic environ-

mental dynamics of the studied aquatic ecosystems facing agricultural scenarios that will

characterize the region, namely by predicting credible behavioural patterns for the selected

metrics.

assessing the impact of environmental changes on character-
. Introduction
or conservation and management purposes, the use of ade-
uate ecological integrity indicators is particularly helpful in
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istic ecological patterns (Barbour et al., 1999; Dolèdec et al.,
1999; Rabeni, 2000; Andreasen et al., 2001; Dale and Beyeler,
2001; Karr and Rossano, 2001; Kurtz et al., 2001; Karr, 2002).
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Ecological integrity is a concept centered in the system as
a whole, but depends on the state of all components, such
as the presence of species, autochthonous communities, and
the maintenance of all the environmental conditions that sup-
port the ecosystem (Angermeier and Karr, 1994; Townsend and
Riley, 1999; Dale and Beyeler, 2001). Since ecological indicators
can reflect biological, chemical and physical aspects of eco-
logical conditions, they have been used to characterize status,
to track or predict changes, to identify stressors or stressed
systems, to assess risk and to influence management actions
(Seager, 1999; Rabeni, 2000; Karr and Chu, 2001; Kurtz et al.,
2001; Karr, 2002).

In this paper, the feeding guilds and some relevant
orders of the macroinvertebrate community were used
as ecological integrity indicators of mountain running
waters. These communities have been commonly chosen for
aquatic bioassessment investigations as aquatic invertebrates
respond rapidly to environmental changes and provide signs
for the early detection of ecological changes (Barbour et al.,
1999; Kimberling et al., 2001). Therefore, several studies have
demonstrated the effectiveness of invertebrate bioassessment
for detection of stream reaches impaired by a variety of point
and non-point source pollutants (see Lenat, 1988; Thorne and
Williams, 1997; Karr, 1999, 2002; Maxted et al., 2000; Whiles
et al., 2000; Kurtz et al., 2001). In fact, the intolerant orders,
like Ephemeroptera, Plecoptera and Trichoptera (EPT), are very
sensitive to organic perturbations and they have the capac-
ity for population recovery in response to good management
procedures in previously disturbed ecosystems (Cortes, 1992;
Barbour et al., 1999; Harris and Silveira, 1999; Karr, 2002).

The feeding guilds approach categorizes stream consumers
into functional rather than taxonomic groups. Thus, rather
than hundreds of consumers to be studied, there are a small
number of groups of organisms which can be studied collec-
tively from the perspective of their function in the stream
ecosystem. This approach categorizes consumers based on
their mechanisms for obtaining food and the particle sizes of
the food obtained (Hershey and Lamberti, 1998). The major
functional feeding groups are: (1) scrapers (grazers), which
consume algae and associated material, (2) shredders, which
consume leaf litter or other coarse particulate organic matter
(CPOM—organic particles >1 mm in diameter) including wood,
(3) collector-gatherers, which collect fine particulate organic
matter (FPOM—organic particles <1 mm and >0.45 �m) from
the stream bottom, (4) collector-filterers, which collect FPOM
from the water column using a variety of filtering devices,
and (5) predators and parasites, which feed on other con-
sumers (Hershey and Lamberti, 1998). Because each consumer
species need not be studied individually to major compo-
nents of organic matter processing, the functional feeding
group approach greatly simplifies the study of stream ecosys-
tems. It also provides a strong basis for comparative studies
of streams, whereas it is much more difficult (and often
less informative) to make such comparisons on a species by
species basis (Hershey and Lamberti, 1998).

The most popular tools to evaluate the biological quality

of streams, rivers, lakes and estuaries have been biological
indexes, which reduce the dimensionality of complex ecolog-
ical data sets to a single univariate statistic and ordination
methods, which summarize the multi-dimensionality of eco-
2 0 7 ( 2 0 0 7 ) 109–127

logical data sets in a 2D or 3D plots (Pardal et al., 2004). In
ecological research, such tools have a scientific background
and can be used as quantifiable measures. Nevertheless, eco-
logical integrity assessment and community studies usually
result in complex biological data sets. When applied to con-
texts relating to environmental management, namely in order
to find ecological relevant holistic patterns and tendencies
from such sets of data, it is necessary to reduce all the infor-
mation to a summarized and simplified form.

The application of ecological models can synthesize the
pieces of ecological knowledge, emphasizing the need for a
holistic view of a certain environmental problem (Mitsch and
Jørgensen, 1989). Although ecological models have been used
to predict macroinvertebrate species responses to environ-
mental stresses and habitat characteristics, most of them
are static (e.g., Wright, 1995; Parsons and Norris, 1996; Kay
et al., 1999; Marchant et al., 1999; Moss et al., 1999; Smith
et al., 1999; Turak et al., 1999; Charvet et al., 2000; Oberdorf
et al., 2001). When a time factor is present within the data,
they are unable to estimate, in a comprehensible way, the
structural changes when the habitat and environmental con-
ditions are substantially changing (Jørgensen and Bernardi,
1997; Pardal et al., 2004). Therefore, ecological integrity studies
have been improved by creating dynamic models that simulta-
neously attempt to capture the structure and the composition
in systems affected by long-term environmental disturbances
(Jørgensen and Bernardi, 1997; Ault et al., 1999; Brosse et al.,
2001; Cabral et al., 2001; Costanza and Voinov, 2001; Jørgensen,
2001; Voinov et al., 2001; Santos and Cabral, 2003; Cabecinha
et al., 2004; Silva-Santos et al., 2006; Karouby et al., 2007).

Moreover, in such applications, the rapid construction of
predictive tools for ecological management, namely in terms
of cost and speed of reliable assessment results, is crucial.
In this scope, an expeditious stochastic dynamic method-
ology (StDM) has recently been developed and successfully
applied in several types of ecological systems, such as mediter-
ranean agro-ecosystems (Santos and Cabral, 2003; Cabral et
al., 2007), mountain running waters (Cabecinha et al., 2004)
and estuaries (Silva-Santos et al., 2006). Compared with tradi-
tional deterministic approaches, stochastic dynamic models
have the advantage of taking into account random phenom-
ena that characterize real systems (Van der Meer et al., 1996).
The present paper proposes a conceptual approach for a future
link between evaluations of the ecological status in running
waters systems and a consistent mechanistic understanding
of the holistic ecological processes, from which management
strategies can be designed to restore ecosystems functions
that have been damaged by human disturbances.

In a preliminary deterministic approach, we developed a
model to validate simulations of the interactions between
some relevant biological metrics (benthic macroinvertebrates)
and physicochemical conditions in selected static scenar-
ios (Cabecinha et al., 2004). Although these simulations are
encouraging, we believe that our present proposal will provide
the development of a true management tool, namely taking
into account stochastic/random phenomena that characterize

the real ecological processes (Van der Meer et al., 1996). There-
fore, the main improvement is the stochastic background that
makes possible the introduction of limits to credible envi-
ronmental variation, such as the minimum and maximum
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alues of recorded aquatic chemical variables (as suggested
y Džeroski et al., 2000) and the seasonal random variation
f the monthly accumulated precipitation over time. Since
he mountain running waters are characterized by a high
egree of heterogeneity in space and time, influenced by many

nteracting factors and by feedback mechanisms, the StDM is
articularly helpful to capture these multi-factor influences in
atural stochastic scenarios.

The objectives were to validate and demonstrate the appli-
ability of a holistic StDM approach in the scope of the running
aters monitoring and management, by focusing on the

nteractions between conceptually isolated key-components
n such systems, namely between some relevant trophic
nd taxonomic metrics and physicochemical conditions. The
ypotheses to be tested include: (1) that the selected metrics
re representative of the local macroinvertebrate community
hat changes in some predictable way with the increasing of
uman and natural influences, and (2) that the ecosystem

ntegrity can be assessed by the state variables, assumed as
mportant ecological indicators, used in the dynamic model
onstruction. These hypotheses were tested by applications
f a StDM model in order to capture, by simple, suitable and

ntuitive outputs, the stochastic complexity of some ecologi-
al trends resulting from the gradients of changes expected in
he studied aquatic ecosystems.

. Methods
.1. Study area

he study was carried out in four main streams from the Douro
iver watershed, located in Northeast Portugal: the Olo (O),

ig. 1 – Location of the study area in Northeast Portugal (shaded
onstruction of the model (Olo (O), Corgo (C) and Tinhela (T) river
7 ( 2 0 0 7 ) 109–127 111

Corgo (C), Pinhão (P) and Tinhela (T) rivers (Fig. 1). The water-
sheds of these rivers have different lithological, topographical,
hydrological and land use features. The studied streams
range from 2nd to 10th in order of altitude (50–1500 m).
The precipitation pattern, sources of disturbance and main
land uses of the region are described in Cabecinha et al.
(2004).

2.2. Field program

The environmental and biological data used to support the
model construction was collected in 17 sampling stations
from three watersheds (O, C and T, Fig. 1) (Cortes, 1992),
representative of the typological variations in the studied
region. The model was validated with independent data
from three sampling stations (P1, P2 and P3) located in the
Pinhão watershed (Fig. 1). Sampling was carried out from
March 1983 to November 1985. Four sampling campaigns were
made annually, corresponding to Spring, Summer, Autumn
and Winter periods (see Cortes, 1992 for details). In each
campaign, semi-quantitative biological samples were taken
monthly in all sampling stations. Therefore, the recorded
data allowed incorporating into the model the seasonality
of the natural variations that occurred in these aquatic sys-
tems. Aquatic macroinvertebrates were identified at species
level and grouped in relevant trophic and taxonomic met-
rics as they reveal high sensitivity to environmental stress
2000; Maxted et al., 2000; Doisy and Rabeni, 2001; Cortes et
al., 2002). The specifications of all physicochemical and bio-
logical variables considered in this study are presented in
Table 1.

area) with the different watersheds used in the
s) and in the respective validation (Pinhão river (P)).
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Table 1 – Specification (units and taxa resolution) of all physicochemical and biological variables considered in this study
(IN and OUT represent, respectively, the surviving independent variables (used in the dynamic model construction) and
the removed independent variables by a previous step down multiple regression analysis)

Variables Specification Code

Independent variables IN
Alkalinity meq L−1 ALK
Altitude of the site m ALT
Biochemical oxygen demand mg L−1 BOD5

Distance from the stream source Km DSOURCE
Nitrates-N mg L−1 NO3

Oxygen content mg L−1 O2

pH pH units pH
Precipitation mm PREC
Temperature ◦C TEMP

Independent variables OUT
Chemical oxygen demand mg L−1 COD
Chlorides meq L−1 CL
Conductivity at 20 ◦C �mhos cm−1 COND
Hardness meq L−1 HARD

Ecological indicators

Taxonomic metrics
Number of Ephemeroptera taxa No. of species EPH
Number of Plecoptera taxa No. of species PLEC
Number of Tricoptera taxa No. of species TRIC
Number of EPT taxa EPT + PLEC + TRIC EPT

Trophic metrics
Number of Gatherers and Filterers taxa No. of species GTH and FILT
Number of Predators and Parasites taxa No. of species PRD and PRS

Number of Scrapers taxa
Number of Shredders taxa

2.3. Data analysis

The StDM model proposed is preceded by a conventional
multivariate statistical procedure. A stepwise multiple regres-
sion analysis (Zar, 1996) was used to test relationships
between the biological metrics and the environmental vari-
ables. The dependent variables correspond to the selected
metrics expressed, in number of species. The independent
variables were the environmental parameters displayed in
Table 1. A step down procedure was used so that the effect
of each variable in the presence of all others could be exam-
ined first, with the least significant variable being removed
at every step. The analysis stopped when all the remaining
variables had a significance level P < 0.05 (Zar, 1996). Although
the lack of normal distribution of the dependent variables was
not solved by any transformation (Kolmogorov-Smirnov test),
the linearity and the homoscedasticity of the residuals were
achieved by using logarithmic transformations (X’ = log[X + 1])
in each side of the equation, i.e., on both dependent and
independent variables (Zar, 1996). The lack of substantial inter-
correlation among independent variables was confirmed by
the inspection of the respective tolerance values. All the sta-
tistical analysis was carried out using the software SYSTAT
8.0®.
Since the previous statistical procedures are static, the
initial data set included true gradients of environmental char-
acteristics and man-induced disturbances. In this way, the
factors of time and space were implicit in the respective
No. of species SRCP
No. of species SHRD

treatment and the significant partial regression coefficients
were assumed as relevant holistic ecological parameters in
the dynamic model construction. This model does not distin-
guish between different species within the selected metrics,
but considers them as a whole in each corresponding state
variable. Therefore, in a holistic perspective, the partial regres-
sion coefficients represent the global influence of the habitat
variables selected that are of significant importance on several
complex ecological processes. Yet, the latter were not included
explicitly in the model, but were related to the selected trophic
and taxonomic metrics. This is the heart of the philosophy
of the StDM. For the development of this model the software
STELLA 8.1.1® was used.

For validation purposes, independent biological and
physicochemical data from the three sampling stations of the
Pinhão watershed (P1, P2 and P3) were used to confront the
simulated values of a given metric, resulting from the intro-
duction of the respective real physicochemical data into the
model, with the real values of the same metric contemporane-
ous to those environmental parameters. A regression analysis
(MODEL II) was performed to compare the observed real val-
ues of the selected ecological metrics with the expected values
obtained by model simulations for the same periods. At the
end of each analysis, the 95% confidence limits for the inter-

cept and the slope of the regression line were determined,
which, together with the results of the respective analysis
of variance (ANOVA), allowed us to assess the proximity of
the simulations produced with the observed values (Sokal and
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ohlf, 1995). When the results of the regression analysis were
tatistically significant, i.e., when the intercept of the regres-
ion line was not statistically different from 0 and the slope
as not statistically different from 1, the model simulations
ere considered validated (Sokal and Rohlf, 1995; Oberdorf et
l., 2001).

For assessment comparisons, we must be able to iden-
ify the ecological properties that are expected to occur in
he absence of significant human alterations (pristine con-
ition) or attainable if human disturbance ceases. Since we
ad no knowledge about the biota that existed at the studied
ites prior to human alteration, we took the environmental
ata reported in the eighties as a reference situation. In fact,

n that period, the studied watersheds presented, in general,
ood water quality (clean waters, not polluted or little altered),
ccording to the BMWP’ (Alba-Tercedor and Sánchez-Ortega,
998) and IBB (Pauw and Vanhooren, 1983) indexes. Therefore,
reference table was constructed in order to hold the ecologi-

al characteristics of a “typical” mountain stream of northeast
ortugal. A theoretical data watershed division, regarding alti-
udinal gradients, was adopted based in the Water Framework
irective 2000/60/EC and its upcoming monitoring program of

he ecological status for surface waters. Three altitude classes
re considered: (a) high altitude (>800 m), (b) mid altitude
200–800 m) and (c) lowland (<200 m). The average and stan-
ard deviation of environmental variables from the studied
atersheds were calculated for each of these three altitude

lasses and were used to discriminate the maximum and min-
mum values of each environmental variable, included in the

odel as a RANDOM function. Thus, the model is prepared
o work with table functions for validation purposes (Valida-
ion Mode) and to produce stochastic simulations based on the

onthly random variability of each environmental variable
Random Mode). The selection of the model working mode
s done by switching the toggle option between 0 and 1 for
alidation or stochastic calculations, respectively.

The stochastic scenario considered, for academic demon-
tration purposes, was based on a possible temporal
uccession of farmland activities vs. land abandonment in the
tudy region. Since physical chemical variables were moni-

ored in the station C6, approximately 10 years later from the
ata used for the model construction, we used such informa-
ion to represent a potential water quality degradation in C6
Sampaio, 1995). In fact, according to Sampaio (1995), this sam-

Table 2 – The regression equations, degrees of freedom (d.f.), co
significance level (*P < 0.05; **P < 0.01; ***P < 0.001) for all the varia
multiple regression

Equations

log EPH = 1.805 + 0.255(log DSOURCE) − 1.718(log pH) − 0.831(log NO3)
log PLEC = − 1.385 + 0.145(log PREC) + 0.457(log ALT) + 0.256(log DSOURCE)
log TRIC = − 0.300 + 0.305(log BOD5) + 0.274(log ALT) − 0.822(log NO3)
log GTH and FILT = 0.783 + 0.317(log BDO5) − 0.774(log NO3)
log PRD and PRS = 2.042 + 1.469(log ALK) − 1.528(log pH) − 0.862(log NO3)
log SRCP = −0.744 + 0.147(log PREC) + 0.256(log ALT) + 0.266 (log DSOURCE)
log SHRD = −1.978 + 0.950(log O2) + 1.359(log ALK) + 0.526(log ALT)

The specification of all variable codes is expressed in Table 1.
7 ( 2 0 0 7 ) 109–127 113

pling station displayed a typical diagnosis of eutrophication.
Thereafter, nitrate concentrations were compared season-
ally between 1984 (Cortes, 1992) and 1994 datasets (Sampaio,
1995) in order to calculate the respective increasing rate. We
assumed the slope of the regression line between nitrate con-
centrations and time (in months) as a temporal rate for such
perturbation. The following two steps of agricultural pattern
changes were adopted through a simulation period of 22 years,
using the station C6 as example: (1) the progressive nitrate
increasing rates, included into the model as a RAMP function,
occurs in the first 12 years due to the agricultural intensifica-
tion, and (2) the abandonment of the farming activity, which
allow a gradual water quality recovery, is simulated during
the last 10 years. The stochastic simulations were determined
by RANDOM functions, with a monthly variation, taking into
account the standard deviations limits for each environ-
mental variable considered. For graphical representations,
10 stochastic simulations were carried out for the simula-
tion period and the average tendencies were calculated for
nitrate concentrations and for the sensitive taxonomic met-
ric EPT (Ephemeroptera + Plecoptera + Trichoptera) (Cortes,
1992; Barbour et al., 1999; Harris and Silveira, 1999; Karr,
2002).

3. Results

3.1. Effects of environmental factors in biological
metrics

A stepwise multiple-regression analysis was used to search
for significant correlations between the selected trophic and
taxonomic metrics and the mixed environmental variables of
the three watersheds used in the model construction. From
the 13 environmental variables considered, five were excluded
from the model (P > 0.05), namely chemical oxygen demand,
chlorides, conductivity, hardness, and phosphates-P. The envi-
ronmental variables associated with a degradation gradient
seemed to be the main influencing factors on metrics related
to the macroinvertebrates more sensitive to organic pollution.

In fact, the increase of nitrate concentrations, an indicator of
potential organic perturbation, seemed to affect negatively the
number of species of Ephemeroptera (EPH), Trichoptera (TRIC),
collectors gatherers and filterers (GTH and FILT), predators and

efficient of determination (R2), F-values and their
bles combination selected as significant by stepwise

d.f. R2 F

68 0.263 6.637***

68 0.504 19.333***

68 0.253 6.238***

69 0.257 5.488**

68 0.205 5.835**

68 0.138 3.622*

68 0.515 15.925***
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parasites (PRD and PRS). All the remaining physicochemical
significant influences are expressed in Table 2.

3.2. Model conceptualization and equations

The diagram of the model presented in Fig. 2 is based on
the relationships detected in multiple regression analysis
(Table 2) and on existing relevant regional data sets (Cortes,
1992). Therefore, the model includes seven state variables,
corresponding to the trophic and taxonomic metrics selected
(Fig. 2). Difference equations that describe the processes
affecting the state variables are expressed in a logarithm of
the respective biological metrics (Fig. 2 and Appendix A, Dif-
ference equations). The initial values of all state variables,
indicated in Appendix A (Process equations), were assumed
to be zero, given the lack of knowledge of the initial situ-
ation in t0. Later, for validation purposes, the initial value
was discarded, since only in t1 (first month of the simula-
tion) was it possible to take into account the influences of the
environmental variables, whose seasonal fluctuations were
introduced into the model as table functions (Appendix A,
Table functions). Although table functions have an apparent
discrepancy among the number of values and the time units,
this evidence results from a premeditated operation in order
to get a contemporaneity (i.e., in the same dt) between the
influence of the physical–chemical parameters and the reac-
tion of the potentially affected metrics. In fact, the difference
equations did not allow these simultaneous simulations. In
our case, this is crucial for validation purposes since the real
independent biological and physicochemical data used to con-
front the simulated values of a given metric (resulting from the
introduction of the respective real physicochemical data into
the model) with the real values of the same metric, were con-
temporaneous, i.e., were collected in the same month. With
this adjustment in table functions, it was possible to per-
form a regression analysis (MODEL II) in order to compare the
observed real values of the selected ecological metrics with the
expected values obtained by model simulations for the same
periods.

The inflows affecting the state variables, Ephemeroptera
(EPH gains), Plecoptera (PLEC gains), Trichoptera (TRIC gains),
Gatherers and Filterers (GTH and FILT gains), Predators and
Parasites (PRD and PRS gains), Scrapers (SRCP gains) and
Shredders (SHRD gains), were based on the positive constants
and all positive partial coefficients of each metric resulting
from the previous multiple regression analysis (Fig. 2, Table 2
and Appendix A, Difference and Process equations). How-
ever, all metrics were affected by an outflow (EPH losses, PLEC
losses, TRIC losses, GTH and FILT losses, PRD and PRS losses,
SRCP losses, SHRD losses) related to the negative constants
and partial regression coefficients (Fig. 2, Table 2 and Appendix
A, Difference and Process equations). Although the output for
each metric in our stochastic dynamic model simulation is
composed of a given value per time unit, the respective state
variable may result in a cumulative behaviour over time in
response to environmental condition changes. Therefore, to

prevent this from happening, seven outflow adjustments were
incorporated into the model (EPH adjust, PLEC adjust, TRIC
adjust, GTH and FILT adjust, PRD and PRS adjust, SRCP adjust,
SHRD adjust). These outflow adjustments aim to empty the
2 0 7 ( 2 0 0 7 ) 109–127

ecological metric state variables at each time step, by a “flush-
ing cistern mechanism”, before beginning the next step with
new environmental influences (Fig. 2 and Appendix A, Dif-
ference and Process equations). For process compatibilities
and a more realistic comprehension of the model simula-
tions, some conversions were introduced, denominated as
associated variables (Fig. 2 and Appendix A, Associated vari-
ables). Regarding the trophic and taxonomic metrics, these
conversions were obtained through an inverse transformation
(anti-logarithmic), which transforms logarithms into feeding
measures expressed in the original measurement units (EPH,
PLEC, TRIC, GTH and FILT, PRD and PRS, SRCP, SHRD). The
physicochemical variables were logarithm transformed for a
compatible integration into the balance of the state variables
(Fig. 2 and Appendix A, Associated variables). This transfor-
mation was incorporated because the data required for the
state variables balances should use the same units to obtain
the significant partial regression coefficients, assumed to be
holistic ecological parameters (see Methods). Therefore, only
logarithms of the physicochemical variables are acceptable
in the inflows and outflows of the state variables (Fig. 2 and
Appendix A, Difference and Process equations). Thus, the
model is prepared to accept and transform real data from
the habitat variables and to convert logarithmic outputs from
a specific state variable simulation back into the original
units. Some environmental and programming values, such
as distance from the stream source (DSOURCE), Stochastic
ON OFF and perturbation option, were static and, therefore,
were introduced in the model as constants (Appendix A,
Constants). The number of species of EPT, a composed vari-
able resulting from the sum of the variables EPH, PLEC and
TRIC, was used to complete the output of the model (Fig. 2
and Appendix A, Composed variables). Programming func-
tions, such as perturbation rate and stochastic calculations
of the environmental variables along time, were introduced
in the model as RAMP and RANDOM functions, respectively
(Figs. 2 and 3; Appendix A, Other functions). The influence
of the environmental data was controlled by switching the
two operating modes (Appendix A, Constants): as table func-
tions for validation purposes (Appendix A, Table functions)
and as monthly stochastic calculations, using RANDOM func-
tions (Fig. 3 and Appendix A, Other functions), incorporating
the natural stochastic fluctuations that characterizes this kind
of variables.

3.3. Model simulations

The temporal unit chosen was the month, because it cap-
tures in an acceptable way the average ecological variations
that occur in lotic systems. Differential equations were
numerically integrated using Euler’s integration method. For
precipitation values, we considered the data from a typical
year that would correspond to the averages calculated over a
period of 30 years (1961–1990). In this work, all the performed
simulations have a total length of 12 months, beginning in the
spring, coinciding with the first sampling campaign carried

out by Cortes (1992).

For the relevant trophic metrics adopted, the model suc-
cessfully predicts the behaviour of the biological metrics
under the influence of independent environmental variables
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Fig. 2 – Conceptual diagram of the sub-model used to predict trophic and taxonomic metrics by given environmental variables from the studied watersheds in Northeast
Portugal. The specification of all variable codes is expressed in Table 1.
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Fig. 3 – Conceptual diagram of the sub-model used to generate monthly stochastic calculations from the environmental data
incorporated into the model.

Table 3 – Regression analysis (MODEL II) intercepts and slopes, and the respective 95% confidence limits (in parenthesis),
degrees of freedom (d.f.), coefficient of determination (R2), F-values and significance level (*P < 0.05; **P < 0.01; ***P < 0.001),
for all the observed versus expected values of the biological metrics

Metrics Site Intercept Slope d.f. R2 F

GTH and FILT P1 0.07 (−2.23; 1.65) 1.09 (0.77; 1.55) 11 0.794 42.33***

P2 0.19 (−1.12; 1.27) 0.98 (0.81; 1.19) 11 0.919 124.54***

P3 −0.39 (−2.28; 1.03) 0.87 (0.63; 1.19) 11 0.819 49.61***

PRD and PRS P1 −0.54 (−2.35; 0.79) 1.02 (0.76; 1.38) 11 0.837 56.67***

P2 −0.99 (1.35; 5.46) 1.23 (0.74; 2.15) 11 0.637 19.89***

P3 −0.14 (−1.21; 0.73) 1.10 (0.92; 1.33) 11 0.930 143.83***

SRCP P1 −0.23 (−0.94; 0.31) 1.21 (0.95; 1.55) 11 0.882 82.61***

P2 −0.04 (−0.88; 0.79) 0.85 (0.58; 1.23) 11 0.765 35.80***

P3 −0.22 (−4.08; 0.89) 1.31 (0.17; 3.37) 11 0.589 5.84*

SHRD P1 −0.92 (−1.88; −0.16) 1.49 (1.27; 1.79) 11 0.938 167.66***

P2 −0.59 (−2.09; 0.31) 1.19 (0.78; 1.87) 11 0.845 27.55***

P3 −0.34 (−0.65; −0.12) 2.38 (1.95; 2.99) 11 0.953 108.14***

P1, P2 and P3 represent the three sampling stations of the Pinhão river. The specification of all variables codes is expressed in Table 1.



e c o l o g i c a l m o d e l l i n g 2 0 7 ( 2 0 0 7 ) 109–127 117

Fig. 4 – Graphical comparisons between simulated (black circles) and observed (black squares) values of the trophic metrics.
The specification of all variable codes is expressed in Table 1. P1, P2 and P3 are sampling stations of the Pinhão watershed.
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rom the Pinhão watershed sampling stations (P1, P2 and P3)
Table 3). All the simulations were statistically validated by
he regression analysis (MODEL II) (Table 3). Fig. 4 illustrates
he confrontation between simulated and real values for all
he trophic metrics considered for validation purposes. For
hese metrics, the model simulations accurately predicted the
eal values for P1, P2 and P3, with the same general tenden-
ies (Fig. 4 and Table 3). Since Cabecinha et al. (2004) already
alidated the simulations for Ephemeroptera, Plecoptera and
richoptera, the model behaves as expected for the reference
ituation considered.

The average environmental data from all the studied
atersheds was calculated following the Water Framework
irective 2000/60/EC altitudinal criterion (Table 4). After the
alidation procedures, StDM simulations were used to test
he model’s performance in the sampling station C6 (from the
orgo river), facing scenarios either: (1) of pollution increase
ue to the agricultural intensification; or (2) of farming activ-

ty abandonment becoming less pollutant as a non-point
ource. The effects of water quality changes on biological
omponents of the ecosystem were assessed by stochastic-
ynamic calculations of EPT reactions through time (Fig. 5).

he model simulations showed credible trends for this met-
ic as a response to the new scenarios considered. In fact, the
ncrease of organic perturbation (expressed by nitrate concen-
rations) induces a clear decline in the number of species of
the EPT group (Fig. 5). Moreover, when changes in land uses
was simulated, resulting from agriculture abandonment, the
decrease of contaminants (such as the anomalous nutrient
enrichment) seemed to allowed a recovery of EPT taxa as a
response to more suitable environmental conditions (Fig. 5).
The model simulation results corroborate numerous stud-
ies that successfully applied the EPT taxonomic metric on
biomonitoring programs, namely because these orders gener-
ally represent the more organic pollution intolerant organisms
present in rivers and streams (Barbour et al., 1996, 1999;
Wallace et al., 1996; Growns et al., 1997; Oliveira and Cortes,
2005).

4. Discussion

The main objective of the StDM approach proposed is a
mechanistic understanding of the running waters ecological
functioning in the scope of the need for rapid, standardized
and cost-saving assessment methodologies. Our approach
includes the interaction between aquatic macroinvertebrates
trophic and taxonomic metrics and environmental conditions,

with holistic and ecological relevance, and reduces the num-
ber of pre-conceptions added to the model. Therefore, this
study seems to represent a useful contribution to give a refer-
ential basis for the holistic assessment and monitoring of the
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Table 4 – Reference values of environmental variables (average ± S.D.) from a “typical” mountain stream of Northeast
Portugal using an altitudinal gradient criterion

Environmental variables Spring Summer Autumn Winter

Altitude typology

High (>800 m)
ALK (meq L−1) 0.16 ± 0.02 0.14 ± 0.07 0.28 ± 0.08 0.18 ± 0.03
BOD5 (mg O2 L−1) 0.53 ± 0.26 0.60 ± 0.35 1.33 ± 0.26 1.62 ± 0.34
CL (meq L−1) 0.01 ± 0.00 3.67 ± 1.87 5.83 ± 2.31 5.38 ± 2.08
COND (�mhos cm−1) 40.22 ± 17.64 40.88 ± 17.26 67.63 ± 29.91 50.79 ± 25.18
COD (mg O2 L−1) 7.24 ± 6.95 7.56 ± 7.27 3.68 ± 0.92 4.48 ± 4.24
DSOURCE (km) 12.74 ± 5.17 12.74 ± 5.17 12.74 ± 5.17 12.74 ± 5.17
HARD (meq L−1) 0.50 ± 0.28 0.42 ± 0.27 0.43 ± 0.26 0.29 ± 0.16
NO3 (mg N–NO3 L−1) 0.01 ± 0.00 0.01 ± 0.02 0.07 ± 0.05 0.17 ± 0.14
O2 (mg L−1) 10.31 ± 1.03 9.98 ± 1.05 8.80 ± 0.73 9.68 ± 1.28
pH (pH unidades) 5.97 ± 0.25 6.05 ± 0.29 6.45 ± 0.44 6.50 ± 0.40
PREC (mm) 96.31 ± 20.73 30.58 ± 5.67 129.24 ± 41.72 176.32 ± 46.57

Mid-altitude (200–800 m)
ALK (meq L−1) 0.17 ± 0.02 0.18 ± 0.03 0.25 ± 0.00 0.07 ± 0.06
BOD5 (mg O2 L−1) 0.92 ± 0.16 0.92 ± 0.21 0.93 ± 0.31 2.40 ± 0.20
CL (meq L−1) 0.01 ± 0.00 4.15 ± 0.83 7.13 ± 0.93 7.10 ± 1.42
COND (�mhos cm−1) 61.93 ± 11.87 61.73 ± 11.66 97.83 ± 22.49 81.83 ± 18.91
COD (mg O2 L−1) 6.94 ± 1.27 7.41 ± 1.53 8.04 ± 5.10 5.92 ± 5.32
DSOURCE (km) 14.44 ± 5.98 14.44 ± 5.98 14.44 ± 5.98 14.44 ± 5.98
HARD (meq L−1) 0.22 ± 0.09 0.22 ± 0.08 0.36 ± 0.15 0.51 ± 0.49
NO3 (mg N NO3 L−1) 0.01 ± 0.00 0.01 ± 0.01 0.12 ± 0.02 0.01 ± 0.19
O2 (mg L−1) 9.44 ± 0.48 9.07 ± 0.12 8.63 ± 0.32 11.40 ± 0.26
pH (pH unidades) 6.64 ± 0.22 6.83 ± 0.25 6.74 ± 0.44 5.17 ± 0.75
PREC (mm) 89.19 ± 13.15 24.95 ± 3.91 127.47 ± 17.29 165.32 ± 18.78

Lowland (<200 m)
ALK (meq L−1) 0.16 ± 0.01 0.15 ± 0.04 0.39 ± 0.01 0.18 ± 0.04
BOD5 (mg O2 L−1) 1.42 ± 0.40 1.59 ± 0.51 2.13 ± 1.21 2.33 ± 1.08
CL (meq L−1) 0.01 ± 0.00 5.30 ± 1.51 16.18 ± 7.27 8.43 ± 3.04
COND (�mhos cm−1) 68.10 ± 23.76 68.60 ± 23.79 159.83 ± 79.42 74.63 ± 31.96
COD (mg O2 L−1) 10.82 ± 3.51 11.48 ± 3.45 8.17 ± 5.71 8.15 ± 2.92
DSOURCE (km) 33.70 ± 7.42 33.70 ± 7.42 33.70 ± 7.42 33.70 ± 7.42
HARD (meq L−1) 0.46 ± 0.11 0.41 ± 0.09 0.69 ± 0.20 0.50 ± 0.14
NO3 (mg N NO3 L−1) 0.01 ± 0.00 0.20 ± 0.08 0.62 ± 0.10 0.28 ± 0.06
O2 (mg L−1) 10.33 ± 0.65 9.73 ± 0.40 8.75 ± 0.21 11.45 ± 0.40
pH (pH unidades) 6.66 ± 0.10 6.83 ± 0.14 6.98 ± 0.21 6.35 ± 0.35
PREC (mm) 69.24 ± 20.19 25.48 ± 8.72 106.59 ± 59.6 129.29 ± 23.79
The specification of all variable codes is expressed in Table 1.

ecological status in changed stream ecosystems, from which
management strategies can be designed to restore biological
communities that have been damaged by human activities.
In fact, after the validation process, the simulation results
show that the selected indicators, as state variables, were not
indifferent to the structural changes expected to occur in a
“typical” mountain stream of Northeast Portugal. The simula-
tion results reflect well the shift of the stream characteristics
towards known and new expected conditions and the state
variables are capable of responding with credibility to key
changes, namely as a result of the detrimental effects on the
water quality.

Although the trophic metrics approach has been an impor-
tant catalyst for the development of other major paradigms

of stream ecology, the functional feeding group concept has
also some limitations. Assignment of individual organisms
from stream samples to a functional feeding group requires
identification of the organism at least to the family level, and
more often to the genus level (Wright et al., 1995). This is a
time consuming task. Moreover, food selection may vary even
at the species level according to habitat or food availability.
Thus, published functional group designations are not always
reliable. In fact, several stream organisms are known to fall
into more than one functional feeding group or may change
between functional feeding groups during their development
(Hershey and Lamberti, 1998). Despite these shortcomings, the
functional feeding group concept serves as a useful starting
point to evaluate consumer functions in a given stream and to
compare these functions between streams (Wright et al., 1995;
Hershey and Lamberti, 1998). Since other related attributes of
the macroinvertebrate community structure (such as the EPT
group used in the present work), diversity and abundance are

also influenced by certain environmental conditions (Karr and
Dudley, 1981; Norris et al., 1995; Richards et al., 1993; Roth
et al., 1996; Townsend et al., 1997a,b; Lounaci et al., 2000;
Li et al., 2001), the philosophy of the proposed StDM can be
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Fig. 5 – Computer simulations for the EPT metric estimated
responses under the expected gradient of water quality
changes (through a period of 22 years). (A) Nitrate
concentrations and (B) number of species of EPT. The line
connects the average values of monthly simulations for the
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between the trophic metrics and the environmental physic-
ampling station C6 of the Corgo watershed.

pplicable generically to aquatic ecosystem management and
olicymaking, providing a useful contribution to define the
eference conditions for surface water bodies from the qual-
ty elements specified in Annex V of the Water Framework
irective 2000/60/EC.

Nevertheless, the structure of such models should be
traightforwardly interpretable in order to allow a decision
aker to incorporate pertinent qualitative data before the
odel simulations (Parsons and Norris, 1996; Cabecinha et

l., 2004). Džeroski et al. (1997) referred that models pro-
uced in the form of rules, based on machine learning
pproaches, are transparent and can be easily understood
y experts. The StDM exhibits these structural qualities but
rovides also simple, suitable and intuitive outputs, easily

nterpreted by non-experts (ranging from resource users to
enior policy makers). Although structurally simple, our StDM

odel captures the stochastic complexity of some holis-

ic ecological trends, including true temporal and spatial
radients of stochastic environmental characteristics, which
llowed the simulation of structural changes when habitat and
7 ( 2 0 0 7 ) 109–127 119

environmental conditions are substantially changing due to
anthropogenic-induced alterations.

When compared to other modelling methodologies for
running water bodies, such as Artificial Intelligence (Walley
and Džeroski, 1995; Džeroski et al., 1997, 2000; Walley et al.,
1998; Walley and Fontama, 2000; Broekhoven et al., 2006),
the StDM is more intuitive, namely in mathematical terms,
providing easy explanations for the underlying relations
between independent and dependent variables and because
is based on conventional linear methods that allowed a
more direct development of testable hypotheses (Manel et al.,
1999).

Another goal when developing methods for assessing
changes in the ecological integrity of ecosystems is the fea-
sibility of application and extent to which the results can be
applied in other contexts (Andreasen et al., 2001). In fact, the
proposed methodology is expeditious and easily applicable
to other type of biological metrics and aquatic ecosystems
affected by gradients of changes (Cabecinha et al., 2004; Silva-
Santos et al., 2006).

Overall, the main results showed that it is valid, interest-
ing, and instructive to construct StDM models by focusing
on the interactions between key-components of changing
aquatic ecosystems. Nevertheless, since ecological integrity
of the mountain streams can be only partly assessed by
biological metrics occurrence, this approach also provides a
useful starting point, allowing the precise development of
more complicated models, with introduction of other indica-
tors, interactions and interferences with precise applicability
conditions. The ultimate goal is to produce simulation mod-
els that permit the creation of multi-patterns from changes
in farming systems, whose patterns are the basis of spatially
explicit ecological models (Costanza and Voinov, 2003). This
approach will include not only the approach at the stream
level but also the spatial configuration of the different kinds
of natural and semi-natural habitats that concur in sustain-
ing the entire ecological integrity of the studied watersheds.
Therefore, we believe that our approach will provide the devel-
opment of more global techniques in the scope of this research
area by creating expeditious interfaces with Geographic Infor-
mation Systems, which will make the methodology more
instructive and credible to decision-makers and environmen-
tal managers (Costanza, 1992; Costanza and Voinov, 2003;
Santos and Cabral, 2003).
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Appendix A

Mathematical equations used in Stella for the relationships
ochemical variables from the studied watersheds. As an
example, the environmental data of the sampling station P1
was used. The specification of all variable codes is expressed
in Table 1.
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just) × dt
C adjust) × dt

adjust) × dt
gains − GTH and FILT losses − GTH and FILT adjust) × dt

ains − PRD and PRS losses − PRD and PRS adjust) × dt
SRHD adjust) × dt
CP adjust) × dt

DSOURCE

LT

DSOURCE
120 e c o l o g i c a l m o d e l l

Difference equations
log EPH(t) = log EPH(t − dt) + (EPH gains − EPH losses − EPH ad
log PLEC(t) = log PLEC(t − dt) + (PLEC gains − PLEC losses − PLE
log TRIC(t) = log TRIC(t − dt) + (TRIC gains − TRIC losses − TRIC
log GTH and FILT(t) = log GTH and FILT(t − dt) + (GTH and FILT
log PRD and PRS(t) = log PRD and PRS(t − dt) + (PRD and PRS g
log SHRD(t) = log SHRD(t − dt) + (SRHD gains − SRHD losses −
log SRCP(t) = log SRCP(t − dt) + (SRCP gains − SRCP losses − SR

Process equations
(a) log EPH

Initial richness of log EPH = 0
EPH gains = 1.805 + 0.255 × log DSOURCE
EPH losses = 1.718 × log pH + 0.831 × log NO3

EPH adjust = log EPH

(b) log PLEC
Initial richness of log PLEC = 0
PLEC gains = 0.145 × log PREC + 0.457 × log ALT + 0.256 × log
PLEC losses = 1.385
PLEC adjust = log PLEC

(c) log TRIC
Initial richness of log TRIC = 0
TRIC gains = 0.305 × log BOD5 + 0.274 × log ALT
TRIC losses = 0.300 + 0.822 ×log NO3

TRIC adjust = log TRIC

(d) GTH and FILT
Initial richness of log GTH and FILT = 0
GTH and FILT gains = 0.783 + 0.317 × log BOD5

GTH and FILT losses = 0.774 × log NO3

GTH and FILT adjust = log GTH and FILT

(e) PRD and PRS
Initial richness of log PRD and PRS = 0
PRD and PRS gains = 2.042 + 1.469 × log ALK
PRD and PRS losses = 1.528 × log pH + 0.862 × log NO3

PRD and PRS adjust = log PRD and PRS

(f) SHRD
Initial richness of log SHRD = 0
SRHD gains = 0.950 × log O2 + 1.359 × log ALK + 0.526 × log A
SRHD losses = 1.978
SRHD adjust = log SHRD

(g) SRCP
Initial richness of log SRCP = 0
SRCP gains = 0.147 × log PREC + 0.256 × log ALT + 0.266 × log
SRCP losses = 0.744
SRCP adjust = log SRCP

Associated variables
CHIR = 10ˆ(log CHIR) − 1
EPH = 10ˆ(log EPH) − 1
log ALT = log10(ALT + 1)
log BOD5 = log10(BOD5 + 1)
log COND = log10(COND + 1)
log DSOURCE = log10(DSOURCE + 1)

log HARD = log10(HARD + 1)
log NO3 = log10(NO3 Final + 1)
log pH = log10(pH + 1)
log PREC = log10(PREC + 1)
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T

(5.45, 0.63), (6.55, 2.40), (7.64, 2.40), (8.73, 2.40), (9.82, 1.70), (10.9,

(5.45, 33.5), (6.55, 48.0), (7.64, 48.0), (8.73, 48.0), (9.82, 37.6), (10.9,

(5.45, 0.23), (6.55, 0.1), (7.64, 0.1), (8.73, 0.1), (9.82, 0.3), (10.9, 0.3),

(5.45, 0.00), (6.55, 0.03), (7.64, 0.03), (8.73, 0.03), (9.82, 0.13), (10.9,

(5.45, 6.40), (6.55, 6.50), (7.64, 6.50), (8.73, 6.50), (9.82, 6.30), (10.9,

(5.45, 22.7), (6.55, 137), (7.64, 137), (8.73, 137), (9.82, 154), (10.9, 154),

45, 0.2), (6.55, 0.26), (7.64, 0.26), (8.73, 0.26), (9.82, 0.13), (10.9, 0.13),

(5.45, 9.10), (6.55, 7.60), (7.64, 7.60), (8.73, 7.60), (9.82, 10.2), (10.9,

O

icity = 0 then ramp (Autumn degradation, 24) else 0
192 and Agriculture abandon option = 1 then NO3 Real-(NO3

perturbation option = 1 Then NO3 + NO3 × Perturbation rate else

+ Winter proj
= 6 then ramp (Spring degradation,24) else 0
ty = 9 then ramp (Summer degradation,24) else 0
= 3 then ramp (Winter degradation,24) else 0
e c o l o g i c a l m o d e l l i n

PLEC = 10ˆ(log PLEC) − 1
TRIC = 10ˆ(log TRIC) − 1
GTH and FILT = 10ˆ(log GTH and FILT) − 1
log ALK = log10(ALK + 1)
log O2 = log10(O2 + 1)
PRD and PRS = 10ˆ(log PRD and PRS) − 1
SHRD = 10ˆ(log SHRD) − 1
SRCP = 10ˆ(log SRCP) − 1

able functions
VALIDATION BOD5 = GRAPH (month, mg L−1)

(0.00, 0.42), (1.09, 0.42), (2.18, 0.42), (3.27, 0.63), (4.36, 0.63),
1.70), (12.0, 1.70)

VALIDATION COND = GRAPH (month, �mhos cm−1)
(0.00, 33.3), (1.09, 33.3), (2.18, 33.3), (3.27, 33.5), (4.36, 33.5),
37.6), (12.0, 37.6)

VALIDATION HARD = GRAPH (month, meq L−1)
(0.00, 0.19), (1.09, 0.19), (2.18, 0.19), (3.27, 0.23), (4.36, 0.23),
(12.0, 0.3)

VALIDATION NO3 = GRAPH (month, mg L−1)
(0.00, 0.01), (1.09, 0.01), (2.18, 0.01), (3.27, 0.00), (4.36, 0.00),
0.13), (12.0, 0.13)

VALIDATION pH = GRAPH (month, pH units)
(0.00, 6.29), (1.09, 6.29), (2.18, 6.29), (3.27, 6.40), (4.36, 6.40),
6.30), (12.0, 6.30)

VALIDATION PREC = GRAPH (month, mm)
(0.00, 80.4), (1.09, 80.4), (2.18, 80.4), (3.27, 22.7), (4.36, 22.7),
(12.0, 154)

VALIDATION ALK = GRAPH (month, meq L−1)
(0.00, 0.18), (1.09, 0.18), (2.18, 0.18), (3.27, 0.2), (4.36, 0.2), (5.
(12.0, 0.13)

VALIDATION O2 = GRAPH (month, mg L−1)
(0.00, 9.17), (1.09, 9.17), (2.18, 9.17), (3.27, 9.10), (4.36, 9.10),
10.2), (12.0, 10.2)

ther functions
Agriculture abandon rate = ramp (0.02,144)
Autumn proj = if periodicity = 10 or periodicity = 11 or period
NO3 Final = if Time > time of agriculture abandon and Time <

Real × Agriculture abandon rate) else NO3 Real
NO3 Real = If Time > Time of perturbation and Time < 192 and

NO3

Perturbation rate = Autumn proj + Spring proj + Summer proj
Spring proj = if periodicity = 4 or periodicity = 5 or periodicity
Summer proj = if periodicity = 7 or periodicity = 8 or periodici
Winter proj = if periodicity = 1 or periodicity = 2 or periodicity
ALK Apr = RANDOM (0.15,0.19)
ALK Aug = RANDOM (0.15,0.21)
ALK Feb = RANDOM (0.01,0.13)
ALK Jan = RANDOM (0.01,0.13)
ALK Jul = RANDOM (0.15,0.21)
ALK Jun = RANDOM (0.15,0.19)
ALK Mar = RANDOM (0.01,0.13)

ALK May = RANDOM (0.15,0.19)
ALK proj Apr = if periodicity = 4 then ALK Apr else 0
ALK proj Aug = if periodicity = 8 then ALK Aug else 0
ALK proj Dec = if periodicity = 0 then ALK Dec else 0
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ALK proj Feb = if periodicity = 2 then ALK Feb else 0
ALK proj Jan = if periodicity = 1 then ALK Jan else 0
ALK proj Jul = if periodicity = 7 then ALK Jul else 0
ALK proj Jun = if periodicity = 6 then ALK Jun else 0
ALK proj Mar = if periodicity = 3 then ALK Mar else 0
ALK proj May = if periodicity = 5 then ALK May else 0
ALK proj Nov = if periodicity = 11 then ALK Nov else 0
ALK proj Oct = if periodicity = 10 then ALK Oct else 0
ALK proj Sep = if periodicity = 9 then ALK Sep else 0
ALK Sep = RANDOM (0.15,0.21)
BOD5 Apr = RANDOM (0.76,1.08)
BOD5 Aug = RANDOM (0.71,1.13)
BOD5 Dec = RANDOM (0.62,1.24)
BOD5 Feb = RANDOM (2.2,2.6)
BOD5 Jan = RANDOM (2.2,2.6)
BOD5 Jul = RANDOM (0.71,1.13)
BOD5 Jun = RANDOM (0.76,1.08)
BOD5 Mar = RANDOM (2.2,2.6)
BOD5 May = RANDOM (0.76,1.08)
BOD5 Nov = RANDOM (0.62,1.24)
BOD5 Oct = RANDOM (0.62,1.24)
BOD5 proj Apr = if periodicity = 4 then BOD5 Apr else 0
BOD5 proj Aug = if periodicity = 8 then BOD5 Aug else 0
BOD5 proj Dec = if periodicity = 0 then BOD5 Dec else 0
BOD5 proj Feb = if periodicity = 2 then BOD5 Feb else 0
BOD5 proj Jan = if periodicity = 1 then BOD5 Jan else 0
BOD5 proj Jul = if periodicity = 7 then BOD5 Jul else 0
BOD5 proj Jun = if periodicity = 6 then BOD5 Jun else 0
BOD5 proj Mar = if periodicity = 3 then BOD5 Mar else 0
BOD5 proj May = if periodicity = 5 then BOD5 May else 0
BOD5 proj Nov = if periodicity = 11 then BOD5 Nov else 0
BOD5 proj Oct = if periodicity = 10 then BOD5 Oct else 0
BOD5 proj Sep = if periodicity = 9 then BOD5 Sep else 0
BOD5 Sep = RANDOM(0.71,1.13)
COND Apr = RANDOM(50.06,73.8)
COND Aug = RANDOM(50.07,73.39)
COND Dec = RANDOM(75.34,120.32)
COND Feb = RANDOM(62.92,100.74)
COND Jan = RANDOM(62.92,100.74)
COND Jul = RANDOM(50.07,73.39)
COND Jun = RANDOM(50.06,73.8)
COND Mar = RANDOM(62.92,100.74)
COND May = RANDOM(50.06,73.8)
COND Nov = RANDOM(75.34,120.32)
COND Oct = RANDOM(75.34,120.32)
COND proj Apr = if periodicity = 4 then COND Apr else 0
COND proj Aug = if periodicity = 8 then COND Aug else 0
COND proj Dec = if periodicity = 0 then COND Dec else 0
COND proj Feb = if periodicity = 2 then COND Feb else 0
COND proj Jan = if periodicity = 1 then COND Jan else 0
COND proj Jul = if periodicity = 7 then COND Jul else 0
COND proj Jun = if periodicity = 6 then COND Jun else 0
COND proj Mar = if periodicity = 3 then COND Mar else 0
COND proj May = if periodicity = 5 then COND May else 0
COND proj Nov = if periodicity = 11 then COND Nov else 0

COND proj Oct = if periodicity = 10 then COND Oct else 0
COND proj Sep = if periodicity = 9 then COND Sep else 0
COND Sep = RANDOM(50.07,73.39)
HARD Apr = RANDOM(0.13,0.31)
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HARD Aug = RANDOM(0.14,0.30)
HARD Dec = RANDOM(0.21,0.51)
HARD Feb = RANDOM(0.02,1)
HARD Jan = RANDOM(0.02,1)
HARD Jul = RANDOM(0.14,0.30)
HARD Jun = RANDOM(0.13,0.31)
HARD Mar = RANDOM(0.02,1)
HARD May = RANDOM(0.13,0.31)
HARD Nov = RANDOM(0.21,0.51)
HARD Oct = RANDOM(0.21,0.51)
HARD proj Apr = if periodicity = 4 then HARD Apr else 0
HARD proj Aug = if periodicity = 8 then HARD Aug else 0
HARD proj Dec = if periodicity = 0 then HARD Dec else 0
HARD proj Feb = if periodicity = 2 then HARD Feb else 0
HARD proj Jan = if periodicity = 1 then HARD Jan else 0
HARD proj Jul = if periodicity = 7 then HARD Jul else 0
HARD proj Jun = if periodicity = 6 then HARD Jun else 0
HARD proj Mar = if periodicity = 3 then HARD Mar else 0
HARD proj May = if periodicity = 5 then HARD May else 0
HARD proj Nov = if periodicity = 11 then HARD Nov else 0
HARD proj Oct = if periodicity = 10 then HARD Oct else 0
HARD proj Sep = if periodicity = 9 then HARD Sep else 0
HARD Sep = RANDOM(0.14,0.30)
NO3 Aug = RANDOM(0,0.02)
NO3 Dec = RANDOM(0.10,0.14)
NO3 Feb = RANDOM(0,0.2)
NO3 Jan = RANDOM(0,0.2)
NO3 Jul = RANDOM(0,0.02)
NO3 Mar = RANDOM(0,0.2)
NO3 Nov = RANDOM(0.10,0.14)
NO3 Oct = RANDOM(0.10,0.14)
NO3 proj Apr = if periodicity = 4 then NO3 Apr else 0
NO3 proj Aug = if periodicity = 8 then NO3 Aug else 0
NO3 proj Dec = if periodicity = 0 then NO3 Dec else 0
NO3 proj Feb = if periodicity = 2 then NO3 Feb else 0
NO3 proj Jan = if periodicity = 1 then NO3 Jan else 0
NO3 proj Jul = if periodicity = 7 then NO3 Jul else 0
NO3 proj Jun = if periodicity = 6 then NO3 Jun else 0
NO3 proj Mar = if periodicity = 3 then NO3 Mar else 0
NO3 proj May = if periodicity = 5 then NO3 May else 0
NO3 proj Nov = if periodicity = 11 then NO3 Nov else 0
NO3 proj Oct = if periodicity = 10 then NO3 Oct else 0
NO3 proj Sep = if periodicity = 9 then NO3 Sep else 0
NO3 Sep = RANDOM(0,0.02)
O2 Apr = RANDOM(8.96,9.92)
O2 Aug = RANDOM(8.95,9.19)
O2 Dec = RANDOM(8.31,8.95)
O2 Feb = RANDOM(11.14,11.66)
O2 Jan = RANDOM(11.14,11.66)
O2 Jul = RANDOM(8.95,9.19)
O2 Jun = RANDOM(8.96,9.92)
O2 Mar = RANDOM(11.14,11.66)
O2 May = RANDOM(8.96,9.92)
O2 Nov = RANDOM(8.31,8.95)
O2 Oct = RANDOM(8.31,8.95)

O2 proj Apr = if periodicity = 4 then O2 Apr else 0
O2 proj Aug = if periodicity = 8 then O2 Aug else 0
O2 proj Dec = if periodicity = 0 then O2 Dec else 0
O2 proj Feb = if periodicity = 2 then O2 Feb else 0
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O2 proj Jan = if periodicity = 1 then O2 Jan else 0
O2 proj Jul = if periodicity = 7 then O2 Jul else 0
O2 proj Jun = if periodicity = 6 then O2 Jun else 0
O2 proj Mar = if periodicity = 3 then O2 Mar else 0
O2 proj May = if periodicity = 5 then O2 May else 0
O2 proj Nov = if periodicity = 11 then O2 Nov else 0
O2 proj Oct = if periodicity = 10 then O2 Oct else 0
O2 proj Sep = if periodicity = 9 then O2 Sep else 0
O2 Sep = RANDOM(8.95,9.19)
Periodicity = time-12 × int(time/12)
pH Apr = RANDOM(6.42,6.86)
pH Aug = RANDOM(6.58,7.08)
pH Dec = RANDOM(6.3,7.18)
pH Feb = RANDOM(4.42,5.92)
pH Jan = RANDOM(4.42,5.92)
pH Jul = RANDOM(6.58,7.08)
pH Jun = RANDOM(6.42,6.86)
pH Mar = RANDOM(4.42,5.92)
pH May = RANDOM(6.42,6.86)
pH Nov = RANDOM(6.3,7.18)
pH Oct = RANDOM(6.3,7.18)
pH proj Apr = if periodicity = 4 then pH Apr else 0
pH proj Aug = if periodicity = 8 then pH Aug else 0
pH proj Dec = if periodicity = 0 then pH Dec else 0
pH proj Feb = if periodicity = 2 then pH Feb else 0
pH proj Jan = if periodicity = 1 then pH Jan else 0
pH proj Jul = if periodicity = 7 then pH Jul else 0
pH proj Jun = if periodicity = 6 then pH Jun else 0
pH proj Mar = if periodicity = 3 then pH Mar else 0
pH proj May = if periodicity = 5 then pH May else 0
pH proj Nov = if periodicity = 11 then pH Nov else 0
pH proj Oct = if periodicity = 10 then pH Oct else 0
pH proj Sep = if periodicity = 9 then pH Sep else 0
pH Sep = RANDOM(6.58,7.08)
PREC Apr = RANDOM(76.04,102.34)
PREC Aug = RANDOM(21.04,28.86)
PREC Dec = RANDOM(110.18,144.76)
PREC Feb = RANDOM(146.54,184.1)
PREC Jan = RANDOM(146.54,184.1)
PREC Jul = RANDOM(21.04,28.86)
PREC Jun = RANDOM(76.04,102.34)
PREC Mar = RANDOM(146.54,184.1)
PREC May = RANDOM(76.04,102.34)
PREC Nov = RANDOM(110.18,144.76)
PREC Oct = RANDOM(110.18,144.76)
PREC proj Apr = if periodicity = 4 then PREC Apr else 0
PREC proj Aug = if periodicity = 8 then PREC Aug else 0
PREC proj Dec = if periodicity = 0 then PREC Dec else 0
PREC proj Feb = if periodicity = 2 then PREC Feb else 0
PREC proj Jan = if periodicity = 1 then PREC Jan else 0
PREC proj Jul = if periodicity = 7 then PREC Jul else 0
PREC proj Jun = if periodicity = 6 then PREC Jun else 0
PREC proj Mar = if periodicity = 3 then PREC Mar else 0
PREC proj May = if periodicity = 5 then PREC May else 0
PREC proj Nov = if periodicity = 11 then PREC Nov else 0

PREC proj Oct = if periodicity = 10 then PREC Oct else 0
PREC proj Sep = if periodicity = 9 then PREC Sep else 0
PREC Sep = RANDOM(21.04,28.86)
BOD5 = if Stochastic ON OFF = 1 then RANDOM BOD5 else VALIDATION BOD5
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ALIDATION COND
ALIDATION HARD
ATION NO3

TION pH
IDATION PREC
ATION ALK
ION O2

C
ALK proj Mar + ALK proj Apr + ALK proj May + ALK proj Jun + ALK
proj Nov

Feb + BOD5 proj Mar + BOD5 proj Apr + BOD5 proj May + BOD5 proj
proj Oct + BOD5 proj Nov

oj Feb + COND proj Mar + COND proj Apr + COND proj May + COND
+ COND proj Oct + COND proj Nov

oj Feb + HARD proj Mar + HARD proj Apr + HARD proj May + HARD
+ HARD proj Oct + HARD proj Nov

NO3 proj Mar + NO3 proj Apr + NO3 proj May + NO3 proj Jun + NO3

proj Nov

j Mar + O2 proj Apr + O2 proj May + O2 proj Jun + O2 proj Jul + O2

roj Mar + pH proj Apr + pH proj May + pH proj Jun + pH proj Jul + pH

eb + PREC proj Mar + PREC proj Apr + PREC proj May + PREC proj
proj Oct + PREC proj Nov

C

r

A

A
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COND = if Stochastic ON OFF = 1 then RANDOM COND else V
HARD = if Stochastic ON OFF = 1 then RANDOM HARD else V
NO3 = if Stochastic ON OFF = 1 then RANDOM NO3 else VALID
pH = if Stochastic ON OFF = 1 then RANDOM pH else VALIDA
PREC = if Stochastic ON OFF = 1 then RANDOM PREC else VAL
ALK = if Stochastic ON OFF = 1 then RANDOM ALK else VALID
O2 = if Stochastic ON OFF = 1 then RANDOM O2 else VALIDAT

omposed variables
RANDOM ALK = ALK proj Dec + ALK proj Jan + ALK proj Feb +

proj Jul + ALK proj Aug + ALK proj Sep + ALK proj Oct + ALK

RANDOM BOD5 = BOD5 proj Dec + BOD5 proj Jan + BOD5 proj
Jun + BOD5 proj Jul + BOD5 proj Aug + BOD5 proj Sep + BOD5

RANDOM COND = COND proj Dec + COND proj Jan + COND pr
proj Jun + COND proj Jul + COND proj Aug + COND proj Sep

RANDOM HARD = HARD proj Dec + HARD proj Jan + HARD pr
proj Jun + HARD proj Jul + HARD proj Aug + HARD proj Sep

RANDOM NO3 = NO3 proj Dec + NO3 proj Jan + NO3 proj Feb +
proj Jul + NO3 proj Aug + NO3 proj Sep + NO3 proj Oct + NO3

RANDOM O2 = O2 proj Dec + O2 proj Jan + O2 proj Feb + O2 pro
proj Aug + O2 proj Sep + O2 proj Oct + O2 proj Nov

RANDOM pH = pH proj Dec + pH proj Jan + pH proj Feb + pH p
proj Aug + pH proj Sep + pH proj Oct + pH proj Nov

RANDOM PREC = PREC proj Dec + PREC proj Jan + PREC proj F
Jun + PREC proj Jul + PREC proj Aug + PREC proj Sep + PREC

EPT = EPH + PLEC + TRIC

onstants
Agriculture abandon option = 1
ALT = 690
Autumn degradation = 0.279
DSOURCE = 7.5
perturbation option = 1
Spring degradation = 0.043
Summer degradation = 0.235
Stochastic ON OFF = 1
time of agriculture abandon = 144
Time of perturbation = 24
Winter degradation = 0.174
ALK Dec = 0.25
ALK Nov = 0.25
ALK Oct = 0.25
NO3 Apr = 0.01
NO3 Jun = 0.01
NO3 May = 0.01
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