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Resumo 

O trabalho apresentado nesta Tese de Doutoramento é constituído por uma parte 

experimental, uma parte numérica e uma parte analítica, com o propósito de estudar o 

comportamento evidenciado pelo desenvolvimento de uma curva de Resistência e o 

efeito de escala em estruturas de madeira pré-entalhadas, sujeitas a fractura em Modo I. 

Os resultados providenciados pelos ensaios mecânicos são combinados com análises 

numéricas realizadas por Elementos Finitos (EF), no sentido de avaliar propriedades de 

fractura, recorrendo a um procedimento equivalente da Teoria da Mecânica da Fractura 

Linear Elástica (LEFM), baseado na flexibilidade da estrutura, e a um Algoritmo 

Genético. A curva de Resistência (curva-R), determinada a partir dos ensaios 

mecânicos, evidencia o desenvolvimento da Zona de Processo de Fractura (FPZ), que 

ocorre na frente de fenda, durante o processo de propagação. A taxa de libertação de 

energia de fractura, dada pela curva-R, exibe, numa primeira fase, uma tendência 

crescente, convergindo continuamente para uma assímptota horizontal (patamar), à 

medida que o comprimento de fenda aumenta. Este patamar define a taxa crítica de 

libertação de energia de fractura (modo I), que constitui uma propriedade coesiva útil 

para reproduzir numericamente (modelação por EF) o processo de propagação da fenda. 

Assim, escolhida que seja a geometria da estrutura a analisar, bem como o modelo de 

dano a utilizar na simulação do processo de propagação da fenda, torna-se possível 

monitorizar o desenvolvimento da zona coesiva, equivalente à dimensão da FPZ (real), 

em função do comprimento de fenda equivalente. Os resultados decorrentes da 

modelação por EF da propagação da fenda, para além de dependerem do material 

simulado, revelam que a dimensão crítica da zona coesiva está associada ao início do 

patamar da curva-R. Esta observação permite especular quanto à exactidão na medição 

da taxa crítica de libertação de energia de fractura, em qualquer material quase-frágil, na 

medida em que a avaliação desta propriedade de fractura requer a constatação prévia de 

que a dimensão crítica evidenciada pela zona coesiva, permanece inalterada ao longo de 

um comprimento de fenda (equivalente) suficientemente extenso (estado de propagação 

auto-semelhante). Decorre deste ponto, a necessidade de observar atentamente a 

dependência da extensão da zona coesiva com a dimensão característica da estrutura, 

vulgo extensão do ligamento, na medida em que a modelação por EF revela a existência 

de uma dimensão crítica, abaixo da qual é impossível obter taxas críticas de libertação 
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de energia. A modelação da fenda por EF põe em evidência que a curva-R não depende 

da dimensão característica da estrutura, para uma dada geometria. 

Surge a este propósito, o estudo do efeito de escala, no contexto de uma análise 

assimptótica, recorrendo a um procedimento analítico, que tem por base a constatação 

de que a curva-R é única. Discute-se se o comprimento de fenda equivalente associado à 

carga máxima depende ou não da dimensão característica da estrutura. Da mesma 

forma, analisa-se a evolução da taxa de libertação de energia associada à carga máxima, 

quando a dimensão da estrutura aumenta. Atendendo a que a lei de efeito de escala de 

Bažant (SEL), determina a evolução da resistência nominal para estruturas de dimensão 

intermédia, a partir do ajuste assimptótico efectuado a partir dos regimes previstos pela 

Teoria da Resistência de Materiais e pela LEFM, deve questionar-se se não seria mais 

exacto deduzir, para o regime intermédio, um regime adimensional assimptótico 

baseado na curva-R determinada experimentalmente. 

O conjunto de questões levantadas no parágrafo anterior, respeitantes ao 

comportamento evidenciado pelo material, suscitou a realização de ensaios mecânicos 

em estruturas geometricamente semelhantes, de dimensão diferente. Este estudo de 

efeito de escala envolveu a realização de ensaios mecânicos em estruturas de dimensão 

não desprezível, pelo que se justificou o desenvolvimento de um procedimento que 

visasse a compensação do peso próprio.  

O tratamento estatístico, envolvendo os resultados experimentais obtidos nos 

ensaios de fractura (Modo I), providencia a informação necessária para confirmar a 

existência de uma curva-R única, para uma espécie de madeira correntemente utilizada 

em construção civil. Assim, o efeito de escala evidenciado pela resistência nominal da 

estrutura, em particular aquele que cobre a gama de dimensões características 

intermédias, pode então possibilitar a avaliação do regime adimensional assimptótico 

baseado na curva-R (única) experimental. Este regime assimptótico representa a 

transição exacta entre os regimes previstos pela Teoria da Resistência de Materiais, e 

pela LEFM, quando analisado de um ponto de vista energético. A evolução da 

resistência nominal da estrutura, baseada em informação experimental, constituir-se-á 

sob a forma de um domínio (ou envelope de tendência) em função da dimensão 

característica da estrutura (gráfico bi-logarítmico). 
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Abstract 

This Thesis concerns the mechanical testing, numerical analysis and cohesive 

modelling of fracture (Mode I) on the purpose to study the Resistance-curve behaviour 

and the size effect in wooden notched structures in its unmodified form. The mechanical 

testing is combined with the numerical analysis to evaluate fracture properties by means 

of an equivalent LEFM approach based on the structure compliance. The Resistance-

curve being revealed from the experiments puts into evidence that a non-negligible 

damaged domain (Fracture Process Zone) is under development in the crack front 

during the loading process. Additionally, it is possible to investigate if the raise of the 

energy release rate, necessary to initiate the crack propagation, is likely to reveal an 

asymptotic behaviour (plateau). This being the case, among other fracture parameters 

issued from the Resistance-curve, the critical (asymptotic) energy release rate is 

determined, turning possible to use it in combination with other cohesive crack 

properties in the crack modelling (in Mode I). Thus, for a given geometry it is feasible 

to monitor the critical dimension being revealed by the Fracture Process Zone (FPZ) 

during the crack propagation. Furthermore, the analyses may reveal that this critical 

extent depend on the material used in the numerical simulation. Thus, one can 

speculates that the accurate evaluation of the critical energy release rate in any material 

is subjected to the condition that the FPZ extent stays unaffected during a sufficiently 

large crack extension. Another subject which merits attention concerns the dependence 

of the FPZ extent with the structure size being analysed in the cohesive modelling, since 

a lower characteristic dimension ought to outcome from the numerical study, thus 

permitting to define a critical ligament length valid for a given geometry. The cohesive 

crack modelling is also likely to provide the evidence that the Resistance-curve is not 

dependent of the structure size being considered in the analysis. 

The foreknowledge developments just described envisage that the Resistance-curve 

is unique, turning consequent the analysis of the size effect on an energy based 

asymptotic analysis, thus making use of an analytical development procedure. 

Accordingly, one can argue whether the relative crack length at the peak load depends 

or not on the characteristic structure size. In a like manner, a similar query might be 

addressed concerning the trend exhibited by energy release rate at the peak load with the 

increase in the structure size. As the predictions provided by the Bažant’s size effect law 
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(SEL) are accomplished on the fitting basis of both the Strength Theory and the Linear 

Elastic Fracture Mechanics (LEFM) asymptotic regimes, one might wonder if the 

nominal strength in the intermediate size range would not be defined through an 

additional dimensionless asymptotic regime based on the evaluated Resistance-curve. 

The above cited predictions involving the material behaviour somehow rouse the 

inevitable mechanical testing on geometrically similar structures of different sizes. With 

the required size effect study bringing about the mechanical testing of structures 

exhibiting non-negligible sizes, the self-weight is very likely to induce the results. This 

being observed, a self-weight compensation method turns crucial in the treatment of the 

experimental data. 

The statistical handling issued by the fracture (Mode I) experiments, involving 

geometrically structures of different sizes, might provide the essentials to conclude for 

the unique Resistance-curve in a given wood species used in timber construction. The 

scaling of the nominal strength is then possible to perform for a set of tested 

characteristic sizes, spanning the predictions yield by the Strength Theory and LEFM. 

The accurate definition of the intermediate size regime is thus possible to achieve, 

sufficing that the R-curve is known for a given specimen geometry. 
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Résumé 

Le travail détaillé de cette Thèse de Doctorat, est composé en partie par un travail 

expérimental, numérique et analytique. La dernière partie est présentée avec la 

proposition d’étudier le comportement qui met en évidence le développement d’une 

courbe de Résistance, et l’effet d’échelle, en charpentes de bois massif entaillé (Mode I 

de rupture). Les résultats, fournis par des essais mécaniques, sont combinés avec les 

analyses numériques réalisées par la Méthode des Éléments Finis (MEF), dans le but 

d’évaluer les propriétés mécaniques de rupture. Ceci est réalisé par une approche 

équivalente de la Mécanique de la Rupture Linéaire Élastique (Linear Elastic Fracture 

Mechanics : LEFM), basée par la flexibilité de la structure. Pour ceci, un Algorithme 

Génétique a été implémenté et testé. La courbe de Résistance (courbe-R), déterminée à 

partir des essais mécaniques expérimentaux,  met en évidence le développement de la 

Zone de Rupture (Fracture Process Zone : FPZ), qui s’étend en fonde de fissure au 

cours du processus de propagation. Dans une première phase, le taux de restitution 

d’énergie de rupture montre une tendance croissante, progressant vers une asymptote 

horizontale (plateau) avec la longueur de fissure. Ce plateau détermine la valeur 

critique du taux de restitution d’énergie de rupture (Mode I) utilisée comme une 

propriété cohésive nécessaire à la modélisation numérique (MEF) d’une fissure. Ainsi, 

une fois la géométrie de structure à analyser a été choisie, bien que le modèle 

d’endommagement pour traduire le comportement du matériau, il sera possible 

d’estimer la taille de la zone cohésive, équivalente à la dimension de la FPZ (donc 

réelle), en fonction de la longueur équivalente de la fissure. Les résultats de la 

propagation de la fissure obtenus par modélisation MEF, au delà d’être dépendants des 

matériaux simulés, ils montrent que la dimension critique de la zone cohésive est 

associée au début du plateau de la courbe-R. Cette observation permet d’évaluer la 

précision de mesure de la valeur critique du taux de restitution d’énergie 

indépendamment du matériau considéré. Cette évaluation de la propriété de rupture  

nécessite la constatation, au préalable, que la dimension critique de la zone cohésive 

reste inaltérée le long d’une grande longueur de fissure (équivalente).  

En conséquence, il devient impératif d’examiner attentivement la dépendance de 

l’extension de la zone cohésive avec la taille caractéristique de la structure. Par 

conséquence la modélisation par MEF montre l’existence d’une dimension critique en 

dessous de laquelle est impossible de déterminer des taux de restitution d’énergie 
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critiques de rupture. La modélisation de la fissure par MEF montre que la courbe-R ne 

dépend pas de la dimension de la structure elle même, pour une géométrie en particulier. 

À la suite de ces observations, il devient pertinent de réaliser l’étude d’effet 

d’échelle dans le contexte d’une analyse asymptotique, basée sur le faite que la courbe-

R est effectivement unique. L’importance d’évaluer si la longueur de fissure 

équivalente, associée à la charge ultime, dépende de la dimension caractéristique de la 

structure. De même, l’analyse de l’évolution du taux de restitution d’énergie associée à 

la charge ultime, quand la dimension de la structure augmente, est aussi très pertinente. 

Il est connue que pour le régime de taille intermédiaire, la loi d’effet d’échelle de 

Bažant (Size Effect Law : SEL), estime la résistance nominale par ajustement 

asymptotique, réalisée à partir des petites tailles (Théorie de Résistance des Matériaux) 

et des grandes (LEFM). Par conséquent, il devient approprié de proposer un régime 

adimensionnel asymptotique basé sur la courbe-R unique, sur la base d’une approche 

analytique. Ce régime asymptotique additionnel devrait, donc, être en fonction de 

l’information acquise dans les données expérimentales de rupture, notamment la 

courbe-R. 

L’ensemble de questions et suppositions antérieurement énumérés, notamment à 

propos du comportement exhibé par le matériau, justifient bien la réalisation des essaies 

mécaniques en structures géométriquement similaires de différentes dimensions. Cette 

étude d’effet d’échelle comporte ainsi la réalisation des essais en structures de taille 

importante. La conséquence inévitable, c’est donc l’influence du poids propre dans les 

résultats expérimentaux, surtout pour les grandes tailles de structures testées. Cette 

constatation justifie donc bien le développement d’une procédure qui considère l’effet 

du poids propre de la structure analysée (donc une correction). 

Le traitement statistique réalisé sur les résultats du dépouillement expérimental, 

fourni l’information nécessaire pour confirmer l’existence d’une courbe-R unique, 

lorsque une essence de bois est utilisée comme matériau de teste. Ainsi, l’effet d’échelle 

sur la résistance nominale de la structure, en particulier celui qui couvre le régime de 

taille intermédiaire, rend possible l’évaluation du régime asymptotique adimensionnel 

basé dans la courbe-R expérimentale (unique). L’évolution de la résistance nominale de 

la structure, basée sur l’information expérimentale, est montrée sur la forme d’une 

enveloppe (domaine) de transition entre les petites et les grandes tailles de structure (en 

représentation bi-logarithmique).   
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Nomenclature 

a Equivalent crack length ( )wf  Stress softening function 

ca  Critical equivalent crack length )(αf  Dimensionless function  

lima  Limit value of a used in the IP Fmax Arbitrary constant 

numa  Numerical crack-length g  Acceleration of gravity 

au Equivalent crack length at Pu )(αg  Dimensionless energy rel. rate funct. 

a0 Traction free crack length dG  Critical damage energy dissipation rate 

b  Width of the structure cross section Gf Cohesive fracture energy 

b Vector of design variables Gfb Fracture energy due to fibre-bridging 

b  Lower bound of design variables Gfµ Fracture energy due to micro-cracking 

b  Upper bound of design variables )(aGP  Energy release rate associated to P  

B  Empirical constant )(aGq  Energy release rate due to q  

Nc  Coefficient introduced for convenience )(R aG  Energy release rate 

dn Normal stiffness at the interface RcG  Critical energy release rate 

ds Shear stiffness at the interface h Specimen height 

D  Characteristic structure dimension FPZh  Height of the FPZ 

cD  Crossover size (in terms of energy) I Identity matrix 

minD  Crossover size (lower bound of  *uα ) j Specimen label 

numD  Intermediate size in crossover regime k Total number of design variables 

D Matrix of penalty parameters lFPZ Extent of the FPZ 

Dz Domain of the state variables L  Beam span 

0D  Crossover structure size m  Mass 
*
1D  Crossover size (in terms of strength) mi Number of bits of design variable i 

E Matrix of damage parameter N Number of points of the P-δ curve 

E  Young modulus Ng Number of constraints of the IP 

LE  Longitudinal modulus of wood P  External applied central load 

TE  Tangential modulus of wood  p Precision required to determine y(b) 

E′  Longitudinal elastic modulus P(t) Population in generation t 

*E  Effective Young modulus Pc Probability of Crossover 

bf  Strength at the onset of bridging pm Probability of Mutation 

uf  Arbitrary measure of material strength qP  Statically equivalent load 

tf  Local strength Pop(t) Number of solutions in generation t 
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Pu Peak/ultimate load Pqδ  Displacement due q  in axis of  P  

q  Distributed load corresp. self-weight Uδ  Complementary energy 

)(aR
 

Structure unloading stiffness qUδ  complementary energy of q  

S Data structure to store design variabl. ),( iaxδ  Displacement field associated to ia  

t Generation label cohl  Extent of the cohesive zone 
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Variation of PPδ  when  0aa =  

cw  Ultimate crack opening )( 0exp aP∆
 

Loading variation when  0aa =   

fw  Energy required during crack advance φ  Arbitrary constant 

ow  Damage onset relative displacement γ  Brittleness number 

rw  Vector of relative displacements λ(a)   Numerical compliance function 

W(a) Elastic strain energy λcor(a) Corrected numerical compliance  

*W  Complementary strain energy λexp(a) Experimental compliance 

t
ix  Potential solution in generation t λmod (a) Modified compliance 

y(b) Objective function ),( iaxqPλ  Compliance field due Pqδ  when iaa =  

z Vector of the state variables ),(
*

iqP axλ  Best fit of in-plane ),( iaxqPλ  

z* Vector of prescribed state variables ),( iaxqqλ  Compliance field due to q  ( iaa = ) 

α  Relative (equivalent) crack length ),(
*
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Notation: 

CCM   Cohesive Crack Modelling 

COV   Coefficient of Variation 

EMC   Equilibrium Moisture Content 

ESWCM Exact self-weight compensation method 

FEA  Finite Element Analysis   

FEM   Finite Element Method 

FPZ   Fracture Process Zone 

GA   Genetic Algorithm 

IP   Inverse Problem 

LEFM   Linear Elastic Fracture Mechanics 
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RH   Relative Humidity 
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Introduction 

Fracture of quasibrittle materials, such as concrete, mortar, rocks, sea ice, dental 

cements, fibre composites, bone, wood, among others, is characterised by the existence 

of a non-negligible Fracture Process Zone (FPZ) which develops ahead of the crack-tip 

(Bažant ZP and Planas J, 1998). In these materials, the FPZ undergoes softening 

damage such as microcracking, crack-branching or crack-bridging, which may represent 

almost the entire nonlinear zone at the crack-tip, with normal stresses progressively 

declining along the FPZ domain (Bažant ZP, 2004). The experimental praxis in notched 

structures involving fracture reveals that the crack monitoring in these materials is very 

difficult to accomplish with accuracy, due to the cited fracture phenomena taking place 

ahead of the crack-tip. Due to the development of this FPZ, these materials typically fail 

only after a large crack has grown in a stable manner (Bažant ZP, 1997 c). As this 

softening zone attends a non-negligible dimension on the structure scale, Linear Elastic 

Fracture Mechanics (LEFM) cannot be directly applied, but rather Non-Linear Elastic 

Fracture Mechanics (NLFM). Nevertheless, an adaptation of LEFM is possible to 

execute, known as equivalent LEFM, which provides a useful approximation of 

quasibrittle fracture.  

The main consequence of the FPZ development is the observation of the so-called 

Resistance-curve (R-curve), in which the resistance to crack growth depends on this 

equivalent linear elastic crack length GR (a) . The resistance to crack growth GR (a)  has 

firstly been regarded as a fixed material property, as defended by Irwin GR (1960) and 

more assumedly by Kraft et al. (1961). More recently, however, it has been found that 

the shape of the R-curve is considerably influenced by the structure geometry (Bažant 

ZP and Li Y-N, 1997; Morel et al., 2003), as well as by the structure size (Bažant ZP 

and Planas J, 1998). This raises the issue regarding the relation which seems to exist 

between the energetic fracture properties, estimated from the R-curve, and the specimen 

geometry. 

Conceptually, the most straightforward and efficient method to typify the 

quasibrittle failure in notched structures is the cohesive crack model (Elices M et al., 
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2002; Planas et al., 2003). According to this NLFM model the entire FPZ is gathered into 

the crack line being characterized on the basis of a stress-displacement law which exhibits 

softening. In most of the analyses which involve the cohesive crack modelling (CCM), the 

structural model in a whole remains elastic, turning thus possible to get the mechanical 

response on each side of the crack on the linear elasticity basis, with the nonlinearity being 

included through boundary conditions along the crack line. Among the different possible 

softening behaviours used to characterize this nonlinearity, the bilinear softening function is 

well known to describe accurately the quasibrittle failure, since it reproduces well the most 

important phenomena taking place under crack propagation (i.e., microcracking and crack-

bridging). Regardless of the success revealed by the efficiency shown by the cohesive crack 

models to typify the quasibrittle failure in notched structures, the estimate of the cohesive 

properties with respect to a given experimental Load-Deflection response is yet a tiring task 

(Wang J, 2006; Dourado et al., 2008). Since this estimate provides a way to measure the 

development of the FPZ, as well as possible interactions with the structure boundaries, it 

turns that the issue deserves attention, also focused on the context of the R-curve behaviour. 

Therefore, the bilinear softening function (Petersson PE, 1981) has recently been used to 

estimate the connections between the R-curve and the cohesive crack properties in the one-

to-one correspondence which seems to exist between the R-curve and the softening curve 

pointed out by Planas et al. (2003), using different specimen geometries (DCB, TDCB and 

SENB) (Lespine C 2007, Morel S et al. 2008). However, despite the efficiency of the CCM 

to describe the quasibrittle failure, the cohesive crack properties (as well as the R-curve 

properties) appear dependent on the specimen geometry.  

One of the main consequences of the behaviour manifested through the R-curve is the 

effect of the structure size on its nominal strength. The size effect on the structural strength 

may be defined as the deviation, engendered by the change of structure size, of the actual 

load capacity of a structure from the load capacity predicted by plastic limit analysis (or 

any theory based on critical stresses or strains) (Bažant ZP and Planas J, 1998). In a unlike 

manner as previewed by the weakest link model (Weibull W, 1939) the size effect in 

notched structures is related to existence of the R-curve, through what it is referred as a 

energetic size effect rather than a statistical one (Bažant ZP, 1984; Bažant ZP, 1997 a; 

Bažant ZP c). 
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Since 1984, the Bažant’s size effect law (SEL) (Bažant ZP, 1997 c) provides the alone 

efficient description of the size effect phenomenon in geometrically similar notched 

structures of different sizes D . In its most recent development, Bažant’s SEL is obtained 

from an asymptotic analysis performed for small and large structure sizes and leads to a 

size effect expected to be transitional between two corresponding asymptotic behaviours : 

Strength Theory (or plastic limit analysis)  for small structure sizes and LEFM for large 

structure sizes. As a consequence, the size effect for the intermediate structure sizes is not 

accurately defined, since it is obtained from an asymptotic matching procedure, performed 

from both extreme asymptotic regimes. Since the intermediate structure sizes correspond to 

the range of the experimental data usually available, it turns that the issue ought to be 

analysed in detail. In addition, the size effect study on the intermediate size range might be 

supported on credible experimental data, thus allow verifying its adequacy to predict the 

evolution of the nominal stress in a given geometry. 

 

After an overview of the quasibrittle failure and its main consequences in Chapter I, 

the second Chapter is devoted to an experimental study consisting in fracture tests in a 

quasibrittle material. The consequences motivated by the development of a non-negligible 

non-linear domain are discussed in the context of an equivalent Linear Elastic Fracture 

Mechanics approach, with the resistance to crack growth being evaluated as a function of 

the equivalent crack length (R-curve). The experimental results are then simulated from 

CCM and it is shown that the developed cohesive zone might interact with the structure 

boundaries, leading to corresponding underestimation of energetic properties. This 

interaction between the cohesive zone and the structure boundaries emphasizes the required 

minimum specimen dimension necessary to perform accurate estimate of the energetic 

properties and leads naturally to the introduction of the size effect phenomenon. 

The third Chapter is focused in the size effect phenomenon in quasibrittle fracture. In 

this chapter, an evaluation of the size effect on the relative crack length at the peak load, on 

the corresponding resistance to crack growth, and on the nominal strength, is proposed. An 

analytical development procedure is presented, and an additional asymptotic regime is 

detailed for the intermediate size range. The predictions of this size effect model are 
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validated from CCM simulations performed on geometrically similar notched structures of 

different sizes. 

The ending Chapter presents the experiments on the size effect. The R-curve is 

estimated through a compensation procedure which takes into account the specimen self-

weight. The size effect on the nominal strength is presented revealing the intermediate size 

regime estimated by means of experimental data. 
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Chapter I 

1.1 Introduction 

The first Chapter of the present Thesis starts by framing the reader to the quasibrittle 

behaviour when a notched structure is subjected to an external load. The main 

consequences originated by the development of a non-negligible non-linear domain are 

discussed in the framework of an equivalent Linear Elastic Fracture Mechanics 

approach. The estimate of the resistance to crack growth is made as a function of the 

equivalent crack length, revealing a rising Resistance-curve, with turned out stress 

redistributions and stored energy release in the non-linear domain. On the other hand, 

cohesive crack models are referred as a very useful way to mimic damage development 

in materials which exhibit this non-linear domain through Finite Element Analysis. A 

first mention is made to the Size Effect on the nominal strength, since it comes out as 

the main consequence of the noticed R-curve behaviour observed in quasibrittle 

materials. 

1.2 Quasibrittle behaviour 

In notched structures, the fracture behaviour of quasibrittle materials is 

characterized by the existence of a large Fracture Process Zone (FPZ) where various 

toughening mechanisms take place such as microcracking, crack branching or crack 

bridging   (Morel S 2008). This domain (i.e., the FPZ) is composed by a softening zone 

enclosed by a non-softening nonlinear zone which undergoes hardening or perfect 

plasticity (Fig. 1.1), with stress increase at increasing deformation, or held unchanged as 

the material deformation develops (Bažant ZP and Planas J 1998). As fracture in 
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quasibrittle materials is characterized by the existence of this large FPZ, Linear Elastic 

Fracture Mechanics (LEFM) can not be applied, but rather Non-Linear Fracture 

Mechanics. Nevertheless, an adaptation of LEFM (known as equivalent LEFM) 

provides a useful approximation of the quasibrittle failure, attributing the increase in the 

structure compliance, owing to the development of the FPZ, to the propagation of an 

effective crack, i.e., a sharp traction-free crack of length a  (called equivalent linear 

elastic crack length) which gives, according to LEFM, the same compliance as the one 

of the actual crack with its FPZ (Bažant ZP and Kazemi MT 1990, Bažant ZP 2002). 

 In quasibrittle materials the relative size of this nonlinear (i.e., softening) zone and 

the characteristic structure dimension D is considerably higher than in materials 

characterized by a very brittle behaviour, or in those materials in which a ductile 

behaviour is observed. Indeed, as for the very brittle behaviour, this ratio is practically 

neglected, while as to the materials exhibiting a ductile behaviour the ratio is not 

sufficiently small so that LEFM may be fully applied (mostly treated by the elasto-

plastic fracture mechanics). 

In most of the FPZ (Fig. 1.1) the material undergoes progressive damage with 

corresponding   material  softening,  due   to   microcracking,  void  coalescence,  crack-  

Linear-elastic

Softening

σ

      Nonlinear
plastic hardening

FPZ

 
 

Figure 1.1 Fracture Process Zone (FPZ) at the crack tip of a quasibrittle 
material and stress distribution along the crack line. Adapted from 
Bažant ZP (1985). 
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bridging, frictional slips, and other analogous phenomena. In the envelope of the 

softening zone the nonlinear plastic hardening domain in quasibrittle materials, being 

negligible in volume, represents barely the transition between the elastic response and 

the material damaged volume. Materials as different as concrete, rock, cement mortars, 

sea-ice, tough fibre composites, ceramics, stiff clays, dental cements, bone and wood 

belong to this category (Bažant ZP 2004 ). 

The denomination of quasibrittle is used to classify these materials since it is 

noticed  that  even  when  the plastic deformations are found irrelevant, the extent of the 

FPZ is large enough to have to be taken into account in the calculations, in total contrast 

with  the  genuine  brittle  materials  in  which  LEFM  is  fully  applied  (Bažant ZP and 

Planas J 1998).  

In quasibrittle failure of notched structures (in Mode I) the increase in the applied 

load at the early stage of the loading process leads to the development of a FPZ (Fig. 1.2 

a) with the material undergoing progressive damage (with the equivalent crack length 

increment: caa ∆<∆ ). In sufficiently large specimens, for which the softening zone is 

not affected by boundary effects, as the loading process progresses the FPZ reaches a 

critical size (Fig. 1.2 b), for which caa ∆=∆ . This means that, at stable crack growth 

FPZ is compelled to move forward (Fig. 1.2 c), with non corresponding increase in size. 

In such a case, one sustains that crack grows in a self-similar way.  

Due to their heterogeneity and to the development of a large FPZ, these quasibrittle 

materials usually fail only after a large crack has grown in a stable manner, contrasting 

with metallic materials that fail before crack reaches macroscopic dimensions. Due note 

should be taken to the meaning of a so called large FPZ, as it indicates that the distance 

between the tip of the actual crack traction-free 0a  and the tip of the equivalent LEFM 

crack when the FPZ is fully developed (critical size) is equal to a given characteristic 

length ca∆ , as shown in Fig. 1.2 (b). This leads to non-negligible macroscopic stress 

redistribution with a non negligible amount of energy release from the structure. 

Regarding the fracture length 0a  shown in Figs. 1.2 (b-c), two basic situations ought 

to be distinguished: (i) 00 =a , which conforms an un-notched structure, with the 

ultimate load uP  occurring at the onset of the fracture propagation, and (ii) 00 >a  not 

negligible in size compared to D, for which the ultimate (or peak) load uP  occurs after a  
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Figure 1.2 Propagation of the main crack with its Fracture Process Zone (FPZ): 

(a) FPZ development, (b) critical size of the FPZ (i.e., fully developed) and (c) 

FPZ under crack propagation. Parameters: 0a , initial crack length (actual 

traction-free crack length); 0aaa −=∆ , equivalent crack length increment; aδ , 

infinitesimal crack propagation extension; FPZl , extent of the FPZ. Adapted from 

Bažant ZP and Kazemi MT (1990). 

given crack propagation has been monitored. In this Thesis only the later is a subject of 

concern, with corresponding failure types regarded as to exhibit a strong size effect 

(Gettu R et al. 1990). 



Overview of the cohesive failure and main consequences Chapter I 

 35 

1.3 Equivalent LEFM: Resistance-curve 

Fracture of quasibrittle materials can be described with success through an 

equivalent linear elastic approach. According to this standard, acquainted with as 

‘equivalent LEFM’, the compliance increase caused by the FPZ development and by the 

propagation of the main crack is attributed to the propagation of an elastic equivalent 

crack length (Bažant ZP and Kazemi MT 1990), which produces (on the framework of 

LEFM) the same structure compliance as the actual crack with its FPZ. Therefore, the 

complementary energy *W  might be used as a way to characterize the strain energy 

stored in the structure, 

)(
2

* αf
bE

P
W

′
=  (1.1) 

in which P  is the applied load, E ′  is the effective elastic modulus ( EE =′  for plane 

stress and )1( 2ν−=′ EE  for plane strain; =E Young modulus and ν  the Poisson’s 

ratio), b  is the width of the structure cross section, α  the relative equivalent crack 

length (i.e., Da=α ), and )(αf  a dimensionless function characterising the geometry 

of the structure. Actually, )(αf  is a function of the specimen compliance )(αλ  

defined as 2)()( αλα bEf ′= .  

According to LEFM, during crack propagation the elastic energy release rate )(αG  

(either under load P  or displacement δ  control) must equal the resistance to crack 

growth )(R αG , 
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with the dimensionless energy release rate function )(αg  defined as a function of the 

structure compliance )(αλ  as follows [ ] 2)()( ααλα ∂∂′= bEg . 

When the resistance to crack growth RG  is estimated as a function of the equivalent 

crack length a  (or in other terms, the relative crack length Da=α ), the quasibrittle 

failure leads to a Resistance-curve (or R-curve as first pointed by Lawn BR 1993), 

which emphasizes the stress redistributions and stored energy release taking place 

during the crack growth before failure (Morel S 2008). Hence, as shown in Figs. 1.3 a-b 

for a Single-Edge-Notched Beam loaded in Three-Point-Bending (SEN-TPB), the R-
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curve in wood obtained from the load-displacement curve is characterised by the 

existence of a rising part, for which the resistance to crack growth increases with the 

crack length, followed by a plateau which denotes that the influence of the toughening 

mechanisms is not indefinite (Morel et al. 2005). Hence, the rising portion of the R-

curve ( cαα <  in Fig. 1.3-b) might be interpreted as the energetic response of the FPZ 

development observed in Fig. 1.2-a (with caa ∆<∆ ) up to the attainment of the critical 

size of the FPZ (i.e., caa ∆=∆ in Fig. 1.2-b), with a fully developed FPZ. The second 

part of the R-curve ( cαα ≥  in Fig. 1.3-b) might correspond to the crack propagation 

with non-corresponding increase in volume of the FPZ (Fig. 1.2-c), with the resistance 

to crack growth RG  becoming independent of the equivalent crack length (Fig. 1.3-b). 

The reported behaviour observed in the second part of the R-curve (for cαα ≥  in Fig. 

1.3-b), defines an horizontal asymptote (known as the plateau of the R-curve) with the 

retrieved critical resistance value noted as RcG . The onset of the R-curve plateau 

defines the so called critical energy release rate RcG , with the corresponding abscissa 

cα  (Fig. 1.3-b) referred to as the critical (or characteristic) relative (equivalent) LEFM 

crack length. The extent of cα  provides an approximation of the effective length of the 

FPZ (Morel et al. 2008), since DaDa c00c ∆+=+= θαα . Accordingly, θ  is 

designated the relative length of the FPZ and ca∆  the equivalent length of the FPZ. 

Though RcG  is regarded as an intrinsic material property (Irwin GR 1960, and 

Krafft et al. 1961), experimental evidences on the R-curve however revealed that the 

assumption is only valid in a very narrow range of specimen geometries and structure 

sizes. These dependences in wood were firstly investigated by Morel S et al. (2002 a, 

2002 b and 2003) and Morel S (2007).  

Experiments performed with the SEN-TPB in spruce (Figs. 1.3 a-b) also revealed 

that the R-curve develops both in the pre and in the post peak regime (i.e., turning 

RcuR )( GG <α ). Indeed, as shown in Fig. 1.3-b the (equivalent) relative crack length uα  

corresponding to the peak-load uP  is smaller than the critical relative crack length cα . 

This behaviour is observed in specimens currently tested on the lab’s scale, except in 

certain geometries for which 0)( =′ αg  as noticed by Morel et al. (2005), as the TDCB 

(i.e., the Tapered Double Cantilever Beam). 
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Figure 1.3 Typical (a) load-displacement curve and corresponding 
(b) R-curve obtained in spruce for the SEN-TPB test in the TL 
system (Appendix A2.1). Adapted from Morel S et al. (2005). 

1.4 Cohesive crack models 

Linear Elastic Fracture Mechanics (LEFM) theory takes for granted that a sharp 

crack tip does exist in a solid body for which stress fields may be determined. Although 

the elastic solutions envisage infinite stresses at the crack tip, authentic materials 

experience damage and yielding phenomena providing against this from actually 

occurring. Although linear elastic stress-relative displacement relationships are 
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considered to describe rupture in materials such as cast iron or glass, they can barely be 

well thought-out in materials which exhibit toughening mechanisms such as wood. 

The degree to which toughening mechanisms influence fracture behaviour dictates 

whether LEFM can be applied to a certain material, bringing into the discussion how 

relevant are the dimensions of the fracture process zone (FPZ) compared to the structure 

size (Fig. 1.2). Usually, FPZ can be described by two basic approaches. One sustains 

that (a) the whole FPZ is lumped into the crack-line and is characterised in the form of a 

stress relative-displacement law which exhibits softening; whereas in the other (b) the 

inelastic deformations in the FPZ are smeared over a band of a definite width, supposed 

to exist ahead of the main crack. Only the first approach will be in the limelight in this 

Thesis, which may be found in the literature under a variety of names, e.g., cohesive 

crack model, fictitious crack model, Dugdale-Barenblatt model, and crack with bridging 

stresses (Bažant ZP and Planas J 1998, Morel S et al. 2002 and 2005).  

The cohesive crack is the simplest model that permits to describe in full the 

progressive fracture process, taking into account the basic aspects of the non-linear 

behaviour of the material ahead of the tip of a pre-existent crack. The fundamental 

assumption of the cohesive crack model (e.g., in Mode I), is that FPZ of a finite length 

can be described by a fabricated chink able to transfer normal stress )(xσ  by means of 

a function (monotonically decreasing) of the opening width w , of the type ( )wfσ = . 

The most important feature of the cohesive crack model is the softening curve of the 

material, which in a certain sense replaces the stress-strain curve in theories such as 

plasticity. In this context, every material has its own softening curve which ought to be 

determined by means of experiments on this particular material.  

First reported studies on cohesive crack models are attributed to Dugdale DS (1960) 

and Barenblatt GI (1962).  These researchers separately treated a crack with a plastic 

zone as a slightly larger fictitious crack with closing stresses applied at the tips. 

Subsequently, cohesive cracks have largely been used to describe the material behaviour 

close to the near-tip non-linear zone for cracks in a multiplicity of materials such as 

metals, ceramics, geomaterials and polymers. In the seventies, Hillerborg et al. (1976) 

applied an alike approach to Dugdale and Barenblatt to simulate the effects of the FPZ 

in concrete, accounting for observed mechanisms of micro-cracking and bridging. 

According to the proposed model, the crack-tip was replaced by an equivalent crack 
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containing closing stresses. Instead of remaining constant during fracture alike 

Dugdale’s model, stress rather follows a measurable function of crack opening. 

Nonlinear fracture mechanics modelling in wood has been preferably performed 

through the application of fictitious or cohesive crack models, which in essential 

comprise variations of a model proposed by Hillerborg et al. (1976) and Hillerborg 

(1991). A cohesive zone is typically modelled using FE calculations through a made up 

line crack transmitting tractions σ  as a function of the crack opening w , by means of 

interface (finite) elements (Rice JR 1972, de Moura MFSF et al. 1997) with 

predetermined stress-softening properties along the crack path. Pioneering works 

involving the elaboration of fictitious crack models applied to wood are attributed to 

Boström L (1992). Since then the bilinear stress-softening model (Fig. 1.4), initially 

proposed by Petersson PE (1981) to simulate crack growth in concrete, was used by 

Stanzl-Tschegg et al. (1995) to obtain wood load–displacement curves in a developed 

wedge-splitting test protocol. 

A recent method involving the single edge notched beam loaded in three-point 

bending (SEN-TPB) was developed (Dourado et al. 2008) to identify the material 

cohesive properties in two wood species, combining experimental data and a developed 

Genetic Algorithm (GA). The work revealed the existence of a non-negligible damaged 

zone as well as the growth perturbation of this zone along crack propagation in the 

SEN-TPB shape. 

In regards to the cohesive zone modelling schematically represented in Fig. 1.4 (for 

the bilinear softening law), the FEM simulations permit to estimate the extent of the 

cohesive zone cohl  as the distance (measured along the crack path) between the 

numerical crack tip and the position of the integration point in the interface, for which 

the stress is equal to the tensile strength tf  (providing that the crack is already in 

progress). The numerical crack length numa  on its turn is defined by the distance 

measured from the axis of the applied load (hidden line in Figs. 1.4 a-c) up to the first 

integration point of the interface for which the normal stress is non-null. Therefore, as 

long as the equivalent crack length a  (i.e., Dα ) does not reach the critical extent ca  

(i.e., caa <  shown in Fig. 1.3-b and Figs. 1.4 a-b) the size of the cohesive zone cohl  

does  not  attain  its critical dimension 
ccohl . In such a case, establishing  a relation with  
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Figure 1.4 Sketch of the cohesive zone behaviour: comparison of the numerical 

crack length numa  with the equivalent LEFM crack length a  for different stages 

of the numerical crack propagation. Stages: cohesive zone (a) under development, 

(b) once attained its critical size and (c) fully developed at the crack tip (under 

crack propagation). Additional parameters: 0a , initial crack length; cohl , extent 

of the cohesive zone ; w , crack opening; ca∆ , equivalent length of the FPZ 

( 0cc aaa −=∆ ). The vertical hidden line represents the axis of the applied load.  

In: Morel S et al. (2008). 
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the evolution of the resistance to crack growth RG  (Section 1.3), the actual regime (i.e., 

ccohcoh ll < ) corresponds to the ascending part of the R-curve. As the local stress σ  

increases (provided  that  crack  progresses  in  a  self-similar way) the  size  of the 

cohesive  zone attains its critical dimension, as shown in Fig. 1.4 (b) (i.e., 
ccohcoh ll = ). 

Indeed, as will be discussed in Chapters II and III, the progress of the extent cohl  (Fig. 

1.4) is drastically influenced by the ligament length (i.e., 0aD − ). With the attainment 

of a fully developed cohesive zone (i.e., size of the FPZ), the equivalent LEFM crack 

length turns out caa =  (Fig. 1.4 b) and the crack opening reaches the critical extent (i.e., 

cww = ). In an energetic point of view, the actual state corresponds to the onset of the 

plateau of the Resistance-curve shown in Fig. 1.3-b, with the energy release rate 

RcR GG = . Since the toughening mechanism is not indefinite in quasibrittle failure 

(Section 1.3), the extent of the cohesive zone cohl   in the course of the loading process 

remains 
ccohcoh ll =  (Fig. 1.4 c). In such a case, the local crack opening w  is kept 

unchanged (i.e., cww = ) while the equivalent crack length a  propagates. 

As observed by Morel et al. (2008) and Lespine I (2007), when the equivalent 

LEFM crack length caa ≥  (or in other terms: cαα ≥  as illustrated in Fig. 1.3 b), then (i) 

the length of the cohesive zone remains constant (Fig. 1.4 c) and (ii) the stress profile at 

the crack front )(wf=σ  remains unchanged (Fig. 1.4 c). As a consequence, the 

cohesive zone can be considered in an energetic steady state, in the sense that it does not 

require more energy involved in the modification of its length and/or in its stress 

distribution. Therefore, the propagation of the numerical crack length numa  of an extent 

aδ , with its critical cohesive zone, is expected to give rise to the energy release 

)( abGdW f δ= ; where fG  corresponds to the energy required to separate completely 

the crack faces at a given loading step, and )( ab δ  corresponds to the cracked surface 

originated during the increment aδ . 

1.5 Size effect 

The change of the mechanical response due to similarity preserving modifications of 

the dimension of a physical system is one of the most fundamental aspects of every 

physical theory, generally referred to as Size Effect (SE). Unlike other branches of 

Physics, scaling in Solid Mechanics has been largely neglected until recent times. A 
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plausible reason for this probably lies on the fact that theories of structural failure that 

have succeeded for a long period of time, exhibit no deterministic Size Effect (Bažant 

ZP 1993). That is the case of (a) Plasticity as well as other theories founded on the 

concept of a critical stress (strength) or a critical strain, and (b) Fracture Mechanics 

applied to a critical crack which size at incipient failure is independent of the structure 

size D  and negligible when compared toD , as is typical of most metal structures 

embrittled by fatigue (Bažant ZP 1997 a). As a result, experimental evidences showing 

size effects were commonly explained on the context of the randomness phenomena 

affecting the material strength, as proposed by Weibull W (1939). Size Effect is 

considered a key issue particularly in the case of quasibrittle materials which are known 

to exhibit a large FPZ where a variety of toughening mechanisms take place.  

Within the framework of Bažant’s theory (Bažant ZP 1997 b and Bažant ZP 1997 c) 

the size effect for geometrically similar notched structures of different sizes D  can be 

described by means of the nominal stress 

Db

P
cNN =σ  (1.3) 

with P  standing for the external load, b  for the width of the structure cross section, D  

for the characteristic structure dimension, and Nc  a coefficient introduced for 

convenience. Ever since the analysis regards the ultimate load uP  (i.e., uPP = ), the 

nominal stress is called the nominal strength of the structure. For the test involving the 

simply supported beam in three-point-bending, the coefficient Nc  may be chosen in 

order to make Nσ  to coincide with the maximum normal stress. In such a case, if h  is 

the beam height ( hD = ), and L  the beam span, then 2)(23 hbLPN =σ  

)( bDPcN= , with )(23 hLcN = . It turns thus out that Nc  depends on the span-to-

depth ratio, which obviously varies according to the beam size selection. This draws to 

the important conclusion that size effect is firmly defined only when geometrically 

similar specimens (or structures) with geometrically similar notches are analysed under 

similar loading conditions (Bažant ZP and Planas J 1998). Indeed, if this is not taken 

into account shape dissimilarities in size effect results may some-how be erroneous. 

Doing so, Nc  yields to a constant, since the ratiohL  is kept unchanged by definition 

(Bažant ZP and Kazemi TK 1990). 
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A variety of possible plots showing particular aspects of the size effect do exist in 

the literature, however the most widely divulged is the bilogarithmic plot exhibited in 

Fig. 1.5, according which the nominal strength Nσ  is represented against the 

characteristic specimen size D . This plotting is performed using the original form of 

the size effect law (SEL) (Bažant ZP 1984), 

γ
σ

+
=

1
ufB

N  (1.4) 

according which uf  is an arbitrary measure of the material strength, γ  is the relative 

structure size ( 0DD=γ ) and B  an empirical constant. The relative structure size γ  is 

also called the brittleness number because as ∞→γ  the material turns more worthy of 

a fully brittle behaviour, whereas when 0→γ  the material turns fully non-brittle, or 

plastic (Bažant ZP 1997 c). Hence, the size effect (SE) curve shown in Fig. 1.5 

represents the transition from an horizontal asymptote (domain of the Strength Theory), 

to a descending asymptote which corresponds to a power law of exponent 21−  

(characterising LEFM). The point of interception of both asymptotes is identified by 

0D  (Fig. 1.5).  
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Figure 1.5 Size effect on the nominal strength (Adapted from Bažant ZP and 
Kazemi TK 1990). 
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Therefore, if 0DD <<  (i.e., on the micro-scale) the brittles number 0→γ , and 

constantu =≅ fBNσ (Eq. 1.4). Thus, no size effect is expected to occur on the micro-

scale. Moreover, in structures of this size the FPZ is expected to occupy the whole 

volume of the structure, inducing no stress concentration (energy release is negligible), 

with failure occurring with no crack propagation.  

For large structure sizes 0DD >>  (i.e., on the macro-scale) the brittles number 

∞→γ ,  leading  to  21−≈ DNσ   (Eq. 1.4).  On the macro-scale, the size effect curve 

follows a power law which coincides in the log-log plot of Fig. 1.5 with the leant 

straight line of slope 21−  expected from LEFM. Indeed, in large structure sizes, the 

FPZ is expected to lie within an infinitesimal volume fraction of the structure, with 

corresponding stress and displacement fields surrounding the FPZ being estimated from 

LEFM.   

       The Bažant’s size effect law (SEL) in Eq. (1.4) applies to several geometries tested 

in Labs all over the world. It was verified experimentally and justified theoretically for a 

broad range of many different materials and structures (Jirásek M and Bažant ZP 2002). 

The law was derived from asymptotic analysis performed both on small (Strength 

Theory) and on large (LEFM) structure sizes D . This means that the estimate of the 

nominal strength Nσ  over the range 101.0 <<γ  in Fig. 1.5 (i.e., in the crossover 

regime) is the consequence of the asymptotic matching of the other two regimes. As a 

consequence, the regime proposed for the intermediate structure sizes does not appear 

accurately defined, deserving thus some more thinking, mainly because this is usually 

the range of the experimental data. Bearing this matter in mind, the numerical 

simulation of the quasibrittle fracture turns a key issue, since one can dispose of a 

method to validate any proposed law to describe more in detail the progress of Nσ  with 

the structure size D , over the crossover regime.  

Hence, as exposed in Chapter II the study first involved the evaluation of the 

Resistance-curve in two wood species commonly used in timber construction (for the 

SEN-TPB). The cohesive crack modelling has then been performed, revealing that the 

energetic state is not stationary for both wood species during crack propagation. This 

behaviour clearly unfolded the problematic interaction of the cohesive zone with the 
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structure boundaries, which turns crucial when the size effect study is to be conducted 

on the energetic basis.  

Then, Chapter III is presented on the basis of a derivation of the energetic size effect 

law based on the equivalent LEFM and on the asymptotic analysis. Since one of the 

main consequences of the R-curve behaviour in quasibrittle materials is the effect of the 

structure size on its nominal strength (Morel S 2008), the energetic size-effect is 

essential to characterise an additional asymptotic regime which stands in the crossover 

regime. The additional asymptotic behaviour is validated by means of the cohesive 

crack modelling. 

Chapter IV is presented much to the purpose of the size effect study revealing the 

results obtained in the experiments. Since testing involved the examination of structures 

of different sizes, the self-weight plays an important role, turning thus vital to introduce 

corrections to take it into account. The results issued from size effect on the nominal 

strength, were found quite in accordance with the additional asymptotic behaviour 

defined in Chapter III. 



 
 
 
 
 
 
 
 

 
Chapter II 

 
Quasibrittle Fracture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Chapter II 

2.1 Introduction 

The present Chapter aims at simulate the quasibrittle failure in two wood species 

frequently used in timber construction: Maritime pine (Pinus pinaster Ait.) and Norway 

spruce (Picea abies L.). With such a purpose, experiments were performed involving 

the single-edge-notched beam loaded in three-point-bending (SEN-TPB) and 

corresponding Resistance-curves determined by means of an equivalent LEFM 

approach based on the compliance. An inverse method is then detailed to identify the 

cohesive properties of a bilinear stress-softening law, combining the obtained 

experimental data with a developed Genetic Algorithm (GA). Quasibrittle failure is 

simulated using the identified cohesive properties in both wood species.  Performed 

(FEM) computations revealed that a non-negligible cohesive zone do exist interacting 

(in different scales) with the structure boundaries. Based on the confinement of the 

cohesive zone, concerns are revealed regarding the required specimen (critical) 

dimension necessary to perform size effect studies in wood, ever since the SEN-TPB 

shape is used. Identical concerns are addressed to other specimen geometries (and/or 

sizes) which may induce compressive stress fields over the ligament length. 

2.2 Experiments 

2.2.1 Material and specimens 

Maritime pine (Pinus pinaster Ait., 647 kgm-3) and Norway spruce (Picea  abies L.; 

420 kgm-3) were used in this study as testing material proceeding each from one single 

stem with a diameter approximately equal to 400 mm. Equilibrium Moisture Content 

(EMC) in wood has been found in 12%, after had been conditioned in a climate of 20°C 

47 
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and 65 RH (Relative Humidity) until equilibrium. Wood (see Appendix 2.1) was 

machined far enough away from the stem pith to comply with anatomic axis 

orientations and nominal dimensions represented in Fig. 2.1, and clear parts (free from 

knots and material defects) bonded with a suitable epoxy adhesive (geometry adapted 

from Gustafsson PJ 1988). Starter notches were made along the composite beam mid-

section using a band saw (1 mm thick) and initial crack notches sharpened using a razor 

blade (depth of sharp notch: 1-1.5 mm) up to h/2 (i.e. a0 = 35 mm), just a little while 

before conducting experimental tests. 

2.2.2 Fracture tests 

Twelve single-edge-notched beams with the same size (Fig. 2.1) were tested to 

determine load-displacement curves up to complete rupture, for each wood species. The 

initial crack/depth ratio ha0 was set to 0.5 (Fig. 2.1) and the span/depth ratiohs to 6 

(Fig. 2.2). A mechanical spindle-driven tension-compression machine (20 kN total 

capacity) was used to induce fracture in mode I. A load cell with the capacity of 1 kN 

has been installed and crosshead displacement rate regulated to reach the peak load, Pu , 

in 3 ± 1 minute  during  fracture  tests,  thus  minimizing   possible   viscoelastic  effects  

in wood. Measurement of load-point absolute displacement values,  δF , has been attained 

setting one LVDT (range ± 2.5 mm) in contact with a reference surface rigidly attached 

to the load application device (Fig. 2.2). Two metal bars were set on metal pins 

previously bonded to each side of the composite beam in alignment with the beam 

supporting plans. Displacement values δi ( i = 1, 2) were continually measured by means 

of  LVDTs  (2: range: ± 1.0 mm)  positioned  in  contact  with  each  metal bar mid-span  

 h
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Figure 2.1 Parts set up before bonding (h = 70 mm, b = 40 mm and 20 ha = ). 
Wood anatomic axis: (L) Longitudinal, (R) Radial and (T) Tangential. (In: 
Dourado N. et al. 2008). 
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Figure 2.2 Sketch of TPB test set-up. δF: Load-point displacement; δi: Metal bar mid-

span displacement-points in both sides )2,1( =i of the specimen. Recorded 

displacements : ( ) 221F δδδδ +−= . (In: Dourado N. et al. 2008). 
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Figure 2.3 Typical load-displacement curves (Mode I) obtained in wood fracture: (a) 
Maritime pine (Pinus pinaster Ait.) and (b) Norway spruce (Picea abies L.). Fine thread 
shows the agreement between numerical and experimental data obtained through the 
Inverse Method (Section 2.5). Printed black square labels correspond to the end of the 
Resistance-curve: ( 2clim += aa  mm in pine; 2ilim += aa  mm in spruce). (In: 
Dourado N. et al. 2008). 

 

points. Recording acquisition frequency during fracture tests was set to 5 Hz. Recorded 

load-displacement values (δF) were subsequently corrected accounting for potential 

specimen’s rotation movement during bending, through the equation: 

( ) 221 δδδδ +−= F . Figure 2.3 illustrates typical load-displacement curves (P-δ 

curves) obtained for both wood species. A divergence from the linearity is observed 



Quasibrittle Fracture  Chapter II 

50 

before the ultimate load attainment in both wood species. This phenomenon is attributed 

to the development of the FPZ at the crack-tip and has been shown by Vasic S and  

Smith I (2002), making use of  in situ scanning electron microscopy, that crack bridging 

is the main toughening mechanism mobilised in wood fracture. Though recognised as a 

local phenomenon at the specimen scale, a mechanism of this type is itself at the source 

of the impossibility to apply LEFM directly to estimate failure in quasi-brittle materials, 

requiring the application of nonlinear fracture theories. However, an adaptation of 

LEFM referred to as an equivalent linear elastic approach can provide a useful 

approximation of the quasi-brittle behaviour. 

2.3 Equivalent LEFM 

In order to validate the applicability of an equivalent LEFM approach specimens 

taken from tested wood were submitted to cyclic loading until final fracture (Morel S et 

al. 2005). It has been proved that quasi-brittle behaviour of tested wood can be 

described in the frame of an equivalent linear elastic analysis, where observed 

compliance increase can be attributed to the extension of an equivalent elastic crack, i.e. 

a sharp traction-free crack of length a  in the sense of LEFM (Bažant ZP 2002, Bažant 

ZP and Kazemi MT 1990). Accordingly, as reported in Section 1.2 the tip of the elastic 

equivalent crack is neither at the beginning of the FPZ nor at the end of it. It is 

considered to be given by aaa ∆+= 0 (Fig. 1.2 c), being 0a  the actual traction free 

initial crack length and a∆  the equivalent crack length increment. 

Compliance evolution as a function of the numerical crack length )(aλ  is firstly 

computed through linear elastic FE analyses (Fig. 2.4) using the set of elastic properties 

presented in Table 2.1 ( haa <≤0 ). To account for scattering of wood mechanical 

properties, compliance evolution )(aλ  is corrected for each specimen using a 

multiplicative correction factor )()( 00exp aa λλψ = , with )( 0exp aλ  standing for the 

compliance value obtained experimentally in the ascending linear domain, and  )( 0aλ  

the compliance value resulting from FEM calculations for the initial crack notch extent. 

The correction factor ψ  is thus evaluated no more than once per specimen, since the 

only known value of a  in the experiments is the initial crack notch extent 0a . Indeed, 

for  values  of  0aa >   the damage  extent which develops ahead of the crack-tip leads to  
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h

 
Figure 2.4 FE-modelling used in ABAQUS 6.5-1 compliance computations 
performed using 352 isoparametric 8-node plane strain elements ( mm70=h ).(In: 
Dourado N. et al. 2008). 

Table 2.1   Elastic properties of Maritime pine (Pinus pinaster Ait.) (Xavier J et al. 
2004) and Norway spruce (Picea abies L.) (Guitard D 1987) 

 
Wood Species 

LE  
(MPa) 

RE  
(MPa) 

TE  
(MPa) 

TLν  RLν  TRν  TLG  

(MPa) 
RTG  

(MPa) 
RLG  

(MPa) 

Maritime pine 15 133 1 912 1 010 0.034 0.060 0.309 1 042 286 1 115 

Norway spruce 9 900 730 410 0.018 0.032 0.306 610 22 500 

equivalent crack length extents (evaluated from the experimental compliance) different 

of the actual crack length. A corrected numerical compliance function )(cor aλ  is 

therefore required: )()(cor aa λψλ ×= . References found in the literature (Ferreira LET  

et al. 2002, Ebrahimi et al. 2003, and Morel et al. 2002, 2003) sustain the idea that a 

multiplicative correction factor can be applied to those cases for which the specimen 

compliance is essentially found as a function of a single elastic modulus. Thus, if one 

examines the specimen constitutive parts disposal along the axial orientation (Fig. 2.1), 

and observes that in wood the Tangential elastic modulus TE  is much lower than the 

Longitudinal modulus LE , then it turns that the specimen compliance (i.e., the 

numerical compliance numλ ) is mainly a function of the central modulus TE  (i.e., 

)( 1
Tnum
−= Efλ  when the shearing forces are neglected) (Morel et al., 2005). This 

observation enables to establish the comparison on the modulus basis considering 

another beam of identical dimensions, for which the elastic modulus (unknown) is *TE , 
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doing *
TT EE=ψ . Consequently, as 1*

T
* −∝ Eλ , it turns ψλλ =≅ *

TT
* EE . In other 

terms, this equivalence may be established setting expnum EE≅ψ , with numE  standing 

for the numerical modulus, while expE  represents the experimental modulus (both 

attributed to the specimen central part). As a result of this compliance correction 

procedure, it is possible to determine the equivalent linear elastic crack length a , 

corresponding to any point of the experimental load-displacement curve (Fig. 2.3). 

Hence, for a given point of this load-displacement curve (Fig. 2.5) the compliance, 

)(exp aλ , is determined and the corresponding equivalent linear elastic crack length 

computed through a process of dichotomy applied to the corrected numerical 

compliance function )(cor aλ  previously evaluated. This corrected function enables to 

perform continuous computations of the elastic energy release rate for each load-

displacement values recorded all along fracture tests.  Usually the energy release rate is 

determined through analytical expressions generally obtained from FE analysis (Ferreira 

LET et al. 2002, Ebrahimi ME et al. 2003, Tanaka K et al. 2003), or by means of 

analytical procedures (Fett T et al. 2000). In the alternative method (Morel S et al. 2005) 

the energy release rate is directly evaluated from the experimental load-displacement 

curve using only the compliance function (Morel S et al. 2002, 2003), obtained from FE 

analysis. 

As shown in Fig. 2.5, for a given experimental equivalent crack length a , the elastic 

energy release rate RG  is calculated dividing the elastic strain energy )(aW  released 

during a small crack extent aδ  (dashed area) by the corresponding crack surface ab δ  

(b : specimen width). The small crack extent  aδ   was set to 1% of the initial notch 

extent (i.e., 3.0=aδ mm), since it has been found to be the average value for which the 

estimated R-curves converges to a single curve. The strain energy )(aW  is evaluated 

using the experimental load-displacement curve (curve P-δ) and the straight lines 

passing through the points corresponding to equivalent crack lengths: 2aa δ−  and 

2aa δ+  (both deduced by a process of dichotomy from the corrected compliance 

values: )2(cor aa δλ −  and )2(cor aa δλ + , respectively).  

Typical R-curves obtained by means of the described procedure are presented in Fig. 

2.6.a and 2.6.b for pine and  spruce, respectively. After a characteristic crack length ca , 

the  resistance  does  not  evolve with respect to the crack length a but exhibits a plateau  
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Figure 2.5 Procedure used to assess the elastic energy release rate 
)()()(R abaWaG δ=  in wood. uP : ultimate load; ua : equivalent crack 

length corresponding to uP . (Adapted from Morel S et al. 2002). 
 

 

value, denoted as RcG  (Fig. 2.6.a). This phenomenon indicates that the influence of the 

toughening  mechanism  is  not  infinite  at  longer  crack  lengths,  thus  far tending to a 

stationary regime for crack lengths caa > . 

Unlike pine wood, R-curves obtained for Norway spruce did not exhibit such an 

undoubted plateau, revealing instead an inflexion point or a short segment of nil slope 

before a new increase of the resistance (Fig. 2.6.b) has been obtained. In the absence of 

an unquestionable plateau of the resistance for this wood species, it has been decided to 

report the value of the resistance )( iR aG  to the referred inflexion point, or to the 

beginning of the short segment of nil slope ia , depending on the cases. 

Both wood species revealed resistances at the peak load GR(au) less significant than 

that which is attained at the plateau RcG  (Fig. 2.6.a for pine) and )( iR aG  (Fig. 2.6.b for 

spruce). This indicates that the R-curve develops in the post peak regime of the load-

displacement curve (Figs 2.3.a and b) (Morel S et al. 2005), resulting Cu aa < (in pine) 

and  iu aa <   (in spruce). Tables 2.2 and 2.3 both report mean values obtained for the 

multiplicative correction factor ψ , compliance in the ascending linear domain 

)( 0exp aλ ,  ultimate  load  Pu, corresponding  equivalent crack length  au, and the energy  
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Figure 2.6  R-curves obtained in wood from P-δ curves presented in Figure 2.3.a and 
2.3.b: (a) Maritime pine and (b) Norway spruce. Fine thread shows obtained R-curves by 
means of the Inverse Problem. RcG : Critical energy release rate; ca : Characteristic 
equivalent crack length; )( uR aG : Energy release rate corresponding to ultimate load uP ; 

ua : Equivalent crack length corresponding to uP . (In: Dourado N. et al. 2008). 

Table 2.2 Mean values obtained in TPB fracture tests for Pine wood (Pinus pinaster Ait.). 
ψ  : Multiplicative correction factor; )( 0exp aλ : Experimental compliance obtained for the 
initial notch 0a ; uP : Ultimate load; ua : Elastic equivalent crack length corresponding to 

uP ; )( uR aG : Energy release rate corresponding to uP ; ca : Characteristic value of elastic 
equivalent crack length corresponding to the plateau value of the R-curve; RcG : Plateau 
value of the R-curve. (Consult Appendix A2.3 for complete record exhibition). (In: 
Dourado N et al. 2008) 

Pinus 
pinaster Ait. 

ψ  ( )0exp aλ  

(10-3 mm/N) 
uP  

(N) 
ua  

(mm) 

)( uR aG  

(J/m2) 
ca  

(mm) 
RCG  

(J/m2) 
        

Average 
(12 Specimens) 

1.21 2.21 330.4 36.9 201.6 37.6 209.2 

St. Dev. 0.09 0.15 26.1 0.6 24.8 0.6 27.5 

Table 2.3 Mean values obtained in TPB fracture tests for Norway spruce (Picea abies L.). 
)( iR aG : Energy release rate at the slender rising trend segment of the R-curve. Remaining 

parameters are as defined in Table 2.2. (Consult Appendix A2.3 for complete record 
exhibition). (In: Dourado N et al. 2008) 

Picea 
abies L. 

ψ  ( )0exp aλ  

(10-3 mm/N) 
uP  

(N) 
ua  

(mm) 

)( uR aG  

(J/m2) 
ia  

(mm) 
)( iR aG  

(J/m2) 
        

Average 
(12 Specimens) 

1.25 5.48 145.8 37.3 101.6 47.0 144.6 

St. Dev. 0.09 0.37 6.1 0.6 7.7 2.6 17.8 
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release rate associated to the ultimate load )( uR aG , for each wood species. In addition, 

for Maritime pine, Table 2.2 exhibits mean values of the resistance at the plateau RcG  and 

corresponding critical crack lengths ca . Table 2.3 reports the mean values of the energy 

release rate at the slender rising trend segment of the R-curve obtained for Norway 

spruce )( iR aG , and corresponding equivalent crack length ia . 

2.4 Cohesive crack modelling 

A bilinear stress-softening model was used to simulate mode I crack propagation in 

wood using the finite element code ABAQUS® 6.5-1 through a programmed user 

subroutine. 

2.4.1 Interface finite element 

The interface finite element used in this work is detailed in de Moura MFSF et al. 

(1997). It is compatible with used 2D solid element of the ABAQUS® library, and its 

formulation is based on the penalty function method. Stresses in interpolation points, for 

an undamaged material, are determined from the relative displacements: rwDσ= . 

Accordingly, rw  represents the vector of the relative displacements between two 

homologous points and can be determined from the displacements field of both crack 

faces (face 1 and 2), 
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and indexes s and n stand for local tangential and normal directions of the interface 

element, respectively. Matrix D establishes the relation between stresses and relative 

displacements,  
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Matrix components are the shear (ds) and the normal (dn) interface stiffnesses defined 

by the user. Since the thickness of the interface FE is null, then  ds  and  dn  in matrix D 
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must be set to a very high value, thus preventing the interpenetration of the finite 

element faces, too. In this context, it has been noticed that small values induce large 

interpenetrations, incompatible with the physical reality, while large values lead to 

numerical problems. Thus, the optimum interface stiffness parameters are the largest 

values that do not produce numerical problems. Interface stiffness values ),( ns dd were 

set to 36 mmN10  (de Moura MFSF et al. 1997). 

2.4.2 Bilinear stress-softening model 

According to this model, after the peak-point (ow , tf ) the stress-softening zone is 

defined by two descending lines (Fig. 2.7). The first one spans the peak-point and the 

break-point ( bw , bf ), and the corresponding amount of energy (represented by the first 

triangle) is attributed to “micro-cracking” phenomenon (Stanzl-Tschegg SE et al. 1995). 

Resulting energy is defined as the cohesive microcraking energy Gfµ. The second branch 

is drawn from the break-point towards (cw , 0 ), and the amount of energy represented 

by the dashed triangle is attributed to the “fibre-bridging” phenomenon (Stanzl-Tschegg 

SE et al. 1995). Resulting energy is defined as the cohesive fibre-bridging energy Gfb. 

The total area under the bilinear softening-stress model corresponds to the cohesive 

fracture energy Gf , i.e., the energy required to completely separate two nodes of the 

interface, and is equal to the sum of both cited energies, i.e., fbff GGG += µ . The 

cohesive fracture energy can also be written as, 

22
cwfwf

G bbt
f +=  

(2.3) 

Since the energy associated to the elastic domain is negligible when compared to the 

other regimes ( sd  and nd  in Section 2.4.1), Gf  in Eq. (2.3) is not defined as function of 

ow . Accordingly, the softening relation is given by the equation, 

( ) rwDEIσ −=  (2.4) 

with I representing the identity matrix and E the diagonal matrix containing the damage 

parameter 
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The stress-softening model is thus defined by the independent parameters:  bw , bf , tf  

and  Gf. 

2.4.3 FEM calculations 

In the built up bi-dimensional FE model the SEN-TPB specimen was divided into 

352 8-node anisotropic plane elements according to the mesh sketch shown in Fig. 2.4. 

A total of 64 interface plane elements (IPE) were positioned all through an upright 

central line sited ahead of the initial crack notch mm350 =a ( mm55.0IPE1≅ ). In-

plane strain analyses were performed modelling Maritime Pine (Pinus pinaster Ait.) and 

Norway spruce (Picea abies L.) as linear elastic orthotropic materials with engineering 

constants presented in Table 2.1. Boundary conditions were imposed according to 

performed TPB tests. 

Owing to the symmetry of the FE model (Fig. 2.4), during the simulations the 

displacement values were monitored considering the nodal displacements at the 

specimen middle-height (I) in alignment with one beam supporting plan Iδ  (e.g., 

position of left metal pin according to Fig. 2.2) and (II) close to one side (e.g., left) of 

the crack planeIIδ , at a distance ∆ below the top prescribed displacement line (Fig. 2.4). 

At this distance  ∆  the compression stresses perpendicular to the longitudinal direction   

(see specimen orientation in Fig. 2.1) were found negligible during the crack  

propagation,  avoiding  thus  the indentation phenomenon. Displacement values in FEM 

calculations were obtained computing: III δδδ −= . 

 



Quasibrittle Fracture  Chapter II 

58 

f

f t

bf

ow bw wc

w

G      (Component: "micro-cracking")fµ

G      (Component: "fibre-bridging")fb

S
tr

es
s

Crack opening
 

Figure 2.7 Bilinear Petersson’s softening stress-softening model used to describe 

the natural phenomena occurring in the cohesive zone during wood fracture 

(Mode I): micro-cracking and fibre-bridging (with fbff GGG += µ ). (Adapted 

from Stanzl-Tschegg SE et al. 1995). 
 

A potential way to estimate the cohesive properties could lie in the one-to-one 

correspondence which seems to exist between the R-curve and the softening curve 

(Planas et al., 1993). In addition, it has been suggested by Planas et al. 2003, that, for a 

given specimen geometry and size, the relation between the R-curve and the softening 

curve is unique (though recognized that the R-curve is itself geometry and size 

dependent). 

A recent study already mentioned in Chapter I, focused on the relation between the 

R-curve and the cohesive crack properties (Morel S et al. 2008) demonstrated the 

equality between the plateau value of the R-curve GRc and the cohesive fracture energy 

Gf  (i.e., RcGG f = , with fG  representing the energy corresponding to the total area 

under the cohesive function as represented in Fig. 2.7). On this basis, for each specimen 

of Maritime pine, the cohesive fracture energy Gf was fixed to the estimated value of the 

resistance at the plateau of the R-curve RcG  (Table 2.2), whereas in the case of Normay 

spruce, for which the R-curves did not exhibit undoubted plateaus of the resistance, the 

cohesive fracture energy Gf was fixed, in a first approximation, to the values of the 

resistance denoted as )( iR aG  (Table 2.3). 
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In regard to the set of four independent parameters required to define the bilinear 

stress-softening model (Section 2.3.2), the cohesive fracture energy Gf  being fixed to 

the plateau value of the resistance RcG  for Maritime pine, and to )( iR aG  for Norway 

spruce, the other cohesive crack properties bδ , bf , and tf  (Fig. 2.7) were estimated by 

means of a developed Genetic Algorithm, in the context of the inverse problem, 

performed for each specimen. For both wood species, the cohesive fracture energy was 

fixed to the value of RcG  for pine and )( iR aG  for spruce (in a first approximation, to be 

modified if necessary). 

2.5 Formulation of the inverse problem 

The formulation of the inverse problem (IP) detailed in Appendix A2.2 is 

established on the basis of the minimization of an objective function )(by , which 

quantifies the agreement between two P-δ curves. Thus, for a given specimen tested in 

the experiments (Appendix A2.3), the right set of the cohesive properties of the bilinear 

Petersson’s softening law (Fig. 2.7) is identified, when the corresponding numerical 

load-displacement curve generated in the FEM computations, provides a fine agreement 

with the experimental  P-δ curve (Fig. 2.3 a-b). The numerical procedure used to seek 

the independent cohesive crack properties (i.e., bw , bf  and tf  in Fig. 2.7) is based on a 

developed Genetic Algorithm (detailed in Appendix A2.2). The method mimics the 

evolutionary natural systems on the seeking task to identify the most fitting solution 

which satisfies a given purpose (in this particular case, a fine agreement between the 

numerical and the experimental P-δ curve). 

2.6 Results and discussion 

Figures 2.3.a and 2.3.b both exhibit the achieved agreement between numerical 

and experimental data regarding the P-δ curves, by means of the developed IP for both 

wood species. The objective function )(by  defined in Appendix A2.2 (Eq. A2.2.1) has 

been delineated to concern the set of points in both numerical  and experimental P-δ 

curves up to the limit-point (black square label printed in Figs 2.3.a and 2.3.b) 

corresponding to 2clim += aa  mm, since  this  limit  value  matches the end of the 

Resistance-curves obtained for both wood species. Numerical P-δ curves thus obtained 
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were subsequently treated taking place of experimental data using the method described 

in Section 2.3. A fine agreement has been achieved for each tested specimen (Figs 2.6.a 

and 2.6.b) which demonstrates the accuracy of the proposed methodology to determine 

the cohesive parameters. Tables 2.4 and 2.5, on its turn, permit to establish a comparison 

between numerical and experimental mean values obtained for pine and spruce, 

respectively. Corresponding mean values obtained in the plateau of the R-curve RcG  for 

pine, and in the short segment of nil slope )( iR aG  for spruce, retrieved the cohesive 

fracture energy Gf  used in the IP. On the other hand, calculated energies attributed both 

to micro-cracking and fibre-bridging (Eq. 2.3) have been plotted in Fig. 2.8 for each 

specimen. 

Table 2.4 Comparison between numerical and experimental mean values obtained for 
Maritime pine. (Consult Appendix A2.3 for complete record exhibition) 

 Numerical results Experimental results Error (%) 
12 

Specimens 
Pu  
(N) 

GR(au) 
(J/m2) 

Pu  
(N) 

GR(au) 
(J/m2) 

GRc  
(J/m2) 

Pu  GR(au)  
        

Avg. 330.8 198.4 330.4 201.6 209.2 0.15 -1.67 
St. Dev. 25.7 26.0 26.1 24.8 27.5   

Table 2.5 Comparison between numerical and experimental mean values obtained for 
Norway spruce. (Consult Appendix A2.3 for complete record exhibition) 

 Numerical results Experimental results Error (%) 
12 

Specimens 
Pu  
(N) 

GR(au) 
(J/m2) 

Pu  
(N) 

GR(au) 
(J/m2) 

GRc  
(J/m2) 

Pu  GR(au)  
        

Avg. 148.9 102.3 145.8 101.6 144.6 2.13 0.76 
St. Dev. 6.5 9.1 6.1 7.7 17.8   
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Figure 2.8 Energies attributed to micro-cracking µfG  and fibre-bridging fbG  

phenomena for both sets of tested wood (a) Maritime pine and (b) Norway spruce, 
according to Eq. (2.3) and Table 2.6. (In: Dourado N. et al. 2008). 
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Mean values of the cohesive crack properties and corresponding fracture energies 

obtained for each wood species are reported in Table 2.6. Making use of the mean 

values: tf , bf  and bw , together with the energy release rate resulting from values 

RcGGGG fbff =+= µ  (Table 2.6), two stress-softening diagrams have been plotted (Fig. 

2.9). Although a non-negligible scattering (Table 2.6) has been registered for stress 

parameter bf , the procedure enables to settle a legitimate comparison between both 

wood species regarding the ultimate stress tf  (Fig. 2.7). Ahead of the statement that 

Maritime pine in the experiments has been found on average stiffer than Norway spruce 

(ratio of 2.48 in Tables 2.2 and 2.3), mean values of the ultimate stress tf  found by the 

IP revealed a ratio of 2.81 favourable to pine. At this purpose, it has been noticed that 

mean values of sought tf  (Table 2.6) have been found close to the bulk tensile strength 

(4.20 MPa) obtained by the experiments on un-notched specimens for Maritime pine 

(Pereira JL. 2004), revealing that local and global strengths may be considered as similar 

for this studied wood. As a consequence of the set of results obtained in the performed 

simulations, fracture energy attributed to micro-cracking µfG  is on average considerably 

higher in Maritime pine than in spruce. A ratio of 2.10 has been found in fracture 

energies comparing micro-cracking with fibre-bridging for Maritime pine (Fig. 2.10). A 

non-remarkable difference has however been noticed for spruce. Based on these results 

(namely Fig. 2.9) it is foreknowable that the total extent of the fracture process zone 

(FPZ)   in  Norway  spruce  is  higher  than  in  pine  wood.  Consequently,  a  numerical  

Table 2.6 Summary of mean values (12 specimens of each wood species) obtained by 

the inverse problem regarding the bilinear constitutive model (Figure 2.7). tf : ultimate 

stress value; bf  and bw : coordinates of the break-point; µfG : fracture energy attributed 

to micro-cracking; fbG : fracture energy ascribed to fibre-bridging phenomenon; fG : 

cohesive fracture energy. (Consult Appendix A2.3 for complete record exhibition) 

 tf  

(MPa) 
bf  

(MPa) 
bw  

(mm) 
µfG  

(J/m2) 
fbG  

(J/m2) 
fG  

(J/m2) 
Pine       

Average 4.66 0.72 0.06 141.83 67.39 209.22 
St. Dev. 0.65 0.33 0.01 20.87 21.00 27.49 

       

Spruce      
 

Average 1.66 0.30 0.09 70.91 73.91 144.81 
St. Dev. 0.13 0.05 0.01 6.12 14.38 17.97 
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Figure 2.9 Superposition of bilinear diagrams 
showing obtained mean values of achieved 
independent damage parameters using the 
proposed IP, for both wood tested species. (In: 
Dourado N. et al. 2008). 

Figure 2.10 Results of the IP for both 
wood tested species, regarding mean 
values of energy ascribed to phenomena of 
micro-cracking µfG  and fibre-bridging 

fbG . (In: Dourado N. et al. 2008). 

 

evaluation  of  the  total  extent  of  the  damage  extent  developed  ahead of the 

numerical crack-tip (i.e., the critical extent of the cohesive zone ccohl ), has been 

conducted using the set of parameters identified by the IP for each specimen, and 

obtained results plotted against the numerical crack length numa . As sketched in Fig. 

2.11, the material localised ahead of the crack-tip experiences damage subsequent to the 

attainment of the ultimate stress (point A). Further increase in the crack opening w , 

leads gradually to a state of progressively more damage, up to fracture (cross-section 

B). The critical extent of the cohesive zone ccohl  was continually computed during the 

performed FEM simulations, and corresponds to the set of points undergoing softening 

sited ahead of the crack-tip. As illustrated in Fig. 2.12, the ccohl  in Norway spruce 

attains the available specimen ligament extent (thick centre-line) since the instant of 

numerical propagation onset, unlike Maritime pine. Subsequent trend in Norway Spruce 

shows a remarkable decrease in the ccohl  with numerical crack size, revealing a 

cohesive zone markedly perturbed by the specimen boundary. In fact, the normal 

compressive stresses developed above the neutral axis (Fig. 2.2) avoid a self-similar 

propagation process. Note that this phenomenon is consistent with the some-how 
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continuous trend revealed in the rising R-curves observed in Norway spruce (Fig. 2.6.b), 

resulting in the reported slight extent in the plateau of this curve. As a result of this 

behaviour, it is worthwhile to use a higher specimen height (i.e., h  in Fig. 2.1) in order 

to avoid this phenomenon. In regards to the set of simulations performed for Maritime 

pine, though affected by scattering in results (Fig. 2.12), a mean critical value of the 

cohesive zone extent )mm15( ccoh ≅l  seems to be revealed, since a plateau appears to 

take shape in the early stage of the crack propagation.  

The trend revealed by the set of FEM results presented in Fig. 2.12 indicates that for 

most of the cases, the cohesive zone develops freely in Maritime pine in the early stages 

of the crack propagation leading to the appearance of a corresponding plateau value 

RcG  on the R-curve (Fig. 2.6.a) for this wood species. 

Taking into account the set of results regarding the critical extent of the cohesive 

zone ccohl , one can conclude that a strong perturbation of the damaged zone (FPZ) does 

exist in Norway spruce. A reasonable surveillance is also legitimate since the specimen 

height h  (Fig. 2.1) used in the experiments may be limit for in pine wood. This 

numerical report draws to the important conclusion that a careful size effect study has to 

be put into practice if fracture properties are to be accurately evaluated in these wood 

species involving the SEN-TPB shape (or  other shapes which may lead to compressive 

stress fields in the ligament length). 
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Figure 2.11 Bilinear Petersson’s law. anum: numerical crack 
length; ccohl : critical extent of the cohesive zone. (Adapted from 

Dourado N. et al. 2008). 
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Figure. 2.14 Results of FEA showing the evolution of the extent of the cohesive 
zone with the numerical crack length for both tested wood (Norway spruce and 
Maritime pine), using the cohesive crack properties sought by the developed 
Inverse Problem. The Ligament extent is evaluated computing numah − . (In: 

Dourado N. et al. 2008). 

The numerical simulations revealed that if the Resistance-curve is to be used on the 

basis of an accurate assessment of the size effect, namely on the nominal strength 

(Section 1.5), one must observe two important circumstances:  

(a) The Fracture Process Zone must be fully developed (Section 1.2) and keep its 

critical size over a reasonable crack extent during the loading process; 

(b) The plateau of the Resistance-curve must be undoubtedly revealed. 

Taking into account the set of results obtained in the FEM-computations (using the 

IP outcome) one may conclude that both above cited conditions were reasonable 

satisfied for pine wood. On the other hand, the attained data clearly revealed that the 

experiments (and the numerical analysis) in spruce ought to be carried out with 

specimen dimensions of higher sizes h .  

These important remarks some-how dictated the research path reported in the 

subsequent Chapters, since barely wood spruce has been used in the size effect study 

detailed therein. Indeed, since the results obtained for spruce seem to be strongly 

perturbed by the effect of the specimen size (chosen in this study), further analysis 

involving the size effect both on the numerical (Chapter III) and on the experimental 

(Chapter IV) standpoints were all performed for spruce. 
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Chapter III 
 

Size Effect in Notched Structures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

Chapter III 

3.1 Introduction 

The present Chapter is focused on the evaluation of the size effect on the relative 

crack length at the peak load uα , the corresponding resistance to crack growth )( uαG  

and the nominal strength Nσ  defined in Section 1.5. Making use of an analytical 

development procedure, it is shown that an additional dimensionless asymptotic regime 

exists for the intermediate size range. A numerical (FEM) validation procedure is put 

into practice using a given set of cohesive properties. 

Hence, the effect of the structure size D  on the ultimate fracture properties is 

studied, performing an energy based asymptotic analysis for which the resistance to 

crack growth (R-curve) in a notched structure (Mode I) is considered as a size 

independent property and described according to an analytical expression. Scaling 

evaluations involving the relative crack length together with the resistance to crack 

growth are performed when the ultimate load acting on the structure is attained. For the 

intermediate size range, the relative crack length at the peak load uα  is found to 

decrease with the structure size, whereas the corresponding resistance to crack growth 

)( uαG  shows an increasing trend. 

Results of FEM computations involving geometrically similar notched orthotropic 

structures (SEN-TPB) of different sizes performed with the same combination of 

cohesive crack properties are presented. The bi-logarithmic plot of the nominal strength 

versus the characteristic structure size is in agreement with the Bažant’s size effect law 

66 



Size Effect in Notched Structures  Chapter III 

67 

(SEL) for most of the size spectrum, with the exception of the intermediate sizes, for 

which an additional asymptotic regime is identified. Considerations regarding the extent 

together with the slope of this additional asymptotic regime are made, based on the 

exponent characterizing the curvature of the Resistance-curve. 

3.2 Derivation of the energetic Size Effect Law based on the equivalent 
LEFM and the asymptotic analysis 

Let us consider an R-curve independent of the structure size D , defined through an 

analytical single expression,  evolving as a power law (Morel S 2008), 





∆≥∆∆
∆<∆∆

=∆
cc

c
R if

if
)(

aaa

aaa
aG β

β

φ
φ

 (3.1) 

with 0aaa −=∆  standing for the equivalent crack length increment, the exponent β  

selected to reproduce the negative curvature of the rising portion of the R-curve (i.e., 

10 << β ), and the equivalent length of the FPZ is given by 0cc aaa −=∆ . The 

remainder term φ  is the pre-factor of the power law which does not depend on the 

structure size D . Though the R-curve is recognized as geometry-dependent, the 

proposed formulation is based on the assumption that the exponent β  does not change 

significantly with the structure size D , when geometrically similar notched structures 

are analysed (different characteristic sizes D ). This assumption is to be verified in the 

following. 

It should be noted that the analytical expression provided by Eq. (3.1) defines two 

different regimes observed during the crack propagation (Fig. 1.3). By this means, no 

accurate account of the smooth transition observed in the R-curve is possible to capture 

between the ascending part (i.e., caa ∆<∆ ) and the stationary regime (i.e., caa ∆>∆ ), 

with an angulate point being thus possible to be revealed through Eq. (3.1). 

In quasibrittle fracture the characteristic equivalent crack length increment ca∆  is 

proportional to the ratio: dRcc GGa ∝∆ , with dG  representing the energy associated 

to the damage dissipation rate defined per unit volume of the damaged material (in 

3mJ ), i.e., per unit volume of the FPZ. Indeed, as shown in Fig. 1.2(b), once the FPZ 

attains its critical size cFPZ 2 al ∆≈  (Bažant ZP and Kazemi MT, 1990), then the height 
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of the FPZ turns a fraction n  (independent of the structure size) of the characteristic 

equivalent crack length increment ca∆ , i.e.,  cFPZ anh ∆≈ , where n  is a constant 

whatever the structure size D . As mentioned in Chapter I, during the propagation of the 

main crack (with its critical FPZ), the FPZ can be considered in an energetic steady 

state. Hence, the FPZ does not consume more energy other than to be displaced.  Hence, 

if the crack propagates by the infinitesimal extent aδ , then the new damage volume 

generated by the crack advance corresponds to the dashed area printed in Fig. 1.2 (c), 

with the revealed volume approximately estimated through, 

cFPZFPZ )( anabhabaV ∆== δδδ  (3.2) 

with b  representing the width of the structure cross-section. Hence, the energy required 

during the infinitesimal crack advanceaδ  can be expressed by 

)(FPZd aVGw f δ=  (3.3) 

with the energy released at the macroscopic level, estimated through 

abGw f δRc=  (3.4) 

The product abδ  in Eq. (3.4) represents the elastic equivalent cracked surface. Thus, 

combining Eqs. (3.3) and (3.4) with Eq. (3.2), one can obtain the characteristic 

equivalent crack length increment (or in other terms, the equivalent LEFM length of the 

FPZ), through, 

d

Rc
c Gn

G
a =∆  (3.5) 

As long as crack evolves in a self-similar way the characteristic equivalent crack length 

increment ca∆  should be considered as an internal length of the considered quasibrittle 

material, and n  a corresponding extent (constant) used to quantify the FPZ height. 

Equations (3.2) and (3.3) establish that the effective length of the FPZ, ca∆  is a 

constant, and thus it turns independent of the structure size D . The relative critical 

crack length of the FPZ (i.e., Dac∆=θ ) by definition evolves as a power law of the 

structure size 1: −∝ DD θ . It means that for small structure sizes D  (i.e., 0→D ), the 

relative critical crack length of the FPZ tends to infinity ( i.e., ∞→θ ), with the resulting 
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structure ligament length being entirely occupied by the FPZ (Fig. 1.1). On the other 

hand, for large structure sizes D  (i.e., ∞→D ) resulting 0→θ , with the FPZ lying in 

an infinitesimal volume fraction of the ligament, as expected from the SEL (Bažant ZP 

1984) 

3.2.1 Size effect on the relative crack length and resistance at the peak load 

Let us consider the case of geometrically similar structures characterized by the 

dimensionless energy release rate function )(αg  defined in Section 1.5 [i.e., 

2)()( αλα bEg ′= ] and the estimate of the scaling of the relative crack length at the 

peak load )(u Dα . The well known condition verified at the peak load (Bažant ZP and 

Cedolin L 1991, Morel S et al. 2005) when an R-curve behaviour is observed, provides 

the relative crack length at the peak load uα  from the equality, 
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α
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′
 (3.6) 

with ααα ∂∂=′ )()( RR GG  and ααα ∂∂=′ )()( gg . Equation (3.6) is valid for both load 

and displacement-controlled fracture tests, and reveals that the relative crack length at 

the peak load uα , does not necessarily correspond to the critical relative crack length 

cα  (Fig. 1.3) (Morel S et al. 2005). 

Combining both Eqs. (3.6) and (3.1) for the rising part of the R-curve (i.e., for 

caa ∆<∆ ), it turns  

0
)(

R

R

αα
βα
−

=
′

G

G
 (3.7) 

with α  denoting the relative crack length (i.e., =∆+== DaDaDa 0α  

Da∆+0α ), and 0α  the relative length of the initial notch (Fig. 1.2 b-c). Equation (3.7) 

shows that )(RR αGG′  is independent of the structure size D , and the consequence of 

this is that Eq. (3.6) leads to a unique solution *uα  for the relative crack length at the 

peak load (Fig. 3.1), i.e., a solution independent of the structure size D . It should be 

noticed that Eq. (3.7) would have been reached if another R-curve shape had been 

considered (Morel S., 2007). It is also worth-while to notice that the increase in the 
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characteristic structure size D  leads to the decrease in the relative crack length at the 

peak load uα , as exemplified in Fig. 3.2 using two geometrically similar structure sizes 

(with 12 DD > ) (Morel S 2008).  

The achieved solution *uα  (constant) is revealed providing that θαα +< 0*u  as 

shown in Fig. 3.2 for the structure size 1D  (with θ  standing for the relative length of 

the FPZ, defined through Dac∆=θ ). Hence, as D  increases in size, the relative 

length of the FPZ, decreases ( 0→θ ). 

Let us consider a characteristic structure size cD  quantified by =cD  

)( 0*uc αα −∆a , for which the unique solution θαα += 0*u . For a structure of such  a  

size  (i.e., cD )  one  assumes  that  the  peak  load  uP   is  reached  at  the  onset of the 

R-curve plateau (Section 1.3). This means that, for structures of size cDD >  the relative 

crack length at the peak load uα ,  is no longer equal to the unique solution *uα , but 

rather to θα +0  (as shown in Fig. 3.2 for 2D=D ). Indeed, the characteristic structure 

size cD  (Fig. 3.3) plays the role of the upper bound of the single solution *uα  regime. 
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Figure 3.1 Plotting of Eq. (3.6) used to estimate *uα  in a positive 
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Figure 3.2 Size effect on the ratio )(RR αGG′  revealing the 

decrease of  uα  with the structure size for the SEN-TPB. 

On the other hand, there exists a lower bound (i.e., minD ) for this regime (Fig. 3.3), 

which corresponds to the case for which the FPZ is expected to occupy the entire crack 

ligament, such that min0c )1( Da α−=∆ . Therefore, for structure sizes smaller than minD , 

the FPZ occupies the whole crack ligament, with failure occurring with no crack 

propagation. This is the domain characterized by the Strength Theory (Section 1.5), 

with the R-curve turning irrelevant to describe the failure mechanisms which takes 

place. 

The centreline represented under the scaling law in Fig. 3.3 mimics the plotting of 

the experimental data, showing that no angulate point is expected to exist in the 

crossover regime but rather a smooth transition. Figure 3.3 clearly shows that ever since 

the structure size tends to infinite (i.e., ∞→D ), the relative crack length at the peak 

load vanishes (i.e., 0u αα → ), which reveals that in large structure sizes the FPZ lies 

within an infinitesimal volume of the structure, as postulated through the Bažant’s SEL 

(Bažant ZP 1997 b). As a consequence, one can summarize the scaling of uα  as 

follows, 
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with, 

0

c
min -1 α

a
D

∆
=  (3.9) 

0*u

c
c - αα

a
D

∆
=  (3.10) 

Once evaluated the R-curve (Eq. 3.1) and performed the scaling of uα  at the peak load 

(Eq. 3.8), it is possible to assess the size effect on the corresponding resistance to crack 

propagation at the peak load ),( uR DG α . As referred above, the relative crack length  at  

the  peak  load  in  the  interval  cmin DDD << ,  is  the  single solution *uα . 

Consequently, combining Eqs. (3.1) and (3.9), the resistance at the peak load yields, 

[ ] βααφα DDDDG )(),( 0*ucminuR −=<<  (3.11) 

Equation (3.11) indicates that the regime related to the single solution *uα  leads to a 

resistance  at  the  peak  load,  regarding  the  structure  size D , evolving as a power law 
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Figure 3.3 Plotting of the scaling of the relative crack length at the 
peak load uα  against the structure size D  according to Eq. (3.8). 

Parameters minD  and cD  are the lower and upper bounds of the single 

solution *uα , respectively defined through Eqs. (3.9) and (3.10). 

Dac∆=θ  is the relative length of the FPZ. The centreline mimics 

the trend expected for the experimental data. 
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governed by the exponent β . As reported in Eq. (3.8) for structure sizes cDD > , the 

relative crack length at the peak load is θαα += 0u  (with Dac∆=θ ), leading to a 

constant resistance at the peak load RcR ),( u GDG =α  (i.e., the horizontal asymptote of 

the R-curve shown in Fig. 1.3-b). Accordingly, three distinct asymptotic regimes are 

observed regarding the size effect on the resistance to crack growth, 
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A plotting of the size effect on the resistance at the peak load is illustrated in Fig. 3.4. 

Equation  (3.12)  indicates  that  the  increase  in  the  structure  size  D  is followed by a 

resistance raise up to RcG . Hence, once attained the peak load uP , the resistance to 

crack growth (i.e., )( uR αG ) increases with the specimen size D , whereas the relative 

crack length at the peak load decreases from *uα  to 0α  (as illustrated in Fig. 3.3). In a 

like manner as performed for Fig. 3.3, the centreline represented in Fig. 3.4 imitates the 

trend expected for the experimental data in the crossover regime. 
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Figure 3.4 Size effect on the resistance at the peak load according to 
Eqs. (3.11) and (3.12). Parameters minD  and cD  are the lower and 

upper bounds of the single solution *uα , respectively defined 

through Eqs. (3.9) and (3.10). The centreline mimics the trend 
expected for the experimental data. 
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3.2.2 Size effect on the nominal strength 

As mentioned in Section 1.5 the strength concept is generally revealed by the value 

of the nominal stress at the ultimate load uP . Consequently, once the load P  reaches 

uP , Eq. (1.3) yields the nominal strength Nσ . The scaling assessment of both relative 

crack length )(u Dα  and the corresponding resistance ),( uR DG α  at the peak load 

renders likely to estimate the resulting size effect on the nominal strength. 

Consequently, combining Eqs. (1.3) and (1.2) it turns, 

)]([

),(
)(

u

uR

DgD

DGE
cD NN α

ασ
′

=  (3.13) 

with E′  standing for the effective elastic modulus ( EE =′  for plane stress and 

)1( 2ν−=′ EE  for plane strain; =E Young modulus and ν  the Poisson’s ratio) as first 

defined in Section 1.3. The coefficient )(23 hLcN =  is in accordance with the 

assumption referred to in Section 1.5. 

In the following a discussion involving the three different regimes for the size effect 

on the nominal strength Nσ  is made, from the analysis of Eqs. (3.8) and (3.12). 

3.2.2.1 Asymptotic regime at large sizes 

According to Eq. (3.12), for large structure sizes, i.e., cDD >  the energy release rate 

remains unchanged, RcuR ),(,.. GDGei =α , whereas the relative crack length at the 

peak load (Eq. 3.8) is given by θαα += 0u , with Dac∆=θ . In this expression the 

relative length of the FPZ 0→θ  as the structure increases in size ).,.( ∞→Dei . 

Hence, expanding in Taylor series the dimensionless energy release rate function ( )uαg  

around 0u αα = , reported in Eq. (3.13), yields 
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The asymptotic regime at large sizes provided by Equation (3.14) leads to, 

21

0
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= D
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σ  (3.17) 

with both the critical energy release rate RcG  and the dimensionless energy release rate 

function for the initial crack notch )( 0αg  (Appendix A3.1) assuming constant values 

whatever the structure size D .  

 It should be noted that the asymptotic behaviour at large sizes estimated through 

Eq. (3.14) is attained for a relative crack length at the peak load equal to 0α   (Fig. 3.3), 

whereas for intermediate sizes it is accomplished for *uα . 

3.2.2.2 Asymptotic regime at intermediate sizes 

This is the field of structure sizes lying in the interval cmin DDD <<  (Fig. 3.4). 

Recovering Eq. (3.11) one observes that the resistance at the peak load progresses (Fig. 

3.4) according to a power law βα DDDDG ∝<< ),( cminuR . According to Eq. (3.8) the 

relative crack length uα  at the peak load is supposed to remain unchanged and equal to 

*uα  (Fig. 3.3). Applying Eq. (3.13) to this regime leads to 
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with the coefficient βφ cRc aG ∆= . Therefore, it turns out that the nominal strength at 

intermediate sizes evolves in an asymptotic manner according to a power law 

221)( βσ +−∝ DDN . This regime is in disagreement with LEFM, since RG  evolves as a 

power law as a function of the structure size D . Unlike LEFM (Fig. 1.5) the resistance 

at the peak load raises with the structure size βα DDG ∝),( uR  as is revealed by Eq. 

(3.11). Since the exponent β  must lie in the interval 10 << β  (Section 3.2), the 

outcome is that the exponent of the power law of Nσ  must vary between 21−  (size 

effect described by LEFM) and 0 (no size effect).  

The asymptotic regime at intermediate sizes (i.e., in the crossover region) is 

delimited by minD  (Eq. 3.9) and the characteristic size noted as *
1D , which is defined as 

the crossover size between the asymptotic regime (Eq. 3.17) and Eq. (3.18), 
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=  (3.19) 

It gives thus rise to the clearing up that this quantity does not coincide with cD  defined 

as the crossover size (Eq. 3.10) on the relative crack length and on the resistance at the 

peak load (Fig. 3.4). Indeed, each one of the asymptotic regimes is not obtained for the 

same relative crack length at the peak load. Hence, the single solution *uα  is used to 

define the asymptotic regime in the intermediate size range, while 0α  is used to 

characterize the asymptotic regime at large sizes. 

3.2.2.3 Asymptotic regime at small sizes 

As referred in Section 3.2.1, in small structure sizes (i.e., minDD < ) the ligament 

length is fully occupied by the FPZ. In these circumstances, failure arises with no crack 

propagation, with the R-curve turning irrelevant to describe the failure process. This is 

the field of the Strength Theory (Bažant ZP 1997 a, 1997 b) (Fig. 1.5) with the failure 

load evolving proportionally to the strength of the material, =≤ )( minDDNσ constant. 
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Hence, this strength corresponds to the maximum nominal strength maxNσ  which may 

me computed according to Eq. (3.18), considering minDD = , 

β
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In other terms, the maximum nominal strength maxNσ  is estimated from the asymptotic 

behaviour at intermediate structure sizes, considering the value of the nominal strength 

obtained for the lower bound minDD = . 

The bi-logarithmic plotting shown in Fig. 3.5 illustrates the progress of the nominal 

strength Nσ  with the structure size D , presenting the three different asymptotic 

regimes,  









>⇐
<<⇐

<⇐
∝

−

+−

*
1

21

*
1min

221

minmax )theorystrength(

)(

DDD

DDDD

DD

D
N

N
β

σ
σ  (3.21) 

 

It turns thus clear that the actual size effect curve agrees with both the horizontal 

(Strength theory) and the leant (LEFM) asymptotic plotting (slope 21: − ). The major 

divergence is observed in the regime expected for the intermediate size, for which an 

additional asymptotic regime develops.  

A more convenient way to express the range of the intermediate size consistes to 

combine Eqs. (3.19) with (3.9) and (3.10),  
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Equation (3.22) noticeably makes the ratio min
*
1 DD  independent of the extent of the 

R-curve, ca∆ . As a consequence, *1D  and minD  are expected to be dependent of the 

structure geometry. This means  that  it  is possible  to express the range of sizes in the 

crossover region as a function of the curvature of the R-curve β , not relying it on the 

extent of the Resistance-curve (i.e., on the equivalent LEFM length of the FPZ). The 

asymptotic  regime  expected  for  the  relative  crack length and for the resistance at the  
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Figure 3.5 Size effect on the nominal strength. 

peak load (i.e., )(u Dα  and ),( uR DG α , respectively) turns also possible to express the 

ratio minc DD  independently of ca∆ .  

As the R-curve evolves in a progressive way from the rising domain up to the 

plateau (Fig. 1.3 b) it is unexpected to turn to angulate points in the bi-logarithmic 

plotting of DN versusσ  shown in Fig. 3.5 ( minD  and *
1D ). Therefore, one might 

expect to obtain smooth transitions (i.e., crossover) between the two successive 

asymptotic regimes: (i) Strength Theory and the regime at intermediate sizes, and (ii) 

the intermediate sizes regime and LEFM. 

The comparison of the asymptotic behaviours for the nominal strength (Eq. 3.21) 

with the Bažant’s SEL (Eq. 1.3) has been made taking two different values of the 

exponent β  used to characterize the curvature of the Resistance-curve ( 8.0=β  and 

2.0 ), thus reproducing respectively the effect of a slight and a very strong curvature of 

the R-curve. Hence, as shown in Fig. 3.6 (a-b) for the FEM-computation of the SEN-

TPB on the Lab’s (or experimental) scale (using spruce as testing material, 

mm140exp =D , mm40=b , as well as 1-
Rc N.mm1.0=G  and mm25c =∆a ), the fitting 

of the SEL has been achieved  establishing the transition between the horizontal 

asymptote provided by the Strength Theory  and  the  leant  asymptote previewed by 

LEFM.  In  both  plotting  representations  (Fig.  3.6 a-b)  one  can  conclude  that  in the 
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Figure 3.6 Comparison of the asymptotic behaviours estimated by Eq. (3.20) and 
the fitting of Bažant’s SEL (Eq. 1.3) for two distinct values of the exponent β  
which characterize the curvature of the R-curve. (a) 8.0=β  for a slight curvature 
of the R-curve and (b) 2.0=β  for a very strong curvature of the R-curve.  

intermediate domain (i.e., *
1expmin DDD << ) the agreement between the fitted SEL and 

the estimate performed by means of Eq. (3.21) is not completely satisfactory. Indeed, it 
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is an evidence that the curvature of the fitted function of the SEL (Eq. 1.4) stays 

unaffected if the parameters u, fB  and 0D  are modified, thus proving that it is not 

possible to change the curvature of the SEL in order to fit the plotting provided by Eq. 

(3.21). It ought to be noticed as well that the main differences between the two 

asymptotic behaviours (SEL and the one estimated through Eq. 3.21) arise when the R-

curve  curvature  is  too  slight  (Fig. 3.6 a), or  in  the  case  that a strong curvature is 

reported for the R-curve (Fig. 3.6 b). In such circumstances, the optimum structure 

design (i.e., less conservative) inclines towards the solution provided by Eq. (3.21). On 

the other hand, it is revealed that the asymptotic regime expected at intermediate sizes 

can extend from 1 decade, for slight curvatures of the R-curve (Fig. 3.6 a), up to more 

than 3 decades, for very strong curvatures (Fig. 3.6 b). 

Thus, in conclusion one should put in relief the following aspects: 

- For small structure sizes (i.e., minDD < ) it makes no sense to perform the size 

effect study since the ligament volume is often small when compared to the 

characteristic volume of material required to develop a full damaged domain. 

Consequently, the failure process arises as very theoretical, with the 

corresponding results being used cautiously.  

- In intermediate structure sizes (i.e., cmin DDD << ), one also notices that as 

according to the energy release rate at the ultimate load ),( uR DG α  increases, the 

relative crack length at the peak load )(u Dα  decreases, tending thus to the 

relative crack length value of the initial notch 0α  [i.e., 0u )( αα →D ]. This makes 

the ratio )]([),( uuR DgDG αα  to increase with D , which establishes by evidence 

that the size effect on the nominal strength )(N Dσ , estimated through Eq. (3.13), 

develops in a less pronounced way than that predicted by LEFM (i.e., 21−∝ D ). 

This leads to the asymptotic plotting estimated by LEFM more rightwards than 

such which is estimated through Eq. (3.18), i.e., according to a power law 

221)( βσ +−∝ DDN . 

- For very large structure sizes (i.e., with ∞→D ) the accurate positioning of the 

leant asymptote given by LEFM, is barely driven by the horizontal asymptote of 

the R-curve (i.e., RcG ). Indeed, in such cases the analysis of Eq. (3.14) leads to, 
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21

0

Rc

)(
)( −′

= D
g

GE
cD NN α

σ   

The available FEM data has been used to perform the computation of *
1D  through Eq. 

(3.19), providing the definition of the intermediate size domain (i.e., *
1expmin DDD << ) 

represented in Fig. 3.7. The intermediate dimension labelled as expD  in Fig. 3.7 (for the 

structure size mm140exp =D mentioned above), has been represented for convenience, 

since this is usually the structure size of available experimental data. In this range of 

structural sizes, as previously reported in this Section, the relative crack length at the 

peak load )( expu Dα  is higher than 0α  (Fig. 3.3). It has also been shown that the energy 

release rate at the peak load )]([ expuR DG α  is smaller than RcG  (Fig. 3.4). As a 

consequence, if one considers the descending straight centreline (slope: 21− )  passing  

through  expD  (Fig. 3.7)  it  turns  out  that  the predicted nominal strength )( expDNσ  

thus provided is visibly underestimated (i.e., is more likely to correspond to the safety 

design). A more convenient way to quantify this undervaluing may be achieved 

through, 

[ ]
[ ]

21

expu

expuR

)(

)(
)( −

′
= D

Dg

DGE
cD NN

α

α
σ  (3.23) 

with the corresponding position in the bilogarithmic graph being influenced by the ratio 

)]([),( expuexpuR DgDG αα , setting expDD = . Thus, the relative position of this 

descending centreline (more leftwards in Fig. 3.7) is not surprising, since the ratio 

)]([)]([ expuexpuR DgDG αα  in Eq. (3.23) is smaller than )( 0Rc αgG  defined in Eq. 

(3.17). The fact that Eq. (3.23) leads to an underestimate of the nominal strength 

)(DNσ , unquestionably  brings about to the overestimate of the structure dimension D . 

The corresponding solution provided by LEFM’s descending asymptote is more likely 

to match the optimal solution. However, this result requires the estimate of the R-curve, 

together with the critical energy release rate RcG . Notwithstanding this, one can notice 

that  the  estimate  of  the required experimental data is possible to achieve from a single 

structure size, expDD = . In such a case, an approximate size effect (Fig. 3.8) is likely to 



Size Effect in Notched Structures  Chapter III 

82 

be obtained fitting the SEL (Bažant ZP 1984; Eq. 1.4) from the nominal strength 

)( expDNσ  up to the asymptote of LEFM defined by Eq. (3.17). 

In the following Section a numerical (FEM) validation procedure is put into 

practice using a given set (constant) of cohesive properties (bilinear softening model), in  
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Figure 3.7 Underestimated design (more leftwards centreline) and nominal 
strength given by LEFM (Eq. 3.17).  

 

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1

-2.4 -1.9 -1.4 -0.9 -0.4 0.1 0.6

Log10(D )

Lo
g 1

0[
σN

(D
)]

D 0D min

D 1*

-2

1

D exp

1

2/(β -1)

 
Figure 3.8 Approximate size effect generated by fitting of the nominal 
strength (Eq. 1.4) and the asymptote of LEFM (Eq. 3.17).  
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geometrically similar specimens (SEN-TPB) of different sizes. The purpose of doing so 

is to validate the just exposed derivation of the Size Effect Law, relying on the one-to-

one correspondence  referred  by  Planas  et  al. (1993)  (Section 2.4.3) which  seems to 

exist between the R-curve and the softening curve. Hence, the same combination of the 

cohesive crack properties is to be used in the whole FEM analyses, with the additional 

intent of verifying if a unique R-curve is revealed. 

3.3 Validation procedure from numerical analysis: discussion 

This Section presents results of the Cohesive Crack Modelling (CCM) of the Single-

Edge Notched Beam loaded in Three-Point-Bending (SEN-TPB) involving 

geometrically similar specimens (Fig 3.9) of different sizes D  (Table 3.1), setting the 

size range 1:128. The FE-modelling presented in more detail in Appendix A3.2 has 

been performed using the set of wood engineering constants exhibited in Table A3.2.1 

(Appendix A3.2), with the crack propagation model proposed by Petersson PE (1981) 

(Fig. 2.7) being governed by the same combination of cohesive properties (Table A3.2.2 

of Appendix A3.2) for whole specimen sizes D . In regards to the FE-model used in the 

numerical simulations, the mesh has been implemented to provide a ligament length 

uniformly divided in every 0.5 mm for the totality of the performed analyses. 

Figures 3.10(a) and (b) together illustrate the superposition of load-deflection 

( δ−P ) curves obtained under displacement control, through the CCM for the series set 

presented in Table 3.1.  
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Figure 3.9 Sketch of the SEN-TPB showing the wood anatomic directions in the 
front plane: Longitudinal (L) and Tangential (T). Dimensions shown in Table 3.1. 
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Table 3.1 Series identification with corresponding dimensions according to Fig. 3.9 

Series label hD =  (mm) b  (mm)  Series label hD =  (mm) b  (mm) 

0D  17.5 5  4D  280 80 

1D  35 10  5D  560 160 

2D  70 20  6D  1 120 320 

3D  140 40  7D  2 240 640 
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Figure 3.10 Load-deflection curves obtained in the CCM under 
displacement control. Curves labelling is in agreement with Table 3.1. 
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3.3.1 R-curve estimate 

Making use of the numerical δ−P  curves (Figs. 3.10 a-b), corresponding R-curves 

have been estimated using the method detailed in Chapter II (Section 2.3).  Since the 

ligament length varies with the specimen size D  the equivalent crack length a  has been 

normalized by the specimen height (i.e., ha=α ) to render possible a more convenient 

way to compare the whole R-curves, as illustrated in Fig. 3.11. 

Though the present study had not been carried out using a determined (right-

purpose) set of wood cohesive crack properties (as in Chapter II), one can anyway look 

to the achieved results and legitimately conclude that the choice of the SEN-TPB 

specimen dimensions used to perform a size effect study on the energy release rate RG , 

might be preceded by the definition of a criterion to choose the suitable specimen size 

range. Indeed, as reported in neither Fig. 3.11, nor all the specimen sizes exhibit an 

undoubted plateau on the R-curve, with a clear rise in the energy release rate RG  as the 

specimen decreases in size D . A clearer emphasis on this issue is possible to attain 

representing the influence of the specimen size D  on the evolution of the normalized 

extent of the cohesive zone cohl , as has been plotted in Fig. 3.12. Thus, it is 

unquestionable that specimen sizes smaller than 4D  (i.e., mm280<D  according to 

Table 3.1) ought not to be used in a size effect study on the energy release rate RG , 

since an increasingly steeper trend in the (normalized) extent of the cohesive zone cohl  

is  revealed for those sizes, with no subsequent plateau on the R-curve being thus 

observed. This hinders a self-similar crack propagation which is fundamental to perform 

accurate measurements of RcG . Reminding what has been written in Section 1.4 in 

regards to the self-similar crack propagation, it turns out that under crack growth, the 

cohesive zone  cohl   is compelled to move forward (Fig.1.4.c), without increasing in size 

(i.e., ccohl ), and is associated to an equivalent LEFM stable crack growth in the post 

peak regime (as reported in Figs. 1.4 a-b).  

The numerical simulations also show that the extent of the cohesive zone (Fig. 3.12) 

becomes progressively negligible when compared to the structure size D  (LEFM 

domain).  
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Figure 3.11 Normalised R-curves (by mmN1.0Rc ==GG f ) 

obtained in the numerical analyses. Labelling is in agreement with 

Table 3.1. 
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Figure 3.12 Influence of the specimen (SEN-TPB) size D  on the 

normalized extent of the cohesive zone (consult Table 3.1 for 

labelling identification). 
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An important conclusion drawn from the numerical analysis has to do with the fact 

that if the extent of the cohesive zone (Fig. 3.12) does not configure a plateau over a 

considerable (wide) range during the fracture process, then the corresponding R-curve 

does not show an undoubted plateau, as it is clearly observed comparing Fig. 3.11 with 

Fig. 3.12. Another issue of major importance, rouse by the CCM just exposed, is the 

numerical confirmation that the R-curve is unique (i.e., independent of the structure 

characteristic size D ), as is illustrated in Fig. 3.13. It is thus verified what has 

constituted one of the most important aims of the present numerical study, as evoked in 

precedent Sections.  

The resume of the main results obtained in the numerical study presented in Table 

3.2, shows that the relative crack length corresponding to the peak load uα  tends to 0α  

as the specimen increases in size ).,.( ∞→Dei . As a consequence, the achieved energy 

release rate associated to the ultimate load uP  also evolves towards the value of the 

critical energy release rate [i.e., 1-
RcuR N.mm1.0)( =→ GG α ] as D  increases in size. 

Accordingly, the relative length of the FPZ, i.e., Dac∆=θ , decreases in size (i.e., 

0→θ ) as ∞→D , as previewed with the plotting shown in Fig. 3.3. 

 

0.02

0.04

0.06

0.08

0.10

0.12

0 10 20 30 40

∆a = a - a0,  (mm)

G
R

 , 
 (

N
/m

m
) D7

D6

D5

D4

G Rc

∆a c = 18.5

Fitting

 
Figure 3.13 Unique R-curve revealed through the CCM (consult 
Table 3.1 for labelling identification). 

 



Size Effect in Notched Structures  Chapter III 

88 

On the other hand, the dimensionless energy release rate function )(αg  (i.e., 

[ ] 2)()( ααλα ∂∂′= bEg )  has  been  plotted  for  a  specimen size hD =   (Appendix 

3.1) and  the corresponding polynomial function evaluated by means of the best fit of 

the set of points obtained for each relative crack length α , as shown in Fig. A3.1.2 

(Appendix A3.1). The fitting represented in Fig. 3.14 has been made gathering the data 

obtained from the rising part of the numerical R-curves [i.e., 

1)()( RcRRc0R << GGGG αα ] represented in Fig. 3.11, corresponding to those 

curves which exhibit an undoubted plateau (i.e., series: 4D , 5D , 6D  and 7D ). The 

curvature exponent of the R-curve β  used in the size effect formulation (Section 3.2) is 

obtained from the slope of the linear regression plot which passes through the origin, 

revealing 27.0=β . In such a circumstance, the energy release rate at the onset of the 

R-curve )( cR aG ∆  is the critical value given by the horizontal asymptote [i.e., 

RccR )( GaG =∆ ]. 

The R-curve shown in Fig. 3.15 has been outlined plotting the energy release rate 

RG  as a function of the crack length increment a∆  (similarly to Fig. 3.13), by means of 

Eq. (3.1), using the curvature exponent β  obtained in the linear regression plotting of 

Fig. 3.14. Both  axis  have  been  normalized to render possible the comparison between 

Table 3.2 Resume of parameters obtained in the numerical simulation of SEN-TPB. 
Parameters: )( 0αλ  is the initial compliance; uα  the relative crack length at the peak 

load uP ; )( uR αG  the energy release rate at uP ; Dac∆=θ  the relative length of the 

FPZ.  

Series hD =  )( 0αλ  uα  )( uR αG  θ  

label (mm) ( 310Nmm −× )  ( mmN )  

0D  17.5 37.19 0.60 0.053 - 

1D  35 18.41 0.57 0.059 0.265 

2D  70 9.21 0.54 0.062 0.213 

3D  140 4.53 0.55 0.077 0.126 

4D  280 2.26 0.54 0.087 0.085 

5D  560 1.12 0.53 0.094 0.045 

6D  1 120 0.56 0.52 0.099 0.024 

7D  2 240 0.28 0.51 0.100 0.013 
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Figure 3.14 Linear regression plot performed on the rising part of the R-

curves which exhibit an undoubted plateau (i.e., series  4D , 5D , 6D  
and 7D  according to Fig. 3.12), used to define the curvature exponent of 

the R-curve (i.e., 27.0=β ).  
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Figure 3.15 Plotting of the normalized R-curve according to Eq. (3.1) 

( 27.0and1 == βφ ) and the numerical results plotted in Fig. 3.11 for 

those series which exhibit an undoubted plateau (i.e., series  4D , 5D , 

6D  and 7D  as plotting of Fig. 3.12). .mmN1.0Rc == fGG  
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the theoretical and the numerical results obtained in Fig. 3.11 for 0.1RcR <GG . The 

numerical results are barely those which exhibited an undoubted plateau (i.e., series 

4D , 5D , 6D  and 7D ). 

3.3.2 Relative crack length at the peak load 

The CCM detailed in the previous Section brought to the important conclusion that 

the R-curve is unique (i.e., independent of the structure characteristic size D ), as 

illustrated through the superposition of the set of R-curves which exhibited an 

undoubted plateau on the extent of the cohesive zone (Fig. 3.13). This being revealed, 

the fitting of those R-curves by a power law (centreline shown in Fig. 3.13) rendered 

possible to estimate the equivalent length of the FPZ, mm.5.18c =∆a  Following on, 

the linear regression plot executed on the rising part of the same set of R-curves (Fig. 

3.14), brought about the curvature exponent of the unique R-curve 27.0=β . Then, the 

plotting of the unique R-curve was performed according to Eq. (3.1), revealing the 

accuracy of the obtained fitting operation, when the comparison is made with the 

numerical data obtained through the CCM ( mmN1.0Rc == fGG ) (i.e., the numerical 

results printed in Fig. 3.15). Therefore, the transitional regime (i.e., the crossover zone 

in Fig. 3.15: caa ∆=∆ ) between the ascending part of the R-curve and the plateau (i.e., 

fGGG == RcR ) is not described by the analytical analysis which is being followed. 

Indeed, the observation of Fig. 3.15 permits to detect an angulate point in the referred 

crossover zone. 

The plotting of Eq. (3.6) exhibited in Figs. 3.16 – 3.20, for most of the series shown 

in Table 3.1, provide the estimate of the single solution 54.0*u =α , revealed by the 

interception between )(αgg′  and )(RR αGG′ . Therefore, computing the size limits 

minD  and cD  (Eqs. 3.9 and 3.10), 

0

c
min -1 α

a
D

∆
=   

0*u

c
c - αα

a
D

∆
=   
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which characterize the domain of *uα  (Fig. 3.3), yield mm37min =D  and 

mm5.462c =D ,  taking 5.00 =α  (Fig. 3.9) and mm5.18c =∆a ( Fig. 3.13). The 

estimate of the size limits minD  and cD   rendered possible to classify the series set 2D , 

3D , and 4D  as eligible to figure in the intermediate size range (Table 3.1), with 

u*u αα ≅ . Increasing in the specimen size D , it turns clear that the relative crack length 

at the peak load uα  becomes quite unlike the single solution *uα , since the ultimate 

load uP  is attended closer and closer the onset of the R-curve plateau. Indeed, as 

reported in Table 3.2 the current numerical study revealed that as ∞→D , then 0→θ  

(i.e., with the FPZ turning irrelevant when compared with the structure size D ).  

Therefore, since Eq. (3.8) establishes that θαα += 0u )(D ,  for cDD > , then it seems 

quite reasonable that the trend revealed by the numerical results (Figs. 3.19-3.20), lean 

towards 0u αα → , as appears in specimens of larger sizes (i.e., for series 5D , 6D  and 

7D , in Figures 3.18, 3.19 and 3.20).  

The poor agreement revealed by the plotting of Eq. (3.7) and )(RR αGG′ directly 

obtained  from  the  R-curve  (Fig. 3.11),  shown  in  Figs. 3.16  (over  half  the range) is  
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Figure 3.16 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
series 3D  (see Fig. 3.11). 
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Figure 3.17 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
series 4D  (see Fig. 3.11).  
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Figure 3.18 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
series 5D (see Fig. 3.11).   
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Figure 3.19 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
series 6D (see Fig. 3.11).  

 

0

5

10

15

20

25

30

0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550

α  = a  / D

G
R
'/G

R
( α

) 
an

d 
g

'/g
( α

)

g'/g (α ) α u*

α u

 

)(

)(

R

R

α
α

G

G′

 

0R

R

)(

)(
:)5.3(Eq.

αα
β

α
α

−
=

′
G

G

 

Figure 3.20 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
series 7D (see Fig. 3.11). 
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justified by the inexistence of a clear (an undoubted) plateau for series 3D , as 

mentioned above (Figs. 3.11 and 3.12). As according to the specimen increases in size 

D , the interception of )()( RR αα GG′ with the axis of the abscissas outlined in Figs. 

3.16 – 3.20 (descending thicker hidden line),  gets closer and closer the relative crack 

length at the peak load uα  (which, it turn, gets closer and closer to 0α ). This trend is 

not surprising, bearing in mind that uα  is obtained closer and closer the plateau of the 

R-curve (i.e., uc αα → ) as may be confirmed from analysis of the set of results reported 

in Table 3.2.  

The scaling of the relative crack length at the peak load )(u Dα  has been plotted in 

Figure 3.21, for the available data provided by the FEM computations (structure sizes 

D  as in Table 3.1). As previously performed for Fig. 3.3, the plotting shows the minor 

and the upper size bounds (minD  and cD ) which set out the intermediate size range. In 

regards to the included sizes printed in Fig. 3.21 (i.e., labels 743 D,...,D,D ), it is clear 

that the revealed FEM data follows a trend which is in fine agreement with both 

predictions established for the intermediate size range (i.e., cmin DDD << ) and for 

large sizes (i.e., cDD > : series 65 D,D  and 7D ). Hence, in the former regime one 

observes that the relative crack length at the peak load uα  is set equal to the single 

solution *uα , whereas for the later regime (i.e., for large sizes D ), the FEM-

computations revealed a trend evolving close to the law θα +0 . It is worth-while to 

notice that the plotted circles in Fig. 3.21 follow the tendency outlined by the centreline 

plotted under the scaling law in Fig. 3.3, mainly in the neighbourhood of the transitional 

regimes, i.e., from the intermediate size range (i.e., cmin DDD << ) to the large size 

regime (i.e., cDD > ). 

The size effect results (Eq. 3.12) on the resistance at the peak load ),( uR DG α  have 

been plotted in Fig. 3.22, together with the two asymptotic regimes both for small and 

for large structure sizes D . Accordingly, the available data generated by means of the 

FEM computations turned out values of )( uR αG  evolving with the structure size D  in 

agreement both with the power law βα DDG ∝),( uR ,  in the intermediate regime (i.e., 

cmin DDD << : series 3D  and 4D ), and  with RcG  (with  fGG =Rc ), in  the regime of 
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Figure 3.21 Scaling of the relative crack length at the peak load uα  as a function of 

the characteristic size D . Parameters minD  and cD  represent the lower and upper 

bounds of *uα  (Eqs. 3.9 and 3.10). Plotted circles indicate the available data 

provided by the FEM computations (Table 3.1). 

large structure sizes D  (i.e., cDD > : 5D , 6D  and 7D ). The asymptotic behaviour put 

into evidence by the size 5D  in Fig. 3.22, confirms the outlined trend shown in Fig. 3.4. 

3.3.3 Size effect on the nominal strength 

Taking into account the crossover size value ( mm5.462c =D ), the estimate of the 

single solution ( 54.0*u =α ) and the curvature exponent of the unique R-curve 

( 27.0=β ), obtained in the last two Sections, together with the dimensionless energy 

release rate function )(αg  deduced in Appendix A3.1, it is possible to estimate the 

characteristic size through Eq. (3.19), 

c

1

0

*u*
1 )(

)(
D

g

g
D

β

α
α









=   

leading to mm680*
1 =D , for the initial relative crack length ( 5.00 =α ). 



Size Effect in Notched Structures  Chapter III 

96 

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2

Log10(D)

1.5

1.6

1.8

1.9

2.1

Lo
g 10

[G
R
(α

u, D
)]

D
min

D
3

G
Rc

D
c

1

β

D
4

D
7D

6D
5

 

Figure 3.22 Size effect on the resistance at the peak load according to Eqs. (3.11 and 
3.12). Parameters minD  and cD  represent the lower and upper bounds of *uα  (Eqs. 

3.9 and 3.10). Plotted circles indicate the available data provided by the FEM 
computations. 

The nominal strength )(DNσ  expected for the three asymptotic regimes, comprising 

(i) the large, (ii) the intermediate and (iii) the small sizes D  are to be evaluated through 

Eqs. (3.17), (3.18) and (3.20), listed below: 
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Hence, bearing in mind that 9)(23 == hLcN  as deduced in Section 3.2.2.2, the 

effective Young modulus MPa8.709=′E  and the dimensionless energy release rate 

function )(αg  estimated in Appendix A3.1, together with the critical energy release 
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rate 1
Rc N.mm1.0 −=G , the initial relative crack length 5.00 =α , the equivalent length 

of the FPZ mm5.18c =∆a , the curvature exponent of the unique R-curve 27.0=β , 

the pre-factor βaG +=∆= 2
cRc mJ270βφ  defined through Eq. (3.1), the single 

solution 54.0*u =α  and the size limits mm37min =D  and mm680*
1 =D , it is 

possible to estimate the nominal strength )(DNσ  expected for the three asymptotic 

regimes, setting D  according to Eq. (3.21), 
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Figure 3.23 shows the plotting of these Equations thus providing the necessary data to 

accomplish the size effect on the nominal strength )(DNσ . Figure 3.23 also shows the 

fine agreement obtained by the inclusion of the set of circles corresponding to the 

specimen dimensions exhibited in Table 3.1. 
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Figure 3.23 Size effect on the nominal strength (Eq. 3.17, 3.18 and 3.20). Included 
circles are labelled according to specimen sizes listed in Table 3.1. 
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It should be noted that sizes 0D , 1D  and 2D  were not included in Fig. 3.23 

because the CCM revealed the absence of an undoubted plateau on the R-curve for these 

specimen sizes (Figs. 3.11 and 3.12). On the other hand, it turns quite dubious to 

describe accurately the cracking phenomenon taking place in such a narrow ligament 

volume. 

Notwithstanding the even more massive time consuming necessary to perform the 

CCM, the inclusion of a specimen of larger size (i.e., 7D>D ) among the set of 

dimensions of Table 3.1 is well worth-while, to provide a more convincing trend 

revealed in the domain estimated by LEFM (Fig. 3.23).  

 

Summing up, the CCM presented in this Section has demonstrated that the 

derivation of the energetic Size Effect Law based on the equivalent LEFM, as detailed 

in Section 3.2, is valid. 

Still focused on the evaluation of the Size effect on the nominal strength )(DNσ , 

once determined the position of the experimental data (Fig. 3.23), the LEFM asymptotic 

regime might be plotted using the Bažant’s Size Effect Law (SEL) through Eq. (1.4). 

Following the procedure issued from the derivation law exposed in Section 3.2, 

based on reliable experimental data, one can predict the Size Effect of a quasibrittle 

material of a given structure geometry. This is the subject of main concern treated in the 

ending Chapter of this Thesis. 

 

 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

Chapter IV 
 

Experiments on Size Effect 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

Chapter IV 

4.1 Introduction 

In this Chapter a description of the experiments on size effect in wood is made 

involving the Single-Edge-Notched beam loaded in Three-Point-Bending (SEN-TPB). A 

method is proposed on the regards of the evaluation of the Resistance-curve taking into 

account the correction needed to take into account the specimen self-weight. A verification 

of the attained accurateness in the evaluation of the critical energy release rate is made 

through cohesive crack modelling. Size effect results are revealed arising from the 

experiments performed in wood spruce SEN-TPB specimens.  

4.2 Experiments 

Norway spruce (Picea abies L.; 405 kgm-3 on average: ANNEXE) was used in this 

study as testing material. Moisture content in wood was found in 11-13% after conditioning 

at 20°C and 65 RH until equilibrium. Wood was machined far enough away from the stem 

pith complying with anatomic axis orientations and nominal dimensions represented in 

Figure 4.1 and clear parts (free from knots and material defects) bonded with  a  suitable  

epoxy   adhesive  (ARALDITE®   AW106/953U). Starter   notches   were   made  along  the 

composite beam central-section using a  band saw (1 mm thick) and initial crack notches 0a  

100 
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Figure 4.1 SEN-TPB geometry used in the experiments showing 
the initial crack length 20 ha = . Triad indexes L , R and T 

represent the Longitudinal, Radial and Tangential wood anatomic 
directions. Values of  h  and b are listed in Table 4.1.  

sharpened using a fine cutter blade (depth of sharp notch: 1.0 - 1.5 mm) up to h/2 just a 

little while before conducting experimental tests. Taking due note of the reference 

characteristic structure size h  regarding the dimension mm70=D  (Table 4.1), five 

additional homothetic series were machined from this one, composing a size range of 12:1 . 

Geometrically similar SEN-TPB were tested to determine load-displacement curves up 

to complete rupture under displacement control. The initial crack/depth ratio was set to 0.5 

and the span/depth ratio was fixed to 6 (Figure 4.2.a and b). A mechanical spindle-driven 

tension-compression machine (20 kN total capacity) was used to induce fracture in Mode I. 

A load cell with the capacity of 1 kN was installed and the crosshead displacement rate 

regulated to reach the peak load Pu in 3 ± 1 minute during fracture tests, thus minimizing 

possible viscoelastic effects in wood. An optical extensometer was used to monitor two 

displacement values during the experiments: 1δ  regarding the mid-span target bonded on a 

long light-weight rigid bar supported on two small metal pins previously stuck onto the 

specimen  in alignment  with the supports (Figure 4.2.a); and 2δ , referring to another target 



Experiments on Size Effect      Chapter IV 

102 

Table 4.1 Specimen sizes used in the experiments according to Fig. 4.1 

Quantity Dh=   (mm) b   (mm) 

11 280 80 
18 210 60 
19 140 40 
16 70 20 
19 35 10 
12 23.3 6.7 

 
 
 

6h
1δ

6h

δ 2

Load cell Load cell

 
                                     (a)                                                              (b) 

Figure 4.2  Sketch  of  the  TPB  test  set-up  showing  the  displacement  monitoring 

in the mid-span of the : (a) 1δ : long light-weight rigid bar and (b) 2δ : short light-

weight rigid bar supported on tiny metal pins also bonded to the specimen surface. 
 

bonded onto the mid-span of a short light rigid bar hold on two additional tiny metal pins, 

firmly fixed to the central span, positioned at 32h , at 10h  apart from the central section 

(Figure 4.2.b). Displacement values were monitored computing )( 12 δδδ −= , exerting no 

mechanical contact with the specimen during the experiments. 

The superposition of typical δ−P  curves shown in Figure 4.3 reveals the obvious 

decrease of the initial compliance )( 0exp aλ  with the increase in the structure size D , 

together with the natural increase in the ultimate load uP  (ANNEXE). The configuration 

revealed by the δ−P  curves (Appendix A4.1) also indicates that crack propagation 

occurred in a stable way. 
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Figure 4.3 Superposition of typical load-deflection curves obtained 
for each series according to dimensions shown in Table 4.1. 

 

4.3 Self-weight compensation 

In fracture testing involving Single-Edge-Notched beams loaded in Three-Point-

Bending (SEN-TPB) as well as in other specimen shapes, the specimen weight contributes 

to the overall loading of the system. Unless special methods are put into practice, the 

contribution of the specimen weight is not compensated, leading thus to misevaluations of 

fracture parameters obtained in the experiments.  

4.3.1 Load equivalent to the specimen self-weight: static approach 

As illustrated in Fig. 4.4 for the simple test configuration, the load cell has been zeroed 

(point O ) when the self-weight was already acting on the specimen (Bažant Z and Planas J, 

1998). This means that at zero applied load (0=P ), a bending moment 82qL  already exists 

at the central cross section (with q  standing for the distributed load corresponding to the 

specimen self-weight and L  for the beam span). Consequently, if one considers a statically 

equivalent load acting on the mid-span qP , which gives the same bending moment as the 

one obtained from the distributed load q , corresponding to the specimen self-weight, the 

resultant bending moment will turn 4LPM qq = . Thus, establishing the equality between 

the former bending moments, it is possible to get the constant central load 2LqPq = , with  
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Figure 4.4 Load-displacement curve for the uncompensated TPB test. Adapted from 
Bažant Z and Planas J (1998). 

gmLq =  (being m  the specimen  mass  and  g   the  acceleration  of gravity). In  a strictly 

theoretical point of view, if this statically  equivalent  load qP  could  act  alone  in  the  

system,  it  would produce the load-deflection curve represented by the dashed line in Fig. 

4.4 (origin at ' O ). Nevertheless, in the experiments the recorded curve is simply the one 

illustrated by the full line, which obviously is the result of the applied load P  and its own-

weight. It should be emphasized however that the recording provides the external applied 

load P  (given by the load cell) while the displacement δ  is due to the combined action of 

P  and the specimen self-weight. 

In the following, two methods are proposed to put into practice the self-weight 

compensation in the context of the R-curve evaluation using the SEN-TPB geometry. The 

first one is an approximate method based on the kinematic approach, whereas the second is 

the Exact method, which provides the accurate evaluation of the self-weight compensation.  

4.3.2 Load equivalent to the specimen self-weight: kinematic approach 

Consider the testing notched beam in TPB represented in Fig. 4.5, subjected both to an 

external  load  P   acting  on  the  half-span  and the beam weight represented  by the  linear  
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Figure 4.5 Schematization of the simply supported beam subjected to the 
superposition of (a) the central load P [N] and (b) the distributed load q [N/m]. 
Parameters: δPP, displacement due to P; δPq, displacement due to q. Both displacement 
values are read in the central load axis P, with PqPP δδδ += . 

distributed load  q . The displacement of point  C  is given by the contribution of the central 

load P  and the linear distributed load q , 

qP PqPPPqPP λλδδδ +=+=  (4.1) 

where PPλ  and Pqλ  represent the compliance due to P  and q , respectively (with PPλ  

expressed in [m/N] and Pqλ  in [m2/N]) measured in the axis of P . 

The initial compliance )( 0exp aλ  is evaluated considering the recorded values (Fig. 4.6) 

got hold of the experiments, computing 

)(

)(
)(

0exp

0exp
0exp aP

a
a

∆
∆

=
δ

λ  (4.2) 

with )( 0exp aδ  defined in Fig. 4.6 as 

[ ] )()()()( 0000exp aaaa PqPqPP δδδδ −+=  (4.3) 
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Figure 4.6 Load–deflection curve in the elastic domain ( 0aa= ).  

In Eq. (4.3) )( 0aPPδ  is the only quantity which varies. Indeed, the quantity )( 0aPqδ , 

though impossible to measure in the experiments, is kept up unchanged (providing that 

0aa= ), thus leading to,  

)()( 00exp aa PPδδ =  (4.4) 

Hence, rearranging Eq. (4.2), it may be established that (Fig. 4.6), 

)(
)(

)(
)( 0exp

0exp

0
0exp a

aP

a
a PP

PP λδλ =
∆
∆

=  (4.5) 

The second term of Eq. (4.1) may be rearranged in order to incorporate an external 

central load qP , which in practice produces the same displacement of the beam weight Pqδ  

in point  C  (kinematic equivalence) (Fig. 4.5), so that  

)( qPP PP += λδ  (4.6) 

Thus, eliminating  δ  among Eqs. (4.1) and (4.6), it turns 

q
a

a
P

PP

Pq
q )(

)(

λ
λ

=  (4.7) 
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which is valid if the ratio  

constant)()( ≅aa PPPq λλ              [ ]expl0, aaa ∈∀  (4.8) 

 

with the range of validity [ ]expl0, aa to be estimated numerically.  

Therefore, using the recorded load–deflection curve obtained in the experiments (Fig. 

4.7), and providing that the equality settled through Eq. (4.8) is verified, Eq. (4.7) enables 

to establish 

)()()( 0exp0exp0 aPaqa PqqPPPq δλλ ==  (4.9) 

with )( 0exp aPPλ  as defined through Eq. (4.5), 

)()( 0exp0exp
aaPP λλ =   

Hence, for a given point M  of the load-deflection curve (Fig. 4.7), for which an 

equivalent crack length a  is to be computed, the compensation due to the self-weight is 

performed setting 

qPP
a

+
= δλ )(

compexp  (4.10) 

which, according to Eqs. (4.1) and (4.6), results 

)(
)()(

)(
compexp a

PP

PPa

PP
a PP

q

qPP

q

PqPP λ
λδδ

λ =
+

+
=

+
+

=  (4.11) 

Resulting values of )(
compexp aλ  are subsequently used to perform computations on the 

equivalent crack length a  and resultant energy release rate )(R aG  quantities by means of 

the equivalent LEFM approach proposed by Morel S. et al. (2005) (also detailed in Section 

2.3). It should be noted that both terms )(aPPλ  and )(aPqλ  in Eqs. (4.6) - (4.8) and (4.11) 

represent corrected values of the compliance polynomial functions which result, 

respectively, from the best fit of FEM computations for the central P  and distributed q  

loads acting on the specimen for different crack lengths a , 

)()( * aa PPPP λψλ =  (4.12) 
 

)()( * aa PqPq λψλ =  (4.13) 
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Figure 4.7 Self-weight compensation of the load–deflection curve.  

The purpose of this correction, as proposed by Morel S. et al. (2005), is to take into account 

the scattering of mechanical properties observed in the material. The parameter ψ  in Eqs. 

(4.12) and (4.13) stands for the multiplicative correction factor estimated once per 

specimen as, 

)(

)(

0
*

0exp

a

a

PPλ
λ

ψ =  (4.14) 

As observed in Section 2.3, in view of the fact that in in-plane analysis the quantity E1  is 

essentially proportional to the compliance )(aPPλ  (with TEE =  according to specimen 

sketch of Fig. 4.1), as detailed in Morel S et al. (2005), the multiplicative correction factor 

defined in Eq. (4.14) turns, 
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exp

num

E

E
≅ψ  (4.15) 

The kinematic approach detailed in the present Section ought to be compared on the 

energetic point of view, in regards to the evaluation of the Resistance-curve. This idea 

rouse up the development of an alternative method which is presented as the Exact self-

weight compensation method presented in detail in the next Section. 

4.3.3 Exact self-weight compensation method 

Regarding once more the testing beam loaded in TPB now represented in Fig. 4.8, 

subjected to the superposition of an external load P  acting on the half-span and to the 

beam self-weight represented by the linear distributed load q , the displacement δ  of a 

given point localised in the specimen central section (i.e., in the axis of the central load) is 

the result of the contribution of both loading systems (i.e., P  and q ). Since the result )(aδ  

is  conditioned  by  the extent of the crack length a  in the mid-section (Fig. 4.4), the former 
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Figure 4.8 Simply supported beam subjected to the superposition of (a) the central load  P [N] 
and (b) the distributed load q [N/m]. Parameters iPδ  and iqδ  represent respectively the 

displacements due to P and to q measured in axis i . 
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displacement will be designated in the following by )(aPPδ , though the later will be 

referred to as )(aPqδ , leading, in a like manner as through Eq. (4.1), to 

)()()( aaa PqPPP δδδ +=  (4.16) 

with the second index (inδ ) being used to designate the applied loading system (P  or q ), 

while the first one (i.e., P ) is used to refer to the axis used to estimate the displacement δ . 

An alternative notation may be preferred to express the displacements )(aPδ  on the 

compliance basis for a given crack length a , 

qaPaa PqPPP )()()( λλδ +=  (4.17) 

(with PPλ  expressed in [m/N] and Pqλ  in [m2/N], since P  and  q  are stated in [N] and  

[N/m], respectively). 

On the other hand, it is possible to define the displacement field obtained along the 

specimen axis (middle-axis denoted as x  in Fig. 4.8), with respect to the abscissa x , and 

for a given crack length a , as 

),(),(),( axaxax qqqPq δδδ +=  (4.18) 

which, on the compliance basis is expressed through,  

qaxPaxax qqqPq ),(),(),( λλδ +=  (4.19) 

The set of functions )(aPPλ  and )(aPqλ  in Eq. (4.17), as well as ),( axqPλ  and 

),( axqqλ  in Eq. (4.19) represent, respectively, corrected compliances and corrected 

compliance fields (Fig. 4.8) estimated through, 

)()( * aa PPPP λψλ =  (4.20) 
 

)()( * aa PqPq λψλ =  (4.21) 
 

),(),( * axax qPqP λψλ =  (4.22) 
 

),(),( * axax qqqq λψλ =  (4.23) 

In Eqs. (4.20) and (4.21) the compliance functions )(* aPPλ  and )(* aPqλ  are obtained from 

the best fit of in-plane FEM computations (elastic strain analyses) performed for different 
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values of 0a  in the interval ],2[ hh  (Fig. 4.1). As to Eqs. (4.22) and (4.23), the 

compliance fields ),(* axqPλ  and ),(* axqqλ  are achieved by means of the best fit of in-plane 

strain FEM computations performed along the axis xO  of Fig. 4.8 (i.e., along the 

centreline) for each crack length a . Indeed, the calculation is made in the integration points 

sited along the mid-height of the FEM mesh used to compute the displacement values. 

Hence, )(* aPPλ  and ),(* axqPλ  are expressed in [m/N], whereas )(* aPqλ  and ),(* axqqλ  are 

defined in [m2/N], since P  and q  are stated in [N] and [N/m], respectively. In regards to 

the multiplicative correction factor ψ  defined by Eq. (4.14),  

)(

)(

0
*

0exp

a

a

PPλ
λ

ψ =   

in a like manner as has been seen in Section 4.3.2, the extent )( 0exp aλ  represents the initial 

compliance (for 0aa= ) obtained in the experiments (Fig. 4.9),  

)(

)(
)(

0exp

0exp
0exp aP

a
a

∆
∆

=
δ

λ  (4.24) 

with )( 0exp aδ  given by Eq. (4.3), 

[ ] )()()()( 0000exp aaaa PqPqPP δδδδ −+=   

Therefore, regarding that the structure (Fig. 4.4) does not undergo damage (at least) before 

the central load P  has been applied one can observe that )( 0aPPδ  in the above Equation 

(i.e., Eq. 4.3) is the single quantity which actually varies. Indeed, the displacement )( 0aPqδ  

though impossible to measure in the experiments, is kept unchanged, leading to 

)()( 00exp aa PPδδ =  (4.25) 

In fact, the quantity )( 0exp aλ  in Eq. (4.14) should be reformulated to fit with the notation 

)( 0exp aPPλ  of Fig. 4.9. Hence, introducing the modification at once in Eq. (4.24), yields, 

)(
)(

)(
)( 0exp

0exp

0
0exp a

aP

a
a PP

PP λδλ =
∆
∆

=  (4.26) 
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Figure 4.9 Superposition of load–displacement curves obtained in the 
experiments and through FE analysis in the linear elastic domain (for 0aa= ). 

4.3.3.1 Estimate of the equivalent crack length 

In the course of the fracture test illustrated in Fig. 4.4 the displacement monitoring 

provides the result associated to both loading systems acting on the specimen (i.e., P  and 

q ). In such a circumstance, one gets 

[ ] )()()()( 0exp aaaa PqPqPP δδδδ −+=  (4.27) 

The self-weight compensation however, implies the modification of the displacements 

recording schematized in Fig. 4.10, 

)()()( 0expmod aaa Pqδδδ +=  (4.28) 

with )( 0aPqδ  standing for  the  displacement which result from the structure self-weight 

prior to the load-cell zeroing operation (point O  Fig. 4.4). The second term of Eq. (4.28) 

may be defined as follows 

qaa PqPq )()( 00 λδ =  (4.29) 
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Figure 4.10 Modified load–deflection curve due to the compensation of 
the specimen self-weight (dashed line). 

which is established as a function of the corrected compliance )( 0aPqλ , possible to be 

obtained from the computation of Eq. (4.21)  for 20 haa ==  (Fig. 4.1). 

Still focused on the modification of the displacements recording schematically shown in 

Fig. 4.10, one can rewrite Eq. (4.28) on the compliance basis for a given crack length a , 

PaqaPaa PqPP )()()()( modmod λλλδ =+=  (4.30) 

with the corresponding modified compliance )(mod aλ  defined as,  

P

q
aaa PqPP )()()(mod λλλ +=  (4.31) 
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with both functions )(aPPλ  and )(aPqλ  being corrected by means of Eqs. (4.20) and 

(4.21), respectively ( 0aa≥ ). Hence, combining Eq. (4.31) with Eqs. (4.20) and (4.21), 

yields 






 +=
P

q
aaa PqPP )()()( **

mod λλψλ  (4.32) 

Therefore, the first step consists to obtaining the modified load-displacement curve 

(Eqs. 4.14, 4.21 and 4.28) making use of the compliance calibration functions )(* aPPλ  and 

)(* aPqλ  previously evaluated in the interval ],2[ hha ∈ . Subsequently, for a given point 

M ′  (Fig. 4.10) of the modified load-displacement curve (which corresponds to an unknown 

equivalent crack length a ) the corresponding compliance )(mod aλ  is calculated (i.e., 

Pa)(modδ  as the first member of Eq. 4.32). Then, making use of the corresponding load P  

quantity, together with the scalar constants ψ   and q  evaluated once per specimen, a given 

(i.e., taken by hazard) crack length iaa =  extent is used, to evaluate the second member of 

Eq. (4.32). The equivalent crack length a  is the used value of ia  which provides the 

equality between both members of Eq. (4.32). The bisection method (Chapra SC and 

Canale RP 1985) has been applied as the seeking routine for the equivalent crack length a  

tracking. 

In the following, the method used to evaluate the R-curve is detailed, using the modified 

load-displacement curve, together with corresponding values of the equivalent crack length 

a  (i.e.,  aP ,, δ ) . 

4.3.3.2 R-curve estimate 

Consider two consecutive points of the modified load-displacement curve (Fig. 4.10) 

with the coordinates[ ]11mod ,)( Paδ and [ ]22mod ,)( Paδ , as sketched in Fig. 4.11, with 

corresponding compliances represented by )( 1mod aλ  and )( 2mod aλ , respectively.  

The elastic strain energy release Eδ  associated to  the corresponding infinitesimal crack 
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Figure 4.11 Partial strain energy associated to the external load P in 
two consecutive points of the modified load-displacement curve. 

propagation aδ  (with 12 aaa −=δ ), is generically given by 

UWE δδδ −=  (4.33) 

with Wδ  and Uδ  denoting, respectively, the work of the external applied load and the 

corresponding system complementary energy. As the self-weight counts, Eq. (4.33) may be 

rewritten in a more detailed form, taking into account the contribution of both central P  

and distributed q  loads,  

)()( qPqP UUWWE δδδδδ +−+=  (4.34) 

The computation of the work of the external applied load (Fig. 4.11) in Eq. (4.34) leads to 

[ ])()(
2 1mod2mod

21
aa

PP
δWP δδ −

+
=  (4.35) 

The work due to the distributed load qWδ  in Eq. (4.34), is computed in the integral 

form through, 

[ ]∫ −=
L

qqq dxaxaxqW
0 12 ),(),( δδδ  (4.36) 
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Both displacement fields ),( 1axqδ  and ),( 2axqδ  in Eq. (4.36) are estimated through FEM 

computations along the middle-axis ( 2hy= ) of the FE model (Appendix A3.2), following 

the resulting trend sketch depicted in Fig. 4.12. It is thus quite accountable that each of the 

above displacement field includes a term associated to the central load P , plus a second 

one coupled with the distributed load q , in such a way that, 

)2,1(,),(),(),( =+= iaxaxax iqqiqPiq δδδ  (4.37) 

)2,1(,),(),( =+= iqaxPax iqqiiqP λλ  (4.38) 

with both quantities ),( iqP axλ  and ),( iqq axλ  denoting normalized compliance functions 

( Lx<<0 ) computed for crack lengths 0aa≥ , as performed through Eqs. (4.22) and (4.23), 

for a given equivalent crack length a . 

 The term PUδ  in Eq. (4.34) refers to the complementary energy of the applied load P  

(Fig. 4.11), which is computed through, 

)(
2

1
)(

2

1
1mod12mod2 aPaPU P δδδ −=  (4.39) 

while the complementary energy of the distributed load qUδ , corresponding to the 

specimen self-weight  (the last term of Eq. 4.34) is evaluated as follows, 

[ ]∫ −=−=
L

qqqqq dxaxaxqUUU
0 1212

),(),(
2

1 δδδ  (4.40) 
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Figure 4.12 Schematic representation of the vertical displacement fields (absolute 
values) obtained for the SEN-TPB specimen along the middle-axis corresponding 
to two consecutive points of the load-displacement curve ( hL 6= ). 
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Consequently, one can demonstrate the equality (from Eq. 4.36), 

qq WU δδ
2

1=  (4.41) 

The quantity )( PP UW δδ −  reported in Eq. (4.34) can be estimated combining Eqs. 

(4.35) and (4.39), 

[ ])()(
2 2mod1mod

21 aa
PP

UW PP δδδδ +
−

=−  (4.42) 

which corresponds to the filled area represented in Fig. 4.11 for the equivalent crack length 

1a , as proposed by Morel S et al. (2005).  

Additionally, according to the Maxwell’s reciprocal theorem ( ijji λλ = ) one can 

establish the equality (Datoo MH 1991), 

)(),(
0

adxax Pq

L

qP λλ =∫  (4.43) 

which visibly gives rise to the simplification of the problem since it is not required to 

estimate the four compliance functions defined through Eqs. 4.20 - 4.23, but only three of 

them. 

On the other hand, Eq. (4.34) establishes 

qPqqPP EEUWUWE δδδδδδδ +=−+−= )()(  (4.44) 

where PPP UWE δδδ −=  and qqq UWE δδδ −= .  

Therefore, for a given elastic crack length a , the energy released during an 

infinitesimal crack extension aδ , is obtained dividing both terms of Eq. (4.44) (i.e., PEδ  

and qEδ ) by the infinitesimal crack surface (i.e., abδ ), such that 

)()()()( aRaGaG
ab

E

ab

E
aG qP

qP =+=+=
δ

δ
δ

δ
 (4.45) 

 

Through Eq. (4.45) it is stated that the energy release rate )(aG  equalizes the Resistance to 

crack growth )(aR .  
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An ordering of the whole Formulary has been typed in Appendix A4.2 to provide a 

more comprehensive way to follow the main steps of the proposed algorithm (based on the 

Exact self-weight compensation method).  

The validation of the proposed method used to take into account the structure self-

weight in specimens of non-negligible sizes D  is well worth doing, to prove the adequacy 

of the proposed method to measure accurate fracture parameters (i.e., given by the R-curve) 

in quasibrittle materials. With such a purpose, the self-weight compensation method may be 

applied to a set of load-displacement curves obtained through the cohesive crack modelling 

for a given fG  (Fig. 2.7). The validation might be settled in the basis of fGG =Rc , since 

this is the only valid worth noticed fact. Additionally, a comparison might be made 

regarding the evaluated R-curve provided by each method used to perform the self-weight 

compensation (Sections 4.3.2 and 4.3.3). The uncompensated method used in Section 2.3 

might be used for comparison. This corresponds exactly to what is reported and discussed 

in the following Section. 

4.3.3.3 Cohesive crack modelling validation 

In the following a description of the proposed R-curve validation procedure is made 

using the FE-mesh exhibited in Fig. A3.2.1 (Appendix A3.2), setting h  to mm210 . The 

distributed load q  has been chosen to correspond to several density values ρ  contained in 

the interval [ ] 3mkg700,300 . Hence, a cohesive zone has been modelled by means of 

interface finite elements (de Moura MFSF 1997) through a made up line-crack disposed 

along the central section, in the specimen ligament length. As previously carried out in this 

Thesis, the bilinear stress-softening model proposed by Petersson PE (1981) was used to 

simulate crack growth in spruce. A set of cohesive properties has been chosen (following 

Fig. 2.7, mm045.0=bw , MPa63.0=bf , MPa1.2=tf  and mmN1.0=fG ) to assure the self-

similar crack propagation in a given range, as duly discussed in Chapter II. The elastic 

properties used in the in-plane strain FE analysis are exhibited in Appendix A3.2. The 

loading process was planned in two independent steps: (a) the first one, through a 

distributed load q  corresponding to the specimen own-weight (agreeing with the material 
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density ρ ); while (b) the second one, has been performed through a prescribed vertical 

displacement δ , with the first solicitation (i.e., q ) constantly applied on the specimen.  

Accordingly, load-displacement curves were obtained from numerical simulations of 

the SEN-TPB test using the set of material densities ρ  listed in Fig. 4.13. This plotting 

shows that increasing values of the material density ρ  give rise to higher displacement 

values which resulted from the accommodation of the specimen to the structure own-

weight, i.e., )( 0aPqδ , prior to the second loading (i.e., displacement) step (b). The FEM 

computations revealed that the initial compliance )( 0exp aλ  is not affected by the material 

density ρ  used in the cohesive modeling (as expected from Eq. 4.26). Another conclusion 

arising from this study is related to the fact that nor just the ultimate load decreases with the 

material density, but also the energy corresponding to the area under  the load-displacement  

 

0 0.5 1 1.5 2 2.5 3 3.5

Displacement, δ  (mm)

0

50

100

150

200

250

300

350

Lo
ad

, δ
  (

N
)

300 kg/m
3

400 kg/m
3

500 kg/m
3

600 kg/m
3

700 kg/m
3

δ
Pq

(a0)
 

Figure 4.13 Load-displacement curves obtained through FEM computations 
(Appendix A3.2) for densities in the interval [ ] 3mkg700,300  using 

210=h  and 60=b  (mm), according to Fig. 4.1. 
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curve [i.e., the integral ∫
c

Pq a
dP

δ

δ
δδ

)( 0

)( ] required to conduct the total rupture, decreases with 

ρ . Figure 4.14 reports the trend of the extent of the cohesive zone cohl   as a function of the 

numerical (i.e., the real) crack length obtained for the simulated set of material densities. 

According to these results a critical extent of the cohesive zone ccohl  is clearly revealed 

when the material   density   is   set   to   300 kg/m3  ( ccohl  ≈ 19 mm). One may also 

observe that simulations performed with higher material densities provide the same critical 

extent (i.e., ccohl ) before the crack propagation onset (i.e., for mm1050 == aa ), whereas 

the amplitude of the interval of the numerical crack length for which this extent remains 

unchanged, radically decreases with the material density when crack propagates (i.e., for 

0aa > ). This behaviour signs the confinement of the cohesive zone with the increase in ρ . 
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Figure 4.14 Evolution of the numerical FPZ extent with the numerical crack 
length for densities in the interval [ ] 3mkg700,300  using 210=h  and 

60=b  (mm), according to Fig. 4.1. 
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The set of load-displacement curves exhibited in Fig. 4.13 has firstly been used in the 

context of the self-weight compensation by means of the methodology based on the 

evaluation of the load equivalent to the specimen self-weight (Section 4.3.2) to evaluate 

corresponding R-curves. The method requires the previous verification of the condition 

established by Eq. (4.8), namely the constancy of the ratio )()(
** αλαλ PPPq  over an 

interval [ ]expl0 , aaa ∈ , together with the reset (Fig. 4.7) of the load-displacement curve 

after the equivalent load qP  evaluation, as properly reported in Appendix A4.3. In regards 

to the numerical compliance functions  )(* αλ PP  and )(* αλ Pq , the FEM computations 

provided the set of polynomial functions  exhibited  in  Appendix  A4.4.  Subsequent  

evaluations  of  the numerical (i.e., for 0.1=ψ ) R-curve associated to each density in the 

interval [ ] 3mkg700,300  led to the plotting  shown  in  Fig. 4.15, using the equivalent 

LEFM approach proposed by Morel S. et al. (2005) (also detailed in Section 2.3). It is 

noticed that the horizontal asymptote revealed by the set of Resistance-curves (Fig. 4.15) 

overestimates the critical energy release rate RcG  in 2.3%. This surplus in RcG  once 

compared with the value of fG  used as input in the CCM, is naturally found irrelevant. 

Nevertheless, one can not exclude the possibility that higher differences might be obtained 

if one would have used higher values of the material density ρ , as well as different 

combinations of Young modulus E  (namely TE ). One also observes that the evaluated R-

curve does not depend on the modeled material densities. 

Figure 4.16 on its turn, shows the evolution of both quantities reported in Eq. (4.45) 

against the equivalent crack length a  for each material density ρ  using the exact self-

weight compensation method (Section 4.3.3). As reported (Fig. 4.16), both energy release 

rate functions evolve monotonically towards a horizontal asymptotic value. Indeed, in the 

early stage of the crack propagation (i.e., for 0aa≅ ) it is noticed that the strong reduction in 

the amount of energy due to the distributed load equivalent to the self-weight )(aGq , is 

compensated by an equivalent increase in the energy associated to the external central load 

acting on the specimen )(aGP . Hence, according to Eq. (4.45) the resulting energy release 

rate  )(aG   in this extent (i.e., for 0aa≅ ) is essentially that which elapses from the material  



Experiments on Size Effect      Chapter IV 

122 

0

0.02

0.04

0.06

0.08

0.1

0.12

105 115 125 135 145 155 165 175 185 195 205

Equivalent crack length, a  (mm)

E
ne

rg
y 

re
le

as
e 

ra
te

 
G

R
(a

) 
  

(N
/m

m
)

d = 0.3

d = 0.4

d = 0.5

d = 0.6

d = 0.7

300 kg/m3

400 kg/m3

500 kg/m3

600 kg/m3

700 kg/m3

 

Figure 4.15 R-curves obtained for material densities in the interval 
[ ] 3mkg700,300  with 210=h  and 60=b  (mm), according to the 
method of the Load equivalent to the specimen self-weight (Section 4.3.1). 

own-weight, as intuitively expected. As the equivalent crack length a  progresses the term 

)(aGq  nearly vanishes in an initial phase, turning increasingly higher again with the 

reduction of the crack ligament. The trend exhibited by the energetic term )(aGP , in turn, 

somehow compensates the later (i.e., )(aGq ), leading to mmN1.0Rc)( == GaG , used as 

input value as one of the cohesive properties. 

At last, executing the sum of both functions )(aGP  and )(aGq  reported in Eq. (4.45) 

one gets the plotting exhibited in Fig. 4.17. It turns clear from the estimation of the 

exhibited plotting that the R-curve is independent of the (simulated) material densities ρ . 

Furthermore, the energy release rate )(R aG  being obtained under self-similar crack 

propagation revealed an undoubted horizontal asymptote for mmN1.0 , i.e., corresponding 

precisely  to  the  value  of  fG   used  as  input in the cohesive model (i.e., the softening 

diagram shown in Fig. 2.7). 
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Figure 4.16 Evolution of )(aGP  and )(aGq using material densities in the 

interval [ ] 3mkg700,300  with 210=h  and 60=b  (mm), following the 

exact self-weight compensation method (Section 4.3.3). 
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Figure 4.17 R-curves obtained for material densities in the interval 

[ ] 3mkg700,300  with 210=h  and 60=b  (mm), following the Exact 

self-weight compensation method (Section 4.3.3). 
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In short, in view of the results revealed in the present Section, it is possible to conclude 

for the  adequacy of the Exact self-weight compensation method detailed in Section 4.3.3  

to evaluate the R-curve, when the specimen self-weight plays an important role in the SEN-

TPB structure. Consequently, barely this method deserves attention in the following 

Sections of this Thesis in what regards the evaluation of the R-curve in wood. 

It should be emphasized that the purpose of these numerical simulations was barely to 

test for the accuracy of the developed algorithm to retrieve the right value of RcG  (i.e., 

fGG =Rc ), together with the accurate progress of the corresponding R-curve, taking into 

account the effect of the specimen self-weight. Therefore, no concern has been devoted into 

the seeking of the true set of cohesive properties which would retrieve appropriate fittings 

of a given set of experimental  P-δ curves (as duly discussed in Chapter II and in Dourado 

N et al. 2008). 

The evaluation of the R-curve, with no regard to the self-weight compensation, by 

means of the equivalent LEFM approach (Section 2.3), has also been conducted with the set 

of load-displacement curves obtained in the cohesive crack modelling (Fig. 4.13) after the 

zeroing operation. The obtained plotting shown in Fig. 4.18 emphasises the great 

importance of the proposed (numerical) correction, as the evaluated R-curves are far from 

revealing the right value of fG  used as one of the input cohesive properties. It is shown 

that as the material used in the simulations increases in density ρ , the retrieved plateau is 

less distinct and the obtained asymptotic value less important. 

Bearing in mind the main aspects issued from the Quasibrittle Fracture modelling 

discussed in Chapter II regarding the development of the FPZ, together with the derivation 

of the energetic size effect law, based on the equivalent LEFM and the asymptotic analysis, 

treated in Chapter III, as well as the methodology just detailed (and validated) to take into 

account the structure self-weight when the R-curve is to be evaluated, one can consider that 

the indispensable conditions (numerical tools) have been gathered to put into practice the 

Size Effect Study on the experimental data. That is precisely the aim of the next Section. 
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Figure 4.18 R-curves obtained for material densities in the interval 
[ ] 3mkg700,300  with 210=h  and 60=b  (mm), for the uncompensated 
approach presented in Section 2.3. 

4.4 Results of the Size Effect experiments: discussion 

4.4.1 Variability and sampling 

With the purpose to eliminate the size effect among the specimens used in the 

experiments, an evaluation of the unitary compliances [i.e., )( 0exp abλ ] has been 

performed, thus providing a way to compare the whole specimens in regards to the material 

elastic response. Hence, observing the plotting of the unitary initial compliances obtained in 

the experiments (ANNEXE) for the set of specimens which exhibited an undoubted plateau 

on the Resistance-curve, shown in Fig. 4.19, it is clearly put into evidence that a strong 

scattering does exist in the tested material.  

Though a careful selection of the raw material has been carried out in the specimens 

preparation, revealed by the material density spectrum exhibited in Appendix A4.5 (Fig. 

A4.5.1), as well as with watchful machining operations (wood dully aligned, free from 

300 kg/m3 
400 kg/m3 

500 kg/m3 
600 kg/m3 
700 kg/m3 
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notches and natural imperfections), and adequate warehousing in every stages of the 

specimens preparation, the results will certainly render the dispersion shown in Fig. 4.19. 

A possible cause for the noticed scattering is the well known spontaneous micro-crack 

propagation which occurs during the drying process in wood. Indeed, the humidity 

concentration gradients which occur in the material during the drying process lead to the 

internal stress field formation with the micro-cracking phenomenon being the most serious 

consequence of this natural phenomenon. Consequently, a damaged domain is very likely 

to exist due to the natural drying process of wood pieces during the sequence of machining 

operations. This phenomenon is particularly noticed in the selected specimen orientation 

(Fig. 4.1) according which fracture is induced in the TL system, since the micro-cracking 

phenomenon during wood natural drying processes occurs preferably along the longitudinal 

(L) axis. Hence, in addition to the Size Effect influence which is expected to arise from the 

experiments, it is necessary to account for the material it-self, since the initial damage state 

is not the same for the whole specimens. This being the case, different and unknown drying 

stories may have occurred with the raw material, leading thus to a sampling problem 

among the specimens selected for testing. 
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Figure 4.19 Unitary initial compliances obtained in the experiments 
showing the huge scattering of the tested material. Printed labelling is in 
accordance to Table 4.1 
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The wooden boards selected for the specimens’ preparation presented at the origin 

different sizes (cross-sectional dimensions) according to the final dimension required by the 

series for which they were intended for. Accordingly, boards presenting smaller cross 

sectional  areas  were  chosen  for  those series which required the preparation of specimens 

with  smaller  dimensions  (e.g., mm35=D  and  smaller in  Fig. 4.1  and  Table 4.1), 

while specimens with higher cross-sectional areas ( mm210=D  and bigger) were 

machined from those beams which presented extreme dimensions (commercially available). 

Measurements performed on wood boards’ surface during the raw material provisioning 

revealed values between 11 and 13% for the RH. Since it was necessary to reduce the 

original cross-sectional dimensions in every wooden boards selected to prepare the testing 

specimens, the whole material involved in the experiments had to undergo a natural drying 

process (conditioning at 20°C and 65 RH until equilibrium as referred in Section 4.2) 

during the specimens preparation.  

4.4.2 Estimate of the R-curves (Exact self-weight compensation) 

The load-displacement curves obtained (under displacement control) in the experiments 

have been printed in Appendix A4.1. Figure 4.20 shows the plotting of the Resistance-

curves which exhibit an undoubted plateau, by means of the Exact self-weight 

compensation method (Section 4.3.3) with the compliance calibration functions )(* aPPλ  

and )(* aPqλ  shown in Appendix A4.4. In order to dispose of a general view of the R-curve 

evolution with the specimen characteristic size D  (yet in homothetic SEN-TPB structures), 

the mean values of RG  have been plotted in Fig. 4.21 as a function of the relative crack 

length Da=α , suggesting that a non-negligible difference in terms of RG  may exist 

when similar structures of different sizes D  are compared. Figure 4.22, on its turn, shows 

the influence of the specimen size D  on the mean critical energy release rate RcG  obtained 

in the experiments for those specimens which exhibited an undoubted plateau on the R-

curve (consult the ANNEXE). Hence, though a huge scattering is recognized to arise from 

the evaluated R-curves (Fig. 4.20 a-f), also confirmed by a non-negligible coefficient of 

variation (COV) of  the  energy release rate associated to the ultimate load )( uR αG , as well  
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Figure 4.20 Resistance-curves obtained in the experiments after application of the Exact 
self-weight compensation method (Section 4.3.3). The plotting shows the curves which 
exhibit an irrefutable plateau. Exhibited graphics correspond to specimen characteristic 
dimensions: (a) 280=D mm, (b) 210=D mm, (c) 140=D mm, (d) 70=D mm, (e) 

35=D mm and (f) 3.23=D mm, as listed in Table 4.1. 
 

as the critical energy release rate RcG  (Table 4.2), one observes that the relative crack 

lengths associated to these energy release rates (i.e., uα  and cα ) however, are  significantly 

less perturbed  by the  scattering. This  ultimate experimental  observation  seems to suggest  
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Figure 4.21 Mean R-curves obtained in the experiments. Labelling is in 
accordance with Table 4.1. Series labelled in parenthesis has no statistic 
meaning since only one R-curve has been obtained for this size. 
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Figure 4.22 Mean values of the critical energy release rate RcG  obtained in 
the experiments (see ANNEXE) for the specimens which exhibited an 
undoubted plateau on the R-curve. 

that both parameters uα  and cα  slightly increase with the raise of the specimen size D . 

Nevertheless, this observation is in complete disagreement with the conclusions drawn 

from the Cohesive Crack Modelling presented in Section 3.3 (namely Table 3.2). Indeed, 
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those computations indicated the opposite trend, with both uα  and cα  (with 

0c a+= θα ) decreasing  with  the  raise  of D . One should  notice however that the 

suspicions regarding the evolution of both parameters uα  and cα  (Appendix A4.5), 

ought  to  be  confirmed  through additional  experimental data  provided with  specimens  

Table 4.2 Resume of mean values obtained in the experiments according to structure sizes 

printed in Table 4.1. Values in parenthesis represent COV in percentage (consult the ANNEXE 

and Appendix A4.5 for more details). Listed parameters represent: ψ , multiplicative correction 

factor; )( 0exp aλ , initial experimental compliance; uP , ultimate load; uα , relative crack length 

corresponding to uP ; )( uR αG , energy release rate associated to uP ; cα , relative crack length 

associated to the critical energy release rate; RcG , critical energy release rate; θ , relative critical 

crack length of the FPZ; β , curvature exponent of the raising portion of the R-curve; *uα , single 

solution of uα  (as in Figure 3.1). Dac∆=θ  and 0cc aaa −=∆  

D 
(mm) 

ψ  )( 0exp aλ  

(10-3mmN-1) 

ρ (12%MC) 
(kg m-3) 

uP  
)(N  uα  )( uR αG  

(Nmm-1) 

280 
1.01 
(20.4) 

3.69 
(21.9) 

453.45 
(21.4) 

464.7  
(18.8) 

0.593 0.156 

210 
1.06 
(17.3) 

4.37 
(17.3) 

405.18 
(11.7) 

397.6 
(31.2) 

0.570 
(4.2) 

0.198 
(56.4) 

140 
1.07 
(26.3) 

6.68 
(20.1) 

418.35 
(12.5) 

210.5 
(19.6) 

0.541 
(2.2) 

0.189 
(12.3) 

70 
1.01 
(22.1) 

8.63 
(22.1) 

425.80 
(10.0) 

93.9 
(15.2) 

0.544 
(2.2) 

0.141 
(21.6) 

35 
1.02 
(15.9) 

21.31 
(15.9) 

369.49 
(4.7) 

30.8 
(9.5) 

0.537 
(2.0) 

0.140 
(27.4) 

23.3 
0.95 
(16.7) 

22.11 
(16.7) 

415.62 
(10.1) 

18.5 
(9.6) 

0.540 
(4.0) 

0.117 
(20.7) 

 

D 
(mm) cα  θ  ca∆  

(mm) 
RcG  

(Nmm-1) 
β  *uα  

280 0.744 0.244 68.3 0.341 0.64 0.582 

210 
0.731 
(5.3) 

0.231 
(5.3) 

48.5 
0.336 
(63.7) 

0.40 0.557 

140 
0.665 
(11.4) 

0.166 
(11.4) 

23.2 
0.195 
(36.4) 

0.23 0.535 

70 
0.683 
(9.4) 

0.183 
(9.4) 

12.8 
0.182 
(19.9) 

0.19 0.528 

35 
0.641 
(9.1) 

0.141 
(9.1) 

4.9 
0.171 
(22.9) 

0.21 0.537 

23.3 
0.661 
(5.6) 

0.161 
(5.6) 

3.8 
0.154 
(17.8) 

0.24 0.525 
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with higer sizes D . Hence, no absolutely conclusive remark can be made in regards to the 

evolution of  uα  and cα  with the characteristic size D  obtained in the experiments (i.e., 

sampling problem among the specimens selected for testing as reported in Section 4.4.1). 

A description regarding the details of the mean values evaluation of the curvature 

exponent of the R-curve β ,  the single solution of uα  (i.e., *uα ), and corresponding limits 

(i.e., minD  and cD ) necessary to outline the log-log plotting in the context of the Size Effect 

study, is made in Appendix A4.4. As to the energy release rate associated to the ultimate 

load )( uR αG , though strongly affected by scattering (values in parenthesis in Table 4.2), 

the experimental data seems to indicate the increasing trend with the raise of the structure 

size D . This being the case, the results issued from the cohesive crack modelling (Section 

3.3, namely Table 3.2) are in agreement with the experiments. 

The plotting of the size effect on the nominal strength )(DNσ   represented in Fig. 4.23 

has been made using the mean values represented in Table 4.2 and Table A4.4.2 (Appendix 

A4.4), for each tested size D . The outlined envelop circumscribed by the hidden-lines 

corresponds to what can be estimated for the size effect on the nominal strength )(DNσ  in 

wood (spruce), when the R-curve is known. Indeed, this is the pattern shape of what is 

expected for a material such as wood. The inflected shape revealed by the circumscribed 

domain is not surprising, since it integrates the intermediate size range estimated through 

the derivation of the energetic Size Effect Law (Section 3.2), and the domain of LEFM. 

Table 4.3 reports the set of results which permit to justify the progress verified in the 

nominal strength )(DNσ  through the bilogarithmic plot of Fig. 4.23, namely those which 

are estimated through Eqs. (3.17) and (3.18) for the domain of LEFM and for the 

intermediate size range, respectively.    
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Accordingly, both  ratios: [ ] )()( *u0*u αααφ β gE −′  and  )()( 0Rc αgGE′  were 

calculated in Table 4.3 and outlined in graph of Fig. 4.24.  

It should be noted that the envelop outlined in Fig. 4.23 renders possible to estimate the 

approximately ratio of  0.13  in the )(log10 DNσ  between the highest and the smallest 

value estimated for the LEFM regime. Therefore, though affected by the noticed sampling 

problem (Section 4.4.1), the evaluated ratio yields roughly 35%, which is quite acceptable 

in view of the scattering normally associated to the estimate of elastic and fracture 

parameters in wood. 
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Figure 4.23 Envelop (hidden line) estimated for the size effect on the nominal 
strength in wood spruce using the mean values obtained for each tested series (Table 
4.2 and Table A4.4.2 in Appendix A4.4). 
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Table 4.3 Results obtained in the size effect study for the experimental data. Parameters: E′ , 

Longitudinal elastic modulus ( *EE =′  as defined in Appendix A3.1); RcG , Critical energy release 

rate; *uα , Single solution of uα ; )( 0αg , Dimensionless energy release rate function; 

)()( 0Rc αgGE′ , Ratio of Eq. (3.17) characterized by LEFM; )]*(/[])*([
u0u

αααφ β gE −′ , 

Ratio of Eq. (3.19) used to estimate the nominal strength in the intermediate size range 

Series E′  
(MPa) 

RcG  
(Jm-2) *uα  )( 0αg  )( *uαg  )( 0

Rc

αg

GE′
 

(N2/m3)1/2 

)(

)(

*u

0*u

α
ααφ β

g

E −′
 

[N2/(m3+β)]1/2 

280=D   476.17 341 0.582 305.94 455.23 23038 15390 

210=D  552.9 336 0.557 291.00 380.19 25266 20826 

140=D  526.0 195 0.535 294.39 302.61 18666 19366 

70=D  710.1 182 0.528 273.87 267.59 21723 24245 

35=D  583.0 171 0.537 255.07 292.43 19770 22750 

3.23=D  709.6 154 0.525 227.16 231.93 21933 28484 
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Figure 4.24 Progress of ratios used to estimate the nominal strength according to Eq. 
(3.17) and Eq. (3.18), showing the calculated limits for each ratio, according to the 
estimate performed for the structure sizes 3.23210 =−= DD  (mm) in Table 4.3.   
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Hence, taking notice of the sketched out envelop of Fig. 4.23, as well as of the set of 

parameters used to characterize in full the R-curve in wood spruce [i.e., RcRcRc GGG ∆±= ; 

)( ccc aaa ∆∆±∆=∆  and βββ ∆±= ], together with the dimensionless energy release rate 

function )(αg , it turns possible to estimate the single solution of uα , and thus estimate 

accurately the intermediate size regime, from a single size D . 

In short, the analysis of the experimental data revealed the existence of a sampling 

problem denoted by the scattering of the initial unitary compliance, concluding for the 

existence of different initial damage state in the raw material used to carry out the testing. 

This being observed, the estimate of the asymptotic behaviour previewed for the 

intermediate size range, has been performed through the energetic size effect approach, 

based on the mean Resistance-curve estimated for each experimental series. The size effect 

on the nominal strength (in spruce) rendered possible to estimate an envelop on the bi-

logarithmic scale, issuing a strength ratio estimate of approximately 35% between the 

highest and smallest value previewed for the structure size of major size D  (according to 

the size effect regime previewed for LEFM). 

As a final remark, it should be emphasised that most of the observations issued from the 

exposed approach (namely in Chapters III and IV) might be viewed in the context of any 

other material which exhibits a quasibrittle behaviour. 
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Conclusions 

The quasibrittle behaviour of notched structures has been brought into the discussion in 

the opening Chapter of this Thesis, focussed on the observation of different stages of the 

development of a large Fracture Process Zone (FPZ) taking place during the crack 

propagation. It has been seen that the main consequence of the development of this large 

FPZ is the increase in the resistance to crack growth during failure, rousing from stress 

redistributions and stored energy release, thus leading to what came to be known as the 

Resistance-curve (R-curve). Focussed on the revealed curve shape, it has been seen that 

following the ascending branch, for which the resistance to crack growth increases with the 

crack length, the R-curve reaches a plateau, which denotes that the influence of the 

toughening mechanisms is not indefinite.  

Finite Element simulations involving the cohesive crack modelling were then 

mentioned as a suitable method to mimic the quasibrittle fracture. The simulations gave rise 

to the establishment of the relation between the attainment of the critical extent of the 

cohesive zone and the plateau value of the R-curve. This being verified in the following 

Chapter, it has been underlined the importance of the ligament length to estimate accurately 

the plateau value of the R-curve. The consequence of the Resistance-curve behaviour of 

quasibrittle materials has then been addressed to the effect of the structure size on the 
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structure nominal strength. Particular attention arouse from the observation that in the 

intermediate size ranges, the size effect on the nominal strength is obtained from the fitting 

of two asymptotic regimes (provided by the Bažant’s Size Effect Law on the Strength 

Theory and LEFM), giving thus rise to the study of this regime in a subsequent Chapter of 

this Thesis. 

In Chapter II fracture (Mode I) has been induced through three-point-bending (TPB: 

under displacement control) in two wood species used in timber construction: Maritime 

pine (Pinus pinaster Ait.) and Norway spruce (Picea abies L.). Load-displacement curves 

were experimentally obtained and the R-curve has been estimated through a recently 

proposed LEFM equivalent approach. A bilinear cohesive law based on characteristic 

material (stresses and crack opening) as well as energy ( fG ) parameters has been adopted 

to simulate damage in the studied wood through interface FE disposed along the crack path. 

A developed inverse method based on Genetic Algorithms was employed to seek the 

parameters of the chosen cohesive law and a fine agreement between both numerical and 

experimental load-displacement (and Resistance) curves was achieved, thus demonstrating 

the soundness of the proposed model to evaluate cohesive crack properties. Further FEM 

simulations were performed using identified constitutive law parameters to evaluate the 

extent of the cohesive zone in TPB, for both wood species. Superposition of bilinear 

diagrams relied on gathered mean values taken from the inverse analysis revealed that the 

ultimate stress in Maritime pine is twice as big as in Norway spruce, and arouse suspicions 

that the critical cohesive zone extent in spruce might be more important than in pine. Both 

wood species were compared referring to released energies during crack propagation, with 

pine turning out to release twice as more energy in micro-cracking than in fibre-bridging. 

Performed FEM simulations in Norway spruce confirmed the later suspicion revealing a 

cohesive zone extent largely greater to the one obtained for pine. Consequently, it was 

observed that FPZ development in pine is less affected by boundary effects than spruce. 

Based on the mean trend revealed by the FEM data, a critical value of the cohesive zone 

extent has been approximately quantified for pine, which led to convincing RcG  results. 

Contrarily, the FPZ extent in spruce was found to be affected by boundary conditions since 

the early stage of crack propagation. As a result, this leads to the non-self similar 

propagation process, which may explain the slender rising trend observed in the R-curve of 
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spruce (i.e., practically an absence of plateau value on the resistance to crack growth for the 

tested specimen size). This remark addressed to the definition of an adequate ligament size 

(i.e., critical size) to avoid spurious boundary effects on the measured RcG  values, if size 

effect studies are to be carried out in spruce. This is a general conclusion which may be 

drawn to other quasi-brittle materials, presenting a significant FPZ length. 

In the third Chapter, the size effect study on the ultimate fracture properties of notched 

structures has been performed on an energy based asymptotic analysis. Once verified that 

the R-curve is unique an analytical expression has been used to characterize the resistance 

growth (i.e., the R-curve) the investigations have been focussed in the scaling on both the 

relative crack length at the peak load and the corresponding resistance to crack growth. 

Among the conclusions emerged from the study involving intermediate structure sizes, one 

may detach the observed decreasing in the relative crack length at the peak load with 

respect to the structure size, and corresponding rise in the resistance growth. These 

observations led to the reported statement of the size effect on the nominal strength for both 

small and large structure sizes in agreement with the Bažant’s Size Effect Law (SEL), 

though contrasting with the simple crossover regime previewed by the SEL, since an 

additional asymptotic regime is developed for intermediate sizes. In regards to this 

observed asymptotic regime, the evolution of the nominal strength with the structure size 

D  has been quantified as a function of the R-curve curvature. As yet to the intermediate 

structure sizes, the performed cohesive crack modelling (CCM) involving geometrically 

similar structures of different sizes (single-edge-notched beam loaded in three-point-

bending: SEN-TPB) put into evidence that the developed asymptotic regime can widen 

from 1 decade, if the R-curve curvature is found slight, up to more than 3 decades, if the R-

curve exhibits a very pronounced curvature. The safety design of structures has been 

addressed with the optimal solution being provided by the SEL, given that the fitting is 

performed using the evaluated nominal strength as well as the critical energy release rate 

values, for accurate positioning of the LEFM’s asymptote. Both later extents were 

estimated by means of a fracture test involving a single structure size. The proposed 

method appears thus more suitable to predict the position of the LEFM’s asymptote than 

the one which is based on the maximum nominal strength, estimated for structures of small 

size, in the domain of the strength theory. 



Conclusions 

138 

The ending Chapter has been reserved for the presentation of the experimental results 

obtained in the size effect study in wooden notched structures (SEN-TPB) following the 

proposed methodology exposed in preceding Sections. The self-weight compensation, first 

emerging as a crucial standard to the accurate evaluation of fracture parameters in 

structures of non-negligible size (mass), motivated the proposal of two methods based on 

FEM computations and the recorded experimental data. The first method was presented on 

the kinematic approach basis of a load equivalent to the specimen-self-weight (LSSW), 

defined as a function of compliance polynomials obtained with the distributed load acting 

on the specimen, and with the central load acting on the mid-span. The evaluated 

compliances, being determined through FEM computations, were used to perform the 

numerical zeroing (i.e., shifting) operation of the load-displacement (δ−P ) curve, setting 

the new origin along the experimental linear elastic domain. A recently proposed equivalent 

LEFM approach was then applied to estimate the corresponding R-curve making use of the 

previously modified (i.e., shifted) δ−P  curve. In regards to the second method, expressly 

designated Exact self-weight compensation method (ESWCM), the numerical zeroing (i.e., 

shifting) operation of the δ−P  curve occurred subsequently to the evaluation of the 

displacement elapsed from the specimen accommodation on the supports, due to the self-

weight, prior to the fracture test. This correctional extent, being estimated through FEM 

computations for the distributed load corresponding to the specimen self weight (SSW), 

was performed prior to the material damage onset. Additionally, the elastic strain energy 

release was assessed from the complementary energies and the work attributed to the 

distributed load associated to the SSW and to the external applied load. The corresponding 

R-curve was estimated dividing the resulting elastic strain energy release by the 

corresponding infinitesimal crack surface extent. Both SSW compensation methods (i.e., 

the LSSW and the ESWCM) were compared through CCM using predefined cohesive 

crack properties, with merely the ESWCM to retrieve the exact critical energy release rate 

RcG  used as input. The noticed outcome has been hold as the validity prove that the 

ESWCM is adequate to evaluate exact fracture parameters in quasibrittle fracture, with 

subsequent computations of the R-curve being carried out by means of this method. 
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A sampling problem has been detected in regards to the experimental results, first 

revealed by the scattering of the initial unitary compliance, thus concluding for the 

existence of different initial damage state in the raw material used to carry out the 

experiments. Applying the (validated) exact self-weight compensation method to the whole 

experimental δ−P  curves obtained in the context of the size effect study, it has been 

noticed the slight rise in the mean value of the relative critical crack length of the FPZ θ , 

with the increase in the structure sizeD . The relative mean length associated to the peak 

load uα  in the experiments came into sight as following an identical increasing trend with 

D . The reported tenuous trends observed in the experimental data however, were not 

wholly followed by the cohesive crack modelling treated in Chapter III, since both uα  and 

θ  had shown a consistent contrary tendency in the CCM. In any case, considering just the 

data issuing from specimens which exhibited undoubted plateaux on the R-curve, the 

revealed mean trends shown in the experiments for uα  and θ , were not absolutely 

convincing, since barely the biggest specimen size D  seemed to force the mentioned 

performance. Thus, though affected by the matching problem, it has been decided to 

execute the numerical protocol proposed in Chapter III till the end, using the available 

experimental data.  

The raising portion observed in the estimated R-curves which presented undoubted 

plateaux obtained in the experiments revealed an increasing coefficient of curvature (i.e., 

β ) with the structure size D . This behaviour made possible to take notice of the increasing 

range of )( uR αG  with the structure size D , thus confirming the predictions issued from 

the CCM (Chapter III). Consequently, the size effect study on the nominal strength )(DNσ  

has been performed for each tested structure size D , revealing an envelop configuring a 

pattern shape composed by the superposition of both intermediate and LEFM regimes. The 

accurate definition of the intermediate size regime is thus possible to achieve, sufficing that 

the R-curve is known for a given specimen geometry. 

In short, it is assumed that the size effect matter is determined. Notwithstanding this, 

the remaining difficulty seems to prevail associated to the dependence of the cohesive crack 

properties on the structure geometry. 
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A2.1 Material 
 

Wood is a natural polymeric composite material which is heterogeneous, hygroscopic, 

porous and anisotropic, being its microstructure reflected on the macro-scale in its grain. 

Cells are formed of a series of layers made up of three organic components: cellulose, 

hemicellulose and lignin. The cell wall components are the structural members of the wood 

cell, and largely govern the physical properties of wood. Cellulose is the primary 

component of the cell wall. Structurally cellulose is a linear chain polymer forming long 

glucose units structurally composed by long threadlike elements known as microfibrils 

periodically arranged over the length into crystalline and non-crystalline portions, forming 

the basic structural elements of cell walls. Hemicellulose is a modified form of cellulose 

(Bodig J and Jayne BA 1982). Unlike cellulose, which is exclusively composed of long 

chains of glucose units, hemicellulose includes a variety of monosaccharide (Tsoumis G 

1991), appearing as individual molecules. Lignin is basically the adhesive that binds other 

components together and is the most hydrophobic component in the cell wall (Smith I et al. 

2003). Wood is regarded as a two-phase material with crystalline cellulose constituting the 

fibre while an arrangement of non-crystalline cellulose, hemicellulose and lignin is found to 

constitute the matrix (Bodig J and Jayne BA 1982). Compression and bending loads 

withstanding lead to interfacial coupling between wood cells inhibiting fibres from sliding 

past one another (Atkins AG and Mai YW 1985). In an undamaged state and once 

subjected to fairly low levels of stress during short duration room temperature, wood is 

markedly an elastic material (Smith I et al. 2003). With regard to time dependency wood is 

considered physically and mechanically as a non-linear material. Once sufficiently distant 

from the tree pith (Fig. A2.1.1) wood is found to exhibit an orthotropic behaviour, since the 

curvature in growth rings is neglected (Smith I and Vasic S 2003). Wood as a biological 

material has the ability to deliberately change local mechanical properties in growing 

structures ever since changes in load patterns are detected (Atkins AG and Mai YW 1985).  

Though mechanical properties can vary considerably both along the longitudinal (L) and 

radial (R) directions (Fig. A2.1.1), for the sake of simplicity in engineering design wood is 

assumed as transversally isotropic (plane RT). Harvesting and drying (Stanzl-Tschegg SE 

et al. 1995) processes may influence wood mechanical properties more than those of most 

other materials. Although drying stiffens and strengthens the material, it also makes it more 
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brittle, i.e. prone to fracture. Thus, it seems obvious that a deep understanding of 

fracture mechanisms is key to understanding the mechanical behaviour of wood. Very 

much to the purpose of the wood axis directions shown in Fig. A2.1.1, it is worth while 

to identify the fracture systems in wood, through the schematic representation of Fig. 

A2.1.2. 

 Longitudinal
    direction

  Radial
direction

 Tangential
   direction

 Pith

 

 

 

Figure A2.1.1 Axis directions in wood: Longitudinal (L), Radial (R) and Tangential (T). 
Adapted from Smith I et al. (2003). 
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Figure A2.1.2 Identification of wood fracture systems: (a) possible to obtain and (b) studied 
in this Thesis. 
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A2.2 Formulation of the inverse problem 
 

An inverse problem (IP) has been established as an Optimisation Strategy (OS) 

where the objective is to determine the bilinear parameters: bw , bf  and tf  (design 

variablesb ) which provide a numerical P-δ curve agreeing with the experimental P-δ 

curve (state variables z ). The OS was established by means of the 

Minimisation zDy ∈−−= zzzzzb with** )()()( T  (A2.2.1) 

subject to ( ) bbbb ≤≤=≤ ,,...,1,0
gj

Njg  (A2.2.2) 

in the domain zD . The vector of prescribed values is *z , gN  the number of 

constraints, b  and b  are the lower and upper bounds of the design variables (Table 

A2.2.1), respectively. A population of solutions { }t
n

t xxtP ,...,)( 1= was randomly 

generated constituted by ),..,1( kix t
i =  potential solutions, encoded according to a 

predefined data structure S. A fitness evaluation was performed according to how well 

each solution t
ix  fulfils the objective function )(by  defined in the problem. The binary 

format ( )2string  was chosen to encode b  in the domain [ ] RbaD iii ⊆= , . According 

to the precision p of each  design  variable  required  to  determine  )(by ,  the  length  

im   attributed to each variable is evaluated considering the smallest integer 

(Michalewicz Z 1999) such that: ( ) 1210 −≤⋅− imp
ii ab . 

Table A2.2.1 Lower and upper limits of the search domain attributed to each design variable 

Parameter 
Maritime pine Norway spruce 

Unities 
Lower limit Upper limit Lower limit Upper limit 

tf  1.500 8.000 0.500 4.000 (MPa) 

bf  0.005 3.000 0.005 2.000 (MPa) 

bw  0.005 1.500 0.005 1.500 (mm) 
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Each variable t
ix  from each chromosome ( ))(,...,1 tPopii =v  is decoded as follows 

( )
12

2 −
−

×+=
im

ii
i

t
i

ab
stringdecimalax  (A2.2.3) 

with ( )2stringdecimal  representing the hexa-decimal value of 2string . Estimate of 

)(by is  








∑ −== N

i
t

ij
z

iN
y 1

2
*z

1
)(b  (A2.2.4) 

with N representing the total number of points composing the numerical P-δ curve,  *z
i

 

a given  point  in the experimental P-δ curve (specimen  j), and t
iz  the P-δ curve 

generated in the analysis. Fitness was estimated in order to Maximize 

j
yFf i )()(

max
bb −= , with 

max
F  chosen to avoid negative values.  

Regarding the Selection operator, a Ranking involving the totality of chromosomes 

( ))(,...,1 tPopii =v  was then performed based on the evaluation of Eq. (A2.2.4), 

followed by a Scaling operation used to improve the sensitivity (Michalewicz Z 1999) 

of the algorithm, 






 −+=′ × σc

jjj
yyy )()()( bbb  (A2.2.5) 

with  c  chosen  as  a  small  integer, σ   is  the  standard  deviation  of  the current 

population jtP )( , and jy )(b the mean value of )(by  in the current population. A new 

Ranking of solutions was then performed and three subsets ( TS , MS , BS ) arranged into 

)(T tn , )(M tn   and  )(B tn   solutions  (Fig. A2.2.1). In  a  first  phase,  each solution of 

TS  mated with a selected solution of the same group or belonging to MS . In a second 

phase, MS  was divided into two equal subsets (MTS , MBS ) with )()( MBMT tntn =  

solutions (Conceição António CA and Dourado N 2002).  Subsequently, each solution 

of MTS  mated another   solution   from  MBS , thus  resulting  a  total  of  2/)(M tn   

couples  (Fig. A2.2.2). 
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Figure A2.2.1 Ranking of solutions in generation t showing subsets disposition: ST, SM 

and SB after the Ranking operation. Data represented by ),..,1(, kix lt
i =  are potential 

solutions composed by a combination of k design variables of the optimisation 

problem, in position l of the actual performed Ranking operation. The centreline 

divides the whole data in two equal halves. (In: Dourado N. et al. 2008). 

Solutions belonging to subset BS  were not approved to generate offspring. According to 

the Crossover operator, gene sr (offspring) is selected on a biased manner according 

which, gene su  is chosen from chromosome tix  with a probability of cp , 
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(A2.2.6) 

t
ix  and t

iy  are the chromosomes defined in Fig. A2.2.2. Mutation operator is used to 

perform transformations among the offspring with a predefined probability mp . 

nT(t) → ST 

nB(t) → SB 
 

nMT(t)  
 

nMB(t)  
 

nM(t) → SM 
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Figure A2.2.2 Couples resulting from Selection with the chromosomes display. 
(In: Dourado N. et al. 2008). 

Offspring is formed by 2/)()()( MT tntntns +=  solutions (Fig. A2.2.3.a), 

amounting to mtns ×)(  bits, and a consequent number ( ) ms pmtn ××  of potential 

equiprobable mutation occurrences per generation t . For each bit sf  constituting the 

lot )(tns , a random number r  is firstly generated in the interval ] ]1,0 , and a gene 

substitution is performed ever since mpr ≤ .  

The Elimination operator comprises the evaluation of the latest solutions 

(offspring) according to )(by  defined in Eq. (A2.2.4), and the reordination (new 

Ranking) of the entire population in the present generation t  (Fig. A2.2.3 a). Remainder 

solutions occupying the half-bottom positions in the list shown in Fig. A2.2.3(b) are 

eliminated, and the population size restored generating by chance a fitting number of 

solutions. Fig. A2.2.4 resumes the main steps of the developed IP. The stopping 

criterion is based on the relative variation of the best fitness value along a given number 

α  of generations. Table A2.2.2 resumes the set of genetic parameters used in the 

developed IP. 
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Figure A2.2.3 Arrangement of solutions performed by Elimination:  

(a) before and (b) after Ranking. (In: Dourado N. et al. 2008). 
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Figure A2.2.4 Sketch of the Inverse Problem. (In: Dourado N. et al. 2008). 
 

Table A2.2.2 Resume of genetic parameters. )(tPop : Population size; )(T tn , )(M tn  and 

)(B tn : Number of solutions of subsets TS , MS  and BS ; mp  and cp : probability of 

Mutation and Crossover; )3,2,1( =ip : Precision of each design variable required to 

determine the objective function )(by ; α : Generations counter used in the stopping 
criterion 
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A2.3 Fracture parameters 

In the following a complete record of the main fracture parameters is presented 

regarding Tables 2.2, 2.3, 2.4, 2.5 and 2.6 exhibited in Chapter II. 

Table A2.3.1 (Complete recording of Table 2.2) Resume of main values obtained in TPB for 
Pine wood. ψ : Multiplicative correction factor; )( 0exp aλ : Initial compliance obtained in 

experiments; uP : ultimate load; ua : elastic equivalent crack length at uP ; )( uR aG : energy 

release rate corresponding to uP ; ca : characteristic value of elastic equivalent crack length 

corresponding to the plateau value of the R-curve; RcG : plateau value of the R-curve 

Specimen ψ  ( )0exp aλ  

(10-3 mm/N) 
uP  

(N) 
ua  

(mm) 

)( uR aG  

(J/m2) 
ca  

(mm) 
RcG  

(J/m2) 
1 1.07 1.97 336.3 36.5 180.0 37.5 186.5 
2 1.23 2.24 367.9 36.0 233.6 36.8 240.2 
3 1.15 2.11 335.7 36.8 195.2 37.3 199.9 
4 1.25 2.29 342.5 37.3 233.4 38.1 245.9 
5 1.03 1.89 378.5 36.2 212.1 36.4 216.7 
6 1.27 2.31 353.0 36.8 240.3 38.4 257.6 
7 1.24 2.26 307.2 37.6 191.4 38.6 206.0 
8 1.26 2.29 314.4 36.9 189.9 37.9 199.9 
9 1.30 2.37 322.5 37.7 221.7 37.9 224.8 

10 1.17 2.12 301.4 37.5 170.8 37.8 173.0 
11 1.28 2.31 317.7 36.3 186.6 36.9 194.4 
12 1.28 2.34 287.1 37.1 164.3 37.3 165.7 

        

Average 1.21 2.21 330.4 36.9 201.6 37.6 209.2 
St. Dev. 0.09 0.15 26.1 0.6 24.8 0.6 27.5 

 

Table A2.3.2 (Complete recording of Table 2.3) Resume of main values obtained in TPB for 
Norway spruce. )( iR aG : Energy release rate at the slender rising trend segment of the R-
curve  

Specimen ψ  ( )0exp aλ  

(10-3 mm/N) 
uP  

(N) 
ua  

(mm) 

)( uR aG  

(J/m2) 
ia   

(mm) 
)( iR aG  

(J/m2) 
1 1.25 5.42 150.3 37.8 112.2 48.9 169.9 
2 1.33 5.79 138.1 36.9 93.2 46.0 124.9 
3 1.27 5.55 154.7 37.1 113.5 46.8 171.3 
4 1.26 5.52 138.7 36.7 87.5 43.4 118.5 
5 1.27 5.55 140.6 37.7 99.7 46.7 137.5 
6 1.01 4.38 156.1 37.8 98.2 50.0 150.8 
7 1.34 5.9 138.8 38.2 106.3 45.7 136.8 
8 1.29 5.65 150.3 37.3 110.2 45.6 165.1 
9 1.31 5.72 143.8 36.3 93.7 43.9 124.8 

10 1.26 5.51 148.0 36.9 101.1 44.9 141.6 
11 1.23 5.42 148.3 37.3 103.5 51.1 161.1 
12 1.21 5.29 142.2 38.1 100.1 51.3 132.5 

        

Average 1.25 5.48 145.8 37.3 101.6 47.0 144.6 
St. Dev. 0.09 0.37 6.1 0.6 7.7 2.6 17.8 
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Table A2.3.3 (Complete recording of Table 2.4) Comparison between numerical and 
experimental mean values obtained for Maritime pine 

 Numerical results Experimental results Error (%) 

Specimen 
Pu  
(N) 

GR(au) 
(J/m2) 

Pu  
(N) 

GR(au) 
(J/m2) 

GRc  
(J/m2) 

Pu  GR(au)  

1 335.5 178.6 336.3 180.0 186.5 -0.24 -0.78 
2 368.3 234.5 367.9 233.6 240.2 0.11 0.39 
3 335.2 186.1 335.6 195.2 199.9 -0.12 -4.66 
4 344.8 237.3 342.5 233.4 245.9 0.67 1.67 
5 378.5 217.5 378.5 212.1 216.7 0.00 2.55 
6 351.9 234.3 353.0 240.3 257.6 -0.31 -2.50 
7 307.7 182.2 307.2 191.4 206.0 0.16 -4.81 
8 315.6 188.9 314.4 189.9 199.9 0.38 -0.53 
9 323.2 209.1 322.5 221.7 224.8 0.22 -5.68 

10 301.3 166.7 301.4 170.8 173.0 -0.03 -2.40 
11 318.2 185.1 317.7 186.6 194.4 0.16 -0.80 
12 289.4 160.3 287.1 164.3 165.7 0.80 -2.43 

        

Avg. 330.8 198.4 330.4 201.6 209.2 0.15 -1.67 
St. Dev. 25.7 26.0 26.1 24.8 27.5   

 

Table A2.3.4 (Complete recording of Table 2.5) Comparison between numerical and 
experimental mean values obtained for Norway spruce 

 Numerical results Experimental results Error (%) 

Specimen 
Pu  
(N) 

GR(au) 
(J/m2) 

Pu  
(N) 

GR(au) 
(J/m2) 

RcG   

(J/m2) 
Pu  GR(au)  

1 152.5 110.3 150.3 112.2 169.9 1.46 -1.69 
2 138.0 94.4 138.1 93.2 124.9 -0.07 1.29 
3 157.2 118.7 154.7 113.5 171.3 1.62 4.58 
4 143.6 90.4 138.7 87.5 118.5 3.53 3.31 
5 144.5 89.5 140.6 99.7 137.5 2.77 -10.23 
6 161.3 97.3 156.1 98.2 150.8 3.33 -0.92 
7 142.3 101.9 138.8 106.3 136.8 2.52 -4.14 
8 152.7 111.3 150.3 110.2 165.1 1.60 1.00 
9 148.4 104.0 143.8 93.7 124.8 3.20 10.99 

10 152.6 110.2 148.0 101.1 141.6 3.11 9.00 
11 150.8 107.5 148.3 103.5 161.1 1.69 3.86 
12 143.3 92.2 142.2 100.1 132.5 0.77 -7.89 

        

Avg. 148.9 102.3 145.8 101.6 144.6 2.13 0.76 
St. Dev. 6.5 9.1 6.1 7.7 17.8   
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Table A2.3.5 (Complete recording of Table 2.6) Summary of main values (12 
specimens of each wood species) obtained in the inverse problem regarding the 
bilinear constitutive model (Figure 2.7). tf : ultimate stress value; bf  and bw : 
coordinates of the break-point; µfG : fracture energy attributed to micro-cracking; 

fbG : fracture energy ascribed to fibre-bridging phenomenon; fG  cohesive fracture 
energy 

Specimen 
(Pine) 

tf  

(MPa) 
bf  

(MPa) 
bw  

(mm) 
µfG  

(J/m2) 
fbG  

(J/m2) 
fG  

(J/m2) 

1 5.03 0.83 0.05 128.18 58.33 186.51 
2 5.96 0.81 0.06 163.26 76.93 240.19 
3 5.14 1.00 0.05 128.41 71.52 199.93 
4 4.44 1.15 0.07 146.56 99.33 245.89 
5 5.57 0.10 0.07 185.58 31.08 216.66 
6 4.87 0.86 0.07 165.77 91.80 257.57 
7 4.13 1.14 0.05 110.74 95.30 206.04 
8 4.26 0.71 0.06 133.19 66.72 199.91 
9 4.02 0.74 0.07 149.18 75.66 224.84 

10 3.80 0.74 0.06 118.57 54.42 172.99 
11 4.71 0.27 0.06 146.07 48.37 194.44 
12 3.98 0.23 0.06 126.44 39.23 165.67 

       

Average 4.66 0.72 0.06 141.83 67.39 209.22 
St. Dev. 0.65 0.33 0.01 20.87 21.01 27.49 

       

(Spruce)      
 

1 1.62 0.34 0.09 74.83 95.06 169.89 
2 1.51 0.27 0.08 63.86 61.03 124.89 
3 1.70 0.36 0.09 78.09 93.16 171.25 
4 1.79 0.30 0.07 61.42 57.04 118.46 
5 1.94 0.33 0.06 59.58 77.89 137.47 
6 1.72 0.29 0.09 76.43 74.41 150.84 
7 1.51 0.29 0.09 69.40 67.38 136.78 
8 1.61 0.39 0.09 73.16 93.63 166.79 
9 1.70 0.22 0.09 74.69 50.10 124.79 

10 1.81 0.29 0.08 73.69 69.37 143.06 
11 1.51 0.29 0.10 77.71 83.34 161.05 
12 1.51 0.25 0.09 68.04 64.46 132.50 

       

Average 1.66 0.30 0.09 70.91 73.91 144.81 
St. Dev. 0.13 0.05 0.01 6.12 14.38 17.97 
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A3.1 Polynomial functions 

The effective Young modulus for orthotropic materials is given by Sih GC et al. 

(1965), 

( )
2/1

1

2
21

12

2

21
21*

2

2









+−

=

E

E

G

E

EE
E

ν

 
(A3.1.1) 

According to the disposition of the specimen anatomic axis sketched in Fig. 3.9 

(with the specimen occupying the central part), the indexes correspondence: T:1  and 

L:2  has been established. The elastic properties presented in Table A3.1.1 were used 

to compute MPa8.709* =E . 

Compliance evolution as a function of the numerical relative crack length ( )αλPP  

has been computed through linear elastic FE in in-plane strain analyses (Fig. A3.2.1) 

using the set of elastic properties presented in Table A3.1.1 (for 85.00 <≤αα ), 

imposing an arbitrary vertical displacement δ  to the mid-section rigid body. The 

unitary compliance function obtained by polynomial best fitting to the dotted curve 

plotted in Fig. A3.1.1. led to 

[ ]  + 695.093 - 357.578 + 76.437-)( 4561 ααααλ =× −
bPP

3.163 + 95.589 + 409.874 - 725.073 23 ααα
 

(A3.1.2) 

In order to fit with the Maxwell-Betty principle (referred in Chapter IV) the first 

index exhibited in the compliance in the former equation identifies the loading type 

(i.e., the concentric load P ), while the second denotes the loading axis (in this case 

index P  again). Consequently, the dimensionless energy release rate function )(αg  

defined in Section 1.3 [ 2)()(.,. αλα bEgei ′= ] has been evaluated for a given specimen 

size D  of Table 3.1 (Fig. A3.1.2) considering the in-plane strain analysis, i.e., 

)1( 2* ν−=′ EE , with *E  as defined in Eq. (A3.1.1). The  resulting expression has been 

Table A3.1.1 Elastic properties of Norway spruce (Picea abies L.) Guitard D (1987) 

 

Wood Species 
LE  

(MPa) 

RE  

(MPa) 

TE  

(MPa) 
TLν  RLν  TRν  

TLG  

(MPa) 

RTG  

(MPa) 

RLG  

(MPa) 

Norway spruce 9 900 730 410 0.018 0.032 0.306 610 22 500 
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obtained through the polynomial best fit of the set of results exhibited in Fig. A3.1.2, 

leading to 

- 104.364 + 102.736 - 107.126)( 485867 αααα ×××=g  
672838 104.641 + 104.434 - 101.758 + 103.700 ×××× ααα  

(A3.1.3) 
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Figure A3.1.1 Stiffness calibration curve for the SEN-TPB. 
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Figure A3.1.2 Dimensionless energy release rate =)(αg  

2)(αλbE ′  . 
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A3.2 FE-modelling 

The FE-modelling is presented in more detail in this Appendix, referring to the 

numerical simulations performed with the SEN-TPB shape shown in Fig. 3.9. 

Due to the model symmetry only a half-specimen is analyzed. The FE-mesh density 

shown in Fig. A3.2.1 corresponds to the series label 2D  (Table 3.1, for mm70=h ) 

and is composed of 488 8-node and 248 6-node anisotropic in plane strain elements 

from ABAQUS® 6.5-1 library. A reasonably fine mesh, necessary to obtain a smooth 

load versus crack length relation is used to model the material domain in the 

neighbourhood of the bottom support, and in which the crack propagation occurs. 

Furthermore, interface plane elements (Section 2.4.1) were positioned all through an 

upright central line sited ahead of the initial crack notch 20 ha =  (Fig. A3.2.1) dividing 

the specimen ligament length in every 0.5 mm.  Making use of FE rigid bodies included 

in ABAQUS® 6.5-1 library, two non-friction pairs were employed to simulate the 

contact with the bottom support (left-bottom rectangle in Fig. A3.2.1) and with the 

loading device acting on the specimen (right-top rectangle drawn in Fig. A3.2.1). 

In-plane strain analyses were performed modelling Norway spruce (Picea abies L.) 

as a linear elastic orthotropic material with engineering constants exhibited in Table 

A3.2.1. As sketched in Fig. 3.9 the model is divided in two material domains (Fig. 

A3.2.1), with the left portion ( h25 ) oriented along the orthotropic Longitudinal 

direction (material aligned with axis x ) while the remaining portion has been oriented 

along the Tangential direction (material aligned with axis x ). This provides a way to 

perform fracture simulations in the wood TL fracture system, as referred in Chapter II 

and Appendix A2.1. 

The cohesive crack properties (Fig. 2.7) presented in Table A3.2.2 have been chosen 

in order to provide an equal energy distribution in the bilinear diagram ( fbf GG =µ ), for 

mmN1.0=fG   (Section 2.4.2), endowing with the ratios: 3.0≅≅ cbtb wwff . 

During the simulations both load and displacement values were monitored in the 

top-right rigid body acting on the specimen middle-section. 

Cohesive crack modelling of the remaining specimen sizes D  presented in Table 

3.1 were all performed according to the same numerical protocol, implementing 
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homothetic FE-meshes, with further mesh densification at the middle-section (crack 

plane) to keep the ligament length equally divided in every 0.5 mm. 

2
h

h

y

5
2 h

1
2 h

x
 

Figure A3.2.1 Symmetric FE-mesh used in ABAQUS® 6.5-1 simulations (Table 
3.1 contains the nominal dimensions used in the computations). 

 

Table A3.2.1 Elastic properties of Norway spruce (Picea abies L.) Guitard D (1987) 

 

Wood Species 
LE  

(MPa) 

RE  

(MPa) 

TE  

(MPa) 
TLν  RLν  TRν  

TLG  

(MPa) 

RTG  

(MPa) 

RLG  

(MPa) 

Norway spruce 9 900 730 410 0.018 0.032 0.306 610 22 500 

 

Table A3.2.2 Petersson’s model softening properties used in the simulations 
(according to Fig. 2.7) 

tf  (MPa) bf  (MPa) bw  (mm) fG  (N/mm) 

1.75 0.49 0.06 0.1 
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A4.1 Experimental load-displacement curves 
 

The plotting of the load-displacement curves obtained in the experiments is 

exhibited in this Appendix for complete view of the achieved results. 
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(e) (f) 

Figure A4.1.1 Load-displacement curves obtained in the experiments (displacement 
control). Graphics (a) to (f) correspond to sizes 280=D  to 33.23=D mm (Table 4.1). 
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A4.2 Formulary steps of the exact self-weight compensation method  

In the following a summary of the main steps detailed in Section 4.3.3 is presented 

according to the format which was found handier to implement in the computer code.  

1. Numerical compliances (FEM-computation and polynomial fitting) :  

)(* aPqλ , )(* aPPλ  and ),(* axqqλ  for ],[ 0 haa∈  

2. Multiplicative correction factor (evaluated once per specimen):  

)()( 0
*

0exp aa PPPP λλψ =  (Eq. 4.14) 

3. Correction of compliances :  

)()( * aa PPPP λψλ =   and  )()( * aa PqPq λψλ =   (Eqs. 4.20, 4.21) 

4. Displacement prior to the load-cell zeroing operation :  

qaa PqPq )()( 00 λδ =  (Eq. 4.29) 

5. Shifting of the original δ-P curve (Fig. 4.9): ( iiP δ- )mod : 

For each point ( iiP δ- ) : )()()( 0expmod aaa Pqδδδ +=  (Eq. 4.28) 

6. Equivalent crack length a  : 

Do : For each point  i : 

(a) Experimental ( iiP δ- )mod ( pointYield −≥i : Fig. 4.10):  

iPaai )()( modmod δλ =  

  (b) Modified compliance :  

iiii Pqaaa PqPP )()()(mod λλλ +=  (Eq. 4.31) 

  (c) Tracking of a : (through the Bisection method) such that  

)()( modmod iaai λλ =  

 End Do 

7.  Energy release rate : 

Uniformly pacing ( iiP δ- )mod (Fig. 4.11),  with 21 , aa  as consecutive equivalent crack-lengths,  

Do: For each point  i : ( iiP δ- )mod (Fig. 4.11) :  

(a) Work of the external applied load :  

)]()([2)(W 12 mod2mod1 aaPPP δδδ −+=  (Eq. 4.35) 
 (b)  Work of the internal body forces : 

∫ −=
L

q dxqaxaxW
0 12 ]),(),([ δδδ  (Eqs. 4.36) 
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with: )2,1(,),(),(),( =+= iqaxPaxax iqqiiqPi λλδ  (Eq. 4.38) 

 (c) Complementary energy of the distributed load : 

)(21
modmod 1122 δδδ PPU P −=  (Eq. 4.39) 

 (d) Complementary energy of the applied load : 

qq WU δδ 21=  (Eq. 4.41) 

(e) Elastic strain energy release : 

)()( qqPP UWUWE δδδδδ −+−=  (Eq. 4.44) 

(f) Energy release rate (associated to 1a ) : 

)()()()()( 1 abUWabUWaG qqPP δδδδδδ −+−=  (Eq. 4.45) 
End do 
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A4.3 CCM using the load equivalent to the specimen self-weight 

The plotting exhibited in Fig. A4.3.1 has been made with the data recorded in the 

cohesive crack modeling presented in Section 4.3.3.3. As stated in condition established 

through Eq. (4.8) for the self-weight compensation by means of the load equivalent to 

the specimen self-weight, the ratio )()(
** αλαλ PPqP  is kept invariable over the range  

]85.0,2[ DDa ∈ .  
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Figure A4.3.1 Plotting of the ratio )()(
** αλαλ PPPq  obtained in the cohesive 

crack modeling conditions referred in Section 4.3.3.3. The dashed line establishes 
the range of validity of the condition stated through (Eq. 4.8), with 85.0expl ≅α   

(i.e., ]85.0,2[ DD ). 

Table A4.3.1 exhibits the load equivalent to the specimen self-weight qP  evaluated 

through Eq. (4.7) for the specimen dimensions presented in the cohesive crack modeling 

(Section 4.3.3.3).  

Table A4.3.1 Load equivalent to the specimen self-weight according to Eq. (4.7) 

Density Weight )()(
** αλαλ Pq  

(mm) 

q  
qP  

(N) (kg/m3) (N) (N/m) 
     

300 46.72 0.65 37.082 24.22 
400 62.30  49.44 32.29 
500 77.90  61.80 40.37 
600 93.45  74.16 48.44 
700 109.02  86.52 56.52 
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Figure A4.3.2 exhibits the set of load-displacement curves first presented in Fig. 

4.13 after the zeroing operation together with the compensation proposed in Section 

4.3.2 (Fig. 4.7) such that qP Pa )( 0expComp λδδ +=  and qPPP +=Comp . 
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Figure A4.3.2. Load-displacement curves obtained in the cohesive crack modelling 
(Section 4.3.3.3) after reset and corresponding compensation as detailed in Section 4.3.3.1 
(Fig. 4.7). 
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A4.4 Results of the exact self-weight compensation method 

The compliance functions )(* αλ PP  and )(* αλ Pq  referred to in Section 4.3.3 ( Da=α ) 

were obtained through the best polynomial fitting of calculated in-plane strain elastic FE 

analysis (details of the elastic analysis in Appendix A3.2) for the interval 85.00 ≤≤ α  

(Eqs. A4.4.1–12). The set of elastic properties used in the FEM model (Table A4.4.1) were 

chosen in order to provide the mean value of the multiplicative correction factor 0.1≅ψ  

(Eq. 4.14) (see ANNEXE). Figures A4.4.1 and A4.4.2 show the plotting of the unitary 

compliances )(*
unit αλ PP  and )(*

unit αλ Pq  obtained for each series.  

As to the dimensionless energy release rate function )(αg  defined in Section 1.4 {i.e., 

[ ] 2)()( ααλα ∂∂′= bEg }, the plane strain condition [i.e., )1( 2* ν−=′ EE ] has been 

considered with the Effective Young modulus *E  evaluated using Eq. (A3.1.1) presented in 

Appendix A3.1. The compliance used to define )(αg  (Eqs. A4.13-A4.18 and Fig. A4.4.3) 

is determined through the derivation of )(* αλ PP . 

[ ]  - 105.81691  103.66348 - 1059671.9)( 445463
280

* ααααλ ×+××=
=DPP

232434 1010288.61084743.51032520.21091200.4 ×+×−×+× ααα
 

(A4.4.1) 

[ ]  - 105.07026  103.19139 - 1035491.8)( 445463
210

* ααααλ ×+××=
=DPP

232434 1033023.51010483.51002891.21028383.4 ×+×−×+× ααα
 

(A4.4.2) 

[ ]  - 105.10862  103.21856 - 1043458.8)( 445463
140

* ααααλ ×+××=
=DPP

232434 1035342.51013072.51004078.21031244.4 ×+×−×+× ααα
 

(A4.4.3) 

[ ]  - 103.65718  102.30318 - 1003281.6)( 445463
70

* ααααλ ×+××=
=DPP

232434 1083659.31067628.31046190.11008827.3 ×+×−×+× ααα
 

(A4.4.4) 

[ ]  - 105.11064  103.15527 - 1010340.8)( 445463
35

* ααααλ ×+××=
=DPP

232434 1079596.51044987.51012550.21040235.4 ×+×−×+× ααα
 

(A4.4.5) 

[ ]  - 102.94397  101.86004 - 1088855.4)( 445463
3.23

* ααααλ ×+××=
=DPP

232434 1005335.31093333.21016971.11047831.2 ×+×−×+× ααα
 

(A4.4.6) 

 

[ ]  - 105.80815  103.67951 - 1069787.9)( 455564
280

* ααααλ ×+××=
=DPq

342535 1096453.51074378.51029604.21087690.4 ×+×−×+× ααα
 

(A4.4.7) 
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[ ]  - 104.83041  103.06087 - 1006985.8)( 455564
210

* ααααλ ×+××=
=DPq

342233 1095682.41077415.41090876.11005505.4 ×+×−×+× ααα
 

(A4.4.8) 

[ ]  - 104.82967  103.06262 - 1008082.8)( 455564
140

* ααααλ ×+××=
=DPq

342535 1094362.41076416.41090594.110051666.4 ×+×−×+× ααα
 

(A4.4.9) 

[ ]  - 103.27413  102.07671 - 105.48090)( 455564
70

* ααααλ ×+××=
=DPq

342535 103.34821103.22749101.29148102.74606 ×+×−×+× ααα
 

(A4.4.10) 

[ ]  - 103.72472  102.36343 - 106.24033)( 455564
35

* ααααλ ×+××=
=DPq

342535 103.80421103.66800101.46820103.12286 ×+×−×+× ααα
 

(A4.4.11) 

[ ]  - 102.10025  101.58779 - 1025487.3)( 455564
3.23

* ααααλ ×+××=
=DPq

342535 1070889.21000258.21090221.01001148.2 ×+×−×+× ααα

 
(A4.4.12) 
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Figure A4.4.1 Plotting of unitary compliances [i.e., )(* αλ PPb ] obtained 

through in-plane FEM computations (elastic strain analyses) for different 
values of Da=α  with the set of elastic properties duly chosen to retrieve, 
for each series (Table 4.1 and ANNEXE), the mean value of the experimental 
initial compliance (i.e., 0.1≅ψ  according to Eq. 4.14). 
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Figure A4.4.2 Plotting of unitary compliances [i.e., )(* αλ Pqb ] obtained 

through in-plane FEM computations (elastic strain analyses) for different 
values of Da=α  with the set of elastic properties duly chosen to retrieve, 
for each series (Table 4.1 and ANNEXE), the mean value of the 
experimental initial compliance (i.e., 0.1≅ψ  according to Eq. 4.14). 

Table A4.4.1 Elastic properties of Norway spruce (based on Guitard D, 1987) used in the FEA for 
each series. *E : Effective Young modulus for orthotropic materials (defined in Appendix 3.1)  

Series LE  

(MPa) 
RE  

(MPa) 
TE  

(MPa) 
TLν  RLν  TRν  TLG  

(MPa) 
RTG  

(MPa) 
RLG  

(MPa) 

*E  
(MPa) 

280=D  9 900 730 174.2 0.008 0.032 0.130 610 22 500 476.17 
 210=D  9 900 730 221.7 0.010 0.032 0.166 610 22 500 552.9 

140=D  9 900 730 204.5 0.009 
.00 

0.032 0.153 610 22 500 526.0 
70=D  9 900 730 334.2 0.015 0.032 0.250 610 22 500 710.1 
35=D  9 900 730 241.7 0.011 0.032 0.180 610 22 500 583.0 

3.23=D  9 900 730 333.8 0.015 0.032 0.249 610 22 500 709.6 

 

[ ]   1012.56002094 - 1076.68553513)( 5867
280 +××== ααα Dg

−×+×× 283848 1071.635156771063.44749108- 1064.07427863 ααα
67 1064.309702611084.12069368 ×+× α

 

(A4.4.13) 

[ ] +××==  1032.81859667 - 1047.34301959)( 5867
210 ααα Dg

−×+×× 283848 1001.809439811093.80987611 - 1074.49497456 ααα
67 1074.776648711064.56434494 ×+× α

(A4.4.14) 
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[ ] +××==  1022.63219634 - 1046.85953041)( 5867
140 ααα Dg

−×+×× 283848 1081.690718661013.55841392 - 1084.19749892 ααα
67 1064.469871581094.26758524 ×+× α

 

(A4.4.15) 

[ ] +××==  1032.48975317 - 1016.49529727)( 5867
70 ααα Dg

−×+×× 283848 1061.593684451083.35818642 - 1033.96590312 ααα
67 1054.202970171074.01775667 ×+× α

 

(A4.4.16) 

[ ] +××==  1092.69399863 - 1016.98117264)( 5867
35 ααα Dg

−×+×× 283848 1071.746528541093.66931039 - 1064.31491931 ααα
67 1034.616017441034.41058085 ×+× α

 

(A4.4.17) 

[ ] +××==  1011.43500298 - 1093.78819768)( 5867
3.23 ααα Dg

−×+×× 273848 1058.928515731021.89724357 - 1042.26179991 ααα
67 1072.322045171072.23426674 ×+× α

 

(A4.4.18) 
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Figure A4.4.3 Plotting of the dimensionless energy release rate function for 
each series first presented in Table 4.1. 

It should be emphasised that the evaluation of the dimensionless energy release rate 

function )(αg  for each specimen size D , is barely justified by the fact that it has been 
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noticed that a strong scattering on the unitary compliances )( 0unit aPPλ  does exist in the 

experimental data (Fig. 4.19). As )(αg  is a function of the material elastic properties 

(through the Effective Young modulus *E ), this procedure aims at introducing the required 

correction necessary for the present size effect study. 

As previously described in Section 3.3, the numerical protocol establishes the 

polynomial fitting through the rising part of the experimental R-curves [i.e., 

1)()( RcRRc0R << GGGG αα ] which exhibit an undoubted plateau (Fig. 4.20). The 

curvature exponent β   (of each series’ R-curve) is thus revealed from the slope of the 

linear regression plot which passes through the graph origin (on the left side of Fig. 

A4.4.4). Table 4.2 resumes the set of curvature exponents β  obtained for each 

experimental series. Pursuing the protocol, a plotting of the energy release rate RG  as a 

function of the crack length increment a∆  (Eq. 3.1) has consequently been performed for 

each series, using the corresponding curvature exponent valueβ  shown in Fig. A4.4.4 (on 

the right side).  

The interception between )(αgg′  and )(RR αGG′  shown in Figs. A4.4.5-10 provides 

the estimate of the single solution *uα  (Section 3.2.1) shown in Table 4.2. If one excludes 

the series of the largest size (i.e., 280=D mm, for non-statistical meaning) and calculate 

the average value taking the remaining five series in Table 4.2, the resulting solution is 

yields 536.0*u =α  (COV = 2.33%). One should recognise that the value obtained for the 

single solution *uα  (in each series) is strongly influenced by the critical energy release rate 

RcG  obtained for each series (through β   in Eq. 3.7). Therefore, if RcG  in the (considered) 

greatest series (i.e., 210=D mm) had been less affected by scattering, then the reliance in 

the obtained value (i.e., *uα ) would have been higher. Accordingly, working out the size 

limits characterizing the domain of *uα  attained for each experimental series (i.e., minD  

and cD  through Eqs. 3.9 and 3.10), one obtains the values shown in Table A4.4.2. This 

values are to be used in the scaling study of the relative crack length at the peak load 

)(u Dα and in the size effect on the nominal strength )(DNσ , presented in Section 4.4. 
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Figure A4.4.4 Linear regression plot performed on the rising part of the R-curve (as in 
Section 3.3) and corresponding normalized R-curve (through Eq. 3.1) for the data got in 
the experiments (with undoubted plateau on the R-curve). Graphics (a) to (f) correspond 
to characteristic sizes of 280=D  to 33.23=D mm printed in Table 4.1. 
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Figure A4.4.5 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
specimen size 280=D mm (see Fig. 4.20 a). 
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Figure A4.4.6 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
specimen size 210=D mm (see Fig. 4.20 b). 



Appendix A4.4 

168 

0

5

10

15

20

25

30

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

α

G
R
' /

 G
R
 (

α
) 

  
a

nd
  

 g
' /

 g
 (

α
)

g'/g(alpha)
G_R'/G_R fit
alpha_u exp avg
alpha_u*
G_R'/G_R exp h3-1
G_R'/G_R exp h3-3
G_R'/G_R exp h3-4
G_R'/G_R exp h3-5
G_R'/G_R exp h3-7
G_R'/G_R exp h3-8
G_R'/G_R exp h3-9
G_R'/G_R exp h3-11
G_R'/G_R exp h3-13
G_R'/G_R exp h3-17
G_R'/G_R exp h3-18
G_R'/G_R exp h3-21
G_R'/G_R exp h3-23
G_R'/G_R exp h3-25
G_R'/G_R exp h3-28
G_R'/G_R exp h3-30
G_R'/G_R exp h3-31
G_R'/G_R exp h3-32
G_R'/G_R exp h3-33

g '/g (α )
G R'/G R fit

α u exp average

α u*

G R'/G R exp h3-1

G R'/G R exp h3-3

G R'/G R exp h3-4

G R'/G R exp h3-5

G R'/G R exp h3-7

G R'/G R exp h3-8

G R'/G R exp h3-9

G R'/G R exp h3-11

G R'/G R exp h3-13

G R'/G R exp h3-17

G R'/G R exp h3-18

G R'/G R exp h3-21

G R'/G R exp h3-23

G R'/G R exp h3-25

G R'/G R exp h3-28

G R'/G R exp h3-30

G R'/G R exp h3-31

G R'/G R exp h3-32

G R'/G R exp h3-33

 

Figure A4.4.7 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
specimen size 140=D mm (see Fig. 4.20 c). 
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Figure A4.4.8 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
specimen size 70=D mm (see Fig. 4.20 d). 
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Figure A4.4.9 Plotting of Eq. (3.6) used to estimate *uα . Comparison 

with the plotting of Eq. (3.7) obtained from the R-curve computed for 
specimen size 35=D mm (see Fig. 4.20 e). 
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Figure A4.4.10 Plotting of Eq. (3.6) used to estimate *uα . 

Comparison with the plotting of Eq. (3.7) obtained from the R-curve 
computed for specimen size 3.23=D mm (see Fig. 4.20 f). 
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Table A4.4.2 Parameters obtained in the size effect study for the experimental data first shown in 
Table 4.1. Exhibited parameters: ca  characteristic equivalent crack length (mean value); ca∆ : 

characteristic equivalent crack length increment ( 0cc aaa −=∆ ) , β : Curvature exponent of the R-

curve; βφ caG ∆= Rc  as in Eq. (3.1); *uα : single solution of uα ; minD  and cD : limits 

characterizing the domain of *uα  (Eqs. 3.9 and 3.10); [ ] c
1

0
*
u

*
1 )()( DggD βαα=   as in Eq. (3.19) 

Series ca  

(mm) 
ca∆  

(mm) 
β  

φ  
)mJ( 2 β+

 

*uα  minD  

(mm) 
cD  

(mm) 

*
1D  

(mm) 

280=D   208.23 68.26 0.64 1900.59 0.582 136.52 828.40 1541.40 

210=D  153.50 48.50 0.40 1127.31 0.557 97.00 850.88 1660.10 

140=D  93.19 23.19 0.23 463.46 0.535 46.38 656.94 740.44 

70=D  47.80 12.80 0.19 416.58 0.528 25.60 462.09 409.01 

35=D  22.43 4.93 0.21 521.79 0.537 9.86 133.24 255.44 

3.23=D  15.41 3.74 0.24 588.89 0.525 7.48 149.60 163.11 
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A4.5 Statistics involving the experiments 
 

The plotting of Fig. A4.5.1 shows the measured densities at 12% EMC of the set of 

specimens used in the experiments which provided an undoubted plateau on the R-curve 

(consult ANNEXE at the end of this Thesis). In the following, graphs exhibiting the mean 

values of the ultimate load, uP  (Fig. A4.5.2), the relative crack length associated to uP  

(Fig. A4.5.3), the energy release rate associated to uP  [i.e., )( uR αG ] (Fig. A4.5.4) and the 

relative crack length associated to the critical energy release rate, RcG  [i.e., cα ] (Fig. 

A4.5.5) are shown. 
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Figure A4.5.1 Measured densities at 12% EMC (i.e., basic densities) in the 
totality of specimens (See ANNEXE) which exhibited an undoubted plateau 
on the Resistance-curve. 
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Figure A4.5.2 Mean values of the ultimate load uP obtained in the experiments 

(See ANNEXE) for the specimens which exhibited an undoubted plateau on the 
R-curve. 
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Figure A4.5.3 Mean values of the relative crack length associated to the 
ultimate load uα obtained in the experiments (See ANNEXE) for the specimens 

which exhibited an undoubted plateau on the R-curve. 
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Figure A4.5.4 Mean values of the energy release rate associated to the ultimate 
load )( uR αG  obtained in the experiments (See ANNEXE) for the specimens 

which exhibited an undoubted plateau on the R-curve. 
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Figure A4.5.5 Mean values of the relative crack length associated to the critical 
energy release rate RcG , (i.e., cα ) obtained in the experiments (See ANNEXE) 

for the specimens which exhibited an undoubted plateau on the R-curve. 
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ANNEXE 

In this ANNEXE a complete list of the experimental parameters is revealed organized according to the specimens’ characteristic size D  first 
printed in Table 4.1. As previously defined, when initially mentioned, )( 0exp aλ : initial experimental unloading compliance, uP : ultimate load, 

ψ : multiplicative correction factor, uα : relative crack length corresponding to uP , RuG : energy release rate associated to uP , cα : relative 

characteristic crack length, cP : load corresponding to cα ,  Platl : extension of the plateau in the R-curve, RcG : critical energy release rate. 

 
Table A1 Parameters obtained in the experiments regarding series with the characteristic size 280=D  mm (according to Table 4.1) 

 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h1-1 280 3.21 471.79 487.00 1.19 0.583 0.140 - - - - 
h1-2 280 4.57 417.31 398.45 0.88 0.628 0.210 - - - - 
h1-3 280 3.80 467.66 337.10 0.94 0.564 0.080 - - - - 
h1-4 280 5.00 419.90 469.95 1.24 0.557 0.180 - - - - 
h1-5 280 4.26 434.40 438.75 0.68 0.594 0.170 - - - - 
h1-6 280 3.14 475.50 412.70 1.11 0.563 0.090 - - - - 
h1-7 280 2.95 474.62 545.80 1.23 0.584 0.160 - - - - 
h1-8 280 3.24 450.12 630.84 0.67 0.579 0.220 - - - - 
h1-9 280 2.61 451.34 562.65 1.00 0.599 0.170 - - - - 
h1-10 280 3.17 471.11 379.20 1.00 0.592 0.100 - - - - 
h1-11 280 4.66 454.19 448.75 1.19 0.593 0.200 0.744 267.96 28.4 0.341 

            

Qtty 11           
Minimum  2.61 417.31 337.10 0.67 0.56 0.080     
Maximum  5.00 475.50 630.84 1.24 0.63 0.220     
Average  3.69 453.45 464.65 1.01 0.58 0.156     
Cov (%)  21.85 21.44 18.75 20.35 3.38 30.973     
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Table A2 Parameters obtained in the experiments regarding series with the characteristic size 210=D  mm (according to Table 4.1) 
 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h2-3 210 4.71 367.19 320.00 1.15 0.555 0.126 0.700 220.66 14.9 0.208 
h2-4 210 5.20 392.34 321.79 1.27 0.560 0.144 0.726 201.75 25.7 0.260 
h2-5 210 3.44 466.42 622.09 0.84 0.615 0.461 0.735 464.27 14.8 0.803 
h2-6 210 4.86 361.27 364.45 1.18 0.549 0.157 0.696 210.74 30.3 0.189 
h2-7 210 3.19 502.72 543.55 0.78 0.579 0.264 0.819 207.35 23.7 0.563 
h2-8 210 3.34 482.58 550.79 0.81 0.565 0.257 0.756 306.60 26.7 0.484 
h2-9 210 3.29 466.39 637.00 0.80 0.596 0.413 0.710 507.72 16.2 0.724 
h2-11 210 4.39 366.22 296.90 1.07 0.565 0.109 0.715 189.70 13.8 0.175 
h2-13 210 5.46 393.86 313.24 1.33 0.550 0.135 0.650 238.00 30.2 0.172 
h2-15 210 5.22 366.87 329.15 1.27 0.541 0.133 0.712 199.86 18.6 0.219 
h2-17 210 4.33 369.56 329.30 1.05 0.555 0.121 0.705 207.46 19.7 0.180 
h2-18 210 4.30 383.28 370.40 1.05 0.559 0.153 0.711 205.03 30.8 0.188 
h2-19 210 4.41 369.78 341.01 1.07 0.555 0.132 0.789 132.18 11.2 0.240 
h2-20 210 4.97 382.15 269.48 1.21 0.560 0.100 0.767 116.57 13.6 0.164 
h2-21 210 4.24 395.42 412.50 1.03 0.600 0.244 0.741 269.49 13.2 0.409 
h2-22 210 4.68 379.57 307.51 1.14 0.600 0.158 0.765 161.23 21.2 0.254 
h2-23 210 5.22 381.86 271.05 1.27 0.540 0.094 0.735 145.77 7.0 0.162 
h2-27 210 3.34 465.71 556.70 0.81 0.610 0.362 0.726 434.71 19.5 0.649 

            

Qtty 18           
Minimum  3.19 361.27 269.48 0.78 0.54 0.094 0.650 116.570 7.0 0.162 
Maximum  5.46 502.72 637.00 1.33 0.61 0.461 0.819 507.720 30.8 0.803 
Average  4.37 405.18 397.61 1.06 0.57 0.198 0.731 245.505 19.5 0.336 
Cov (%)  17.32 11.69 31.22 17.32 4.21 56.443 5.278 45.996 36.4 63.713% 
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Table A3 Parameters obtained in the experiments regarding series with the characteristic size 140=D  mm (according to Table 4.1) 
 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h3-1 140 7.67 - 189.10 1.19 0.55 0.142 0.585 154.10 31.1 0.153 
h3-3 140 6.03 423.44 223.27 0.94 0.52 1.142 0.615 178.11 16.2 0.148 
h3-4 140 8.02 368.17 164.93 1.88 0.53 0.099 0.714 93.82 18.4 0.150 
h3-5 140 4.40 525.48 274.55 0.68 0.55 0.158 0.725 163.23 8.2 0.257 
h3-7 140 7.92 366.29 195.55 1.23 0.54 0.143 0.560 100.99 34.5 0.151 
h3-8 140 4.29 - 297.44 0.67 0.55 0.190 0.680 214.06 17.8 0.266 
h3-9 140 6.46 397.15 227.12 1.00 0.55 0.160 0.635 169.23 20.4 0.173 
h3-11 140 7.64 - 158.54 1.19 0.55 0.098 0.683 107.05 17.4 0.134 
h3-13 140 7.98 372.91 155.45 1.24 0.53 0.089 0.595 143.23 16.3 0.114 
h3-17 140 7.83 - 193.74 1.22 0.53 0.132 0.595 172.29 21.7 0.159 
h3-18 140 6.13 422.03 205.19 0.95 0.55 0.125 0.550 204.02 9.4 0.126 
h3-21 140 5.23 436.26 238.59 0.81 0.55 0.143 0.795 102.93 18.1 0.316 
h3-23 140 6.10 435.95 243.74 0.95 0.55 0.174 0.751 134.82 19.3 0.336 
h3-25 140 8.31 - 173.52 1.29 0.53 0.114 0.604 154.74 20.8 0.147 
h3-28 140 5.33 - 269.56 0.83 0.56 0.208 0.685 206.64 15.6 0.323 
h3-30 140 7.65 468.07 179.61 1.19 0.53 0.109 0.796 63.30 18.2 0.196 
h3-31 140 4.95 489.75 237.75 0.77 0.55 0.138 0.734 138.53 13.1 0.236 
h3-32 140 7.18 366.15 186.15 1.11 0.54 0.115 0.704 109.50 8.5 0.162 
h3-33 140 7.78 366.96 185.61 1.21 0.53 0.123 0.636 147.15 18.4 0.162 

            

Qtty 19           
Minimum  4.29 366.15 155.45 0.67 0.52 0.089 0.550 63.30 8.2 0.114 
Maximum  8.31 525.48 297.44 1.88 0.56 1.142 0.796 214.06 34.5 0.336 
Average  6.68 418.35 210.50 1.07 0.54 0.189 0.665 145.14 18.1 0.195 
Cov (%)  20.05 12.50 19.57 26.27 2.15 12.280 11.337 28.52% 36.2 36.364 
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Table A4 Parameters obtained in the experiments regarding series with the characteristic size 70=D  mm (according to Table 4.1) 
 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h4-1 70 7.64 467.34 98.50 0.89 0.55 0.142 0.763 41.85 6.5 0.198 
h4-4 70 9.87 393.36 81.85 1.16 0.54 0.125 0.740 38.77 7.3 0.153 
h4-5 70 9.14 441.14 93.38 1.07 0.54 0.144 0.685 61.71 4.4 0.218 
h4-6 70 5.94 484.78 107.98 0.70 0.56 0.146 0.747 58.13 7.2 0.218 
h4-9 70 11.91 371.93 67.35 1.39 0.54 0.099 0.659 51.36 3.9 0.141 
h4-10 70 7.82 429.31 89.27 0.92 0.55 0.123 0.638 69.16 6.7 0.145 
h4-11 70 9.87 432.70 99.05 1.16 0.54 0.175 0.687 60.76 8.8 0.219 
h4-12 70 7.60 407.19 98.08 0.89 0.52 0.122 0.798 31.92 7.0 0.171 
h4-13 70 12.62 354.06 72.66 1.48 0.55 0.129 0.744 35.87 8.4 0.176 
h4-17 70 9.67 388.41 78.08 1.13 0.56 0.125 0.588 72.58 7.6 0.131 
h4-20 70 6.52 498.57 105.48 0.76 0.55 0.143 0.592 94.70 5.1 0.160 
h4-24 70 7.33 460.45 104.92 0.86 0.56 0.169 0.613 90.65 7.5 0.193 
h4-25 70 9.11 437.86 117.14 1.07 0.54 0.230 0.634 88.99 14.7 0.267 
h4-26 70 9.28 378.95 80.30 1.09 0.54 0.112 0.727 43.66 7.0 0.156 
h4-28 70 7.50 404.72 101.55 0.88 0.53 0.135 0.640 62.58 4.9 0.171 
h4-29 70 6.28 461.94 107.15 0.74 0.56 0.147 0.670 64.74 8.5 0.202 

            

Qtty 16           
Minimum  5.94 354.06 67.35 0.70 0.52 0.099 0.588 31.92 3.9 0.131 
Maximum  12.62 498.57 117.14 1.48 0.56 0.230 0.798 94.70 14.7 0.267 
Average  8.63 425.80 93.92 1.01 0.54 0.141 0.683 60.46 7.2 0.182 
Cov (%)  22.11 9.95 15.19 22.11 2.17 21.641 9.395 32.39 34.24 19.942 

 
 
 
 

182 



Table A5 Parameters obtained in the experiments regarding series with the characteristic size 35=D  mm (according to Table 4.1) 
 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h5-1 35 21.62 358.27 27.39 1.04 0.52 0.102 0.590 24.58 5.9 0.112 
h5-2 35 23.63 349.06 33.22 1.13 0.55 0.201 0.574 32.29 6.2 0.201 
h5-3 35 22.04 359.80 31.22 1.06 0.53 0.144 0.650 23.75 5.4 0.177 
h5-5 35 25.97 387.07 33.16 1.25 0.55 0.209 0.575 31.33 12.8 0.233 
h5-6 35 21.41 371.99 31.37 1.03 0.55 0.154 0.566 30.52 7.4 0.168 
h5-7 35 26.91 341.03 28.92 1.29 0.54 0.157 0.608 25.60 10.7 0.190 
h5-8 35 23.58 370.10 36.60 1.13 0.54 0.224 0.630 30.46 12.3 0.252 
h5-12 35 26.49 376.10 28.19 1.27 0.54 0.126 0.582 19.58 8.3 0.160 
h5-13 35 17.84 400.56 33.70 0.86 0.55 0.156 0.741 17.54 5.8 0.213 
h5-14 35 25.74 354.69 23.84 1.24 0.54 0.100 0.668 17.51 3.5 0.144 
h5-16 35 20.86 391.01 30.76 1.00 0.54 0.136 0.754 26.63 2.4 0.213 
h5-20 35 21.05 370.04 33.32 1.01 0.54 0.165 0.618 27.86 8.4 0.190 
h5-22 35 18.25 384.42 28.34 0.88 0.54 0.101 0.695 17.71 2.2 0.137 
h5-23 35 19.84 352.30 27.54 0.95 0.52 0.095 0.657 19.33 7.1 0.126 
h5-24 35 16.63 364.01 33.40 0.80 0.53 0.124 0.654 23.63 7.1 0.153 
h5-25 35 15.37 394.49 31.16 0.74 0.55 0.112 0.744 16.30 2.7 0.165 
h5-27 35 19.53 376.25 30.37 0.94 0.53 0.117 0.633 26.99 8.2 0.147 
h5-28 35 18.81 342.72 30.73 0.90 0.52 0.109 0.639 21.62 6.9 0.127 
h5-29 35 19.30 376.38 31.66 0.93 0.52 0.120 0.609 24.78 6.3 0.136 

            

Qtty 19           
Minimum  15.37 341.03 23.84 0.74 0.52 0.095 0.566 16.30 2.2 0.112 
Maximum  26.91 400.56 36.60 1.29 0.55 0.224 0.754 32.29 12.8 0.252 
Average  21.31 369.49 30.78 1.02 0.54 0.140 0.641 24.10 6.8 0.171 
Cov (%)  15.85 4.70 9.54 15.85 1.95 27.439 9.067 21.21 43.75 22.902 
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Table A6 Parameters obtained in the experiments regarding series with the characteristic size 3.23=D  mm (according to Table 4.1) 
 

Label 
D  

(mm) 

)( 0exp aλ  

( 310− mm/N) 

Density  
(12% MC) 

(kg/m3) 

uP   

(N) 
ψ  

uα  RuG  

(N/mm) 
cα  cP   

(N) 
Platl  

(mm) 
RcG  

(N/mm) 
            

h6-2 23.33 23.78 348.40 15.99 1.02 0.54 0.096 0.613 13.28 1.5 0.114 
h6-3 23.33 26.80 339.56 16.86 1.15 0.54 0.119 0.630 12.58 6.5 0.130 
h6-5 23.33 17.20 414.06 18.55 0.74 0.56 0.100 0.653 14.61 3.6 0.137 
h6-9 23.33 19.05 421.83 21.58 0.82 0.52 0.123 0.666 15.45 5.1 0.176 
h6-10 23.33 27.40 433.98 15.89 1.18 0.52 0.095 0.705 9.31 3.4 0.143 
h6-12 23.33 17.89 408.42 20.42 0.77 0.53 0.109 0.624 12.05 5.2 0.141 
h6-13 23.33 21.75 396.46 17.61 0.93 0.52 0.091 0.678 7.61 4.0 0.134 
h6-15 23.33 24.47 399.98 19.85 1.05 0.54 0.153 0.616 15.40 5.3 0.158 
h6-16 23.33 26.03 445.84 18.00 1.12 0.53 0.122 0.736 10.03 2.3 0.193 
h6-21 23.33 18.52 435.87 19.38 0.80 0.53 0.102 0.679 14.24 1.4 0.155 
h6-23 23.33 23.47 489.18 18.14 1.01 0.54 0.119 0.670 12.73 1.8 0.161 
h6-24 23.33 18.91 453.82 19.90 0.81 0.60 0.171 0.657 18.50 3.2 0.209 

            

Qtty 12           
Minimum  17.20 339.56 15.89 0.74 0.52 0.091 0.613 7.61 1.4 0.114 
Maximum  27.40 489.18 21.58 1.18 0.60 0.171 0.736 18.50 6.5 0.209 
Average  22.11 415.62 18.51 0.95 0.54 0.117 0.661 12.98 3.6 0.154 
Cov (%)  16.71 10.14 9.60 16.71 3.97 20.734 5.588 23.09 46.62 17.780 
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