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Cluster Analysis has numerous scientific and practical applications. This paper presents a 

computer program to find an adequate (natural) number of clusters and to isolate anomalous 

samples in a data set. The program stands on an algorithm that is based on the mathematical 

concept of equivalence class and uses the framework of the graph theory to identify equivalence 

classes in  multivariate data bases. This type of clustering algorithm is particularly useful when 

one is dealing with groundwater data sets, because anomalies are frequent in these sets, and 

because the number of groups that is present is often impossible to estimate; it will depend on 

the combined effect of many factors, including geology, morphology, climate and pollution. As 

an example of the utility of this program, a set of groundwater samples is clustered, and the 

average chemistry of nine identified equivalence classes is related to weathering reactions of 

plagioclase in a Portuguese granitoid area. 

 

Key words: Cluster Analysis, Groundwater Data Set, Equivalence Class, Graph Theory. 
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INTRODUCTION 

 

Cluster Analysis is the art of finding groups in data. Some 30 years ago, biologists and social 

scientists began to look for systematic ways to find groups in their data sets, and because 

computers were becoming available the resulting algorithms could actually be implemented. 

Now, clustering methods are applied in many domains, including geosciences, artificial 

intelligence, pattern recognition, medical research, marketing, and many more. 

 There are two main types of clustering techniques, namely partitioning and 

hierarchical methods; in the classification literature the vast majority of algorithms is of either 

type (Hartigan, 1975; Everitt, 1977; Kaufman and Rousseeuw, 1990). 

 Conventional partitioning methods construct clusters from a data set. The number of 

clusters, k, is given by the user, and each object must belong to one group only. In order to 

obtain the k clusters, classical methods, like H-means (Forgy, 1965) or k-means (MacQueen, 

1967), start with an arbitrary partition (samples are randomly distributed by the k groups) and 

proceed by exchanging samples between clusters until a predefined function is optimized. The 

results will depend on the initial partition and on the order the samples are exchanged. More 

recent algorithms, as for example k-medoid of Kaufman and Rousseeuw (1987), select k 

representative objects in the data set, and the corresponding clusters are then found by assigning 

each remaining object to the nearest representative object. Fuzzy methods (e.g., fuzzy k-means 

of Bezdek,1974) also construct k clusters, but they avoid hard decisions by using the fuzziness 

principle: instead of deciding that an object belongs to cluster 1, fuzzy methods can, for example, 

decide that 70% of the object belongs to cluster 1, 20% to cluster 2 and 10% to cluster 3; this 
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means that the object should probably be assigned to cluster 1, but there is still doubt about 

whether it should be assigned to cluster 2 or 3. 

Conventional and fuzzy methods need a priori good estimates of the number of 

groups present in the data set. This is often impossible when one is dealing with groundwater 

data sets because the number of groups that is present will depend on: (1) The number of rock 

types in the area; (2) The degree of chemical weathering of the various rock types; (3) Inputs 

from sources other than water-rock interactions. All these factors affect the water composition 

and in combination may generate a high number of groups. 

Pacheco and Van der Weijden (1996) developed an algorithm, the Reflexive, 

Symmetric and Transitive (RST) algorithm, which tackles the problem of finding the number of 

natural clusters in groundwater data sets. The algorithm uses the definition of equivalence class 

to split a data base into sets of densely related water samples (the relation being determined by 

their chemistries), connected by reflexive, symmetric and transitive relations. The present paper,        

(1) Makes a comprehensive review of the concepts behind the RST algorithm, introducing the 

framework of the graph theory in the identification of equivalence classes; (2) Provides a full 

description of the algorithm, as in Pacheco and Van der Weijden (1996) the RST algorithm is 

only briefly described in one of the Appendices; (3) Discusses the nature of the classes found by 

the RST algorithm by comparing them with the results obtained with Principal Components 

Analysis; (4) Presents a computer program (EQCLASS) for finding equivalence classes using 

the RST algorithm; and (5) Shows an example of results and their application to a practical study 

of water-rock interaction in a portuguese granitoid area (Fundão, central Portugal). 

 

THE RST ALGORITHM 
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Concepts Behind the Algorithm: the Graph Theory 

 

As stated by the graph theory (e.g., Christofides, 1975), a graph G is a collection of points or 

vertices x1, x2, ..., xn (denoted by the set X) and a collection of lines a1, a2, ..., am (denoted by the 

set A) joining all or some of these points. The graph G is then fully described by the doublet 

(X,A). If the lines in A have a direction, which is usually shown by an arrow, they are called 

arcs, and the resulting graph is called a directed graph. If otherwise the lines have no orientation, 

they are called links, and the graph is nondirected or symmetric. A typical graph (Figure 1) will 

have both arcs and links and will be denoted as mixed. An alternative and often preferable way 

to describe a graph is by specifying a set X of vertices and a correspondence  which shows how 

the vertices are related to each other; for the graph shown in Figure 1, the number of vertices 

related with x1 is (x1)={x2,x3}, with x2 (x2)=, with x3 (x3)={x2,x4}, and so forth. 

 A subgraph Gs contained in G (Gs  G) is made of a subset of vertices Xs  X and 

the subset of lines As  A joining those vertices; in Figure 1, the set {x1, x2, x3} plus the set {a1, 

a2, a3} is a subgraph. A subgraph is said to be complete whenever exists an arc joining each pair 

of vertices; (e.g., the set {x1,x2,x3} and corresponding arcs). If a complete subgraph is 

symmetric, then it may be referred to as an equivalence class, as the properties of equivalence 

classes would apply to the vertices in the subgraph, namely symmetry and transitivity (Equations 

1a,b): 

(xi){xj}  (xj){xi}, for all (xi,xj) (1a) 

(xi){xj}  (xj){xk} (xi){xk}, for all (xi,xj,xk) (1b) 
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where  means “contains”. The set {x6,x7,x8,x9} and associated links is an equivalence class of 

the graph shown in Figure 1. 

The RST algorithm of Pacheco and Van der Weijden (1996) uses the concept of 

equivalence class as stated by Equations 1a,b to find the number of natural clusters in 

multivariate data sets, namely in groundwater data sets as in these cases the expected number of 

clusters is indeed hardly predictable. To accomplish that the algorithm operates in two main 

stages: 

Stage 1 - The algorithm builds a graph out of a data base 

As just said, the data base for the RST algorithm may be any multivariate data set 

representable by a matrix M of n rows denoting the objects and p columns denoting the 

variables used to describe those objects. Still, throughout this paper the objects will be 

referred to as groundwater samples and the variables as the concentrations of components 

dissolved in those samples (e.g., Na
+
, K

+
, etc). The graph in the present context is then a 

collection of water samples (which are the vertices) plus the similarities between them (the 

arcs and/or links) calculated on the basis of their chemistries (i.e., on the values of the above 

mentioned concentrations). Stage 1 proceeds in two main steps: In (Step 1) the similarities 

between the groundwater samples are calculated by a metric which sets them in the interval 

0,1. As seen from the lower limit of this interval, the similarity between water samples will 

never be zero, meaning that in theory there is always a link joining the samples. By 

accepting this, the resulting graph would always be an equivalence class, and the RST 

method would be useless (only one group would be identified). However, in practice, some 

similarities will be so low (when compared to others) that they can be easily assumed as 

they were zero.     (Step 2) calculates the number of those samples that should be considered 
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as related with a particular sample given the high similarities between them (the so-called 

relevant relations); using terminology from the graph theory, Step 2 sets the (xi) 

correspondence for every xi in the data base. It ought to be mentioned that this second step 

imposes a structure to the data set, which may be artificial, but it will be as artificial as the 

structure imposed to data sets by all known clustering algorithms. 

Stage 2 - Equivalence classes are extracted from the graph built in Stage 1 

Now each water sample is connected to a set of other samples (i.e., a graph is 

defined). The main purpose of this second stage is to search for complete and nondirected 

subgraphs by testing them for the properties of symmetry and transitivity (Equations 1a,b). 

The stage starts by eliminating the non-symmetric relations (i.e., the arcs) and then proceeds 

by gathering samples for which the transitivity test is valid. Equivalence classes built this 

way must also assure that the samples belong to just one class. 

The search for equivalence classes is dependent on the vertex that is chosen to start 

the searching as well as on the searching direction. Returning back to Figure 1, where 

several equivalence classes are represented (e.g., the sets X1={x6,x7,x8,x9}, X2={x4,x7} and 

X3={x6,x8,x9}, and corresponding links A1={a7,a8,a9,a10,a11,a12}, A2={a6} and 

A3={a8,a10,a11}), different results are obtained for different starting vertices. For example, if 

the searching starts on vertices x6,x8 or x9, one and the same equivalence class is identified, 

(X1,A1). If on the other hand the starting point is x4, two equivalence classes are found, 

(X2,A2) and (X3,A3). And finally, for a search starting at x7, the identified equivalence 

classes will depend on the direction of the searching: if it goes from x7 to x4, then the results 

will be the same as those found for a starting point defined at x4; otherwise, the results will 

be the same as those found for starting points defined at x6,x8 or x9. The remaining vertices 
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will split into groups of a single sample as they are not related by symmetric relations (all of 

them are joined by arcs or are isolated). In the case of a groundwater data set, depending on 

the values assumed by the original variables (the concentrations), the one-sample clusters 

may be gathered by the user into a group (or groups) of  anomalous samples, if the values in 

one or more of those variables are abnormal, or into a group of scattered samples otherwise. 

 

Stepwise Description 

 

As mentioned above, the initial raw data for the RST algorithm consist of a matrix Mnp, where n 

is the number of groundwater samples in the data base and p the number dissolved components 

describing the chemistry of those samples. The two consecutive stages and corresponding steps 

of the algorithm operate as follows: 

Stage 1 - Building the graph 

Step 1 - Setting up the similarities - The relation between two samples i and j is determined by a 

measure of similarity Sij defined by: 

S 1/ (1 d )ij ij   (2) 

where, 

d euclidian distance between two points

w (M M )

M , M values for the dissolved component  k in samples i and j

p =  number of components

w =  weight given to component k

ij

k ik jk

2

k 1

p 1/2

ik jk

k



 
















 

 The transformation of the data by the use of the euclidian distance is scale variant, so 

different results may be obtained when one changes the scale in which the data are expressed. 



 8 

This seems to reduce the applicability of the method, but the most common partitioning methods 

all use scale variant measures of similarities or distances to produce the clustering (Kaufman and 

Rousseeuw, 1990). 

A water sample i is closely related to a water sample j if Sij1, and the two samples 

will probably end up in the same equivalence class. If, however, Sij0, the two samples are 

practically unrelated and they will end up in different equivalence classes. Among the n-1 Sij’s of 

each sample, there is no general way to distinguish the values corresponding to Sij1 from those 

that have Sij0. For this reason, one has to decide on a criterion to mark the limits between the 

two sets of samples. To that end the next step is developed. 

Step 2 - Setting up the relevant relations - In this step, the Sij’s of each sample are separated into 

Sij=1, for the related samples, and Sij=0 for the unrelated samples. The following terminology 

was adopted: 

raw signal - the n-1 Sij’s of each sample sorted in ascending order; 

noise - a function that describes the values of the Sij’s for the unrelated samples; 

true signal - the Sij’s that will be set to Sij=1 (the relevant relations); 

filter - the method by which the true signals are separated from the noise. 

The filtering method consists of substeps 2.1 to 2.3. 

2.1) The n-1 relations are ranked in ascending order of their similarity to i and this row forms the 

raw signal of sample i. The sample j in position m on the raw signal is identified as sampm 

(j=sampm). This first substep is required prior to the application of the filter that will be 

defined in 2.3 (Equation 4). The samples j that are related to sample i are randomly 

distributed among the n-1 Sij’s which makes it difficult to find these samples in the Si array. 

By preceding ranking, the last elements of the array will be the ones to be joined with sample 
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i. The auxiliary array, samp, is used to save the original numbers of the samples (the j’s) 

before sorting the Sij’s. 

2.2) The first half of the population (lowest relations) is used to define a noise function: 

noise  =  
raw signal        if m (n -1) / 2

raw signal      if m > (n -1) / 2

m = 1,2,3,..., n -1

m

m

n-m



  (3) 

 It is assumed that half of the lowest Sij’s of each sample may not be transformed into 

relevant relations; by this method no cluster may have more than (n-1)/2 elements. However, 

when the number of equivalence classes is expected to be large (groundwater data sets), no 

sample is likely to have more than (n-1)/2 relevant relations, in which case no relevant relations 

are lost. 

The noise function works as follows: 

 The first half of the raw signal is considered to represent only noise (first 

equation of the noise function); 

 The second half of the raw signal is considered to contain some noise; the higher 

the value of the Sij the lower is its noise (second equation). 

2.3) Now, a binary square matrix, the relevant matrix R, can be defined that represents the 

relevant relations of the n samples. The row i of matrix R (the true signal of sample i) is 

constructed by setting Rij=1 for a relevant relation between i and j and Rij=0 otherwise. For 

the calculation of the Rij’s the following filter is defined: 

R  nearest integer 
raw signal -  noise

raw signal

m 1,2,3,..., n 1

j = samp

ij

m m

m

m










   (4) 

Stage 2 - Identifying the equivalence classes 
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Step 3 - Setting up groups of water samples with symmetric and transitive relations - The non-

zero Rij’s set the correspondences  of the water samples; using the appropriate terminology, the 

samples j which are connected with sample i are given by (i)={j, for all j’s which have Rij=1}. 

From the previous steps it is not guaranteed that a relevant relation between sample i and sample 

j also exists between this sample j and sample i. This means that the symmetry of the relevant 

relations has to be tested (Equation 1a). In addition, the transitivity property has to be tested if 

more than two elements are to be joined in the same equivalence class. This is accomplished 

only if all the relations between the elements of that set of samples are relevant (Equation 1b). A 

computational implementation of Equations 1a,b is described in the consecutive substeps 3.1 to 

3.9. 

3.1) The symmetric relations are identified and saved in the elements above the main diagonal of 

R: 

R R * R

i 1,2,3,..., n 1

j i 1,..., n

ij ij ji

 

 

 (5) 

3.2)  The transitive relations are identified. At the start of the transitivity test all samples have a 

status Rii = 1 (ungrouped). This status changes to Rii = 0 when sample i is included in one 

equivalence class. Only the first element of each class remains with its status unaltered. 

3.3)  To begin an equivalence class one looks for sample i with Rii = 1. 

3.4)  For this sample i one considers the elements j (j=i+1,...,n) with Rij = 1. 

3.5) For this sample j the value of Rjj is tested to check whether j has already been included in 

another class. If Rjj=0, which means that sample j already belongs to another class, we 

assign Rij=0 to guarantee that sample j will not be grouped with sample i; otherwise sample j 
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is grouped with sample i (Rij maintains the value of 1 and Rjj is set to 0). Testing the 

remaining samples k, one continues to preserve the transitivity between samples i, j, k by: 

R R * R

k j 1,..., n

ik ik jk

 
 (6) 

3.6)  In case not all samples j with Rij=1 are tested the procedure starts again at step 3.4. 

3.7)  The equivalence class initiated in 3.3 is complete. All samples j of row i with Rij=1 belong 

to it and have Rjj=0, whereas Rii=1. 

3.8)  This procedure must be completed for all samples i which kept Rii=1. Subsequently 

another equivalence class is initiated, starting with step 3.3, until i=n. 

3.9)  The elements of each equivalence class are listed: the total number of rows with Rii=1 

defines the number of classes that have been identified; each class comprises samples j of 

those rows with Rij=1  

 As already stated, the results described in steps 3.3 to 3.9 may in some cases depend 

on the starting sample and on the order in which the searching for equivalent relations is carried 

out; this is the case when the data set contains water samples that may belong to different but 

similar equivalence classes. In general, the equivalence classes will be defined according to the 

order in which the samples are inserted in the data base. 

 

The Nature of the RST Classes 

 

In general, the number of clusters present in groundwater data sets is expected to be high 

because the composition of groundwater is usually affected by many sources (e.g., atmospheric 

input, pollution) and processes (e.g., weathering, botanical uptake, ion-exchange) acting in 

combination. In addition, these sources and processes may be of different kinds which also 
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increases the number of groups (for example, pollution may be caused by agriculture, domestic 

effluents, etc, weathering may be related to the hydrolysis of silicates, dissolution of carbonates 

or evaporitic rocks, etc, botanical uptake is dependent on the tree species, etc, etc). But the 

nature of the clusters (i.e., their form and extent), and especially the separation between them on 

an       euclidian space, is not predictable in advance. Once the chemistry of a cluster is 

dominated by a specific source or process not affecting the  other  clusters,  then  this  cluster  is  

supposed  to  form  a  disjoint  set  of samples. But when the contributions of weathering, 

pollution, etc to the water composition are similar, and therefore the differences between the 

chemistry of the clusters are narrow, then the distribution of the water samples on a p-

dimensional space should reveal a picture of one big and probably elongated cloud, with our 

clusters forming a sequence of adjacent spots starting at one edge and ending at the other edge of 

that cloud, reflecting the transition of similar but still different water chemistries. 

 One possibility that can be used to illustrate the ideas expressed in the previous 

paragraph is to calculate the first and second principal components of the data set in question 

(the details of Principal Components Analysis are beyond the scope of this paper and can be 

found elsewhere, for example in the book of Jackson, 1991), make a cross-plot, and show the 

distribution of the clusters on this plot. That was done for a data set pertaining to the chemical 

composition of shallow groundwaters from a zonated granitoid plutonite in central Portugal (the 

Fundão plutonite) published by Van der Weijden and others (1983). This data set was 

extensively studied by Pacheco and Van der Weijden (1996) who have defined ten clusters using 

the RST algorithm (plus one cluster of polluted samples, another of samples with abnormally 

high concentrations in bicarbonate, and a third of scattered samples, all gathered “by hand” from 

samples left isolated by the algorithm) and interpreted nine of them using a geochemical mass 
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balance model and the available geological information. In the present paper, Principal 

Components Analysis was applied to samples of the Fundão data set, those belonging to the nine 

interpreted clusters plus the cluster of polluted samples. The variables used in the analysis were 

the same used by Pacheco and Van der Weijden (1996) to produce the clustering: Na
+
, K

+
, Mg

2+
, 

Ca
2+

, HCO3
-
, Cl

-
, SO4

2-
 and NO3

-
. The samples scores on the first and second principal 

components (pc1 and pc2, 71.4% + 10.0% = 81.4% of the data variation) are shown in Figure 2. 

Different symbols were used to represent the clusters that Pacheco and Van der Weijden (1996) 

have associated with (1) A granitic satellite of the plutonite (group 2, filled triangles); (2) The 

granodiorites forming the body of the plutonite (groups 1,3 and 4, open circles representing the 

most alkaline facies, and groups 5, 8 and 9, filled squares representing the chalk-alkaline facies); 

(3) The dike swarm of basic rocks cutting the plutonite (groups 6 and 10, open triangles); and (4) 

Pollution (bullets). Despite the scatter, its clear from Figure 2 that each spot have a definite 

position within the factor space. However, no specific sites could be found neither for clusters 

1,3 and 4 within the open circles area, nor for clusters 5, 6, 8, 9 and 10 within the filled squares 

and open triangles areas. The reason for this may have opposite interpretations: (1) The 

differences between the chemistries of those clusters are artificial; (2) Those differences are real 

but too narrow to be detected by eigenvector techniques such as Principal Components Analysis. 

I believe the second interpretation is the right one. 

 The order in which the spots appear in Figure 2 is essentially conditioned by the first 

principal component. Using four different groundwater data sets from crystalline rocks (granites 

and schists), including the Fundão data set, Pacheco (in press) noticed that pc1 is usually related 

with the samples electrical conductivities (Ec); in the present case, a Pearson correlation 

coefficient of 0.99 was found between pc1 and Ec for 99.95% probability. Looking at the 
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sequence of spots from the left- to the right-hand side of the diagram shown in Figure 2, its 

apparent that the samples scores are higher when the associated rocks are more weatherable 

(amphibolites are surely less resistant to the alteration than granodiorites which in turn are less 

resistant to weathering than granites). In other words, according to Figure 2, waters become 

more concentrated (with higher Ec's) when their parent rocks dissolve more quickly. This is 

additional validation of the RST results. 

 

PROGRAM DESCRIPTION 

 

The program EQCLASS (see Appendix) performs an RST analysis on a multivariate data set, 

i.e., it finds the number of natural clusters present on that set. The code is written in FORTRAN 

(MicroSoft F32) and includes a central program with 4 subroutines (SIMILARITY, RANK, 

FILTER and RST) which do: 

SIMILARITY - Sets up the similarities between the samples of the data set (Stage 1, Step 

1 of the RST algorithm); 

RANK (adapted from the INDEXX routine of Press and others, 1989) - Ranks the 

similarities of each sample in ascending order, a substep (2.1) required prior to the 

calculation of the relevant relations;  

FILTER - Calculates the relevant relations (substeps 2.2 and 2.3); 

RST - Identifies the equivalence classes (Stage 2, Step 3). 

 The program starts asking for the input and output filenames. The input file is an 

ASCII file which must have the following structure: 
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1)  First line - the number of samples (n) and the number of variables (p) separated by 

space(s); 

2)  Next p lines - the name of each variable (8 characters); 

3)  Next n lines - the number and the variable scores of each sample separated by 

space(s). 

 After performing the RST analysis, the identified equivalence classes are written in 

the output file and the program ends. 

 

APPLICATIONS 

 

The RST algorithm, like any other clustering algorithm, was designed to find groups in data. 

This particular method is of interest to all those, in any field of research, who cannot by any 

means estimate a priori the number of clusters present in their data sets. As mentioned before, 

Pacheco and Van der Weijden (1996) applied the RST algorithm to a set of spring and well 

samples collected in Fundão, a granitoid and agricultural area at central Portugal. The algorithm 

was used in combination with a novel weathering algorithm (the Silica-Bicarbonate - SiB - 

algorithm also described in that study) to assess the contributions made by chemical weathering 

and anthropogenic inputs to the composition of nine groups of shallow groundwaters in that area. 

After that, Pacheco and others (submitted) applied both the RST and the SiB algorithms to a 

groundwater data set from a granitoid and forested area in northern Portugal (the Chaves-Vila 

Pouca de Aguiar region), and using these algorithms they could relate the chemistry of nine 

equivalence classes with climatic variations within the area, differences in the mineral chemistry 
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of two granitic facies, large-scale faulting, changes in the forest biomass, ion-exchange reactions 

and agricultural pollution. 

Example 

 

 As an example of how the results obtained with the RST algorithm can be used in the 

field of hydrogeochemistry, the nine equivalence classes that could be interpreted by Pacheco 

and Van der Weijden (1996) using the SiB algorithm (average chemical compositions depicted 

in   Table 1) will now be re-interpreted by a classical graphical method (Garrels, 1967). 

 The Fundão plutonite was studied by Portugal Ferreira (1982) and Portugal Ferreira 

and others (1985). The main lithological types are granodiorites although some granites appear 

in places. These units are cut by a dike swarm of amphibolites and metadiabases. Plagioclase in 

the granites is albite, in the granodiorites varies in composition between oligoclase and andesine 

due to crystal zonation, and in the dikes is andesine. The soils in the Fundão area have a 

homogeneous mineralogical composition defined by the association quartz + feldspar + biotite + 

halloysite (Costa and others, 1971). 

 Plagioclase is the most important weathering reactant among the primary minerals 

present in the various rocks of the Fundão plutonite. During weathering, plagioclase have altered 

to halloysite, and the waters collected in the different lithotypes are expected to have chemical 

compositions related to the weathering of their plagioclase types. Garrels (1967) showed that the 

bicarbonate to silica mole ratio is a good diagnostic parameter for particular water-mineral 

interactions. Still, one should bear in mind that this ratio may be strongly upset by sizable input 

of limestone dust, application of calcium carbonate on agricultural land (not done in the area), 
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precipitation of silica and/or bicarbonate, and selective uptake of nitrate in exchange with 

bicarbonate. 

 Figure 1 is a plot of the mole ratio bicarbonate/silica (HCO3
-
/H4SiO4) vs. the HCO3

-
 

in mg/l. It shows that waters collected in the granites (bullets) are indeed related to the 

weathering of albite, and are clearly separated from waters collected in the granodiorites (open 

squares) or in the dikes (filled squares). Plagioclase in the granodiorites may vary in composition 

from oligoclase to andesine and these changes are reflected in the chemistries of clusters 3, 4, (1, 

8, 9), 5. Clusters 1, 8, 9 have similar HCO3
-
/H4SiO4 ratios, but cluster-8 waters are obviously 

more polluted than cluster-5 waters and much more than cluster-1 waters (cf. Table 1, last row). 

Cluster-6 and cluster-10 waters fall down between the lines that represent the alteration of 

andesine into halloysite and Ca-montmorillonite. These waters apparently represent alteration to 

a product averaging in composition somewhere between those end members, which presumably 

would represent a mixture of the two phases. Alteration to intermediate smectite type clays               

(Ca-montmorillonite) may result from stagnant conditions of flow, characteristic for the 

circulation in faults or dikes, as early pointed out by Tardy and others (1971). 

 

CONCLUSIONS 

 

EQCLASS is a computer program based on the RST algorithm which can be used for finding the 

number of natural clusters present in a multivariate data set. It is very effective in the clustering 

of groundwater data sets as in this case the number of groups is large and hardly predictable. An 

example of the utilization of this program shows that a large number of spring a well samples 

collected in a granitoid area can be represented by a limited number of clusters, and that the 
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average chemistry of those clusters can be related to different water-mineral interactions 

involving the weathering of plagioclase. 
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APPENDIX 

 

EQCLASS  Source Code Listing 

 
C     ************************* EQCLASS PROGRAM ************************   

C 

C     This is a FORTRAN program for finding a natural partition of a  

C     data set. It uses the concept of equivalence class for performing  

C     the clustering as presented in the RST algorithm (text). 

C      

c     The program was compiled by the Microsoft FORTRAN Visual Workbench 

C 

C     Author: Fernando António Leal Pacheco 

C     Adress: Secção de Geologia  

C             Universidade de Trás-os-Montes e Alto Douro 

C             5000 Vila Real  

C             Portugal 

C             Fax: (059) 320480; E-mail: fpacheco@utad.pt 

C 

C     ************************** Main Program ************************** 

C 

C     Declaration/description of variables    

C                                  

      PARAMETER (NINP=10,NOUT=20)              ! Input/Ouptput ports 

      CHARACTER*20 INPUT,OUTPUT                ! Input/Output file names 

C       

      INTEGER*2    NUMBER   [ALLOCATABLE](:)   ! Sample numbers 

      CHARACTER*8  VARNAME  [ALLOCATABLE](:)   ! Variable names 

      REAL*4       M        [ALLOCATABLE](:,:) ! Data matrix 

C       

      REAL*4       S        [ALLOCATABLE](:)   ! Similarities  

      INTEGER*2    SAMP     [ALLOCATABLE](:)   ! Auxiliary array 

      INTEGER*1    R        [ALLOCATABLE](:,:) ! Relevant matrix 

       

C      

      INTEGER P 

      CHARACTER*8 VN 

C       

C     Open the input and output files  

C                                                                   

      WRITE (*,'(///////////,T5,A,/,T5,A,//////////)') 

     1'Welcome to EQCLASS program','Please follow instruction'  

      WRITE (*,'(T5,A,$)')'Input Filename? ' 

      READ (*,'(A)') INPUT 

      OPEN (NINP,FILE=INPUT) 

      WRITE (*,'(T5,A,$)')'Output Filename? ' 

      READ (*,'(A)') OUTPUT 

      OPEN (NOUT,FILE=OUTPUT) 

C 

C     Read from the input file the number of samples (N), the number of  

C     variables (P), the variable names (VARNAME), the sample numbers  

c     (NUMBER) and the variable values in each sample (M). First,  

C     allocate memory to variables. 

C 

      WRITE(*,'(T5,A)')'Reading data from the input file...' 

      REWIND NINP 

      READ(NINP,*)N,P      

      ALLOCATE (NUMBER(N),VARNAME(P),M(N,P),S(N),SAMP(N),R(N,N)) 
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      DO J=1,P 

         VN='       ' 

         READ (NINP,'(A)') VN 

         ILEN=LEN_TRIM(VN) 

         IN=8-ILEN+1 

         VARNAME(J)='       ' 

         VARNAME(J)(IN:8)=VN(1:ILEN) 

      END DO 

      DO I=1,N 

         READ (NINP,*) NUMBER(I),(M(I,J),J=1,P) 

      END DO                 

C       

C     Steps 1 and 2 of the RST algorithm: calculate the relevant matrix R.       

      WRITE(*,'(T5,A)')'Calculating the relevant relations...' 

      DO I=1,N 

         CALL SIMILARITY (I,M,N,P,S) 

         CALL RANK (S,N,SAMP) 

         CALL FILTER (I,S,SAMP,N,R)        

      END DO                 

C 

C     Step 3 of the RST algorithm: search for equivalence classes. 

      WRITE(*,'(T5,A)')'Searching for the equivalence classes...' 

      CALL RST (R,N) 

C 

C     Write the results on the output file. 

C 

      WRITE(*,'(T5,A)')'Writing the results...'                    

      WRITE (NOUT,'(T5,A,2X,A)') 

     1'Equivalence classes identified on the input file ',INPUT 

      WRITE (NOUT,'(T5,A,T30,I4)')'Total number of samples: ',N 

      WRITE (NOUT,'(T5,A,T30,I4,/)')'Total number of variables: ',P 

      NGROUPS=0 

      DO I=1,N 

         IF (R(I,I).EQ.1) NGROUPS=NGROUPS+1 

      END DO    

      WRITE (NOUT,'(T5,A,T30,I4,/)')'Total number of groups: ',NGROUPS 

      IGROUP=0 

      DO I=1,N 

         IF (R(I,I).EQ.1) THEN 

            IGROUP=IGROUP+1 

            NSAMPLES=0  

            DO J=I,N   

               IF (R(I,J).EQ.1) NSAMPLES=NSAMPLES+1 

            END DO 

            WRITE (NOUT,'(T5,A,2(I5,A))') 

     1      'Group ',IGROUP,':',NSAMPLES,' samples'    

            WRITE (NOUT,'(T5,A)')'Sample numbers and group information:' 

            WRITE (NOUT,'(T5,16(A8,1X))') 'Number',(VARNAME(J),J=1,P) 

            DO J=I,N 

               IF (R(I,J).EQ.1) THEN                    

                  WRITE (NOUT,'(T5,I8,1X,20(F8.2,1X))') 

     1            NUMBER(J),(M(J,K),K=1,P) 

               END IF 

            END DO 

            WRITE (NOUT,'(/)') 

         END IF 

      END DO             

      DEALLOCATE (NUMBER,VARNAME,M,S,SAMP,R)       

      STOP '   Normal end of program EQCLASS' 

      END 
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C     ************************* SUBROUTINES ****************************       

C 

      SUBROUTINE SIMILARITY (I,M,N,IP,S) 

C       

C     Calculates the N-1 similarities of sample I. An arbitrary value of 

C     2.00 identifies sample I in the S array. 

C 

      REAL*4 M(N,IP),S(N) 

C       

      DO J=1,N 

         IF (J.EQ.I) THEN 

            S(J)=2.00 

            CYCLE 

         END IF 

         DIJ=0.00 

         DO K=1,IP 

            DIJ=DIJ+(M(I,K)-M(J,K))**2   

         END DO  

         DIJ=SQRT(DIJ)                  ! euclidian distance 

         S(J)=1.0/(1.0+DIJ)             ! similarity. 

      END DO 

      RETURN 

      END     

C     ------------------------------------------------------------------ 

      SUBROUTINE RANK(S,N,SAMP) 

C       

C     Indexes the array S of length N, i.e. outputs the array SAMP 

C     such that S(SAMP(J)) is in ascending order for J=1,2,...,N. 

C 

      REAL*4 S(N) 

      INTEGER*2 SAMP(N) 

C       

      DO J=1,N 

         SAMP(J)=J 

      END DO   

      L=N/2+1 

      IR=N 

c       

10    CONTINUE 

c 

      IF (L.GT.1) THEN 

         L=L-1 

         SAMPT=SAMP(L) 

         Q=S(SAMPT) 

      ELSE 

         SAMPT=SAMP(IR) 

         Q=S(SAMPT) 

         SAMP(IR)=SAMP(1) 

         IR=IR-1 

         IF (IR.EQ.1) THEN 

            SAMP(1)=SAMPT 

            RETURN 

         ENDIF 

      ENDIF 

      I=L 

      J=L+L 

20    IF (J.LE.IR) THEN 

         IF (J.LT.IR) THEN 

            IF (S(SAMP(J)).LT.S(SAMP(J+1))) J=J+1 

         ENDIF 
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         IF (Q.LT.S(SAMP(J))) THEN 

            SAMP(I)=SAMP(J) 

            I=J 

            J=J+J 

         ELSE 

            J=IR+1 

         ENDIF 

         GO TO 20 

      ENDIF 

      SAMP(I)=SAMPT 

      GO TO 10 

      END       

C     ------------------------------------------------------------------ 

      SUBROUTINE FILTER (I,S,SAMP,N,R) 

C       

C     Calculates the line I of the relevant matrix R. 

C                         

      REAL*4 S(N) 

      INTEGER*2 SAMP(N) 

      INTEGER*1 R(N,N) 

C       

      REAL*4 RAWS  [ALLOCATABLE] (:) 

      REAL*4 NOISE [ALLOCATABLE] (:) 

C                

      ALLOCATE (RAWS(N),NOISE(N)) 

      DO m=1,N-1 

         RAWS(m)=S(SAMP(m))               

      END DO          

      DO m=1,(N-1)/2 

         NOISE(m)=RAWS(m) 

      END DO 

      DO m=(N-1)/2+1,N-1 

         NOISE(m)=RAWS(N-m) 

      END DO      

      DO m=1,N 

         R(m,m)=1 

      END DO      

      DO m=1,N-1 

         J=SAMP(m) 

         R(I,J)=NINT((RAWS(m)-NOISE(m))/RAWS(m))    

      END DO                

      DEALLOCATE (RAWS,NOISE) 

      RETURN 

      END 

C    ------------------------------------------------------------------- 

      SUBROUTINE RST (R,N) 

C       

C     Identifies sets of samples with symmetric and transitive relations 

C     (classes of equivalence). 

C 

      INTEGER*1 R(N,N) 

       

      DO I=1,N-1 

         DO J=I+1,N 

            R(I,J)=R(I,J)*R(J,I) 

         END DO 

      END DO 

      DO I=1,N 

         IF (R(I,I).EQ.0) CYCLE 

         DO J=I+1,N 
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            IF (R(I,J).EQ.0) CYCLE  

            IF (R(J,J).EQ.0) THEN 

               R(I,J)=0  

               CYCLE 

            ENDIF 

            DO K=J+1,N 

               R(I,K)=R(I,K)*R(J,K) 

            END DO 

            R(J,J)=0 

         END DO  

      END DO 

      RETURN 

      END             
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TABLE LEGEND 

 

Table 1: Average chemical composition of the nine equivalence classes that could be interpreted 

by Pacheco and Van der Weijden (1996) using the SiB algorithm. Original data set of 

Van der Weijden and others (1983). Square brackets denote concentrations, in eq/l for 

the ions and in mol/l for dissolved silica. Pollution = Cl
-
+SO4

2-
+NO3

-
. 
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FIGURE CAPTIONS 

 

Figure 1: Representation of a typical graph. 

 

Figure 2: Cross-plot representing the first two principal components and the RST classes of the 

Fundão data set. The distribution of the water samples by the RST groups and the data 

for the Principal Components Analysis were compiled from Pacheco and Van der 

Weijden (1996). Only the data pertaining to the RST classes 1-6, 8-10 and to the 

anomalies in pollutants were considered. Different symbols were used to represent the 

RST classes. The pc1 axis was split into two branches because the pc1 scores of the 

pollution group are in general one order of magnitude higher than the scores of the 

other groups. 

 

Figure 3: Plot of the HCO3
-
/H4SiO4 mole ratio versus the HCO3

-
 in mg/l for waters 

collected in the different lithological types of the Fundão plutonite. The numbers 

above the symbols represent the RST classes as presented in Table 1. The horizontal 

lines show the HCO3
-
/H4SiO4 ratios expected if the water chemistries were the 

result of various reactions for the alteration of plagioclase. These expected ratios were 

calculated taking into account the chemical compositions of the primary and 

secondary minerals as given in Deer and others (1962) and Morel and Hering (1993). 
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Table 1 

 

 

 

 

lithotype granit

e 

granodiorite amphibolite, 

metadiabase 

equivalence class 2 4 3 1 8 9 5 10 6 

number of samples 20 14 14 22 7 7 10 5 8 

Na
+
 301 419 381 422 565 476 656 748 600 

K
+
 17 27 24 32 25 29 30 36 41 

Mg
2+
 90 150 138 187 379 302 347 504 424 

Ca
2+
 80 156 192 292 628 433 616 916 682 

HCO3
-
 252 382 433 579 497 606 720 844 1135 

Cl
-
 131 192 173 178 304 299 326 553 266 

SO4
2-
 56 136 71 79 326 140 367 422 136 

NO3
-
 51 140 44 53 472 153 150 385 78 

H4SiO4 472 591 534 610 506 615 676 498 629 

HCO3
-
/H4SiO4 0.53 0.65 0.81 0.95 0.98 0.99 1.07 1.69 1.80 

Pollution 238 468 288 310 1102 592 843 1360 480 
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Figure 1 
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Figure 2 
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Figure 3 
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