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Contagem automática de insetos em imagens de armadilhas

utilizando deep learning

Ana Cláudia Carvalhais Teixeira

Submetido na Universidade de Trás-os-Montes e Alto Douro

para o preenchimento dos requisitos parciais para obtenção do grau de

Mestre em Engenharia Electrotécnica e de Computadores

Resumo — As pragas de insetos são a principal causa de perda de produtividade

e qualidade nas culturas em todo o mundo. O percevejo e a traça da uva são

exemplos de duas das pragas mais significativas que afetam o arroz e as vinhas,

respetivamente. As armadilhas para insetos estão entre as soluções mais adequadas

para monitoramento e contagem influenciando a seleção e dosagem do pesticida

a ser aplicado no controlo de pragas. No entanto, a monitorização e contagem

baseiam-se na visita frequente de técnicos ao local e são suportadas por métodos de

contagem ineficientes, sendo uma tarefa exigente e demorada. A gestão integrada de

pragas foi desenvolvida para melhorar a gestão de pragas de insetos, reduzir o uso

excessivo de pesticidas e aumentar a qualidade e o rendimento das culturas. Com o

aprimoramento das tecnologias de inteligência artificial, diversas aplicações surgiram

no contexto agŕıcola, incluindo detecção automática, monitorização e contagem de

insetos.

Este estudo propõe a contagem automática de insetos em armadilhas usando algoritmos

de deep learning. Foram utilizados três bases de dados diferentes, Pest24, Bedbug e

Grape moth. Pest24 é um conjunto de dados público com uma grande diversidade

de insetos. Os conjuntos de dados Bedbug e Grape moth são conjuntos de dados

privados fornecidos pelo mySense, uma plataforma de agricultura de precisão desenvolvida

e gerida por investigadores da UTAD.

Nossa metodologia foi dividida em duas partes, o uso de detetores de um estágio

(YOLOv5) e de dois estágios (Faster R-CNN). Para a YOLOv5, realizamos um

total de 8 experimentos, nos quais foram analisados o impacto do transfer learning

e o hyperparameter tuning. Para a Pest24, obtivemos um desempenho superior ao

xi



relatado no estado da arte (72,1% de mAP), com o método YOLOv5. Em seguida,

usando os hiperparâmetros e weights obtidos do conjunto de dados Pest24, treinamos

os conjuntos de dados Bedbug e Grape moth. Os melhores resultados para o dataset

do Bedbug foram obtidos com o YOLOv5 com tranfer learning com um AP de 95,9%.

O melhor resultado foi obtido com YOLOv5 usando o ajuste de hiperparâmetros da

Pest24 com AP de 91,5% para o Grape moth. Para o detector de dois estágios,

realizamos 8 experimentos, nos quais foram combinados o uso de CNN (VGG ou

Inception ResNet V2) e a aplicação de otimização de âncora, ajustando a âncora

ao tamanho dos insetos. A otimização da âncora mostrou-se eficaz no conjunto de

dados Grape moth, atingindo um AP de 80%, mas para o conjunto de dados da

Grape moth, o método que teve o melhor desempenho foi sem a otimização âncora

com um AP de 78.3%.

Como resultado, YOLOv5 foi a melhor arquitetura, apresentando apenas dificuldades

de detecção em imagens com elevado número de insetos. Além disso, foi posśıvel

verificar que a escala relativa dos insetos é o fator que mais afeta a tarefa de detecção

e que a otimização da âncora pode melhorar os resultados de detecção.

Palavras Chave: Deep learning, contagem de insetos, deteção de insetos, monitorização

inteligente de pragas
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Abstract — Insect pests are the leading cause of yield loss and quality in crops

worldwide. The bedbug and the grape moth are examples of two the most significant

pests affecting rice and vineyards. Insect traps are among the most appropriate

solution for monitoring and counting influencing the selection and dosage of the

pesticide to be applied for pest control. However, the counting and monitoring

operations are based on the frequent visit of technicians to the site and are supported

by inefficient counting methods, which is a challenging and time-consuming task.

Integrated pest management was developed to improve insect pest management,

reduce the overuse of pesticides, and increase the quality and yield of crops. With

the improvements of artificial intelligence technologies, several applications have

emerged in the agricultural context, including automatic detection, monitoring and

counting of insects.

This study proposes the automatic counting of insects in traps using deep learning

algorithms. Three different databases, Pest24, Bedbug and Grape moth were used.

Pest24 is a public dataset with a great diversity of insects. The Bedbug and

the Grape moth datasets are private datasets provided by mySense, a precision

agriculture platform developed and managed by researchers from the UTAD.

Our methodology was divided into two parts, the use of one-stage (YOLOv5) and

two-stage (Faster R-CNN) detectors. For the one-stage detector, we carried out a

total of 8 experiments, in which the impact of transfer learning and hyperparameter

tuning were analyzed. First, for Pest24 dataset we obtained a performance superior

to that reported in state of the art, with the YOLOv5 method with standard

hyperparameters, with an mAP of 72.1%. Then, using the hyperparameters and

weights obtained from the Pest24 dataset, we trained the Bedbug and Grape moth

datasets. The best results for the Bedbug dataset were obtained with the YOLOv5
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with transfer learning with an AP of 95.9%. The best result was obtained with

YOLOv5 using the hyperparameters tuning of Pest24 with an AP of 91.5% for the

Grape moth. For the two-stage detector, we performed 8 experiments, in which

the use of CNN (VGG and Inception ResNet V2) and the application of anchor

optimization or not (adjusting to the size of the insects) were combined. The anchor

optimization proved to be effective in the Bedbug dataset, reaching an AP of 80%,

but for the Grape moth dataset, the method that performed the best was without

the anchor optimization with an AP of 78.3%.

As a result, YOLOv5 was the best architecture, presenting only detection difficulties

in images with a high number of insects. Furthermore, it was possible to verify that

the relative scale of the insects is the factor that most affects the detection task and

that the anchor optimization can improve the detection results.

Key Words: deep learning, insect counting, insect detection, smart pest monitoring
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1 Introduction

Insect pests are one of the biggest problems in agriculture, causing between 20 and

40 percent losses in global agricultural production each year (13). The prevention of

pests can avoid the loss of a large part of the harvest and, consequently, avoid high

economic losses, with this objective, farmers apply pesticides on crops. However,

continued use of this product causes harmful effects on human health, the environment,

and natural resources (14). Thus, to avoid the undesirable consumption of pesticides

and detect pests early, it is necessary to apply advanced technical solutions.

Precision agriculture consists of a set of advanced tools and technologies that make it

possible to evaluate or monitor the conditions of a particular agricultural plantation.

The main objectives of precision agriculture are the increase in farmers’ income,

associated with the reduction of production costs, the increase in productivity, and

the reduction of the environmental impact of agricultural activity (15).

Pest detection is a useful precision farming tool (16). Insect monitoring is therefore

necessary for the early detection of pests and thus to prevent the excessive use of

pesticides. One form of monitoring is counting the insects attracted to traps. Your

count is essential to determine the need to apply pesticides or not. Traditionally,

insect counting is done visually. However, as each trap can contain dozens of insects

1



2 CHAPTER 1. INTRODUCTION

of different species, the counting task becomes very laborious, susceptible to errors,

and time-consuming (17).

1.1 Motivation

Since insects are very small and similarities between different insects are reduced,

counting becomes a difficult task. With the rapid development of image processing

and artificial intelligence (AI) techniques, the possibility of automating the counting

of insects in traps emerged. Thus, counting automatically would be a plus, as it

would make the counting procedure faster, safer, more effective and is essential for

a smaller and more assertive use of phytopharmaceuticals.

In the literature, some works use this approach for the task of identifying and

accounting for insects. Nieuwenhuizen et al. (18) presented a methodology to detect

and count the whitefly in sticky traps. They used the Faster R-CNN with Inception

Resnet v2 and obtained 87.40% mean average precision (mAP). Nieuwenhuizen’s

method has two limitations, the fact that it only works on images with a yellow

background and the images have to be obtained under controlled conditions. Hong

et al. (19) proposed several algorithms that detect and count M. thunbergianae

from pheromone trap images. The authors trained a Faster R-CNN with Resnet101,

EfficientDet D4, Retinanet50, and SSD Mobilenetv2 architectures. The Faster R-

CNN achieved the best result, with an AP of 85.63%. Yun et al. (20) applied

different methodologies for black pine detection from adhesive trap images. The

methodology that had the best performance was YOLOv5, with an AP of 94.7%.

Tang et al. (21) proposed a modified YOLOv4 to detect insect pests in a dataset

with 28,000 images. The method developed by them obtained an mAP of 71.6%.

Thus, the development of a model for the detection and automatic counting of insects

in traps using images acquired in a natural environment will represent an advance

in the state of the art, considering the data provided by the mySense platform.

mySense is an innovative platform consisting of a set of devices that collect numerical
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data or images to offer a set of solutions for specific problems in precision agriculture.

This platform has an image collection system of insect traps in several geographically

dispersed observatories and different cultures (22).

1.2 Objectives

This study aims to develop a system capable of performing the automatic counting

of insects in trap images using deep learning (DL).

The specific objectives are enumerated below:

1. Research state-of-the-art methods for detection insects in trap images using

DL.

2. Identify public database with images of insect traps that allow better testing

and evaluation of the methods developed.

3. Organize and annotation a database with the images provided by the mySense

platform.

4. Implement state-of-the-art DL methods and developed methods for automatic

detection and counting the insects present in them.

1.3 Contributions

This dissertation presents the following contributions:

• A review of the state of the art of small object detection methods and more

focused on insect detection;

• Construction of two databases (Bedbug and Grape moth);
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• A comparative approach between the one-stage detector and two-stage detector

method for the detection of insects in traps;

• Analysis of transfer learning and hyperparameter tuning application;

• Adaptation of the Faster R-CNN detector for objects of reduced dimensions;

The code is available in a git repository1.

1.4 Publications and awards

This dissertation involved the following publication during its period:

1. A. C. Teixeira, J. Ribeiro, A. Neto, R. Morais, J. J. Sousa and A. Cunha,

”Using deep learning for detection and classification of insects on traps”, 2022

IEEE International Geoscience and Remote Sensing Symposium IGARSS,

2022.

2. A. C. Teixeira, R. Morais, J. J. Sousa and A. Cunha, ”A deep learning

approach for automatic counting of bedbugs and grape moth”, International

Conference on ENTERprise Information Systems, CENTERIS, 2022.

3. A. C. Teixeira, R. Morais, J. J. Sousa and A. Cunha,” Using deep learning for

automatic detection of insects in traps”, International Conference on ENTERprise

Information Systems, CENTERIS, 2022.

During this dissertation we participate and awarded 3rd place in ”Concurso de ideias

INOVA@UTAD 2022” with ”TRAPInspector – Sistema inteligente de deteção e

contagem automática de insetos em armadilhas”. TRAPInspector is a device based

on a single board computer (Raspberry Pi/Orange Pi) connected to an instrumented

trap and where an DL algorithm responsible for the detection and counting of insects

1https : //github.com/anaclaudia13ct/insectdetection.git
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is executed locally, thus making this a standalone solution that does not depend

on any external service. This count is finally sent to the farmer via SMS/email.

Authors: Raul Manuel Pereira Morais dos Santos, Jorge Miguel Ferreira da Silva

Mendes, Ana Cláudia Carvalhais Teixeira, António Manuel Trigueiros da Silva

Cunha, Emanuel Soares Peres Correia. UTAD, May 30, 2022.

1.5 Document Structure

This document is divided into 7 chapters. In each chapter there is a introductory

note with the purpose of the chapter, specifying its content. The Chapter 2 contextualizes

the theme at the agricultural sector. The detailed study of concepts related to deep

learning fundamentals, inclued the neural networks, convolutional neural networks,

transfer learning and fine tuning, and lastly, the architecture of object detection

methods in the Chapter 3. In the Chapter 4 a literature review about small object

detection and insect detection with DL methods is presented. The materials and

methods are presented in the Chapter 5, the results and discussion in the Chapter 6.

And, the conclusions and future work in the Chapter 7.





2 Contextualisation

To better understand the context of this work, we carried out a preliminary study

aimed at the agricultural sector. In section 2.1, we present the evolution of agriculture

up to the present day. Section 2.2 describes the various types of traps and their

benefits. And section 2.2 covers an overview of precision agriculture and the mySense

platform.

2.1 Evolution of agriculture

Agriculture is the oldest economic activity. It is essential for the satisfaction of

countless human needs, for example, the production of food, clothes, and energy. For

thousands of years, agriculture evolved and developed very slowly. Good production

performance depends on natural factors, such as weather conditions, soil quality,

relief, and humidity. These factors determined the quality and quantity of production.

With the creation and development of new technologies and tools, it was possible

to bypass and, in some cases, eliminate natural obstacles and thus achieve the

productivity and income desired by farmers (23).

Intensive agriculture is a type of agricultural system that has high productivity.

7
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The main features of this mode of production are crop rotation, use of fertilisers

and pesticides, selection and genetic modification of seeds and species, mechanised

production, and skilled labour (24).

Agricultural activity is associated with a set of variables in the ecosystem, including

pests and diseases and the presence of other plant species that compete for food,

water, and light. These agents are responsible for reducing the productive and

economic yield of crops. Therefore, it is necessary to protect crops from unwanted

agents, so pesticides become the most appropriate solution (25). Unfortunately, this

has created the misperception that pesticides and herbicides are safe and have little

impact on the environment (14). Thus, agricultural practices have been dependent

on these components for several years.

Due to the chemical properties of pesticides and their continued use over decades,

there has been an increase in the number of resistant pests, the poisoning of useful

living beings, air pollution, water pollution, soil mobility, poisoning, and other health

problems (25). In other words, the use of pesticides has harmful consequences for

human health, the environment, and natural resources (26).

In this context, insect monitoring becomes necessary for the early detection of pests

and thus avoiding the excessive use of pesticides which can lead to savings in the

order of several thousand euros (27). Integrated pest management (IPM) systems

have begun to be developed in recent years by the research community, monitoring

pests and applying specific pesticides when needed (28) (29). These systems can

provide farmers with a decision-making tool (30). One form of monitoring approach

is the detection and counting of insects that are attracted to traps. Typically this

task is made by specialists (31) (27). However, each trap can contain dozens of

insects of different species. Therefore, the counting task becomes very laborious,

susceptible to errors, time-consuming, subjective, and expensive (32).

Given the rapid advancement of technologies in the field of AI, the internet of

things (IoT), smart pest monitoring (SPM) has emerged, allowing automatic data

acquisition, remote transmission, data processing, and decision making (28) (33).
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Figure 2.1 – Timeline of the evolution of agricultural activity and technologies. Based

on (1).

Figure 2.1 is a chronological representation of the evolution of agricultural activity

and technologies.

2.2 Insects traps

Pest control seeks to follow a diversified pest reduction strategy, combined with

other forms of control and the use of chemical components. One way to apply

this methodology is through physical barriers, such as traps (34). Insect traps are

essential elements of IPM. These can be sex pheromone traps, sticky traps and light

traps (35) (36) (37). The type of trap is chosen according to the kind of plantation or

the pest to be monitored (38). Traps are frequently observed by qualified personnel

to determine the number of insects that have been trapped in each trap. There is

a need to travel regularly to each location to carry out this task, making this work
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expensive (31).

Traps can control large areas and not interfere with crop quality as chemical compounds

do. The main advantages of traps are the practical and reliable response for pest

monitoring, identification of the right time to intervene with pesticides, they allow

the identification and quantification of pests, and the reduction of costs and harmful

effects on human beings, the environment, and resources natural (34).

Pheromone traps use a pheromone to attract pests. Pheromones are chemical

substances produced by insects and released to the outside. These chemical signals

are intended to communicate and trigger behaviours between the same species. The

most common pheromone is the sexual attraction pheromone (36). Figure 2.2 shows

an example of a pheromone trap. These are characterised by low cost, selective pest

capture, detection of the pest species, and identification of the need or not to use

pesticides on-site (36).

As shown in Figure 2.2 , light traps are intended to lure and capture insects attracted

to light. This acts on insects that present phototropism, that is, insects with

nocturnal activity and consequently are attracted to the trap when natural lighting

is reduced. This trap aims to capture those insects and will cause their death. The

attraction of female insects may represent the elimination of hundreds of insects in

the future, as there is an interruption in the life cycle (35).

Sticky traps are the most common, composed of sticky cards with resin or wax,

making the insects stick to their surface. Figure 2.2 shows an example of adhesive

traps. This trap makes it possible to monitor and identify the periods of greatest

infestation and thus eliminate them (37). The use of adhesive traps makes it possible

to reduce pests by being trapped on its surface, and their monitoring allows the

identification of the use or not of pesticides. The greater the distribution of these

traps among the crops, the lesser the need to use pesticides to combat pests; however,

they can also trap insects that are important for the cultivation of crops; that is, it

is not a selective trap (37).
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Figure 2.2 – Example of pheromones traps, light traps and sticky traps. Images provided

by mySense (2)

2.3 Precision Agriculture

Precision agriculture is associated with the use of sophisticated technologies to assess

and monitor the conditions of the agricultural field and thus apply the best solution

for the benefit of the farmer and the environment. Precision agriculture has the

spatial and temporal identification of the farm field. Its main objective is to improve

and reduce production costs, increase crop productivity and quality, and decrease

environmental impact (15).

To practice precision agriculture, several recent technologies are required, such

as global positioning systems (GPS), geographic information systems (GIS), or

electronic sensors (15). However, precision agriculture still needs personnel, farmers,

or technicians, with sufficient knowledge to work and use these technologies.

The application of fertilisers, seeds, pesticides, and irrigation water is the most



12 CHAPTER 2. CONTEXTUALISATION

common application of precision agriculture, as they represent some economic weight

in the production cost. The application of different pesticides, in doses and at

a specific time, may represent an economic yield for the farmer and reduce the

contamination of the environment and crops. Thus, in the context of pest monitoring,

the automatic counting of insects in traps represents economic and sustainable

benefits.

An example of a Portuguese platform for precision agriculture is mySense. mySense

is an innovative platform for the IoT oriented to agricultural applications developed

at the University of Trás-os-Montes and Alto Douro. This platform consists of

devices that collect numerical data or images to provide solutions for specific problems

in precision agriculture. In addition, these devices perform periodic measurements

of various parameters (22).



3 Deep learning fundamentals

DL is a branch of machine learning that provides solutions for computational vision

tasks suited for image classification, segmentation, detection, and other tasks related

to image recognition (39). DL methods are an extension of neural networks that

process data and thus imitate the behaviour of the human brain when processing

this data (3).

In this chapter, we made a detailed study of concepts related to the bibliography.

In section 3.1, we cover an overview of neural networks. In 3.2, we describe the

convolutional neural networks. Section 3.3 approach the transfer learning and

fine tuning. And, section 3.4 presents in detail the object detection task and

several methodologies such as Region-based Convolutional Neural Networks (R-

CNN), Faster R-CNN, You Only Look Once (YOLO), and Single Shot Multibox

Detector (SSD).

3.1 Neural networks

Neural networks are made up of dense layers. These layers are the grouping of

several perceptrons. The perceptron receives several inputs, processes them, passes

13
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through an activation function, and returns (40). In Figure 3.1, a perceptron is

illustrated, where the input signals are represented by the vector x=[ x1, x2], it can

correspond, for example, to the pixels of an image. Input signals are multiplied

by the synaptic weights that are the elements of the vector w=[w1, w2, w3, w4, w5],

generating the z value.

Figure 3.1 – Single layer neural network.

z =
n∑
i=1

xiwi + b (3.1)

The bias, b, has the effect of increasing or decreasing the activation function net

inflow, depending on whether it is positive or negative, respectively. The z value

goes through the activation function to limit the amplitude of a neuron’s output.

The activation function limits the allowable amplitude range of the output signal y

to some finite value (3).

Thus, the neural network is an approximation function in which a network learns the

parameters (weights) in hidden layers that, when multiplied by the input, provide

the predictions, which will be close to the true target. The true targets will be

compared to the predictions to determine the loss. An optimiser is applied to the

result of the loss score, which will influence the neural network’s weights, as seen in

Figure 3.2. This figure shows all the elements involved in training a neural network.

Initially, the weights of the network are random, so the predictions are not ideas and

the loss score is very high. During training, the weights are being adjusted and the

loss score is decreasing (3). This process is repeated hundreds or thousands of times,
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the objective is to reduce the loss and optimise parameters, making the predictions

closer and closer to the true target (40).

Figure 3.2 – Relationship between the network, layers, loss function, and optimiser. Adapted

from (3)

The networks use several parameters and hyperparameters. Parameters are learned

or estimated by the model during training, like weights and bias (3). Hyperparameters

are variables that are defined in advance before training begins. Some hyperparameters

are the learning rate, number of hidden layers, activation function, number of

epochs, optimiser, batch size, pooling size and filter size in convolution layers (39).

The hyperparameter tuning compares and adjusts current hyperparameters of the

model with those obtained previously. Hyperparameter tuning aims to maximise

the performance of the model (41).

3.1.1 Activation function

The activation function of a node defines the finite output of that node, making

the linear combination of the inputs with the layer weights, limiting the output

amplitude range. The most used activation functions are as follows:
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Sigmoid function

The sigmoid function is the activation function that produces positive values in the

interval [0, 1]. Its graph is in the form of “S”. The sigmoid function is differentiable;

that is, we can find the slope of the sigmoid curve at any two points. The most

significant advantage is that the value of the derivative is maximum when x tends

to 0, pushing the result to the end of the interval [0, 1], this feature is useful for

binary classification problems (42).

σ (Z) =
1

(1 + e(−Z))
(3.2)

σ
′
(Z) = σ (Z) (1− σ (Z)) (3.3)

Tanh function

The tanh function is a nonlinear function with interval [−1, 1]. This function is also

sigmoidal in “S” shape. This function is centred on zero, so its derivative converges

to zero more quickly, being this feature the main advantage. The tanh function is

often used to classify two classes (43).

σ (Z) = tanh (Z) =
eZ − e−Z

eZ + e−Z
(3.4)

σ
′
(Z) = 1− tanh (Z)2 (3.5)

ReLu function

The ReLu activation function is used in almost all convolutional neural networks or

deep learning. This function produces results in the range [0,∞]. Returns zero for

all negative values and the value itself for positive values (42).

σ (Z) =

 z z > 0

0 z <= 0
(3.6)

σ′ (Z) =

1 z > 0

0 z < 0
(3.7)
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Leaky ReLu function

The Leaky ReLu function modifies the ReLu function; it can be used when the

network has difficulty converging. Instead of setting the negative values to zero,

this activation function applies a division factor, making them minimal and close to

zero (42).

σ (Z) =

 z z > 0

αz z <= 0
(3.8)

σ′ (Z) =

1 z > 0

α z < 0
(3.9)

Softmax function

The softmax function generalises the sigmoid function for non-binary classification

cases. This is applied to the output layer, where the values are in the range [0, 1].

Their sum is equal to 1, whereas, in a problem with four classes, the softmax function

produces four values, and their sum is equal to 1. So, each value represents the

probability of each class.

σ (Z)i =
eZi∑k
j=1 e

Zj

(3.10)

3.1.2 Loss function

The loss function measures the compatibility of predictions and true targets (39).

It is critical to use the appropriate loss function as they can interfere with the

effectiveness of the neural network (44). Depending on the type of application, the

loss functions can be divided in three types: classification loss, regression loss and

unsupervised learning (39). Object detection includes two tasks: classification loss

and regression loss (45). Regarding the classification, the loss function can be for

binary or multi-class classification. For binary classification, the most used loss is the

binary cross-entropy, which is defined by the Equation 3.11, where p is the predict

probability and y is the label which can be 0 or 1. For multi-class classification
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the most used loss is the categorical cross-entropy defined in the Equation 3.12,

where ti and si are the true target and the score for each class i, respectively.

Regarding the regression, the commum loss used is the mean squared error, defined in

Equation 3.13, which determines squared differences between the true and predicted

values (3).

Problem Loss function Equation

Binary

classification

Binary

cross-entropy

CE (p, y) =

{
− log (p) if y = 1

− log (1− p) otherwise
(3.11)

Multi-class

classification

Categorical

cross-entropy

CE = −
C∑
i

tilog (si) (3.12)

Regression Mean

squared error

MSE =
1

C

C∑
i

(y − pi)2 (3.13)

Table 3.1 – Loss functions and their equations used depending on the problem

3.1.3 Optimisers

Optimisers emerged to improve the performance of neural networks; for this, the

result must be continuously measured, comparing the obtained result with the

expected result. Therefore, the proper choice of the optimiser is essential (46).

There are several types, below are some of the most used:

Adam

Adam (47) is an optimisation algorithm that calculates the learning rate for each

parameter. Adam behaves like a heavy ball that will suffer friction when going
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down a hill and prefers flats of lower altitude. This algorithm stores the decreasing

exponential mean of the previous square gradients vt. And keeps the decreasing

exponential mean of the previous gradients mt. These expressions can be calculated

as follows:

mt = β1mt−1 + (1− β1)gt (3.14)

vt = β2vt−1 + (1− β2)g2t (3.15)

Where, β1 and β2 are the decay rates, these parameters have very small values, close

to 1. The update rule for this optimisation algorithm is:

θt+1 = θt −
η√
v̂t + ε

m̂t (3.16)

The advantages of this method are fast convergence, easy implementation, and the

ability to rectify the learning rate. The downside is the high computational cost (46).

RMSprop

RMSProp is an adaptive learning rate optimiser that handles updating the rate of

parameters in a decreasing and automatic way; it combines the use of the gradient

signal with the adaptation of the step size t, for each weight (46). The running

average E[g2]t, depends on the previous average and the current gradient:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t (3.17)

The update rule can be defined by:

θt+1 = θt −
ν√

[g2]t + ε
gt (3.18)

Updating the parameters assigns a different learning rate for each parameter, making

it reach convergence faster (48).

Stochastic gradient descent

Stochastic gradient descent (SGD) is a variant of the gradient descent algorithm.

The gradient descent is an iterative algorithm that starts at a random point and

runs along its slope until it finds the lowest point. The SGD runs faster because
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it updates the parameters for each training example x(i) and label y(i)however, it

causes more significant fluctuations in the objective function (49). Therefore, the

equation can define the update rule for this algorithm:

θ = θ − η∇θJ
(
θ;x((i)); y((i))

)
(3.19)

3.2 Convolutional neural networks

Convolutional neural networks (CNNs) are neural networks that follow a feed-

forward pattern, where all layers connect, following the path from the input to the

output of the network. CNNs are inspired by biological processes, more specifically

by the organisation of the animal visual cortex (42). This type of neural network is

often applied in image recognition and video processing, thus, becoming the “state

of the art” in object classification and detection problems. The disadvantage of

CNNs is the need for many labelled data for feature extraction (50). The typical

CNN architecture is constituted of 3 layers: (1) convolution layer, (2) pooling layer,

and (3) classification layer.

Figure 3.3 – Schematic diagram of a basic convolutional neural network architecture.

Adapted from (4)

The convolution layer consists of reduced-size convolutional filters that extract

input features like corners and edges. Convolutional filters, also called kernels,

run through the input data along the width, height, and dimension, and perform
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the mathematical operation of convolution. Convolution operation consist of a

linear operation between two arrays, an input layer and a kernel, as shown in

Figure 3.4 (50). During the network training, the kernels are adjusted to trigger

when the input contains a particular characteristic that is common to the information.

An activation function is generally applied to the convolution result, used in CNN

to detect and learn nonlinear features (51).

Figure 3.4 – Representation of the operation in the convolutional layer.

The pooling layer reduces the input data size and thus lowers the computational

cost. The pooling layer is usually used after the convolutional layer, where the

convolution layers will be given another way to represent the data and thus avoid

overfitting (39). The most used techniques are max-pooling and average pooling.

The max-pooling extracts the maximum value from the sub-region, as shown in

Figure 3.5; and the average pooling returns the average of subregion values.

Figure 3.5 – Representation of the max pooling operation.

Classification layers are located at the end of CNNs. The inputs to this layer are the

features extracted by the convolution and pooling layers. This layer produces the

result of the problem and is constituted by flatten layer and a fully connected layer.
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The flatten layer converts the data to a 1-dimensional array to be incremented in

the fully connected layer’s next layer. The fully connected layer is fully wired, which

means that each neuron is wired together in the next layer. The size of the output

layer is equal to the number of classes in the problem; that is, a network with

two classes has two output neurons. After applying the activation and optimiser

functions, each output neuron has the probability associated with it (51).

There are some CNN architectures available that are widely used. They are AlexNet

(52), VGG (53), ZF (54), GoogLeNet (55) and ResNet (56).

3.3 Transfer learning and fine tunning

The success of DL depends in part on the amount of data. Sometimes the available

data are scarce, and private or the costs associated with the acquisition or annotation

are very high. In these situations, it is common to use transfer learning (44).

Transfer learning consists in using the knowledge learned for a task in each domain,

to improve the learning of another domain in another task (57), i.e., a network is

pre-trained on a large dataset, such as ImageNet (58) or MS COCO (59), and then

applied to the dataset that we intend to train (44). If the source dataset is large and

complete, the learned features can be useful for the problem we want to solve (3).

The Figure 3.6 shows a representation of the learning process of traditional DL and

the learning process of transfer learning.

There are two ways to use a pre-trained network: (1) fixed feature extraction and (2)

fine-tuning (3). The fixed feature extraction consists of removing the fully connected

layers, that is the convolutional layers are frozen, of the pre-trained network, and

add a new classifier. Considering the extracted resources, the classifier is trained

from scratch (5). Fine-tuning consists of replacing and training the classifier that

was added to the pre-trained network; and in tuning part of the pre-trained network

kernels through backpropagation (57). Normally, the initial layers do not change,

as they contain more generic resources, while the later layers become more specific
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Figure 3.6 – Different learning processes between traditional DL and transfer learning.

Adapted from (5)

to our dataset, so they are adjusted by backpropagation (44).

3.4 Object detection methods

The object detection task can be associated with two important concepts: (1)

object classification; and (2) detection, as seen in Figure 3.7. Classification is the

assignment of a class to the principal object in the image. Object detection consists

of the object localisation and classification of multiple objects in an image (60). This

technique uses rectangular bounding boxes to locate and classify the categories of

the objects (61). Object detection is an essential area of computer vision. It plays a

crucial role in many applications, such as video, medical image, vehicle, pedestrian,

and face detection.

There are two significant groups of detectors: one-stage detectors and two-stage

detectors. One-stage detectors solve the detection task by directly predicting object

categories and regression object locations (60), such as YOLO (8) and SSD (62).

This method does not require the region proposal process, so the detection is

faster; however, the precision is generally less than the two-stage object detector
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Figure 3.7 – Classification and detection of insects. (1) classification of insects on plants

images (6); (2) detection of insects in images in traps (7)

architecture. The two-stage detectors initially extract the regions of interest from

the input image and then classify and redefine the location of the object through

the first proposed regions; examples are R-CNN (63), Fast R-CNN (64), Faster R-

CNN (65), Mask R-CNN (66) and R-FCN (67). The most significant advantage is

the high precision, and the disadvantage is the high detection time (61).

3.4.1 R-CNN

Girshick et al. (63) proposed R-CNN. Their model is divided into three steps: (1)

region proposal, (2) feature extraction, and (3) classification of regions. The region

proposal is to propose a region containing the object or part of it. A selective search

is performed to obtain approximately 2000 regions designed for various bounding

boxes of different sizes and dimensions.

In step 2, independent of the candidate regions size or aspect ratio, we distort all the

pixels in a bounding box to the default size of 227x227 (63). Each proposed region

is trained by a CNN network that extracts the characteristics. The architectures

used were AlexNet and VGG.
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Figure 3.8 – The R-CNN model

In the final step, there is a need to classify the objects within each region, for

which the support vector machine (SVM) (68) classifier is applied. SVM is a

learning algorithm often used in machine learning capable of doing classification

and regression. Simply put, SMV is an algorithm that seeks to find a hyperplane

that best divides a dataset into different classes.

After the application of the SVM classifier, the IoU metric is used, which allows

calculating the score of the proposed regions (69); the proposed redundant regions,

which have an IoU less than a threshold, are discarded by the non-maximal suppression

(NMS) algorithm (70). R-CNN effectively detects objects. However, training takes

a long time, so it is not implemented in real-time. These disadvantages are due to

the need to classify 2,000 proposed regions per image. Another downside is the need

for the proposed regions to be distorted to a predefined size.

3.4.2 Faster R-CNN

Ren et al. proposed the Faster R-CNN architecture (65). As already mentioned,

the R-CNN generates several region proposals, generating around 2,000 regions,

which makes it a slow procedure. To reduce training time without losing accuracy,

the Faster R-CNN proposes the region proposal network (RPN) (Ren et al., 2015).

Faster R-CNN is composed of two main networks, the RPN that generates the

region proposals and a network that uses these regions to detect objects. This

model is divided into four steps, CNN, region proposal network, ROI pooling, and
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classification.

Figure 3.9 – The Faster R-CNN model

CNN

Input images go through a CNN, usually pre-trained for the classification task. The

authors of this model used the architectures VGG and the ZF model, pre-trained

on ImageNet. In the CNN, only the output of an intermediate layer will be used.

The objective is to extract the features of the image and obtain a feature map (65).

RPN

After extracting the features from the image, we slide a small net over the output of

the feature map and apply a convolutional layer. Several anchor boxes with different

scales and proportions are generated at each sliding window location. Then, two 1x1

convolutional sister layers (two siblings) are applied, which generate the classification

box and the regression box, respectively, whose number of channels depends on the

number of anchors.

The box generates two predictions: the foreground score, that is, the object, and

the non-object score. The regression box generates four predictions related to

the location of the anchor. All anchors are placed in two categories for training,

foreground and background. Foregrounds are those that have an IoU value greater

than 0,7. Backgrounds are those that do not overlap any object or that have an



3.4. OBJECT DETECTION METHODS 27

IoU less than 0,3. Then they are placed in a mini-batch, with samples of 50% each

and trained. Anchors that are predicted and contain objects can sometimes overlap,

and there is objects duplication. NMS is used to solve this problem, which discards

those with an IoU less than a predefined threshold. Thus, the proposed regions

containing the objects are obtained (65).

RoI pooling

After the second stage, we have several object proposals, and it is necessary to place

the bounding boxes and classify them in the intended categories. In this step, for

each proposed region, it selects the feature map section and applies max pooling,

dividing the proposed region into sections of equal sizes to find the highest value.

This value is copied to the output. Thus, it is possible to extract the resources of

the regions of interest in the input image from the regions proposed in the previous

step (65).

Classification

After extracting resources from the image, it is necessary to proceed with the

classification and adjustment of the bounding boxes. For this task, two fully connected

layers are used. Then, for each object, two different fully connected layers are

applied. A layer with C+1 units, where C are classes and 1 is the background; this

layer makes object classification. And another layer with 4C units, where we have

four parameters (x and y from the centre, width, and height of the bounding box)

for each class C, does bounding boxes regression (65).

3.4.3 YOLO

The YOLO has continued to evolve since its initial release in 2016, as can be

consulted in the Figure 3.10.

In 2016, Redmon et al. (8) proposed YOLO, one of the first detector one-stage

objects. This method initially divides the input image into an SxS grid; if a grid
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Figure 3.10 – YOLO timeline

cell contains the object’s centre, that cell is responsible for detecting that object.

Each cell predicts bounding boxes and assigns a confidence score that reflects the

probability value that bounding boxes contain the object of interest. Each cell also

makes the prediction of the class, in which the probability for each of the possible

classes is provided. In the end, the predictive value of the class and the confidence

score are combined into a final score, which will determine the probability that the

box has the object it is intended to detect (8). This methodology is represented

in the Figure 3.11. Some objects can be detected by only one cell, however, when

objects are large, they can be found by multiple cells. To correct multiple detections

of the same object is used NMS, this method allows selecting only one bounding

box, the one with the best score.

The YOLO architecture was inspired by the GoogLeNet model. The first version

has 24 convolutional layers followed by two fully connected layers. This version is

fast; however, it makes more localisation errors and has limitations for small objects.

To solve these issues, in the same year, Redmon proposed the YOLOv2 (71). This

version introduces batch normalisation layers after convolution layers and anchor

boxes. The anchor boxes are assumed of bounding boxes, they are positioned in

the centre of each cell. The network adjusts the width and height of the box to

obtain the box with the object to be detected. For YOLOv2, it was used Darknet-

19, a classification model that is made of nineteen convolutional layers and five

max-pooling layers. This version is still bad for small objects (71).

YOLOv3 was released in 2018 by Redmon et al. (72). This release also uses anchor

boxes like YOLOv2, with the ability to predict boxes at 3 different scales to detect
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Figure 3.11 – The YOLO model. Adapted from (8)

objects of different sizes, from the smallest to the largest. This feature makes it

possible to predict 9 anchor boxes, 3 per scale.

The authors considered that the architecture is divided into the backbone, head, and

neck. The backbone is composed of convolutional layers to detect the main features

of an image and process them. The backbone is first trained on a classification

dataset, such as ImageNet, at a lower resolution than the final detection model.

Neck uses the capabilities of convolution layers in the backbone with fully connected

layers to make predictions for classes and bounding boxes. The head is placed

between the backbone and the neck and is used to collect feature maps at different

stages (72). In YOLOv3, Darknet-53 is used as the backbone, this architecture

contains 53 convolutional layers. As a neck used, the feature pyramid networks

(FPN). FPN is a top-down architecture with lateral connections that allows for high-

level semantic feature maps at all scales, favouring small objects’ detection. The

head is constituted by a YOLO layer, which performs the prediction of the bounding

box. As it detects objects at 3 different scales, YOLOv3 minimises the disadvantages
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of YOLOv2 and YOLO, making it possible to detect small objects (72).

Bochkovskiy et al. (73) propose the YOLOv4 to prioritise real-time detection. The

authors of YOLOv4 uses the CSPDarknet-53 as backbone (74). The CSPDarknet-

53 is the Cross Stage Partial Network (CSPNet) application in Darknet-53 architecture.

Wang et al. (74) propose the CSPNet that can be used with several architectures

to mitigate the required computational cost. This strategy allows the architecture

to achieve a richer gradient combination by separating the feature map of the base

layers into two parts, one part passes through a dense layer, the result of this layer

is concatenated with the other part and transmitted to the next stage, like show

Figure 3.12.

Figure 3.12 – Ilustrations of CSPDenseNet. Based on (8)

In this way, the architecture achieves a richer gradient combination, there is a

reduction in computational cost and an increase in inference speed (74). The neck

is composed of spacial pyramid pooling (SPP) (75) and path aggregation network

(PAN) (76). The SPP was created with the aim of eliminating the need for input

images to have a fixed size predefined by the architecture. This strategy generates

a fixed-length representation regardless of the size of the input image (75). The

PAN is an instance segmentation framework with the aim of increasing the flow of
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information in the framework. It is used to predict class labels and can use pixel-

by-pixel instance masks for locating objects (76). In addition, the head is composed

of the YOLO layer, who is able to for detecting objects at three different scales.

For last, in June 2020, Glenn Jocher1 developed YOLOv5. This version is the only

one that uses PyTorch instead of Darknet. They use CSPDarknet-53 as a backbone,

like YOLOv4. The Figure 3.13 shows the YOLOv5 architecture. The focus layer is

the junction of the first three layers of YOLOv3 into a single layer, SPP was also

added so that there is no restriction on the size of the image. The neck uses PAN

with FPN, which will improve the propagation of low-level features in the model,

which increases object location accuracy, even for small objects. The head is the

same as YOLOv3 and YOLOv4 (77). The Table 3.2 compares the backbone, neck

and head between each method of YOLOv3, YOLOv4 and YOLOv5.

Figure 3.13 – The architecture of the YOLOv5 method. Based on (9)

1https://github.com/ultralytics/yolov5
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YOLOv3 YOLOv3 YOLOv5

Backbone Darknet-53 CSPDarknet-53 CSPDarknet-53

Neck FNP SPP and PAN PAN with FPN

Head YOLO layer YOLO layer YOLO layer

Table 3.2 – Comparison between YOLOv3, YOLOv4 and YOLOv5.

3.4.4 SSD

SSD was designed for real-time object detection, proposed by Liu et al. (62). This

methodology does not use a region proposal network, which makes the process faster.

SSD has two components, the backbone model and the SSD head. The backbone

model is a pre-trained classification network; they used the VGG architecture. The

final fully connected layer has been removed. The SSD head is a set of auxiliary

convolutional layers that will generate the bounding boxes and classification of

objects. These layers progressively decrease in size and allow detection predictions

at various scales; that is, it generates multi-scale feature maps, producing the results

of the detection task (62).

Figure 3.14 – SSD architecture. Adapted from (10)

Like YOLO, SSD splits the image using an SxS grid, where each grid cell is responsible

for detecting the object. Each cell can also be assigned several anchor boxes, which
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can have different sizes and shapes from the grid cells, depending on the dimensions

of the objects to be detected. In this context, the SSD allows you to define a

hierarchy of grid cells in different layers, using grids of various dimensions depending

on the size of the objects you want to find (62).

The authors of this method showed that feature maps at various scales improve

object detection and that the more significant number of bounding boxes results in

better performance. Compared to Faster R-CNN, it is three times faster; however,

it has worse performance for detecting small objects. Compared to the R-CNN,

this model has fewer errors in the location of bounding boxes, but it has more

classification errors for similar categories (62).

3.4.5 Summary of detection methods

Aiming to compare all the detection methods, the table 3.3 shows each detection

performance. In addition, in the table are presented the image input size, the

mAP and the time in frames per second (FPS). The methods were executed in two

extensive public datasets, the Pascal VOC 2007+2012 and MS COCO. The mAP

was measured at a 50% IoU threshold.

It is possible to verify that the detection performance is higher for one-stage methods.

In general, YOLO is the method that have the best mAP and time, and the

performance improvement with the evolution of this architecture is remarkable.

Thus, the one-stage method with a higher mAP for the MS COCO dataset was

YOLOv5. Meanwhile, Faster R-CNN was the two-stage method with the highest

mAP in the Pascal VOC dataset.
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Methods Input size mAP (%) Time (FPS)

Train on Pascal VOC 2007+2012

R-CNN 227x227 66.0 0.1

Fast R-CNN 300x400 70 0.5

Faster R-CNN 300x400 73.2 7

YOLO 448x448 63.4 45

YOLOv2 416x416 76.8 67

YOLOv2 480x480 77.8 59

YOLOv2 544x544 78.6 40

Train on MS COCO

YOLOv3 320x320 51.5 22

YOLOv3 416x416 55.3 29

YOLOv3 608x608 57.9 51

YOLOv4 416x416 62.8 96

YOLOv4 512x512 64.9 83

YOLOv4 608x608 65.7 62

YOLOv5 640x640 66.9 59

SSD-300 300x300 41.2 46

SSD-512 512x512 46.5 19

Table 3.3 – Performance of different detection methods.



4 Literature review

Given the dimensions of insects, in section 4.1, we approach the problem of detecting

small objects and present some methods described in the literature to solve this

task. Section 4.2 describes some works presented to solve the detection and count

of insects.

4.1 Small object detection

The task of detecting small objects is very challenging in computer vision problems.

Small objects occupy areas smaller than or equal to 32x 32 pixels. Although many

methods used for detection give good results for medium to large objects, they

perform poorly when used to detect small objects. Small object detection history is

relatively short compared to other computer vision tasks (78).

Most of the algorithms used in the object detection task are based on CNNs. To

reduce the sampling of feature maps, pooling layers are applied after the convolutional

layers, thus reducing image and feature map dimensions (42). Due to this characteristic

of CNN, and as small objects are represented by a few pixels, their characteristics

extracted in the initial layers end up being eliminated and do not reach the detection

35
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and classification steps (78).

Tong et al. (78) pointed out five important aspects that can improve the task of

detecting small objects, multi-scale feature learning, data augmentation, training

strategy, context-based detection, and GAN-based detection. Some authors have

already proposed methods that can contribute to the detection of small objects

considering these important aspects. Li et al. (79) used FPN on a Faster R-CNN

system. Their model got better results. They were able to increase the mAP from

47.3% to 56.9% in object detection datasets.

Some of the methods proposed for this task are based on modified algorithms

previously proposed for object detection. Zhang et al. (80) proposed deconv R-

CNN, a network with a deconvolution layer after the last convolution layer of the

base network. For the task of detecting small objects in remote sensing images, they

obtained an mAP of 55.6%, while for the Faster R-CNN model, they obtained an

mAP of 42.5%.

Ren et al. (81) developed a methodology for detecting small remote sensing objects.

Their proposal consisted of a modification of the Faster R-CNN. Given the small

dimensions of the objects, the authors observed that the proposed conventional

Faster R-CNN anchors are much larger than most of the objects they intended to

detect. Based on this observation, they defined anchors with dimensions adapted to

the sizes of the objects to be detected. Inspired by the FPN, they proposed three

feature maps concatenated channel-by-channel with the upward path feature maps.

Thus, they obtained a single high-level feature map with a final resolution. The

authors of this methodology applied data augmentation during training. For this

task, they obtained an mAP of 78.9%.

As we have already seen, object detection by two stages (R-CNN or Faster R-CNN)

achieved greater accuracy while the one-stage approach (SSD) achieved greater

efficiency. To combine the advantages of the two types of detections, Zhang et

al. (82) proposed a new approach to one-stage detection, called RefineDet, which

achieves better accuracy than two-stage methods and maintains the efficiency of
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one-stage methods. This approach is divided into two modules, the refinement

of anchors (a) and the object detection module (b). Module a has the objective

of filtering the anchors that are not of interest to improve the search for objects.

And module b aims to adjust the locations and sizes of the anchors. The refined

anchors, obtained initially, are inputs to module b so that the detection accuracy

can be further increased. A connection block is also designed to transfer resources

in module a to predict locations, sizes, and labels in the object detection module.

This approach showed more accurate detection results, especially for detecting small

objects (82). The authors obtained 86.8% mAP for object detection in Pascal VOC

2012.

Ahmad et al. (83) proposed a method based on the RetinaNet (11) architecture

to optimise anchors; the objective was to reduce unnecessary region proposals.

RetinaNet is an architecture that consists of 4 stages:

(a) ResNet – backbone network that determines the resource maps at different scales;

this step can still be called upward path.

(b) FPN – the descending path increases the sampling of feature maps, and the

lateral connections allow you to generate a pyramid of convolutional features at

various scales.

(c) Class subnet – generates the object classification prediction.

(d) Box subnet – does the regression of the anchor boxes.

The experiments of (83) showed that the anchors used by RetinaNet had sizes,

aspect ratios, and scales unable to detect objects of reduced size. They used

the Crow Search algorithm (84) to research ideal anchor proportions and scales.

This algorithm allows iteratively improved solutions created by the candidate’s best

performance. They defined five iterations, in which if there is no improvement, the

algorithm stops looking for anchors and thus uses the most optimised one. After

obtaining the anchor sizes, they trained the detector against these results. Although

the results were not good, they showed that optimising anchors improve detection.
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Figure 4.1 – RetinaNet architecture. Source (11)

They obtained for RetinaNet (initial version) 24.9% mAP, and with the optimisation

of the anchors, it was 29.5% mAP.

Reference Dataset Method mAP (%)

(79) COCO FPN on a Faster R-CNN 56.9%

(80) Small remote sensing Deconv R-CNN 55.6%

(81) Small remote sensing Modified Faster R-CNN 78.9%

(82) Pascal VOC RefineDet 86.8%

(83) VisDrone RetinaNet with anchor optimization 29.5%

Table 4.1 – Summary of techniques used for small object detection.

4.2 Insect detection

The task of detecting and counting insects is challenging task due to the size of

the insects. Although this task is of great interest to farmers, resolutions have only

recently started to emerge, so there is still a lot to be done in this area (6), (85).

Qiao et al. (86) proposed a simple image processing system to estimate the number

of whiteflies on sticky traps automatically. Initially eliminated the noise with a low

pass filter; then, the images were converted to grayscale and transformed into binary

images. The authors used ten different threshold levels to determine the optimal

image level. The pixels with a value greater than the defined threshold were white,

and the smallest one was black, and thus it was possible to detect the whiteflies.
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The method proved to be very effective for adult whiteflies. However, it only worked

for whiteflies on sticky traps.

Xia et al. (87) developed an automatic method for whiteflies, aphids, and thrips

identification in greenhouses. The method starts using the watershed algorithm to

segment insects from the background. With the Mahalanobis distance, the insect’s

colouring characteristics were extracted to identify the species of different insects.

Comparing the proposed identification and the manual identification performed by

experts, a correlation of 93.4%, 92.5%, and 94.5% was obtained, respectively, for

whiteflies, aphids, and thrips.

Rustia Lin (88) proposed an IoT based remote monitoring system for pests on yellow

sticky traps and developed image processing and ML algorithms. The images were

divided into four regions and equalised using the histogram based on the brightness

adjustment obtained from reference images. A k-means grouping is applied in

each image converted into a colour space. The insects and the background are

black or white in the obtained image. In the end, the insects can be classified

and counted. The method effectively acquired accurate and automatic pest counts

getting an average accuracy of 98%. Classification of pests in corn, soybean, wheat

and canola is difficult due to the similarity between insect species. Xie et al. (89)

proposed an insect recognition system using multiple task sparse representation and

multiple-kernel learning techniques. It showed that their method performs well in

classifying insect species, outperforming other methods. Ebrahimi et al. (90) and

More Nighot (91) implemented an approach based on the support vector machine for

classifying and identifying pests. Most of these techniques showed good performance;

however, they are only recommended for particular situations and are not adaptable

to other scenarios because these techniques can’t make intelligent decisions.

With the advancement of science and technology, several DL pest detection methods

have been developed. DL is a branch of ML that provides better solutions for

computational vision tasks (92). DL can learn and make intelligent decisions using

algorithms inspired by the human brain, making it possible to adapt to more complex

environments (93), (94). In recent years, several DL applications have emerged to
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solve challenges in the agricultural context. Automatic recognition of pest images

has become one of the leading research points in DL (12).

Nieuwenhuizen et al. (18) presented a methodology to detect and count the whitefly

in yellow traps. The trap images were captured under controlled light conditions.

They used Faster R-CNN with inception Resnet v2 (95). For the detection task,

they obtained 87,40% mAP. The counting task compares the results obtained with

traditionally counting; the correlation was greater than 0,95. However, they state

that the quality of the data and annotations present in the images influenced the

classification results. Nieuwenhuizen’s method has two limitations: it only works on

images with a yellow background, and the images must be obtained under controlled

conditions.

Li et al. (96) used a CNN from ZF and an RPN with NMS to remove overlapping

detections for the location and counting of wheat mites. First, the ZF convolutional

layers have no pooling and no fully connected layers. And then optimised several

critical parameters like output size, score threshold, and NMS threshold. In the end,

they explored various architectures, including AlexNet and ResNet. The architecture

that got the best score was ResNet with 88,50% mAP.

Shi et al. (97) proposed an architecture based on the R-FCN method (67) to detect

eight species of insects that may be present in stored grains to guarantee the safety

of the grains during storage. R-FCN is very similar to Faster R-CNN; only the

fully connected layers are replaced after RoI pooling, with a set of position-sensitive

score maps to perform average voting. In the method proposed by Shi, it was then

based on R-FCN, in which the CNN used was DenseNet (98). To further improve

accuracy, they used training techniques on various scales, and in the end, they

applied the soft-NMS algorithm (99). The paper’s authors applied several models,

such as Faster R-CNN and YOLO, to their database to compare results with their

proposed method. They showed that the model that obtained the best results was

their proposal based on the R-FCN, in which they obtained an mAP of 83,44%.

To develop algorithms that detect and count M. thunbergianae from images of
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traps with pheromones, Hong et al. (19) trained various object detection models

and evaluated their performance. In addition, the speed of each model was also

analysed. For the robustness of the model, they applied transfer learning and data

augmentation during training. The model that obtained the best results was Faster

R-CNN, with an AP of 85,63%. The model that had a shorter inference time was the

SSD; however, the detection results are not as good as the Faster R-CNN. Despite

obtaining good results, this work has the limitation that the images are collected in

controlled environments. The authors of this paper have concluded that constant

monitoring can be achieved with accurate performance for a pest control system

using DL techniques.

Q. J. Wang et al. (12) provide a standardised dataset on traps for multiple agricultural

pest targets. This database, called Pest24, consists of 25,378 high-resolution images

with 24 major pest classes specified by the Chinese Ministry of Agriculture. They

applied several state-of-the-art object detection methods, Faster R-CNN, SSD, YOLOv3,

and Cascade R-CNN. For each technique, they initially used the default settings

of their hyperparameters. Then tried different hyperparameter values; for the

YOLOv3 method, which showed the best results, they used the k-means clustering

algorithm to optimise the parameter’s scaling range. The backbone of this method

was Darknet-53. YOLOv3 obtained the mAP of 58.79%, proving to be the model

that worked best to detect the twenty-four species of insects. Given the size of the

dataset and the high number of classes, the authors considered adherence to objects,

pest similarity, pest density, relative scale, and colour discrepancy as essential factors

in the detection task. The relative scale is the factor that exerts the most significant

influence on the AP of detection, and the colour discrepancy has the least significant

impact.

Li et al. (100) developed a method based on Faster R-CNN, called ‘TPest-RCNN’, to

automatically detect whitefly and thrips on the sticky trap in greenhouse conditions.

the dataset contained 1,400 images. The algorithm proposed has two significant

differences from the Faster R-CNN, improved the anchor size, and the RoIPooling

design was adjusted to focus on small objects and thus be able to obtain exact
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locations. The backbone network used is VGG16. The anchor size present by Faster

R-CNN is larger than the insect dimensions, so it adapted the anchor dimensions

to the insect dimensions to solve this problem. RoIPooling has been replaced by

a method the authors call RoIAlign, inspired by the Mask R-CNN architecture.

RoIPooling can produce a deviation between the final and initial position of the

bounding box, which may represent the wrong detection. To solve this, RoIAlign

divides the proposed region into 4x4 pool sections. Four sampling areas are defined

for each section, the centre point of each sampling area representing the sampling

location. The pixel values of these points were calculated using the bilinear interpolation

method. And finally, max pooling is applied for each compartment. The methodology

applied by the authors obtained an mAP of 95.2%. The proposed model surpassed

the Faster R-CNN architecture.

Reference Dataset Method Backbone mAP (%)

(18) Whitefly Faster R-CNN Inception

ResNet V2

87.4

(96) Wheat mite CNN and RPN ZF 88.5

(97) Eight insects in

stored grains

R-FCN DenseNet 83.44

(19) M.

thunbergianae

Faster R-CNN VGG 85.63

(12) Pest24 YOLOv3 CSPDarknet-53 58.79

(100) Whitefly and

thrips

Modified Faster

R-CNN

VGG 95.2

Table 4.2 – Summary of deep learning methods used for insect detection.



5 Material and methods

In this chapter the materials and methods used to construct the work will be

described. The used methodology is organised into three steps, represented in

Figure 5.1. First, we describe and prepare the datasets to apply the methodologies.

Then, we trained the three datasets separately with YOLOv5: first training the

Pest24 ; and then the mySense datasets, Bedbug, and Grape moth. Finally, the

model’s performances were evaluated.

Figure 5.1 – The pipeline of this work.

In the section 5.1 there will be a brief description and characterisation of the
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properties of the public dataset and the datasets available by mySense. And, the

pre-processing is detailed. The methodology used for detection and counting is

presented in the section 5.2, including models used, the training process and the

metrics used to evaluate them.

5.1 Datasets and data preparation

5.1.1 Pest24

The Pest24 dataset contains 25,378 annotated images with 24 major pests specified

by the Chinese Ministry of Agriculture. All images were taken by an automatic pest

image acquisition device, like show in the Figure 5.2. This device can be set up in

the field and automatically trap and take photos of pests (12). The Pest24 is very

distinct from conventional object detection datasets and thus poses new challenges

for object detection methods. This dataset is characterised by the large scale of data,

tiny relative scales of objects, the high object similarity, and the dense distribution

of objects. The Table 5.1 shows the description of the 24 pests, with the index

associated with each pest, the portrait, the number of images with each pest, the

number of instances, the relative scale and the colour discrepancy.

Figure 5.2 – Devices installed in the cultures to collect traps images and the respective

image collected. Source (12).
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Index Specie Image Instances Relative scale (%)

1 Rice planthopper 316 1,511 0.034

2 Rice Leaf Roller 944 1,240 0.123

3 Chilo suppressalis 454 1,285 0.186

5 Armyworm 3,828 8,880 0.394

6 Bollworm 9,049 28,014 0.281

7 Meadow borer 5,526 16,516 0.226

8 Athetis lepigone 7,520 30,339 0.13

10 Spodoptera litura 1,588 1,951 0.458

11 Spodoptera exigua 3,614 7,263 0.138

12 Stem borer 1,357 1,804 0.277

13 Little Gecko 2,503 4,279 0.57

14 Plutella xylostella 531 953 0.043

15 Spodoptera cabbage 1,707 2,302 0.42

16 Scotogramma trifolii Rottemberg 3,223 4,679 0.28

24 Yellow tiger 1,388 1,686 0.398

25 Land tiger 369 475 0.639

28 Eight-character tiger 154 168 0.441

29 Holotrichia oblita 90 108 0.334

31 Holotrichia parallela 3,111 11,675 0.255

32 Anomala corpulenta 5,228 53,347 0.249

34 Gryllotalpa orientalis 3,629 6,528 0.95

35 Nematode trench 118 167 0.32

36 Agriotes fuscicollis Miwa 1,814 6,484 0.114

37 Melahotus 239 768 0.158

Table 5.1 – Description of the 24 classes of pests in Pest24 (12).

All images are available in jpg format with a resolution of 800x600 pixels. The

annotation files are in Pascal VOC format. The Pascal VOC is an XML file

consisting of:

• Folder: a folder that contains the image;

• Filename: image name;

• Size: image size, with height, width and depth;
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• Object: contains the object’s class name, the position if known, truncated (if

the object is not fully visible, it has a value of 1, else it has a value of 0),

the difficulty of detecting the object and the coordinates of the bounding box.

The bounding box coordinates are the value of xmin, ymin, xmax and ymax.

These characteristics can be observed in the image and its annotation (Figure 5.3).

Figure 5.3 – Example of image and respective annotation in Pascal VOC format. Source

(12).

All images are available in .jpg format with a resolution of 800 x 600 pixels, and the

images had the date and time of image acquisition in the upper left corner and the

acquisition device identification in the lower-left corner. To avoid any interference

in learning stage, all images were pre-processed, where a black rectangle was placed

over the two watermarks. All datasets have been resized to 640 x 640 pixels because

of the resolution indicated for the detection methods applied. Figure 5.4 shows the

before (a) and after (b) data preparation. The dataset was divided into training,

validation, and testing, with 18,105, 4,857 and 2,417 images, respectively.
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Figure 5.4 – Image example before and after the preparation date. (a) is an image with

800x600 resolution and has the image acquisition data in the upper and lower left corners.

And (b), the image has a resolution of 640x640 and a black box cover.

5.1.2 mySense

mySense1 has several devices installed, as shown in the Figure 5.5, in several

geographically dispersed observatories in different cultures and installed at strategic

points on the agricultural plot to collect images. For our case study, these devices

collect real-time images of insect traps, enabling images in traps in a natural environment.

Images were collected from two different observatories, giving rise to two datasets,

the Bedbug, and the Grape moth, as shown in the figure.

Bedbug

Bedbugs are 5mm long insects and brown in colour. These feed on the sap of

oat, wheat, corn, cotton, soybeans and rice plants. Bedbug pests are responsible

for causing high losses, as they cause damage to the quality and productivity of

plantations (101). The installation of light traps for the capture and automatic

counting allows for the management of warnings and monitoring of these insects.

A dataset was built with images collected by mySense in light traps with bedbugs,

called “Bedbug”. The Bedbug dataset contained only 42 images in jpg format with a

1https://mysenseapi.utad.pt/
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Figure 5.5 – Devices installed in two cultures (rise and vineyard) to collect traps images and

the respective image collected.

resolution of 920x840 pixels. An expert in the images identified the bed bugs. And

using LabelImg2, we made the annotation in Pascal VOC format of all images.

Therefore, all images have been resized to 640x640 pixels, as this is the resolution

indicated for the detection methods applied. The bedbug has very small dimensions,

having a relative scale of 0.019. Since there was a lack of Bedbug data, we resorted

to a dataset management tool, Roboflow 3, to do data augmentation. The data

augmentation techniques applied just in images train, with horizontal and vertical

flip and rotation between -14 and +14, as shown in the Figure 5.6. After data

augmentation, the dataset contains 102 images with 770 instances. We divided the

dataset into training, validation and testing, with 90, 7 and 5 images, respectively.

Grape moth

The grape moth is the main pest of the vine, representing large-scale losses. This

insect has several stages of its morphology, egg, caterpillar, pupa and adult. The

caterpillar pierces and feeds on the wolves, causing a decrease in production. The

protection strategy is pest monitoring, using pheromone traps to attract adult

2https://github.com/tzutalin/labelImg
3https://roboflow.com/
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Figure 5.6 – Original images (on the left) and images with data augmentation (on the right)

of Bedbug.

moths, and thus it is possible to determine the beginning of the morphological

cycle of the moth and subsequent application of pesticides. As an adult, the moth

is a brownish butterfly about 12 mm long (102).

With the automatic collection of images in pheromone traps of the grape moth,

it was possible to build a dataset called “Grape moth”. The Grape moth dataset

contained 226 images in jpg format with a resolution of 1600x1200 pixels. This

dataset contained 146 annotated images (D1) and 82 unannotated images (D2). All

images were resized to 640x640 pixels, with the grape moth having a relative scale

of 0.031. And the D2 images were cropped at the bottom of the image to remove a

footer, which contained the image’s date, time, and location.

The D2 images were collected in an instrumented trap over several months, containing

images with sun, different luminosity, shadow and with moths in various positions

(which causes confusion to the model). The fact that the images were collected in the

same trap without it being replaced, part of the images contains the same insects,

so we apply an algorithm to calculate the similarity between images to exclude the

most similar ones.

Experts annotated the D1. To annotate the D2, we learned to identify the grape

moth adult; however, the annotation task is very time expensive, so we applied

a YOLOv5 in D1 and used the knowledge learned during training to generate
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annotations of D2. In the end, all the generated annotations were corrected, and

we confirmed the veracity of each one. Then, we applied the data augmentation

techniques in D2, like the 90o rotate upside and down, and vertical flip and rotation

between -14 and +14, resulting in 212 images. After data augmentation, we added

D2 to D1, getting 348 images with 12438 instances, and we divided the dataset

images into 318 for training, 19 for validation and 11 for testing.

Figure 5.7 – Original images (on the left) and images with data augmentation (on the right)

of Grape moth.

Dataset Classes Train Validation Test Data augmentation

Pest24 24 18,105 4,857 2,417 No

Bedbug 1 90 7 5 Yes

Grape moth (D1+D2) 1 318 19 11 yes

Table 5.2 – Summary of datasets used.

5.2 Insect detection and counting

Our methodology was divided into two parts, detection and counting. First, we

use object detection methods, one-stage and two-stage detection methods. Then,

considering the result of the detection methods, the number of insects generated

by the model was counted. Considering state of the art, the one-stage detection

method was YOLOv5, and the two-stage detection method was Faster R-CNN. All

experiments were executed on a computer with only one GPU NVIDIA GeForce

GTX 1080 TI.
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5.2.1 YOLOv5

There are several YOLOv5 models. For our methodology, we chose YOLOv5l, as it

has a lower computational cost than other YOLOv5 models and has a considered

performance. The YOLOv5 is constituted by CSPDarknet-53 as the backbone,

PAN with FPN as the neck, and the YOLO layer as the head, as explained in

Chapter 3. The CSPDarknet-53 has multiple convolutional layers and pooling,

which extract feature maps. The feature maps have different sizes merged at the

neck, reducing the loss of information extracted from the input images. The output

network performs object detection and classification (9). The YOLOv5l contain

468 layers with 46,210,094 parameters. This model is trained on MS COCO with an

image size of 640x640 pixels and obtains a mAP of 67.3%; the GPU speed is 10.1ms.

This model used the SGD optimiser and the loss binary cross-entropy function.

Since DL models are sensitive to hyperparameter selection, better initial estimates

will yield better results. However, finding the ideal values can be a challenge.

YOLOv5 has 28 hyperparameters that are defined before the start of training and

are called default values, using the evolution algorithm, it is possible to train a

few epochs with several generations in which the hyperparameters will be adapted

to the scenario in question. This evolution algorithm was developed for YOLOv5,

and have time-consuming and high computational time. As Pest24 is characterised

by a large scale of data, a small scale of objects, high object similarity, and dense

distribution, we applied the evolution algorithm to tune the hyperparameters to the

scenario.

Annotations of all images have been converted to YOLOv5 format. Each image has

a txt file with a line for each bounding box in this format. The format contains class

id, centre x, centre y, width and height. A space separates all parameters, and the

coordinates are normalised.
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5.2.2 Faster R-CNN

The detection with Faster R-CNN was used in four experiments. The Faster R-CNN

architecture uses nine anchors in the RPN. Anchors have three scales, with box areas

of 128, 256, and 512, and three proportions, 1:1, 1:2, and 2:1. For the detection of

small objects, the size of the anchor has dimensions too large compared to the size

of the insects. Therefore, we scaled the anchor to 32, 64, and 128. In the Figure 5.8,

the left has the anchor with box areas of 128, 256 and 512, and the right has the

anchor optimisation with box areas of 32, 64, and 128. In purple are the positive

anchors, and the ground-truth bounding box is green.

Figure 5.8 – Anchor standard and anchor optimization.

The Faster R-CNN architecture uses the VGG network for feature map extraction.

So, we tested the Faster R-CNN architecture with the VGG network with and

without anchor optimisation. As some state of the art authors has had some success

using the Inception ResNet V2 network, we also tested the architecture with this

network with and without anchor optimisation. Weights were used from VGG16

and Inception Resnet v2 were pre-trained in the ImageNet database. The Faster

RCNN network was applied in TensorFlow. The learning rate started at 10−5 with

Adam optimiser, and the loss mean squared error function.

The Faster R-CNN use a different annotation format from YOLOv5. So, we need
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to convert all annotations. The annotations of all images are in just one txt file.

Each line of that file contains the path where the image is stored (including the

image name) and the coordinates of the bounding box, in order, left, top, right and

bottom. A comma separates the coordinates of the bounding box.

5.2.3 Methods

The three datasets were trained separately, first the Pest24 and then the mySense

datasets, Bedbug and Grape moth.

Pest24

We started by training with YOLOv5 using the standard hyperparameters (PY1),

and we trained again with hyperparameters obtained by the evolution algorithm

(PY2). This procedure was trained for 400 epochs with a batch size of 16 for

training and validation.

Method Model Description

PY1 YOLOv5 Detection of 24 insects species using standard

hyperparameters

PY2 YOLOv5 Detection of 24 insects species using evolution algorithm

for tuning hyperparameters

Table 5.3 – Summary of methodologies used for Pest24.

Bedbug

We trained with YOLOv5 using the standard hyperparameters (BY1), with hyperparameters

tuning of Pest24 (BY2), and were trained with transfer learning (BY3). For transfer

learning, we use the PY1 weights and train the head of the model, freezing the 12

layers of backbone. For each experiment was trained for 150 epochs with a batch

size of 16 for training and validation.

The detection with Faster R-CNN was used in four experiments: the Faster R-CNN

using VGG with standard anchor scale (BF1) and with anchor optimization (BF2);



54 CHAPTER 5. MATERIAL AND METHODS

and using Inception ResNet v2 with standard anchor scale (BF3) and with anchor

optimization (BF4). Each method were trained for 35 epochs with 200 iterations

each. All methods are summarised in table 5.4.

Method Model Description

BY1 YOLOv5 Detection of bedbug using standard

hyperparameters

BY2 YOLOv5 Detection of bedbug using tuning hyperparameters

for Pest24

BY3 YOLOv5 Detection of a bedbug with transfer learning using

the PY1 weights

BF1 Faster R-CNN Detection of bedbug using the VGG

BF2 Faster R-CNN Detection of bedbug using the VGG and the

anchor optimisation

BF3 Faster R-CNN Detection of bedbug using the Inception ResNet

V2

BF4 Faster R-CNN Detection of bedbug using the Inception ResNet

V2 and the anchor optimisation

Table 5.4 – Summary of methodologies used for bedbug.

Grape moth

As we had part of the grape moth dataset unannotated, we first trained the annotated

dataset (D1) with the YOLOv5 model with standard hyperparameters for 150

epochs with a batch size of 16 for training and validation (GY0). Then, we use the

knowledge to predict the annotations of the unannotated images (D2) and correct

the generated annotation of each image. Thus, we obtained the complete grape moth

dataset (D1+D2), and we repeated the same methodology applied to the Bedbug,

using the standard hyperparameters (GY1), with hyperparameters tuning of Pest24

(GY2), and were trained with transfer learning (GY3). All experiments were trained

for 250 epochs with a batch size of 16 for training and validation.

For detection with Faster R-CNN, we apply the same methodology as Bedbug. The

Faster R-CNN using VGG with standard anchor scale (GF1) and with anchor

optimization (GF2); and using Inception ResNet v2 with standard anchor scale
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(GF3) and with anchor optimization (GF4). Each method were trained for 200

epochs with 200 iterations each. All methods are summarised in table 5.5.

Method Model Description

GY1 YOLOv5 Detection of grape moth using standard

hyperparameters

GY2 YOLOv5 Detection of grape moth using tuning

hyperparameters for Pest24

GY3 YOLOv5 Detection of a grape moth with transfer learning

using the PY1 weights

GF1 Faster R-CNN Detection of grape moth using the VGG

GF2 Faster R-CNN Detection of grape moth using the VGG and the

anchor optimisation

GF3 Faster R-CNN Detection of grape moth using the Inception

ResNet V2

GF4 Faster R-CNN Detection of grape moth using the Inception

ResNet V2 and the anchor optimisation

Table 5.5 – Summary of methodologies used for Grape moth.

5.3 Models evaluation

The metrics for evaluating the detection models were the AP and mAP. And to

evaluate the counting, use the counting error. All metrics were summarised in the

Table 5.6 that shows the mathematical equations used to calculate these metrics.

The intersection over union (IoU) is an evaluation metric that measures the common

area between the ground truth (G) and prediction (P), divided by the total area of

the two regions. The closer to 1 the prediction result is, the better the detection, so

if the prediction is 0, the object we want to detect isn’t in the bounding box.

The true positives (TP) are the correct number of detections. Detections are correct

if the IoU value exceeds the preset threshold value. Usually, by default, the threshold

value is 0.5. The false positives (FP) are the wrong number of detections with the

IoU less than the threshold. And the false negatives (FN) are the number of objects
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that are not detected.

So, we can now define precision and recall. Precision measures how precise your

predictions are. That is the percentage of your predictions that are correct. Recall

measures how good the true positives are; In other words, it is the fraction of true

positives within all positives.

Evaluation metric Equation

IoU
Area(G∩P )
Area(G∪P )

Precision TP
TP+FP

Recall TP
TP+FN

AP
∫ 1

0 p (r) dr

mAP
∑

c APC

C

Counting error

∣∣∣C−ĈC

∣∣∣
Table 5.6 – Evaluation metrics for the detection and the counting.

The general definition for average precision (AP) is to find the area under the

precision-recall curve. The average precision curve is plotted on the x-axis we

recall, and on the y-axis, we have the precision. To do this, predictions and recall

are calculated for various threshold values and plotted on a graph. Mean average

precision (mAP) is the mean of the AP, that is, the AP for each class is calculated,

and, in the end, it is averaged.

Counting error was the metric used to assess insect counts. The measure is the

division between the difference between the number of correct detections (C) and

the number of predicted detections (Ĉ), by the number of correct detections. The

optimal result is closest to 0.



6 Results and discussion

The present chapter will describe the results of the experiments that were conducted

to detect and counting of insects. The results are organized by the datasets. In the

section 6.1 are presented the results of experiments of Pest24 dataset. The results

of detection and counting of bedbugs are presented in section 6.2. In the section 6.3

are presented the results of grape moth detecting and counting. In the end, in

section 6.4 the main found challenges and gaps are provided and discussed.

6.1 Pest24 detection

The evolution algorithm was applied to tunning hyperparameters. Since 300 generations

were trained, each taking 45 minutes, it took approximately 10 days to obtain

the hyperparameters adjusted to our scenario. The computational cost can be

reduced using multiple GPUs or cloud software equipment. The results of 15

hyperparameters are displayed in Table 6.1 where the YOLO standard hyperparameters

and the tuning hyperparameters are presented.

The results of the Pest24 are represented in the Table 6.2. The best results for

each method are in bold. The methodology that has the best result is the YOLOv5

57
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Hyperparameter Standard Tuning

Initial learning rate (lr0) 0.01 0.0102

Final learning rate (lrf) 0.01 0.0115

Momentum 0.937 0.916

Optimizer weight decay 0.0005 0.00039

Warmup epochs 3.0 2.17

Warmup initial momentum 0.8 0.78

Warmup initial bias lr 0.1 0.125

Box loss gain 0.05 0.0362

Classification loss gain 0.5 0.607

Classification BCE loss positive weight 1.0 1.52

Object loss gain 1.0 0.697

Object BCE loss positive weight 1.0 1.17

IoU training threshold 0.2 0.2

Anchors multiple threshold 4.0 2.29

Anchors per output grid (0 to ignore) 0.0 2.0

Focal loss gamma 0.0 0.0

Table 6.1 – YOLOv5 standard and tuning hyperparameters

model with standard hyperparameters (PY1), obtaining 72.13, 70.7 and 69.4 of mAP,

recall and precision, respectively. However, the differences between the models are

not relevant. So, optimised hyperparameters did not show improvements in this

model performance, which can be explained by the fact that this dataset has high

complexity and possibly some hyperparameters did not obtain the optimal value in

the evolution algorithm. That is, it would be necessary to train more generations

so that all hyperparameters have the optimal value.

Compared to state of the art, our methodology performed better. We use the same

dataset and division in training, validation and testing as Q. J. Wang et al. (12).

They used YOLOv3 and got an mAP of 58.79%. This difference can be explained

by using YOLOv5, a more recent architecture with better performance detecting

small objects. Data pre-processing may also have influenced the results.

The Table 6.2 of shows the AP of each class by four experiences developed. This

table shows that Gryllotalpa Orientalis (idx 34) has the highest AP of 98.40%,
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while the Rice planthopper (idx 1) has the minor AP of 9.87%, both by PY1. This

is related to the relative scale and number of instances of each insect. Gryllotalpa

Orientalis (idx 34) is the insect that has a larger scale (0.95%) while 1 is one of those

with a smaller scale (0.034%) and has an insignificant representation in the dataset,

being represented in 316 images and in 1,511 instances.

Classe PY1 PY2 Q. J. Wang et al. (12)

1 9.87 8.18 0.60

2 62.30 64.60 51.70

3 79.30 75.40 72.10

5 86.30 84.60 82.90

6 94.40 93.90 91.70

7 86.70 85.20 80.70

8 78.60 76.70 68.90

10 81.70 79.20 76.80

11 62.20 59.90 52.50

12 78.90 75.40 75.90

13 91.00 88.90 88.70

14 17.70 15.90 1.60

15 68.00 66.90 60.40

16 69.90 66.90 51.50

24 66.30 65.00 50.20

25 81.50 80.80 74.20

28 29.30 30.20 1.50

29 43.60 37.80 61.40

31 93.40 92.60 93.30

32 97.40 97.30 97.30

34 98.40 98.39 98.60

35 77.70 67.00 40.40

36 87.20 86.70 79.70

37 89.60 88.20 73.60

mAP 72.13 70.20 58.79

Table 6.2 – APs of 24 classes of pests by two methods (PY1 and PY2), and with the method

obtained by the author of this dataset (12)
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The graphs in the Figures 6.1 and 6.2 show a bar graph of the relationship between

the AP, obtained in the method with the best performance (PY1), with the number

of instances and the relative scale of each class. It is possible to verify an evident

relationship between the number of instances and the relative scale of the insect

in the AP. The greater the relative scale and the number of insect instances, the

greater the AP value. Insects with higher relative scales are represented by a more

significant number of pixels, which allows the extraction of more characteristics of

the same by the model.

Figure 6.1 – Graph of the relationship of the AP obtained in each class with its relative

scale.

Figure 6.2 – Graph of the relationship of the AP obtained in each class with its number of

instances.
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To verify which of the parameters has the most influence on the value of AP, we

plotted the scatter plots (Figure 6.3) as a function of the AP obtained with the

relative scale (a) and with the number of instances (b). The graphs show that the

relative scale has the highest correlation (0.308), it is the factor that has the most

significant influence on the AP.

Figure 6.3 – Scatter plots with the correlation value of the trend curve (R), for the relative

scale (a) and for the number of instances (b).

The figure 6.4 illustrates the predictions for three different images. The first row of

images is the ground truth. The PY1 and PY2 models correctly predicted images (a),

correcting the location and classification of all insects. Images (b) and (c) contain

some wrong detections, but not very relevant. Comparing the images generated

between the two models, there are no major discrepancies.

6.2 Bedbug detection and counting

The Bedbug results are summarized in the Table 6.3 and graph in the Figure 6.9.

The best results are in bold. The methodology that obtained a superior AP was

BY3, the detection of a Bedbug with YOLOv5 model with transfer learning using

the PY1 weights. Analyzing the results of the one stage detector, we can verify

that the BY1 method is the one with lower results than the others, as this method

directly applied the YOLOv5 model with standard hyperparameters. While the rest
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Figure 6.4 – Example of predictions from three Pest24 images, (a), (b) and (c). The first

line is the ground truth, the second is the prediction of the PY1 model, and the last is the

prediction of the PY2 model.

applied methodologies with improved hyperparameters and transfer learning from

Pest24.

Metric BY1 BY2 BY3 BF1 BF2 BF3 BF4

AP 78.4 87.7 95.9 73.5 80 64.2 64.5

Counting error 70.2 92.2 64.2 67.4 77.1 95.4 94.5

Table 6.3 – Results obtained by each method for the Bedbug dataset.

Analyzing the two-stage method, the model that obtained the highest AP was BF2,

detection using the VGG and the anchor optimization. We can verify that the

methods that used the VGG architecture were the ones that presented the highest

results (BF1 and BF2). The methods that improved their performance with anchor

optimization, obtaining mAP superior to those that used the pre-defined anchor
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Figure 6.5 – Bar graph with AP and counting error obtained by each method for the Bedbug

dataset.

(BF2 mAP is superior to BF1 mAP; and BF4 mAP is superior to BF3 mAP). Thus,

we can conclude that in this case the optimization of the anchor showed to improve

the performance of the methodology and that the best architecture was the VGG.

To reduce the sampling of feature maps, after the convolutional layers, pooling

layers are applied, thus allowing to reduce the image and feature map dimensions.

The Inception Resnet v2 architecture is about 164 layers deep while the VGG16

architecture is 16 layers deep. The small objects are represented by a few pixels,

and having the bedbug relative scale of 0.019, their characteristics extracted in the

initial layers end up being eliminated and do not reach the detection and steps.

Regarding the counting error, we can verify that it is greater than 60% in all the

methods, which reveals that is, in this dataset, the methods were not effective in

performing the counting. BY3 was also the method that had the lowest counting

error (64.2%) despite being a very high value.

The Figure 6.6 illustrates the predictions of three methods by YOLO for four images,

(a), (b), (c) and (d). The first row of images are the ground truth. The predicted

bedbug count for each image is in the upper left corner of each image. In green is
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represented the ground truth bounding box and in red is the prediction. The BY1

model correctly predicted images (b) and (c), correcting the detection and counting

of all bedbugs. Images (a) and (d) contain 52 TP, 2 FP and 154 FN. The BY2

model just correctly predicted image (b). Images (a), (c) and (d) have 13 TP, 0 FP

and 200 FN. The BY3 model correctly predicted images (b) and (c). Images (a) and

(d) have 63 TP, 5 FP and 201 FN. Analyzing the predicted images, we can conclude

that the methodologies are more effective for images with fewer bedbugs.

Figure 6.6 – Example of predictions from four Bedbug images. The first row is the ground

truth, and each row are the prediction of BY1, BY2 and BY3. In the predicted images, green

is represented the ground truth bounding box, and red is the prediction.

The Figure 6.7 illustrates the predictions of four methods by faster R-CNN for

the same images analyzed above, (a), (b), (c) and (d). We can conclude that

methodologies with the Faster R-CNN generally performed poorly. The models

that used the VGG (BF1 and BF2) had more TP, while the models that used the



6.2. BEDBUG DETECTION AND COUNTING 65

CNN Inception ResNet V2 (BF3 and BF4) had a greater number of FP and FN.

Figure 6.7 – Example of predictions by Faster R-CNN methods from four Bedbug images.

The first row is the ground truth, and each row are the prediction of BF1, BF2, BF3 and BF4.

In the predicted images, green is represented the ground truth bounding box, and red is the

prediction.

Model BF1 did not correctly predict detection and count on any image. Images (a),

(b), (c) and (d) contain 30 TP, 33 FP and 186 FN. The BY2 model just correctly

predicted image (b). Images (a), (c) and (d) have 31 TP, 25 FP and 195 FN. The

BF3 model did not correctly predict detection and count on any image. Images (a),

(b), (c) and (d) have 4 TP, 11 FP and 212 FN. And, the BF4 model also did not

correctly predict detection and count on any image. Images (a), (b), (c) and (d)
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have 4 TP, 13 FP and 212 FN.

6.3 Grape moth detection and counting

First, we apply YOLOv5 (GY0) to dataset D1. Despite this dataset being of smaller

dimensions, the model performed well, obtaining 95.2%, 91.3% and 89.2% of mAP,

recall and precision, respectively. Next, we use the knowledge learned by the network

to predict the D2 images. In the figure, the first column corresponds to D2 images

predicted by the model, and the second column corresponds to the image with

the respective annotation after correcting and verifying its veracity. As seen in the

Figure 6.8, we had to correct or add a few annotations, and the model could identify

most of the grape moths. This type of approach made the annotation process much

faster.

Figure 6.8 – Example of three images predicted by the GY0 method (first column) and the

same image after checking the annotation.
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After all the D2 annotated and verified, we were ready to train the dataset with all

the experiments explained above. The Grape moth results are summarised in the

Table 6.4 and graph in the Figure 6.9. The best results are in bold. The methodology

that obtained the best performance was the GY2, the detection of the Grape moth

with YOLOv5 model using tuning hyperparameters for Pest24. Therefore, the

differences between the models trained with YOLO are not relevant. However,

compared to methods that used Faster R-CNN, there are many discrepancies. We

can check this in the count error metric: the methods with YOLO have values less

than 12%, and Faster R-CNN has values between 62% and 79%. Therefore, there is

a huge difference in the performance of these two architectures.

Metric GY1 GY2 GY3 GF1 GF2 GF3 GF4

AP 90.3 91.5 86.6 78.3 75 78 54.5

Counting error 10.8 5.6 11.6 72.4 62.9 78.7 62.1

Table 6.4 – Results obtained by each method for the Grape moth dataset.

Figure 6.9 – Bar graph with AP and counting error obtained by each method for the Grape

moth dataset.

Analyzing the results of the YOLO, we can verify that the GY3 is the one with

lower results than the other, this model was the one that used transfer learning

of Pest24. We can thus conclude that for this dataset, the use of Pest24 tuning



68 CHAPTER 6. RESULTS AND DISCUSSION

hyperparameters was better than transfer learning. We think this is due to the fact

that the Pest24 dataset has several insects with similar characteristics to the grape

moth.

Comparing the GY0 model with GY1, which used the same methodology in the

D1 and D2 datasets, we can see that the detection results were better for GY0

than for GY1. The D2 images were collected in a trap over several weeks without

being replaced, containing images with the sun, different luminosity, shadow, and

moths in various positions (since their death is not immediate) and with different

characteristics as they deteriorate over time. These characteristics of the dataset

may have generated confusion in learning the models.

Figure 6.10 – Example of predictions from four Grape moth images. The first row is the

ground truth, and each row are the prediction of GY1, GY2 and GY3. In the predicted images,

green is represented the ground truth bounding box, and red is the prediction.

Analyzing the results of Faster R-CNN, the model that obtained the highest AP
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was GF1, detection using the VGG. There is the same trend as in the Bedbug

dataset, as the methods that used the VGG architecture were the ones that presented

the highest results (GF1 and GF2). Although the AP is smaller with the anchor

optimization and the counting error are better, i.e. the counting error is smaller.

Figure 6.11 – Example of predictions by Faster R-CNN methods from four Grape moth

images. The first row is the ground truth, and each row are the prediction of GF1, GF2, GF3

and GF4. In the predicted images, green is represented the ground truth bounding box, and

red is the prediction.

The Figure 6.10 illustrates the predictions of six methods by YOLO for four images,

(a), (b), (c) and (d). The first row of images are the ground truth. The predicted

bedbug count for each image is in the upper left corner of each image. In green is

represented the ground truth bounding box and in red is the prediction. In general,
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YOLO hit all the insects but made some wrong predictions (FP), showing confusion

outside the trap. Model GY1 did not correctly predict detection and count on any

image. Images (a), (b), (c) and (d) contain 61 TP, 5 FP and 1 FN. The GY2 model

correctly predicted all images, correcting the detection and counting of all grape

moths. The GY3 model correctly predicted images (a), (c) and (d). Images (b)

have 47 TP and 1 FP.

The Figure 6.11 illustrates the predictions of four methods by Faster R-CNN for four

images, (a), (b), (c) and (d). Analyzing the predictions by the Faster R-CNN, we

found that the methods work is unsatisfactory, and there were few correct detections.

No model got all the images right. In model GF1, the images (a), (b), (c) and (d)

contain 9 TP, 12 FP and 53 FN. In model GF2, the images (a), (b), (c) and (d)

have 12 TP, 17 FP and 50 FN. In model GF2, the images have 10 TP, 22 FP and

52 FN. And, in model GF4, the images contains 25 TP, 19 FP and 37 FN.

6.4 Discussion

Insects are the most biodiverse group of animals. They can present some challenges

related to your physical characteristics, such as its size, the similarity between

species, the different positions that can have in images and the different morphological

characteristics of the same insect. As we know, insects are living beings of reduced

dimensions. An image can have a high resolution, being represented by a large set of

pixels, or it can be represented by a set of smaller pixels, having a lower resolution.

Analyzing the results obtained, the relative scale, that is, the size of the insects in

proportion to the image is the factor that exerts the most significant influence on

the detection task. As shown in Figure 6.12, the trap includes dozens of insects

that are represented with low resolution. We verified that the models are not as

effective in images with a high number of insects. So, regular replacement of traps

and increase of resolution of the image is encouraged.

Given the incredible biodiversity of insects, there are very similar species; at the
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Figure 6.12 – Examples of the high amount of insects in traps and the size of the insects.

Image (a) has 111 bedbugs and image (b) has 66 grape moths.

time of image capture, insects of the same species may be in different positions and

with different brightness. These characteristics can generate significant challenges in

the task of insect detection. For example, in Figure 6.13, the similarity between the

three species, Armyworm (idx 5), Bollworm (idx 6) and Yellow tiger (idx 24), three

different species with identical morphological characteristics. Also, two examples

of different positions of the same insect in the same image can be observed. And,

examples of the same grape moth in different lighting conditions could be confused

with another insect.

Some images collected in the field associated with SPM systems may present some

challenges. Once images are collected in a trap for several weeks without being

replaced, containing images with the sun, different luminosity, shadow, and insects

in various positions and with different characteristics as they deteriorate over time.

This challenge can be solved by carefully choosing the hour when an image is

captured, choosing strategic points for the placement of SPM devices, and avoiding

areas with trees and shadows. Another characteristic of these systems is the acquisition

of very similar images since the collection of the image is continuous, therefore, an

algorithm of comparison and exclusion of very similar images was applied. The

impact of these challenges was observed in the grape moth dataset since the D2

images were collected in an instrumental trap.

The application of methodologies with DL requires large data sets for model training

and thus can achieve human-level results. However, there is a lack of labeled data,
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sufficient sizes to datasets, and insects class unbalanced. We used the GY1 model

learning to generate the annotations of the remaining Grape moth dataset because

the remaining data were not annotated. However, there was a need to confirm and

validate the generated annotations. Therefore, we believe that semi-supervised is an

ideal application for future work. Furthermore, an effective semi-supervised model

can perform better than a supervised model. Semi-supervised is an ideal application

for when it is not possible to have all the data labelled. Another alternative involves

focal loss. Focal loss is beneficial for unbalanced training datasets, being a simple

and very effective approach to solving this challenge.

Insect detection is a challenging task in computer vision and raises many challenges.

While many methods used for detection give good results for medium and large

objects, the performance is not so good when used to detect small objects. Faster

R-CNN is a great example of this. This architecture performs well on medium

and large objects but poorly on small ones. We found the same, and even with

the adaptation of the anchor to the size of the insect, the result was undesired.

YOLOv5 performed better as it is a newer architecture, and in the neck uses

PAN with FPN, which will improve the propagation of low-level features in the

model and increases object location accuracy, even for small objects. So, the use

of architectures with multi-scale resource learning improves detection performance.

As pointed out by Tong et al. (78), the object context can play an important role in

the performance of methodologies. The context in which the object is detected can

help improve object detection performance, especially for detecting small objects.

Observing the obtained results, we verified that some methods generated predictions

in the background of the outside of the trap, so, for future work, we propose the

segmentation of traps before detection. Observing the obtained results, we verified

that some methods generated predictions in the background of the outside of the

trap, so, for future work, we propose the segmentation of traps before detection.
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Figure 6.13 – Examples of similarity between species, different positions of the same insect

and the different colour of the same insect.





7 Conclusions and Future work

Insect traps are among the most appropriate solution for monitoring and counting,

influencing the selection and dosage of the pesticide to be applied for pest control.

However, the counting and monitoring operations are based on the frequent visit of

technicians to the site and are supported by inefficient counting methods, which is a

challenging and time-consuming task. With the improvements of DL technologies,

several applications have emerged in the agricultural context, including automatic

detection and counting of insects.

7.1 Conclusions

This work presented an exploration in DL models, aimining to count insects in trap

images using DL. Our approach was based on two different detection methods, a one-

stage detector (YOLOv5) and a two-stage detector (Faster R-CNN). Two datasets

were generated from the images provided by the mySense platform. As images are

still being collected, these datasets are still small. So, we include in our study the

public dataset Pest24.

For YOLO, we started by training the Pest24 dataset with different configurations

75
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to optimise the detection results of Pest24. We proposed detection with YOLOv5

with standard hyperparameters and with hyperparameter tuning. The one with the

best performance was YOLOv5 with the standard hyperparameters, with an mAP of

72.1%. This result is much higher than state-of-the-art (58.79%). We concluded that

hyperparameter tuning was ineffective, which can be justified by this dataset’s high

variability and complexity. For the Bedbug dataset, the best method was YOLOv5

with transfer learning from Pest24, reaching an AP of 95.9% and a counting error

of 64.2%. For the Grape moth dataset, the best method was the YOLOv5 using

the hyperparameters tuning of Pest24 with an AP of 91.5% and a counting error of

5.6%.

For Faster R-CNN, we propose several Faster R-CNN architectures with different

configurations to optimize the results obtained. For the Bedbug dataset, the best

method was the Faster R-CNN with VGG and anchor optimization reaching an AP

of 80% and a counting error of 77.1%. For the Grape moth dataset, the best method

was the Faster R-CNN using VGG with standard anchor, with an AP of 78.3% and

a counting error of 72.4%. There is the same trend as in the Bedbug dataset, as the

methods that used the VGG architecture were the ones that presented the highest

results.

From this work, we can conclude that to solve this task, and the Faster R-CNN

has a bad performance. On the other hand, the results obtained with YOLO are

promising, and it was possible to detect pests with high AP. However, we found

that YOLOv5 is not as efficient for images with a high number of insects which had

an impact on the counting error, so we encourage frequent replacement of traps to

avoid the high number and overlapping insects.

The impact of the number of instances and the relative scale of insects in the AP

was also analysed. It shows that the real scale is the factor that has the most impact

on the model’s performance. This conclusion shows that the task of insect detection

is still an open problem since it is a property associated with the morphology of

these living beings.
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7.2 Future work

For future work, we pretend to train more generations and use multiple GPUs or

cloud software for training with the evolution algorithm; we also recommend other

data preparation techniques, such as normalisation and increase in image resolution,

allowing for greater extraction of insect characteristics with a smaller relative scale.

We identified two key open challenges related to automatic insect detection using

DL. The datasets images and the methodologies. For challenges of datasets images,

we recommend improving data acquisition, data augmentation, focal loss, and semi-

supervised. While for the methodologies, we recommend the multi-scale resource

learning and context-based detection. We proposed the segmentation of the traps

before the detection task to verify some confusion in the background of the outside

of the trap.

As future work, we intend to add the images that have been continuously collected

by mySense to our datasets; apply new detection and counting methodologies with

DL, and implement the methods developed in the field.
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