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Resumo alargado

O principal assunto desta tese é o estudo de superf́ıcies S algébricas e projectivas
de tipo geral com pg = q = 1 que têm uma involução i. Estuda-se também o caso
pg = 1, q = 0 e S/i birracional a uma superf́ıcie K3.

Involuções surgem em muitos contextos no estudo de superf́ıcies algébricas. Por
exemplo a não birracionalidade da aplicação bicanónica de uma superf́ıcie de tipo
geral implica na maioria dos casos a existência de uma involução na superf́ıcie.

A aplicação bicanónica φ2 (definida pelo sistema linear |2KS |) de superf́ıcies
de tipo geral S tem sido objecto de estudo por vários autores. Se a superf́ıcie S
tem uma fibração de género 2, então a aplicação bicanónica de S é necessariamente
composta com uma involução. Este é o chamado caso standard de não birracional-
idade da aplicação bicanónica. Pelos resultados de Bombieri, [Bo], refinados mais
tarde por Reider, [Rd], se uma superf́ıcie minimal S com K2

S > 9 tem aplicação bi-
canónica não birracional, então S tem uma fibração de género 2, ou seja apresenta
o caso standard.

O caso não-standard é considerado em [Du], [CaCM], [CFM], [CM1], [CM2],
[Xi2] e [Br], mas o caso pg = q = 1 não está ainda completamente classificado. Mais
geralmente, superf́ıcies de tipo geral com pg = q = 1 não estão bem compreendidas,
e poucos exemplos são conhecidos.

Se a superf́ıcie minimal S satisfaz pg = q = 1, então 2 ≤ K2
S ≤ 9 e a aplicação

de Albanese é uma fibração conexa sobre uma curva eĺıptica. Seja g o género de
uma fibra genérica da fibração de Albanese de S. Superf́ıcies de tipo geral minimais
com pg = q = 1 e K2 = 2, 3 são classificadas em [Ca1], [CC1] e [CC2]. Superf́ıcies
com K2 = 8 que são uma fibração isotrivial standard são classificadas em [Po1] e
[Po4]. Para outros valores de K2 temos apenas os exemplos de Catanese ([Ca2]),
com (K2, g) = (4, 2), (5, 2), o exemplo de Xiao ([Xi1]), com (K2, g) = (4, 2), e o
exemplo de Ishida ([Is]), com (K2, g) = (4, 3).

Como já foi dito, o principal assunto desta tese é o estudo de superf́ıcies S
algébricas e projectivas de tipo geral com pg = q = 1 que têm uma involução i.
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Os principais resultados obtidos são:

• Teorema 3.1.2: para q(S) = 0, S/i birracional a uma superf́ıcie K3 e φ2

composta com i, dá-se uma descrição de S/i como plano duplo;

• Teorema 3.2.1: classifica-se o caso pg(S) = q(S) = 1, Kod(S/i) ≥ 0 e φ2

composta com i. Em particular, mostra-se que a fibração de Albanese de S
tem género 2 ou S/i é birracional a uma superf́ıcie K3;

• Proposições 5.1.1, 5.1.2 e 5.1.3: dá-se uma lista de possibilidades para o caso
pg(S) = q(S) = 1, Kod(S/i) ≥ 0 e φ2 não composta com i;

• a obtenção de exemplos novos, listados abaixo.

Todorov, [To2], foi o primeiro a dar exemplos de superf́ıcies S de tipo geral com
pg = 1, q = 0 e aplicação bicanónica composta com uma involução i de S tal que
S/i é birracional a uma superf́ıcie K3, às quais chamamos superf́ıcies de Todorov.
Morrison, [Mo], descreve o espaço de moduli das superf́ıcies de Todorov. Para
K2 = 1, Todorov mostra, em [To1], que a resolução W de S/i é um plano duplo
com um modelo plano ramificado sobre duas cúbicas. Na Secção 3.1 demonstra-se
que isto é verdade também para K2 > 1 e dá-se um exemplo diferente dos exemplos
de Todorov.

Existem dois métodos usuais de construção de superf́ıcies: Campedelli — cober-
turas duplas ramificadas sobre curvas (possivelmente singulares) — e Godeaux —
quocientes por acção de um grupo (cf. [Re1]). Nesta tese o primeiro método é
utilizado na obtenção de exemplos novos. Muitas vezes as singularidades impõem
condições a mais sobre os parâmetros do sistema linear de curvas, o que implica
cálculos complicados. Estes cálculos são efectuados utilizando o Sistema Algébrico
Computacional MAGMA (V2.11-14) (ver http://magma.maths.usyd.edu.au/magma
para mais informação sobre o Magma).

Neste trabalho são dadas várias construções de superf́ıcies S de tipo geral, não
singulares e minimais, com pg = q = 1. Em particular são obtidos os seguintes
exemplos:

• K2 = 7, g = 5, deg(φ2) ≥ 2, S um plano duplo, e
K2 = 7, g = 3, deg(φ2) = 1, S uma cobertura bidupla de IP2 :
estes são os primeiros exemplos com K2 = 7 (ver Secções 4.2.2 e 6.8);

• K2 = 6, g = 3, deg(φ2) = 2, φ2(S) birracional a uma superf́ıcie K3 :
este é o primeiro exemplo com K2 = 6 (ver [Ri]) (ver Secção 3.2.2);



vii

• K2 = 5, g = 4, deg(φ2) ≥ 2, S um plano duplo:
este é o primeiro exemplo com K2 = 5 e g 6= 2 (ver Secção 4.2.2);

• K2 = 8, g = 3 : é o primeiro exemplo com K2 = 8 que não é uma fibração
isotrivial standard (ver Secção 6.7);

• K2 = 6, g = 4 ou 3, deg(φ2) ≥ 2, S um plano duplo, e
K2 = 6, g = 3, deg(φ2) = 1, S uma cobertura bidupla de IP2 (ver Secções
4.2.1, 4.2.3 e 6.9);

• K2 = 4, g = 3, deg(φ2) ≥ 2, S um plano duplo (ver Secção 4.2.1);

• K2 = 4, g = 2, deg(φ2) = 2, S uma cobertura bidupla de IP2

(temos deg(φ2) = 4 no exemplo de Catanese em [Ca2]) (ver Secção 6.6);

• K2 = 3, g = 3, deg(φ2) ≥ 2, S um plano duplo (ver Secção 4.2.2).

Em [Po4], Polizzi classifica superf́ıcies de tipo geral com pg = q = 1, K2 = 8 e
aplicação bicanónica de grau 2. Dá exemplos usando quocientes por acção de um
grupo e mostra que estas superf́ıcies são planos duplos de Du Val, descrevendo a
curva de ramificação de um modelo plano correspondente (ver Teorema 1.3.2). Nas
Secções 4.2.1 e 4.2.4 mostra-se como obter equações para tais curvas de ramificação.
Na Secção 6.12 descreve-se como obter uma equação de um plano duplo comK2 = 8
cuja aplicação bicanónica não é composta com a involução associada.

Na secção 3.2.2, é constrúıda uma superf́ıcie minimal de tipo geral com pg =
q = 1, K2 = 6 e g = 3 tal que deg(φ2) = 2 e φ2(S) é uma superf́ıcie K3. Este
exemplo contradiz um resultado de Xiao Gang. Mais precisamente, a lista de
possibilidades em [Xi2] exclui o caso em que S não tem uma fibração de género 2,
pg(S) = q(S) = 1 e S/i é birracional a uma superf́ıcie K3. No Lema 7 de [Xi2] está
escrito que R tem apenas singularidades negliǵıveis, mas aqui falha a possibilidade
χ(K eP + δ̃) < 0 na fórmula (3) da página 727. De facto iremos ver que R (B na
nossa notação) pode ter uma singularidade não negliǵıvel.

Esta tese está organizada como segue. No Caṕıtulo 2 demonstram-se as Propo-
sições 2.1.2, 2.1.3 e 2.1.4. Para uma superf́ıcie S com uma involução i, estas
proposições relacionam os invariantes de S e S/i com a curva de ramificação da
cobertura S → S/i, as suas singularidades e o número de nodos de S/i. Aqui são
importantes as bem conhecidas fórmulas para coberturas duplas; é utilizado um
resultado de Miyaoka sobre o número máximo de curvas racionais disjuntas numa
superf́ıcie. Também se descreve a acção de i na fibração de Albanese.
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No Caṕıtulo 3 estuda-se o caso φ2 composta com i e Kod(S/i) ≥ 0. A Secção 3.1
contém uma descrição de S com q(S) = 0. O Teorema 1.1 (cf. [St]) é importante
nesta secção. Para q(S) 6= 0, prova-se um teorema de classificação na Secção
3.2. A existência da fibração de Albanese e as equações da Proposição 2.1.2 são
ingredientes cruciais na demonstração.

Tal como notamos acima, se φ2 é composta com i e Kod(S/i) = −∞, então S é
um plano duplo de Du Val (cf. Teorema 1.2.4). No Caṕıtulo 4 obtêm-se exemplos
de tais superf́ıcies. Mais precisamente, explica-se como obter equações de planos
duplos de tipo geral com pg = q = 1, K2 = 2, . . . , 8, g 6= 2 (se K2 6= 2) e aplicação
bicanónica não birracional. As construções com K2 = 5, 6, 7 produzem exemplos
não referidos na literatura, enquanto as outras dão uma descrição alternativa de
superf́ıcies possivelmente já conhecidas. Para obter equações de curvas de rami-
ficação são impostas condições sobre os parâmetros lineares de sistemas lineares de
curvas planas. Os cálculos são efectuados usando o sistema computacional Magma,
no Apêndice A. Este apêndice contém também outros cálculos utilizando o Magma,
relacionados com o Caṕıtulo 6 e a Secção 3.2.2.

O Caṕıtulo 5 descreve as possibilidades para o caso φ2 não composta com i. Para
este estudo são importantes as Proposições 2.1.2, 2.1.3 e 2.1.4. Vários exemplos são
obtidos no Caṕıtulo 6, como coberturas biduplas de superf́ıcies (com uma excepção,
um plano duplo).



Abstract

The main subject of this thesis is the study of surfaces of general type S with
pg = q = 1 having an involution i. For such surfaces one has 2 ≤ K2

S ≤ 9 and only
few examples with K2 = 2, . . . , 5 or 8 are known.

The quotient surface S/i is a surface with pg ≤ 1 and q ≤ 1 and its Kodaira
dimension, Kod(S/i), can be any.

A list of possibilities for the case Kod(S/i) = −∞ and bicanonical map φ2

composed with i has been given by Xiao in [Xi2]. Here the computational algebra
system Magma is used to compute equations of plane models of double planes with
pg = q = 1 and K2 = 2, . . . , 8.

For Kod(S/i) ≥ 0 and φ2 composed with i, we show that S/i is regular and
either: a) the Albanese fibration of S is of genus 2 or b) S has no genus 2 fibration
and S/i is birational to a K3 surface. For case a) a list of possibilities and examples
are given. An example for case b) with K2 = 6 is constructed. This last case was
a possibility mistakenly excluded in [Xi2].

For the case φ2 not composed with i, a list of possibilities is given and several
new examples are obtained, mostly as bidouble covers of surfaces. In particular
minimal surfaces of general type with pg = q = 1, K2 = 6, 7 and birational bi-
canonical map are constructed.

The case pg = 1, q = 0 and S/i birational to a K3 surface is also considered. It
is shown that the smooth minimal model W of S/i is a double plane, with a plane
model ramified over two cubics.

ix



x



Contents

Introduction 1

1 Preliminaries 7
1.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Surfaces with pg = q = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Results on involutions 15
2.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Surfaces with an involution and q = 1 . . . . . . . . . . . . . . . . . 20

3 φ2 composed with i and Kod(S/i) ≥ 0 23
3.1 S regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 S irregular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Classification theorem . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Example with K2 = 6 and φ2(S) birational to a K3 . . . . . 38

4 φ2 composed with i and Kod(S/i) = −∞ 43
4.1 Useful pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Examples of double planes with pg = q = 1 . . . . . . . . . . . . . . 45

4.2.1 K2 = 8, 6, 4, 2 and g = 5, 4, 3, 2 . . . . . . . . . . . . . . . . . 47
4.2.2 K2 = 7, 5, 3 and g = 5, 4, 3 . . . . . . . . . . . . . . . . . . . . 48
4.2.3 K2 = 6 and g = 3 . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.4 K2 = 8 and g = 4 or 3 . . . . . . . . . . . . . . . . . . . . . . 50

5 φ2 not composed with i 53
5.1 Kod(S/i) ≥ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Kod(S/i) = −∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 φ2 birational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



xii

6 Examples of (bi)double covers with pg = q = 1 65
6.1 K2 = 4, g = 2, W1 ruled, W2 rational, Kod(W3) = 1 . . . . . . . . . 66
6.2 K2 = 2, g = 2, W1 ruled, W2 rational, Kod(W3) = 2 . . . . . . . . . 69
6.3 K2 = 8, g = 3, W1 ruled, W2 rational, Kod(W3) = 1 . . . . . . . . . 72
6.4 K2 = 6, g = 4, Kod(W1) = 2, W2 rational, Kod(W3) = 1 . . . . . . . 74
6.5 K2 = 4, g = 3, Kod(W1) = 2, W2 rational, Kod(W3) = 0 . . . . . . . 76
6.6 K2 = 4, g = 2, W1 ruled, Kod(W2) = 1, Kod(W3) = 2 . . . . . . . . 79
6.7 K2 = 8, g = 3, Kod(W1) = 2, Kod(W2) = 0, Kod(W3) = 0 . . . . . . 82
6.8 K2 = 7, g = 3, Kod(W1) = 2, Kod(W2) = 1, Kod(W3) = 0 . . . . . . 85
6.9 K2 = 6, g = 3, Kod(W1) = 2, Kod(W2) = 1, Kod(W3) = 0 . . . . . . 88
6.10 K2 = 8, g = 3, Kod(W1) = 1, W2 ruled, Kod(W3) = 1 . . . . . . . . 89
6.11 K2 = 4, g = 3, W1 ruled, Kod(W2) = 1, Kod(W3) = 2 . . . . . . . . 91
6.12 K2 = 8, g = 4, non-Du Val double plane . . . . . . . . . . . . . . . . 94

A Appendix: Magma computations 97
A.1 K2 = 6, φ2(S) birational to a K3 . . . . . . . . . . . . . . . . . . . . 99
A.2 The procedures LinSys and LinSys2 . . . . . . . . . . . . . . . . . 102
A.3 Useful curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4 Double planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.4.1 K2 = 8, 6, 4, 2 and g = 5, 4, 3, 2 . . . . . . . . . . . . . . . . . 107
A.4.2 K2 = 7, 5, 3 and g = 5, 4, 3 . . . . . . . . . . . . . . . . . . . . 110
A.4.3 K2 = 6 and g = 3 . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4.4 K2 = 8 and g = 4 . . . . . . . . . . . . . . . . . . . . . . . . 116
A.4.5 K2 = 8, g = 4, non-Du Val double plane . . . . . . . . . . . . 117

Bibliography 121



Introduction

The main subject of this thesis is the study of surfaces of general type S with
pg = q = 1 having an involution i. We also study surfaces with pg = 1 and q = 0
having an involution i such that the quotient surface S/i is birational to a K3
surface.

Involutions appear in many contexts in the study of algebraic surfaces. For
instance in most cases the non birationality of the bicanonical map for surfaces
implies the existence of an involution on the surface.

The bicanonical map φ2 of a surface S (given by |2KS |) has been considered
by several authors. There is an instance where the bicanonical map is necessarily
composed with an involution i of S (i.e. where φ2 factors through S → S/i): if f is
a morphism from S to a curve such that a general fibre F of f is irreducible of genus
2, then the system |2KS | cuts out on F a subseries of the bicanonical series of F,
which is composed with the hyperelliptic involution of F, and then φ2 is composed
with an involution. This is the so called standard case of non-birationality of the
bicanonical map.

By the results of Bombieri, [Bo], improved later by Reider, [Rd], a minimal
surface S satisfying K2 > 9 and φ2 non-birational necessarily presents the standard
case of non-birationality of the bicanonical map. Several authors have studied the
non-standard case.

Du Val, [Du], classified the regular surfaces S of general type with pg ≥ 3 whose
general canonical curve is smooth and hyperelliptic. Of course, for these surfaces,
the bicanonical map is composed with an involution i such that S/i is rational.
The families of surfaces exhibited by Du Val, presenting the non-standard case, are
nowadays called the Du Val examples.

Other authors have later studied the non-standard case: the articles [CaCM],
[CFM], [CM1], [CM2], [Xi2] and [Br] treat the cases χ(OS) > 1 or q(S) ≥ 2 (cf.
the expository paper [Ci] for more information on this problem).

Xiao Gang, [Xi2], presented a list of possibilities for the non-standard case of
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2 Introduction

non-birationality of the bicanonical morphism φ2. For the case when φ2 has degree
2 and the bicanonical image is a ruled surface, Theorem 2 of [Xi2] extended Du Val’s
list to pg(S) ≥ 1 and added two extra families (this result is still valid assuming
only that φ2 is composed with an involution such that the quotient surface is a
ruled surface). Later G. Borrelli, [Br], excluded these two families, confirming that
the only possibilities for this case are the Du Val examples.

For the case when the bicanonical image is a non-ruled surface, results in the
papers [Xi2], [CaCM] and [CM2] give a list of possibilities (see Theorem 1.2.1),
but the case pg = q = 1 is not completely described. More in general, surfaces of
general type with pg = q = 1 are still not well understood, and few examples are
known.

For a minimal surface S satisfying pg(S) = q(S) = 1, one has 2 ≤ K2
S ≤ 9 and

the Albanese map is a connected fibration onto an elliptic curve. We denote by g
the genus of a general Albanese fibre of S.

A classification for the surfaces with K2 = 2, 3 has been obtained by Catanese
and Ciliberto ([Ca1], [CC1], [CC2]). Surfaces with K2 = 8 that are isogenous to a
product of curves have been studied by Polizzi ([Po4], [Po1]), who also looked to
the case K2 = 3 ([Po3]). For other values of K2 one has the examples of Catanese
([Ca2]), with (K2, g) = (4, 2), (5, 2), and Xiao ([Xi1]), with (K2, g) = (4, 2) (thus
having a genus 2 pencil), and the Ishida example ([Is]) with (K2, g) = (4, 3).

As it was said in the beginning, the main subject of this thesis is the study of
surfaces of general type S with pg = q = 1 having an involution i.

The main results obtained are:

• Theorem 3.1.2: for q(S) = 0, S/i birational to a K3 surface and φ2 composed
with i, a double plane description of S/i is given;

• Theorem 3.2.1: the case pg(S) = q(S) = 1, Kod(S/i) ≥ 0 and φ2 composed
with i is classified. In particular it is shown that the Albanese fibration of S
is of genus 2 or S/i is birational to a K3 surface;

• Propositions 5.1.1, 5.1.2 and 5.1.3: a list of possibilities for the case pg(S) =
q(S) = 1, Kod(S/i) ≥ 0 and φ2 not composed with i is given;

• the construction of new examples, listed below.

Todorov, [To2], was the first to give examples of surfaces S of general type with
pg = 1 and q = 0 having bicanonical map composed with an involution i of S such
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that S/i is birational to a K3 surface, which we call Todorov surfaces. Morrison,
[Mo], gives an explicit description of the moduli spaces of Todorov surfaces. For
K2 = 1, Todorov has shown, in [To1], that the smooth minimal model W of S/i is
a double plane, with a plane model ramified over two cubics. In Section 3.1 it is
shown that this is also true for K2 > 1 and an example different from the Todorov’s
examples is given.

There are two typical methods to construct examples of surfaces: Campe-
delli — double covers ramified over curves with (complicated) singularities — and
Godeaux — quotients by group actions (cf. [Re1]). In this thesis the first method is
used to obtain new examples. Often the singularities impose too many conditions
on the linear parameters, and this implies hard calculations. The Computational
Algebra System MAGMA (V2.11-14) is used to perform the heavy computations
(visit http://magma.maths.usyd.edu.au/magma/ for information about Magma).

In this work several constructions of smooth minimal surfaces S of general type
with pg = q = 1 are given. In particular the following examples are obtained:

• K2 = 7, g = 5, deg(φ2) ≥ 2, S is a double plane, and
K2 = 7, g = 3, deg(φ2) = 1, S is a bidouble cover of IP2 :
these are the first examples with K2 = 7 (see Sections 4.2.2 and 6.8);

• K2 = 6, g = 3, deg(φ2) = 2, φ2(S) is birational to a K3 surface:
this is the first example with K2 = 6 (see [Ri]) (see Section 3.2.2);

• K2 = 5, g = 4, deg(φ2) ≥ 2, S is a double plane:
this is the first example with K2 = 5 and g 6= 2 (see Section 4.2.2);

• K2 = 8, g = 3 : it is the first example with K2 = 8 which is not a standard
isotrivial fibration (see Section 6.7);

• K2 = 6, g = 4 or 3, deg(φ2) ≥ 2, S is a double plane, and
K2 = 6, g = 3, deg(φ2) = 1, S is a bidouble cover of IP2 (see Sections 4.2.1,
4.2.3 and 6.9);

• K2 = 4, g = 3, deg(φ2) ≥ 2, S is a double plane (see Section 4.2.1);

• K2 = 4, g = 2, deg(φ2) = 2, S is a bidouble cover of IP2

(one has deg(φ2) = 4 for the Catanese example in [Ca2]) (see Section 6.6);

• K2 = 3, g = 3, deg(φ2) ≥ 2, S is a double plane (see Section 4.2.2).
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The recent preprint [Po2] also gives examples with K2 = 6, 4 and g 6= 2. These
surfaces contain 8−K2 6= 0 (−2)-curves, all in the same Albanese fibre. In each of
the double cover constructions referred above, such an Albanese fibre must be the
pullback of one of four fibres F i

A of S/i (see Section 2.2). One can verify that, in
the examples with K2

S = 4 or 6, none of the fibres F i
A induces a configuration like

the one above. Therefore these surfaces are different from Polizzi’s examples.

In [Po4], Polizzi classifies surfaces of general type with pg = q = 1, K2 = 8 and
bicanonical map of degree 2. He gives examples using quotients under the action
of a group and shows that these surfaces are Du Val double planes, describing the
branch locus of the respective plane models (see Theorem 1.3.2). Sections 4.2.1 and
4.2.4 show how to obtain equations for such branch locus. Section 6.12 describes
how to obtain an equation of a double plane with K2 = 8 having bicanonical map
not composed with the associated involution.

A minimal smooth surface of general type with pg = q = 1, K2 = 6 and
g = 3 such that φ2 is of degree 2 onto a K3 surface is constructed in Section
3.2.2. This example contradicts a statement of Xiao Gang. More precisely, the
list of possibilities in [Xi2] rules out the case where S has no genus 2 fibration,
pg(S) = q(S) = 1 and S/i is birational to a K3 surface. In Lemma 7 of [Xi2] it is
written that R has only negligible singularities, but the possibility χ(K eP + δ̃) < 0
in formula (3) of page 727 was overlooked. In fact we will see that R (B in our
notation) can have a non-negligible singularity.

This thesis is organized as follows.

In Chapter 2 we prove Propositions 2.1.2, 2.1.3 and 2.1.4. For a surface S

with an involution i, these relate the invariants of S and S/i with the branch
locus of the cover S → S/i, its singularities and the number of nodes of S/i.
The well known double cover formulas are important here; a Miyaoka’s result on
the maximal number of disjoint smooth rational curves on a minimal surface with
Kodaira dimension ≥ 0 is used. We also describe the action of the involution i on
the Albanese fibration of S.

In Chapter 3 we study the case φ2 composed with i and Kod(S/i) ≥ 0. Section
3.1 contains a description for S with q(S) = 0. Theorem 1.1 ([St]) is important
in the proof. For q(S) 6= 0, a classification theorem is proved in Section 3.2.
Crucial ingredients are the existence of the Albanese fibration and the formulas of
Proposition 2.1.2.

As noted above, if φ2 is composed with i and Kod(S/i) = −∞, then S is a Du
Val double plane (cf. Theorem 1.2.4). In Chapter 4 we construct explicit examples
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of such surfaces, more precisely we explain how to obtain equations of double planes
of general type with pg = q = 1, K2 = 2, . . . , 8, g 6= 2 (ifK2 6= 2) and non-birational
bicanonical map. The constructions with K2 = 5, 6, 7 yield previously unknown
examples of surfaces, whilst the others give an alternative description of (possibly)
known surfaces. To obtain the equations of the branch loci we impose conditions
to the linear parameters of systems of plane curves. Since the ramification curves
are contained in Albanese fibres, in some cases it is easier to start by constructing
non-reduced Albanese fibres, which simplify the computations. The calculations
are done using the computational system Magma in Appendix A. This appendix
also contains other Magma computations, related to Chapter 6 and Section 3.2.2.

In Chapter 5, a list of possibilities for the case φ2 not composed with i is given.
The proof consists mainly in examining the possibilities allowed by Propositions
2.1.2, 2.1.3 and 2.1.4. Several examples are obtained in Chapter 6, mostly as
bidouble covers of surfaces.



6 Notation and conventions

Notation and conventions

We work over the complex numbers; all varieties are assumed to be projective
algebraic. For a projective smooth surface S, the canonical class is denoted by
KS , the geometric genus by pg(S) := h0(S,OS(KS)), the irregularity by q(S) :=
h1(S,OS(KS)), the Euler characteristic by χ(OS) = 1 + pg(S) − q(S) and the
Kodaira dimension of S is denoted by Kod(S).

We do not distinguish between line bundles and divisors on a smooth variety.
Linear equivalence is denoted by ≡. A (−n)-curve C on a surface is a curve
isomorphic to IP1 such that C2 = −n. A node is an ordinary singularity of order
2 and a nodal curve is a (−2)-curve. We say that a curve singularity is negligible
if it is either a double point or a triple point which resolves to at most a double
point after one blow-up. A (m1,m2, . . .)- -point, or point of order (m1,m2, . . .), is
a point of multiplicity m1, which resolves to a point of multiplicity m2 after one
blow-up, etc.

The surface Y is a double cover of the surface X if there is a finite degree 2
morphism Y → X. An involution of a surface S is an automorphism of S of order
2. We say that a map is composed with an involution i of S if it factors through
the double cover S → S/i.

The rest of the notation is standard in algebraic geometry (following the books
[Be], [BPV], [GH] or [Ha]).



Chapter 1

Preliminaries

1.1 General facts

Canonical resolution

This is an important technical tool that is used several times through the text.
Given a double cover π : Y → X, with X a smooth surface, this method reduces
the problem of resolving the singularities of Y to the resolution of the singularities
of the branch locus of π. See [BPV] for more information.

Bicanonical map

The bicanonical map of a surface of general type S,

φ2 : S 99K IPdim|2KS |,

is the map defined by the linear system |2KS |, where KS denotes a canonical divisor
of S. In 1985 Xiao Gang proved the following

Theorem 1.1.1 ([Xi1]) Let S be a minimal surface of general type with pg ≥ 1,
or pg = 0 and K2 ≥ 2. Then |2KS | is not composed with a pencil, i.e. the image
of φ2 is a surface.

The next theorem is a consequence of results of Francia, Reider, Catanese and
Ciliberto. For more details see [Ci].

Theorem 1.1.2 ([Ca1], [Fr], [Rd], [CC1]) Let S be a minimal surface of general
type with pg ≥ 1. Then φ2 is a morphism, i.e. |2KS | is base point free.

7
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Todorov surfaces

In [To2] Todorov gives a construction of minimal surfaces of general type S with
pg = 1, q = 0, K2 = 8− j, j ∈ {0, . . . , 6}, and bicanonical map composed with an
involution i such that S/i is birational to a K3 surface. We give a brief description
of this.

Consider a Kummer surface Q in IP3, i.e. a quartic having as only singularities
16 nodes ai. Choose a1, . . . , a6 in general position and let G be the intersection of
Q with a general quadric through j of the nodes a1, . . . , a6. Let Q̃ be the minimal
resolution of Q and G̃ ⊂ Q̃ be the strict transform of G. The surface S is the
minimal model of the double cover of Q̃ ramified over G̃+

∑16
j+1Ai, where Ai ⊂ Q̃

are the (−2)-curves which contract to the nodes ai.

Hyperelliptic linear systems on a K3

The next result follows from [St, (4.1), Theorem 5.2, Propositions 5.6 and 5.7].

Theorem 1.1.3 ([St]) Let |D| be a complete linear system on a smooth K3 surface
F, without fixed components and such that D2 ≥ 4. Denote by ϕD the map given
by |D|. If ϕD is non-birational and the surface ϕD(F ) is singular then there exists
an elliptic pencil |E| such that ED = 2 and one of these cases occur:

(i) D = OF (4E + 2Γ) where Γ is a smooth rational irreducible curve such that
ΓE = 1. In this case ϕD(F ) is a cone over a rational normal twisted quartic
in IP4;

(ii) D = OF (3E + 2Γ0 + Γ1), where Γ0 and Γ1 are smooth rational irreducible
curves such that Γ0E = 1, Γ1E = 0 and Γ0Γ1 = 1. In this case ϕD(F ) is a
cone over a rational normal twisted cubic in IP3;

(iii) a) D = OF (2E + Γ0 + Γ1), where Γ0 and Γ1 are smooth rational irreducible
curves such that Γ0E = Γ1E = 1 and Γ0Γ1 = 0;

b) D = OF (2E + ∆), with ∆ = 2Γ0 + · · · + 2ΓN + ΓN+1 + ΓN+2 (N ≥ 0),
where the curves Γi are irreducible rational curves as follows:
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In both cases ϕD(F ) is a quadric cone in IP3.

Moreover in all the cases above the pencil |E| corresponds under the map ϕD to the
system of generatrices of ϕD(F ).

Invertible sheafs on m-connected curves

A curve D is said to be m-connected if every decomposition D = D1 +D2 satisfies
D1D2 ≥ m.

Proposition 1.1.4 ([CFM, Proposition (A.5), (ii)]) Let D be a reducible m-connected
curve (m ≥ 1) on a surface S and let L be an invertible sheaf on D such that
deg L|Γ ≥ 0, for every component Γ of D. Let n := deg L.

If n < m and if there is some component ∆ of D such that deg L|∆ = 0, then
h0(D,L) ≤ 1.

Counting rational and elliptic curves on surfaces

Proposition 1.1.5 ([Mi, Proposition 2.1.1]) Let X be a minimal surface of non-
negative Kodaira dimension. Then the number of disjoint smooth rational curves
in X is bounded by

8
(
χ(OX)− 1

9
K2

X

)
.

Proposition 1.1.6 ([Sa]) Let S be a minimal smooth surface of general type and
C ⊂ S be a disjoint union of smooth elliptic curves. Then

−C2 ≤ 36χ(OS)− 4K2
S .

Proof: This follows from the inequality of [Sa, Corollary 7.8], using
KC + C2 = 2pa(C)− 2 = 0.



10 1. Preliminaries

Du Val double planes

We say that a smooth surface S is a double plane if S has an involution i such that
S/i is a rational surface. A plane model of S is a double cover X → IP2 such that
X is a normal surface and there exists a commutative diagram

S −−−→ Xy y
S/i −−−→ IP2

such that the horizontal arrows denote birational maps.

Let C0 and F denote, respectively, the negative section and a fibre of the
Hirzebruch surface IF2.

Definition 1.1.7 The Bombieri-Du Val surface is the minimal model of a double
cover of IF2 with branch locus a smooth curve in C0 + |7C0 + 14F |.

Definition 1.1.8 Let p denote a point in IP2 and T1, . . . , Tn denote distinct lines
through p. A Du Val surface is either

B) the Bombieri-Du Val surface

or a minimal double plane having a plane model with branch locus D one of the
following:

D) a smooth curve of degree 8;

Dn) D = D′ + T1 + · · ·+ Tn, n ∈ {0, . . . , 6}, where D′ is a curve of degree 10 + n

whose non-negligible singularities are: a point of multiplicity n + 2 at p and
a (4, 4)-point in Ti, with tangent Ti, i = 1, . . . , n;

or one of B, D or Dn, imposing additional 4-uple or (3, 3)-points to D.

Surfaces of type B, D or Dn are called Du Val’s ancestors.
The Bombieri surface has K2 = 9, pg = 6 and q = 0; a Du Val ancestor of type

D has K2 = 2, pg = 3 and q = 0; those of type Dn have K2 = 8, pg = 6 − n and
q = 0, except possibly in the case n = 6, where pg = q = 1 if the 6 singular points
are contained in a conic.

Notice that the imposition of a 4-uple point to the branch locus decreases K2

by 2 and the Euler characteristic χ by 1, while a (3, 3)-point decreases both K2 and
χ by 1. Negligible singularities in the branch locus do not change these invariants.
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The imposition of 6− n 4-uple or (3, 3)-points to the branch locus of a Du Val
surface of type Dn gives pg = 0 if the 6 singular points, different from p, are not
contained in a conic and pg = q = 1 otherwise.

The bicanonical map of a Du Val surface factors through a map of degree 2
onto a rational surface. For more information on Du Val surfaces see [Du], [Ci] and
[Br].

Du Val surfaces are also called Du Val double planes.

Bidouble covers

A bidouble cover is a finite flat Galois morphism with Galois group Z2
2.

To define a Z2
2 cover ψ : V → X, with V, X smooth surfaces, one must present:

· smooth divisors D1, D2, D3 ⊂ X with pairwise transverse intersections and no
common intersection;

· line bundles L1, L2, L3 such that 2Lg ≡ Dj +Dk for each permutation (g, j, k) of
(1, 2, 3).

If Pic(X) has no 2-torsion then the Li’s are uniquely determined by the Di’s.

Let N := 2KX +
∑3

1 Li. One has (cf. [Ca2] or [Pa]):

pg(V ) = pg(X) +
3∑
1

h0(X,OX(KX + Li)),

χ(OV ) = 4χ(OX) +
1
2

3∑
1

Li(KX + Li),

2KV ≡ ψ∗ (N)

and

H0(V,OV (2KV )) ' H0(X,OX(N))⊕
3⊕

i=1

H0(X,OX(N − Li)).

The bicanonical map of V is composed with the involution ig, associated with
Lg, if and only if

h0(X,OX(2KX + Lg + Lj)) = h0(X,OX(2KX + Lg + Lk)) = 0.

For more information on bidouble covers see [Ca2] or [Pa].
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1.2 Classification

From [Xi2, Theorem 3], [CaCM, Theorems A and B] and [CM2, Theorem 1.1], one
has the following:

Theorem 1.2.1 ([Xi2], [CaCM], [CM2]) Let S be a minimal smooth surface of
general type with pg ≥ 1 having an involution i such that the bicanonical map φ2

of S is composed with i.
If Kod(S/i) ≥ 0 then either S has a genus 2 fibration or we are in one of the

following cases:

a) pg = 1, q = 0, K2 ≤ 8, S/i is birational to a K3 surface;

b) pg = q = 1, 3 ≤ K2 ≤ 8, S/i is birational to a K3 surface;

c) pg = q = 1, K2 = 3 or 4, S/i is birational to an Enriques surface;

d) pg = q = 1, 3 ≤ K2 ≤ 6, pg(S/i) = 1, q(S/i) = 0, Kod(S/i) = 1;

e) pg = q = 2, K2 = 4;

f) pg = q = 3, K2 = 6.

Remark 1.2.2 Examples for a) are given in [To2]. Cases e) and f) are completely
classified in [CM2] and [CaCM], respectively. In this thesis we exclude cases c) and
d) and we give an example for b) with K2 = 6. The existence of examples for b)
with K2 6= 6 is an open problem.

Remark 1.2.3 Theorem 3 of [Xi2] contains the assumption deg(φ2) = 2, but the
result is still valid assuming only that φ2 is composed with an involution.

The proof of the following result was essentially done by Xiao Gang and com-
pleted by G. Borrelli.

Theorem 1.2.4 ([Xi2], [Br]) Let S be a minimal smooth surface of general type,
without a genus 2 fibration, with an involution i such that Kod(S/i) = −∞.

The bicanonical map of S is composed with i if and only if S is a Du Val surface
(in particular S/i is rational).

Remark 1.2.5 If one allows S to have a genus 2 fibration, then S/i can be non-
rational: see [Ca2, Example 8] or Section 6.6, where a minimal surface with pg =
q = 1 and Albanese fibration of genus 2 is constructed as a double cover of an
irregular ruled surface.



1.3. Surfaces with pg = q = 1 13

1.3 Surfaces with pg = q = 1

Let S be a minimal smooth projective surface of general type satisfying pg(S) =
q(S) = 1. Note that then 2 ≤ K2

S ≤ 9: we have K2
S ≤ 9χ(OS), by the Myiaoka-Yau

inequality (see [BPV, Chapter VII, Theorem (4.1)]), and K2
S ≥ 2pg, because S is

an irregular surface (see [De]).
Furthermore, if the bicanonical map of S is not birational, then K2

S 6= 9. In
fact otherwise S would have a genus 2 fibration, by [CM2], but Théorème 2.2 of
[Xi1] implies that if S has a genus 2 fibration and pg(S) = q(S) = 1 then K2

S ≤ 6.
The cases K2

S = 2 or 3 were classified by Catanese and Ciliberto in [Ca1], [CC1]
and [CC2]. In particular they proved:

Theorem 1.3.1 ([Ca1], [CC1], [CC2]) Let S be a surface of general type with
pg = q = 1 and K2

S = 2 or 3. Denote by E(n) the n-th symmetric product of an
elliptic curve E and let g be the genus of a general Albanese fibre of S.

Then the relative canonical map of S coincides with the paracanonical map
γ : S → E(g) and:

a) If K2
S = 2, then g = 2 and γ is a 2 : 1 morphism;

b) If K2
S = 3 and g = 2, then γ is a 2 : 1 rational map with exactly one base point;

c) If K2
S = 3 and g 6= 2, then g = 3 and γ is a morphism which is birational onto

its image and it is an isomorphism of the canonical model of S onto γ(S).

Polizzi worked on the cases K2
S = 3, in [Po3], and K2

S = 8, in [Po4]. For K2
S = 8

and bicanonical map of degree 2, he obtained the following classification:

Theorem 1.3.2 [Po4] Let S be a minimal surface of general type with
pg = q = 1, K2 = 8 and bicanonical map of degree 2. Then S is a double plane and
there exists a plane model of S with branch curve B such that:

1. B = C16 + T1 + . . . + T6, where C16 is a curve of degree 16 and T1, . . . , T6 are
distinct lines passing through a point P ;

2. The singularities of C16 are:

· a point of multiplicity 8 at P ;

· six points of type (4, 4), each one tangent to Ti at a point Ri;

3. The curve C16 looks as follows:
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i) C16 = C1
8 + C2

8 , where each Cj
8 is an irreducible curve of degree 8 having

a 4-uple point at P and a (2, 2)-point (ordinary tacnode) tangent to Ti

at Ri, for any i;

ii) or C16 = C4 +C12, where each Cj is an irreducible curve of degree j with
a j/2-uple point at P and a (j/4, j/4)-point tangent to Ti at Ri, for any
i;

iii) or C16 is irreducible with a 8-uple point at P and a (4, 4)-point tangent
to Ti at Ri, for any i;

4. There is exactly one conic containing the points R1, . . . , R6.

For the remaining cases, with K2
S = 4, . . . , 7 or 9, one has the examples of

Catanese ([Ca2]), with (K2, g) = (4, 2), (5, 2), the example of Xiao ([Xi1]), with
(K2, g) = (4, 2), and the Ishida example ([Is]) with (K2, g) = (4, 3).



Chapter 2

Results on involutions

2.1 General facts

Let S be a smooth minimal surface of general type with an involution i. Since S is
minimal of general type, this involution is biregular. The fixed locus of i is the union
of a smooth curve R′′ (possibly empty) and of t ≥ 0 isolated points P1, . . . , Pt. Let
S/i be the quotient of S by i and p : S → S/i be the projection onto the quotient.
The surface S/i has nodes at the points Qi := p(Pi), i = 1, . . . , t, and is smooth
elsewhere. If R′′ 6= ∅, the image via p of R′′ is a smooth curve B′′ not containing
the singular points Qi, i = 1, . . . , t. Let now h : V → S be the blow-up of S at
P1, . . . , Pt and set R′ = h∗(R′′). The involution i induces a biregular involution ĩ

on V whose fixed locus is R := R′ +
∑t

1 h
−1(Pi). The quotient W := V/̃i is smooth

and one has a commutative diagram:

V
h−−−→ S

π

y yp

W
g−−−→ S/i

where π : V → W is the projection onto the quotient and g : W → S/i is the
minimal desingularization map. Notice that

Ai := g−1(Qi), i = 1, . . . , t,

are (−2)-curves and π∗(Ai) = 2 · h−1(Pi).
Set B′ := g∗(B′′). Since π is a double cover with branch locus B′ +

∑t
1Ai, it is

determined by a line bundle L on W such that

2L ≡ B := B′ +
t∑
1

Ai.

15
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It is well known that (cf. [BPV, Chapter V, Section 22]):

pg(S) = pg(V ) = pg(W ) + h0(W,OW (KW + L)),

q(S) = q(V ) = q(W ) + h1(W,OW (KW + L))

(2.1)

and
K2

S − t = K2
V = 2(KW + L)2,

χ(OS) = χ(OV ) = 2χ(OW ) + 1
2L(KW + L).

(2.2)

Denote by φ2 the bicanonical map of S. From the papers [CM2] and [CbCM]:

φ2 is composed with i if and only if h0(W,OW (2KW + L)) = 0. (2.3)

Let P be a minimal model of the resolution W of S/i and ρ : W → P be
the corresponding projection. Denote by B the projection ρ(B) and by δ the
”projection” of L.

Remark 2.1.1 If B is singular, there are exceptional divisors Ei and numbers
ri ∈ 2IN such that

E2
i = −1,

KW ≡ ρ∗(KP ) +
∑
Ei,

2L ≡ B = ρ∗(B)−
∑
riEi ≡ ρ∗(2δ)−

∑
riEi.

Proposition 2.1.2 With the previous notation, if S is a surface of general type
then:

a) χ(OP )− χ(OS) = KP (KP + δ) + 1
2

∑
(ri − 2)− h0(W,OW (2KW + L));

b) δ2 = −2χ(OP )− 2K2
P − 3KP δ+

+1
4

∑
(ri − 2)(ri − 4) + 2h0(W,OW (2KW + L)).

Proposition 2.1.3 Let t be the number of nodes of S/i. One has:

a) t = K2
S + 6χ(OW )− 2χ(OS)− 2h0(W,OW (2KW + L));

b) t = KSR
′′ + 8χ(OW )− 4χ(OS) ≥ 8χ(OW )− 4χ(OS);

c) K2
S ≥ 2χ(OW )− 2χ(OS) + 2h0(W,OW (2KW + L)).

Proposition 2.1.4 With the above notation:



2.1. General facts 17

a) h0(W,OW (2KW + L)) ≤ 1
3K

2
W − χ(OW ) + 11

3 χ(OS) + 1
27K

2
S ;

b) h0(W,OW (2KW + L)) ≤ 1
2K

2
W + 5χ(OS) + 2q(S)− 3χ(OW )− 2q(W ).

Proof of Proposition 2.1.2: (cf. [CM2])

a) From the Kawamata-Viehweg’s vanishing theorem (see e.g. [EV, Corollary 5.12,
c)]), one has

hi(W,OW (2KW + L)) = 0, i = 1, 2.

The Riemann-Roch theorem implies

χ(OW (2KW + L)) = χ(OW ) +
1
2
L(KW + L) +KW (KW + L),

thus, using (2.2),

h0(W,OW (2KW + L)) = χ(OS)− χ(OW ) +KW (KW + L). (2.4)

With the notation of Remark 2.1.1, we can write

χ(OP )− χ(OS) =
1
2
KW (2KW + 2L)− h0(W,OW (2KW + L)) =

=
1
2

(
ρ∗(KP ) +

∑
Ei

)(
2ρ∗(KP + δ) +

∑
(2− ri)Ei

)
− h0(W,OW (2KW +L)) =

= KP (KP + δ) +
1
2

∑
(ri − 2)− h0(W,OW (2KW + L)).

b) From the proof of a),

h0(W,OW (2KW + L)) = χ(OW (2KW + L)) = χ(OW ) +
1
2
(2KW + L)(KW + L).

Using Remark 2.1.1 this means

h0(W,OW (2KW + L)) = χ(OP )+

+
1
2

(
ρ∗(2KP + δ) +

1
2

∑
(4− ri)Ei

)(
ρ∗(KP + δ) +

1
2

∑
(2− ri)Ei

)
=

= χ(OP ) +K2
P +

3
2
KP δ +

1
2
δ2 − 1

8

∑
(ri − 2)(ri − 4).
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Proof of Proposition 2.1.3:

a) From formulas (2.2) and (2.4),

t = K2
S − 2KW (KW + L)− 2L(KW + L) =

= K2
S + 2χ(OS)− 2χ(OW )− 2h0(W,OW (2KW + L))− 4χ(OS) + 8χ(OW ).

b) (This is also a consequence of the holomorphic fixed point formula.)
From (2.2) and a),

4χ(OS)− 8χ(OW ) = 2L(KW + L) =

(
B′ +

t∑
1

Ai

)
(KW + L) =

= B′(KW + L)− t =
1
2
π∗(B′)π∗(KW + L)− t = R′′KS − t.

Since S is of general type, KSR
′′ ≥ 0, thus

t ≥ 8χ(OW )− 4χ(OS).

c) This is immediate from a) and b).

Proof of Proposition 2.1.4:

a) This inequality is given by the following three claims.

Claim 1:
1− pa(B′) = 3χ(OW )− 3χ(OS)−K2

S −K2
W + 3h0(W,OW (2KW + L)).

Proof : Formulas (2.2) and (2.4) give

L2 −K2
W =

= [2χ(OS)−4χ(OW )−LKW ]− [h0(W,OW (2KW +L))−χ(OS)+χ(OW )−KWL],

thus
L2 = K2

W + 3χ(OS)− 5χ(OW )− h0(W,OW (2KW + L)). (2.5)
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Now we perform a straightforward calculation using the adjunction formula, (2.2),
Proposition 2.1.3, a) and (2.5):

2pa(B′)− 2 =

= KWB′ +B′2 = KW 2L+ (2L)2 + 2t = 2L(KW + L) + 2t+ 2L2 =

2[2χ(OS)− 4χ(OW )]+

+2[K2
S + 6χ(OW )− 2χ(OS)− 2h0(W,OW (2KW + L))]+

+2[K2
W + 3χ(OS)− 5χ(OW )− h0(W,OW (2KW + L))] =

= 2K2
S + 2K2

W + 6χ(OS)− 6χ(OW )− 6h0(W,OW (2KW + L)). ♦

Denote by τ the number of rational curves of B′.

Claim 2:

1− pa(B′) ≤ τ.

Proof : Write

B′ =
τ∑
1

B′
i +

h∑
τ+1

B′
i

as a decomposition of B′ in (smooth) connected components such that B′
i, i ≤ τ,

are the rational ones. The adjunction formula gives

2pa(B′)− 2 =
h∑
1

(
KWB′

i +B′2
i

)
=

τ∑
1

(2g(B′
i)− 2) +

h∑
τ+1

(2g(B′
i)− 2) ≥ −2τ. ♦

Claim 3:

τ ≤ 8
(
χ(OS)− 1

9
K2

S

)
.

Proof : Since B′ does not contain (−2)-curves and it is contained in the branch
locus of the cover π : V → W, then each rational curve in B′ corresponds to a
rational curve in S. Now the result follows from Proposition 1.1.5. ♦
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Therefore 1 − pa(B′) ≤ 8
(
χ(OS)− 1

9K
2
S

)
and using Claim 1 we obtain the de-

sired inequality.

b) Proposition 2.1.3, a) says that

K2
V = K2

S − t = 2χ(OS)− 6χ(OW ) + 2h0(W,OW (2KW + L)).

The second Betti number b2 of a surface X satisfies

b2(X) = 12χ(OX)−K2
X + 4q(X)− 2.

Therefore

b2(V ) = 10χ(OV ) + 6χ(OW ) + 4q(V )− 2− 2h0(W,OW (2KW + L)).

Since b2(V ) ≥ b2(W ), one has the result.

2.2 Surfaces with an involution and q = 1

Let S be a surface of general type with q = 1. Then the Albanese variety of S is
an elliptic curve E and the Albanese map is a connected fibration (see e.g. [Be] or
[BPV]).

Suppose that S has an involution i. Then i preserves the Albanese fibration
(because q(S) = 1) and so we have a commutative diagram

V
h−−−→ S −−−→ E

π

y yp

y
W −−−→ S/i −−−→ ∆

(2.6)

where ∆ is a curve of genus ≤ 1. Denote by

fA : W → ∆

the fibration induced by the Albanese fibration of S.
Recall that

ρ : W → P

is the projection of W onto its minimal model P and

B := ρ(B),
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where B := B′ +
∑t

1Ai ⊂W is the branch locus of π. Let

B′ := ρ(B′), Ai = ρ(Ai).

When B has only negligible singularities the map ρ contracts only exceptional
curves contained in fibres of fA. In fact otherwise there exists a (−1)-curve J ⊂W

such that JB = 2 and π∗(J) is transverse to the fibres of the (genus 1 base) Al-
banese fibration of S. This is impossible because π∗(J) is a rational curve. Moreover
ρ contracts no curve meeting

∑
Ai, thus the singularities of B are exactly the sin-

gularities of B′, i.e. B′⋂∑Ai = ∅. We denote the image of fA on P by fA.

If ∆ ∼= IP1 then the double cover E → ∆ is ramified over 4 points pj of ∆, thus
the branch locus B′ +

∑t
1Ai is contained in 4 fibres

F j
A := f∗A(pj), j = 1, ..., 4,

of the fibration fA. Hence by Zariski’s Lemma (see e.g. [BPV]) the irreducible
components B′

i of B′ satisfy B′2
i ≤ 0. If B has only negligible singularities then also

B′2 ≤ 0. Since π∗(F j
A) has even multiplicity, each component of F j

A which is not a
component of the branch locus B′ +

∑t
1Ai must be of even multiplicity.
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Chapter 3

φ2 composed with i and

Kod(S/i) ≥ 0

3.1 S regular

Assume that S is a smooth minimal surface of general type, with q = 0 and pg 6= 0,
having an involution i such that S/i is non-ruled and the bicanonical map φ2 of S
is composed with i. Thus, according to the following Proposition, S/i is birational
to a K3 surface, pg(S) = 1 and K2

S ≤ 8.
We keep the notation of Chapter 2.

Proposition 3.1.1 (cf. also [Xi2]) Let S be a surface of general type, with q =
0 and pg ≥ 1, having an involution i such that the bicanonical map φ2 of S is
composed with i.

Then S/i is a rational surface, except in the case pg(S) = 1, where S/i may
also be birational to a K3 surface. In this last case the branch locus B has at most
negligible singularities and K2

S ≤ 8.

Proof: Since q(P ) ≤ q(S) = 0 and pg(P ) ≤ pg(S), then χ(OP )−χ(OS) ≤ 0. As φ2

is composed with i, h0(W,OW (2KW +L)) = 0. Now Proposition 2.1.2, a) excludes
the possibility Kod(P ) = 2, because in that case KP (KP + δ) > 0.

Suppose Kod(P ) = 1. Proposition 2.1.2, a) implies K2
P = KP δ = 0, but then

B is contained in the elliptic fibration of P, and so also S has an elliptic fibration,
a contradiction because S is of general type.

From the classification of surfaces (see e.g. [Be, Théorème VIII.2]) and Propo-
sition 2.1.2, a) we obtain P a K3 surface as the only possibility for Kod(P ) = 0.

23
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In this case
∑

(ri − 2) = 0 (meaning that B has at most negligible singularities),
therefore, since the number of nodal curves in a K3 surface is not greater than 16,
Proposition 2.1.3 gives K2

S ≤ 8.

The main result of this section is

Theorem 3.1.2 Let S be a smooth minimal regular surface of general type with
an involution i such that φ2 is composed with i and that S/i is birational to a K3
surface. Let W be the minimal resolution of S/i.

Then W is a double plane and there is a plane model of W with branch locus
the union of two cubics.

Let S be one of the surfaces constructed in [To2], as described in Section 1.1.
Todorov claimed that the bicanonical map φ2 of S has degree 2 but, as noted in
[CD], this is not true if K2

S = 2: the set {A7, . . . , A16} may contain a subset of 8
curves Ai with sum divisible by 2 in the Picard group. In this case S has torsion
and then φ2 is of degree 4 onto a quadric cone (see [CD]).

One can choose the six nodes in such a way to obtain S with K2 = 2, pg = 1,
q = 0 and bicanonical map of degree 2 onto a quartic K3. Moreover, imposing the
passage of the branch curve by a 7-th node, one can obtain S with K2 = pg = 1 and
q = 0. In this case φ2 is of degree 4 onto IP2. This is the so-called Kunev surface.
It is a bidouble cover of IP2 ramified over a general line and two cubics (cf. [To1]).

Since the Todorov construction involves a Kummer surface, a natural question
arises: is there a surface S of general type with pg = 1, q = 0 and K2 ≥ 2 having
an involution i such that S/i is birational to a K3 and non-birational to a Kummer
surface? The answer is yes, we give examples in Theorem 3.1.5.

In order to prove Theorem 3.1.2, we show the following:

Proposition 3.1.3 Let P be a smooth K3 surface with a reduced curve B satisfy-
ing:

(i) B = B′ +
∑t

1Ai, t ∈ {9, . . . , 16}, where B′ is a nef and big curve with
at most negligible singularities, the curves Ai are disjoint (−2)-curves also
disjoint from B′ and B ≡ 2L, L2 = −4, for some L ∈ Pic(P ).

Then:

a) Let π : V → P be a double cover with branch locus B and S be the smooth
minimal model of V . Then q(S) = 0, pg(S) = 1, K2

S = t − 8 and φ2 is
composed with the involution i of S induced by π;
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b) If t ≥ 10, then P contains a smooth curve B′
0 and (−2)-curves A′

1, . . . , A
′
t−1

such that B′2
0 = B′2 − 2 and B0 := B′

0 +
∑t−1

1 A′
i also satisfies condition (i).

Proof:

a) From the double cover formulas and the Riemann Roch theorem,

q(S) = h1(P,OP (L)),

pg(S) = 1 + h0(P,OP (L)),

h0(P,OP (L)) + h0(P,OP (−L)) = h1(P,OP (L)).

Since 2L −
∑
Ai is nef and big, the Kawamata-Viehweg’s vanishing theorem (see

e.g. [EV, Corollary 5.12, c)]) implies

h1(P,OP (−L)) = h1(P,OP (KP + L)) = h1(P,OP (L)) = 0,

hence q(S) = 0 and pg(S) = 1. As

h0(P,OP (2KP + L)) = h0(P,OP (L)) = 0,

the bicanonical map of S is composed with i.

b) Denote by ξ ⊂ P the set of irreducible curves which do not intersect B′ and
denote by ξi, i ≥ 1, the connected components of ξ. Since B′2 ≥ 2, the Hodge-index
theorem implies that the intersection matrix of the components of ξi is negative
definite. Therefore, following [BPV, Lemma I.2.12], the ξi’s have one of the five
configurations: the support of An, Dn, E6, E7 or E8 (see e.g. [BPV, III.3] for the
description of these graphs).

Claim 1: Each nodal curve Ai can only be contained in a graph of type A2n+1

or Dn.

Proof : Suppose that there exists an Ai which is contained in a graph of type
E6. Denote the components of E6 as in Figure 3.1.

If Ai = a3 or Ai = a6, then a6B = a6a3 = 1 or a3B = 1, contradicting B ≡ 2L.
If Ai = a1 or Ai = a2, then a2B = 1 or a1B = 1, the same contradiction. By the
same reason, Ai 6= a4 and Ai 6= a5.
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s s s s s
s

a1 a2 a3 a4 a5

a6

Figure 3.1: E6

Analogously one can verify that each Ai can not be in a graph of type A2n, E7

or E8. ♦

Fix one of the curves Ai and denote by G the graph containing it. The possible
configurations for the curves Ai in the graphs are shown in Figure 3.2.

��
��

H
HHHs

s s s s s s s
1

1

2 2 2 2 2 1

A2

E2

An−1

En−1

An
E1

A1

D2n

Dn

�
���

HH
HHs

s s s s s
1

1

2 2 2 1

E1
A2

A1

B′
0

B′
0

s s s s s1 1 1 1 1

A1 E1 A2 En An+1

A2n+1

B′
0

Figure 3.2: The numbers represent the multiplicity and the doted curve re- present
a general element B′

0 in |B′ − G|.

Claim 2: We can choose Ai such that the linear system |B′ − G| has no fixed
components (and thus no base points, from [St, Theorem 3.1]).

Proof : Denote by ϕ|B′| the map given by the linear system |B′|. We know that
ϕ|B′| is birational or it is of degree 2 (see [St, Section 4]). If ϕ|B′| is birational or
the point ϕ|B′|(G) is a smooth point of ϕ|B′|(P ), the result is clear, since |B′ − G|
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is the pullback of the linear system of the hyperplanes containing ϕ|B′|(G) and
ϕ∗
|B′|(ϕ|B′|(G)) = G (see [BPV, Theorems III 7.1 and 7.3]).

Suppose now that ϕ|B′| is non-birational and that ϕ|B′|(G) is a singular point
of ϕ|B′|(P ). Then B′ is linearly equivalent to a curve with one of the configurations
described in Theorem 1.1.3. Except for the last configuration, G contains at most
two (−2)-curves. But t ≥ 9, thus in these cases there exists other graph G′ con-
taining a curve Aj such that ϕ|B′|(G′) is a non-singular point of ϕ|B′|(P ) (notice
that Theorem 1.1.3 implies that ϕ|B′|(P ) contains only one singular point).

So we can suppose that B′ is equivalent to a curve with a configuration as in
Theorem 1.1.3, (iii), b). None of the curves Γ0, . . . ,ΓN can be one of the curves
Aj . For this note that: if Γ0 = Aj , then EB = E (B′ +

∑
Ai) = 2 + EΓ0 = 3 6≡

0 (mod 2); if Γ1 = Aj , then Γ0B = Γ0Γ1 = 1 6≡ 0 (mod 2); etc. Again this config-
uration can contain at most two curves Aj , the components ΓN+1, ΓN+2. ♦

Let B′
0 be a smooth curve in |B′ − G|. If G is an A2n+1 graph, then, using the

notation of Figure 3.2,(
B′

0 +
n∑
1

Ei

)
+

t∑
n+2

Ai ≡

(
B′ −

n+1∑
1

Ai

)
+

t∑
n+2

Ai ≡

≡ B′ +
t∑
1

Ai − 2
n+1∑

1

Ai ≡ 0 (mod 2).

Therefore the curve

B0 := B′
0 +

n∑
1

Ei +
t∑

n+2

Ai

satisfies condition (i).

The case where G is a Dm graph is analogous.

Proof of Theorem 3.1.2: Let P be the minimal model of W. As noted in Propo-
sition 3.1.1, the branch locus B ⊂ P has at most negligible singularities, thus, from
Propositions 2.1.2 and 2.1.3, it satisfies condition (i) of Proposition 3.1.3. Then P
contains a curve B′

0 and (−2)-curves A′
i, i = 1, . . . , 9, such that B0 := B′

0 +
∑9

1A
′
i

is smooth and divisible by 2 in the Picard group. Moreover, the complete linear
system |B′

0| has no fixed component nor base points and B′2
0 = 2. Therefore, from

[St], |B′
0| defines a generically finite degree 2 morphism

ϕ := ϕ|B′
0| : P → IP2.
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Since g(B′
0) = 2, this map is ramified over a sextic curve β. The singularities of β

are negligible because P is a K3 surface.
We claim that β is the union of two cubics. Let pi ∈ β be the singular point

corresponding to A′
i, i = 1, . . . , 9. Notice that the pi’s are possibly infinitely near.

Let C ⊂ IP2 be a cubic curve passing through pi, i = 1, . . . , 9. As C + ϕ∗(B′
0) is

linearly equivalent to a plane quartic, we have(
ϕ∗(C)−

9∑
1

A′
i

)
+B′

0 +
9∑
1

A′
i ≡ ϕ∗(C + ϕ∗(B′

0)) ≡ 0 (mod 2),

hence also ϕ∗(C)−
∑9

1A
′
i ≡ 0 (mod 2), i.e. there exists a divisor J such that

2J ≡ ϕ∗(C)−
9∑
1

A′
i.

Since P is a K3 surface, the Riemann Roch theorem implies that J is effective.
From JA′

i = 1, i = 1, . . . , 9, we obtain that the plane curve ϕ∗(J) passes with
multiplicity 1 through the nine singular points pi of β. This immediately implies
that ϕ∗(J) is not a line nor a conic, because β is a reduced sextic. Therefore ϕ∗(J)
is a reduced cubic. So ϕ∗(J) ≡ C and then

ϕ∗ (ϕ∗(J)) ≡ 2J +
9∑
1

A′
i.

This implies that ϕ∗(J) is contained in the branch locus β.

As an example, we describe briefly how to construct a surface S of general type
such that φ2(S) ⊂ IP3 is a quartic K3 surface with an A17 and A1 singularities.
The details can be verified with Magma.

Example 3.1.4 Let C1 be a nodal cubic, p an inflection point of C1 and T the
tangent line to C1 at p. The pencil generated by C1 and 3T contains another nodal
cubic C2, smooth at p. The curves C1 and C2 intersect at p with multiplicity 9.

Let ρ : X → IP2 be the resolution of C1+C2 and π : W → X be the double cover
with branch locus the strict transform of C1 + C2. Denote by l the line containing
the nodes of C1 and C2 and by l ⊂W the pullback of the strict transform of l. The
map given by |(ρ ◦ π)∗(l) + l| is birational onto a quartic Q in IP3 with an A1 and
A17 singularities (notice that l is a (−2)-curve and ((ρ ◦ π)∗(l) + l)l = 0).

Let B′ ∈ |(ρ ◦ π)∗(l) + l| be a smooth element and A1, . . . , A9 be the disjoint
(−2)-curves contained in (ρ ◦ π)∗(p). Let S be the minimal model of the double
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cover of W with branch locus B′ +
∑9

1Ai + l. The surface Q is the image of the
bicanonical map of S and pg(S) = 1, q(S) = 0, K2

S = 2.

Finally, we want to know if there are examples of surfaces S satisfying the
assumptions of Theorem 3.1.2 and not in the family constructed by Todorov.

It is known since [Hu] that there exist special sets of 6 nodes, called Weber
hexads, in the Kummer surface Q ∈ IP3 such that the surface which is the blow-up
of Q at these nodes can be embedded in IP3 as a quartic with 10 nodes. This
quartic is the Hessian of a smooth cubic surface.

The space of all smooth cubic surfaces has dimension 4 while the space of
Kummer surfaces has dimension 3. Thus it is natural to ask if there exist Hessian
”non-Kummer” surfaces, i.e. which are not the embedding of a Kummer surface
blown-up at 6 points. This is studied in [Ro], where the existence of ”non-Kummer”
quartic Hessians H in IP3 is shown. These are surfaces with 10 nodes ai such that
the projection from one node a1 to IP2 is a generically 2 : 1 cover of IP2 with branch
locus α1+α2 satisfying: α1, α2 are smooth cubics tangent to a nondegenerate conic
C at 3 distinct points. We use this in the next result.

Theorem 3.1.5 There exist minimal smooth surfaces S of general type with K2 =
2, 3, pg = 1, q = 0 and bicanonical map of degree 2 onto a surface which is birational
to a K3 and non-birational to a Kummer surface.

Proof: Let α1, α2 and C be as above. Take the morphism π : W → IP2 given by
the canonical resolution of the double cover of IP2 with branch locus α1 + α2. The
strict transform of C gives rise to the union of two disjoint (−2)-curves A1, A2 ⊂W

(one of these correspond to the node a1 from which we projected).
Let T ∈ IP2 be a general line. Let A3, . . . , A11 ⊂W be the disjoint (−2)-curves

contained in π∗(α1 + α2). We have π∗(T + α1) ≡ 0 (mod 2), hence, since α1 is in
the branch locus, also

π∗(T ) +
11∑
3

Ai ≡ 0 (mod 2).

The linear systems |π∗(T ) +A2| and |π∗(T ) +A1 +A2| have no fixed components
nor base points (see [St, (2.7.3) and Corollary 3.2]). The surface S is the minimal
model of the double cover of W ramified over a general element in

|π∗(T ) +A2|+
11∑
2

Ai or |π∗(T ) +A1 +A2|+
11∑
1

Ai.
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3.2 S irregular

3.2.1 Classification theorem

In this section we use freely the notation and results of Chapter 2, and we prove
the following:

Theorem 3.2.1 Let S be a smooth minimal irregular surface of general type with
an involution i such that Kod(S/i) ≥ 0 and the bicanonical map φ2 of S is composed
with i. If pg(S) = q(S) = 1, then only the following possibilities can occur:

a) S/i is regular, the Albanese fibration of S has genus 2 and

(i) Kod(S/i) = 2, χ(S/i) = 2, K2
S = 2, deg(φ2) = 8, or

(ii) Kod(S/i) = 1, χ(S/i) = 2, 2 ≤ K2
S ≤ 4, deg(φ2) ≥ 4, or

(iii) S/i is birational to a K3 surface, 3 ≤ K2
S ≤ 6, deg(φ2) = 4;

b) S has no genus 2 fibration and S/i is birational to a K3 surface.

Moreover, there are examples for (i), (ii) with K2
S = 4, (iii) with K2

S = 3, 4 or
5 and for b) with K2

S = 6 and φ2 of degree 2.

Remark 3.2.2 Examples for (iii) were given by Catanese in [Ca2]. The other
examples will be presented in Sections 3.2.2, 6.1 and 6.2.

Proof: Since pg(P ) ≤ pg(S) = 1, then χ(OP ) ≤ 2 − q(P ) ≤ 2. Proposition 2.1.2
gives χ(OP ) ≥ 1, because KP is nef (i.e. KPC ≥ 0 for every curve C). So from
Proposition 2.1.2 and the classification of surfaces (see e.g. [Be] or [BPV]) only the
following cases can occur:

1) P is a surface of general type;

2) P is a surface with Kodaira dimension 1;

3) P is an Enriques surface, B has only negligible singularities;

4) P is a K3 surface, B has a 4-uple or (3, 3)-point, and possibly negligible
singularities.

We will show that case 3) does not occur and that in cases 1) and 2) the Albanese
fibration has genus 2.

Each of cases 1), . . . , 4) will be studied separately. We start by consi- dering:
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Case 1) Since P is of general type, K2
P ≥ 1 and KP is nef, Proposition 2.1.2

gives χ(OP ) = 2, K2
P = 1, KP δ = 0 and B has only negligible singularities. The

equality KPB′ = KP 2δ = 0 implies B′2 < 0 when B′ 6= 0. In the notation of
Remark 2.1.1 one has KW ≡ ρ∗(KP ) +

∑
Ei and B′ = ρ∗(B′)− 2

∑
Ei. So

K2
S = K2

V + t =
1
4
(2KV )2 + t =

1
4
π∗(2KW +B)2 + t =

=
1
2
(2KW +B)2 + t =

1
2
(2KW +B′)2 =

1
2
(2KP +B′)2 =

1
2
(4 +B′2).

Since K2
S ≥ 2pg(S) for an irregular surface (see [De]), B′2 < 0 is impossible, hence

B′ = 0 and K2
S = 2. By [Ca1], minimal surfaces of general type with pg = q = 1

and K2 = 2 have Albanese fibration of genus 2. This is case (i) of Theorem 3.2.1.
We will see in Section 6.2 an example for this case.

Finally the fact that deg(φ2) = 8 follows immediately because φ2 is a morphism
onto IP2 and (2KS)2 = 8.

Next we exclude:

Case 3) Using the notation of Remark 2.1.1 of Section 2.1, we write

KW ≡ ρ∗(KP ) +
∑

Ei and 2L ≡ ρ∗(2δ)− 2
∑

Ei,

for some exceptional divisors Ei. Hence

L(KW + L) =
1
2
L(2KW + 2L) =

=
1
2
(ρ∗(δ)−

∑
Ei)(2ρ∗(KP ) + ρ∗(2δ)) =

1
2
δ(2KP + 2δ) = δ2

and then, from (2.2), δ2 = −2. Now (2.3) and Proposition 2.1.3, a) imply t = K2
S+4,

thus
B′2 = B

2 + 2t = (2δ)2 + 2t = −8 + 2t = 2K2
S > 0.

This is a contradiction because we have seen in Section 2.2 that B′2 ≤ 0 when B′

has only negligible singularities. Thus case 3) does not occur.

Now we focus on:

Case 2) Since we are assuming that Kod(P ) = 1, P has an elliptic fibration,
i.e. a morphism fe : P → C where C is a curve and the general fibre of fe is a
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smooth connected elliptic curve. Then KP is numerically equivalent to a rational
multiple of a fibre of fe (see e.g. [Be] or [BPV]). As KP δ ≥ 0, Proposition 2.1.2,
together with χ(OP ) ≤ 2, yield KP δ = 0 or 1.

Denote by Fe a general fibre of fe. If KP δ = 0, then FeB = 0, which implies
that the fibration fe lifts to an elliptic fibration on S. This is impossible because S
is a surface of general type. So KP δ = 1 and, since pg(P ) ≤ pg(S) = 1, the only
possibility allowed by Proposition 2.1.2 is

pg(P ) = 1, q(P ) = 0 and B has only negligible singularities.

Now q(P ) = 0 implies that the elliptic fibration fe has a rational base, thus the
canonical bundle formula (see e.g. [BPV, Chapter V, Section 12]) gives KP ≡∑

(mi − 1)Fi, where miFi are the multiple fibres of fe. From

2 = 2δKP = B′KP = B′
∑

(mi − 1)Fi, B′Fi ≡ 0 (mod 2)

we get

KP ≡
1
2
Fe.

Since B has only negligible singularities, B′2 ≤ 0 and

2K2
S = (2KW +B′)2 = ρ∗

(
2KP +B′

)2 = 8 +B′2 ≤ 8. (3.1)

Therefore 2 ≤ K2
S ≤ 4. If K2

S = 2, then the Albanese fibration of S is of genus
2, by [Ca1]. So, to prove statement a), (ii) of Theorem 3.2.1, we must show that
for K2

S = 3 or 4 the Albanese fibration of S has genus 2. We will study each of
these cases separately.

Consider the fibration fA : W → IP1, with general fibre FA, induced by the Al-
banese fibration of S. Recall from Section 2.2 that the branch locus of π : V →W

is contained in four fibres F i
A, i = 1, . . . , 4, of fA. Denote the images of fA, FA, F

i
A

on the minimal model P of W by fA, FA, F i
A, respectively.

Suppose that

· K2
S = 4.

Claim 1: If fA is not a genus 2 fibration then

F j
A = 2B′,
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for some j ∈ {1, . . . , 4}.

Proof : By formula (3.1) B′2 = 0, and so B′ contains the support of x ≥ 1 of
the F i

A’s. The facts KPFA > 0 (because g(FA) ≥ 2) and KPB′ = 2 imply x = 1,
i.e. F j

A = kB′, for some j ∈ {1, . . . , 4} and k ∈ IN. If k = 1 then FAKP = 2, thus
FA is of genus 2 and S is as in case (ii) of Theorem 3.2.1.

Suppose now k ≥ 2. Then each irreducible component of the divisor

D := F 1
A + . . .+ F 4

A

whose support is not in
∑14

1 Ai is of multiplicity greater than 1. The fibration
fA gives a cover Fe → IP1 of degree FAFe, for a general fibre Fe of the elliptic
fibration fe. The Hurwitz formula (see e.g. [GH]) says that the ramification degree
r of this cover is 2FAFe. Let p1, . . . , pn be the points in Fe ∩ D and αi be the
intersection number of Fe and D at pi. Of course FeD = 4FAFe =

∑n
1 αi and then

Fe
⋂∑

Ai = ∅ implies αi ≥ 2, i = 1, . . . , n. We have

2FAFe = r ≥
n∑
1

(αi − 1) =
n∑
1

αi − n = 4FAFe − n,

i.e. n ≥ 2FAFe. The only possibility is n = 2FAFe and αi = 2 ∀i, which means that
every component Γ of D such that ΓFe 6= 0 is exactly of multiplicity 2. In particu-
lar any irreducible component of B′ is of multiplicity 2, thus k = 2, i.e. F j

A = 2B′.♦

Claim 2: There is a smooth rational curve C contained in a fibre FC of the elliptic
fibration fe, and not contained in fibres of fA, such that

m := Ĉ

t∑
1

Ai ≤ 3, (3.2)

where Ĉ is the strict transform of C in W.

Proof : Since AiFe = Ai2KP = 0, then each Ai is contained in a fibre of fe,

and in particular the elliptic fibration fe has reducible fibres. Denote by C an
irreducible component of a reducible fibre FC of fe, by ξ the multiplicity of C in
FC and by Ĉ the strict transform of C in W. If the intersection number of C and
the support of FC − ξC is greater than 3, then, from the configurations of singular
fibres of an elliptic fibration (see e.g. [BPV, Chapter V, Section 7]), FC must be
of type I∗0 , i.e. it has the following configuration: it is the union of four disjoint
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(−2)-curves θ1, . . . , θ4 with a (−2)-curve θ, with multiplicity 2, such that θθi = 1,
i = 1, . . . , 4.

So if Ĉ
∑t

1Ai > 3, the fibre FC containing C is of type I∗0 with Ĉ
∑t

1Ai = 4.
Since the number of nodes of S/i is t = K2

S + 10 = 14 6≡ 0 (mod 4), there must
be a reducible fibre such that for every component C 6⊂

∑t
1Ai, Ĉ

∑t
1Ai ≤ 3. As

fe 6= fA and the Ai’s are contained in fibres of fe and in fibres of fA, we can choose
C not contained in fibres of fA. ♦

Let C be as in Claim 2 and consider the resolution Ṽ → V of the singularities of
π∗(Ĉ). Let G ⊂ Ṽ be the strict transform of π∗(Ĉ). Notice that G has multiplicity
1, because C transverse to the fibres of fA implies C 6⊂ B. Recall that E denotes
the basis of the Albanese fibration of S.

Claim 3: The Albanese fibration of Ṽ induces a cover G → E with ramification
degree

r := KeVG+G2.

Proof : Let G1, . . . , Gh be the connected (hence smooth) components of G. The
curve C is not contained in fibres of fA, thus G is not contained in fibres of the
Albanese fibration of Ṽ . This fibration induces a cover Gi → E with ramification
degree, from the Hurwitz formula,

ri = 2g(Gi)− 2 = KeVGi +G2
i .

This way we have a cover G→ E with ramification degree

r =
∑

ri = KeV (G1 + · · ·+Gh) +
(
G2

1 + · · ·+G2
h

)
= KeVG+G2. ♦

We are finally in position to show that g(FA) = 2.
Let n := ĈB′. We have

2KV π
∗(Ĉ) = π∗

(
2KW +B′ +

∑
Ai

)
π∗(Ĉ) =

= 2
(
2KW +B′ +

∑
Ai

)
Ĉ = 4KW Ĉ + 2

(
B′ +

∑
Ai

)
Ĉ =

= 4(−2− Ĉ2) + 2(n+m) = −8− 2π∗(Ĉ)2 + 2(n+m),
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i.e.

KV π
∗(Ĉ) + π∗(Ĉ)2 = n+m− 4.

Suppose that g(FA) 6= 2. Let Λ ⊂ V be the double Albanese fibre induced by
F j

A = 2B′ (as in Claim 1) and Λ̃ ⊂ Ṽ be the total transform of Λ. From

GΛ̃ = π∗(Ĉ)Λ ≥ π∗(Ĉ)π∗(B′) = 2n,

one has r ≥ n. Then

n+m− 4 = KV π
∗(Ĉ) + π∗(Ĉ)2 ≥ KeVG+G2 = r ≥ n

and so m ≥ 4, which contradicts Claim 2.
So if K2

S = 4, then the Albanese fibration of S is of genus 2.

We now consider the possibility

· K2
S = 3.

In this case a general Albanese fibre Λ has genus 2 or 3 (see Theorem 1.3.1).
Suppose that g(Λ) = 3. Surfaces with K2 = g(Λ) = 3 are studied in detail in
[CC1]. There (see also [Ko]) it is shown that the relative canonical map γ, given
by |K + nΛ| for some n, is a morphism (Theorem 1.3.1, c)).

We know that KPB′ = 2 and B′2 = −2, by (3.1). We have already seen that B
has only negligible singularities (which means ri = 2 ∀i, in the notation of Remark
2.1.1) and then ρ contracts no curve meeting

∑
Ai.

Claim 4: We have

KVR
′ = 1,

where R′ is the support of π∗(B′).
Proof :

2KV · 2R′ = π∗(2KW +B)π∗(B′) = 2(2KW +B)B′ =

= 2(2KW +B′)B′ = 2
(
2ρ∗(KP ) + ρ∗(B′)

) (
ρ∗(B′)−

∑
2Ei

)
=

= 2(2KP +B′)B′ = 2(4− 2) = 4,

thus KVR
′ = 1. ♦
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As the map
γ ◦ h : V −→ γ(S)

is a birational morphism, γ ◦ h(R′) is a line (plus possibly some isolated points).
This way there exists a smooth rational curve β ⊂ B′ such that

KV β̃ = 1,

where β̃ ⊂ R′ is the support of π∗(β). The adjunction formula gives β̃2 = −3, thus
β2 = −6. Notice that β̃ is the only component of R′ which is not contracted by the
map γ ◦ h.

Let
α := B′ − β ⊂W,

β := ρ(β), α := ρ(α) ⊂ P.

When α is non-empty, the support of π∗(α) is an union of (−2)-curves, since it is
contracted by γ ◦ h. Equivalently α is a disjoint union of (−4)-curves.

Claim 5: We have
K2

W ≥ −2.

Proof : The second Betti number b2 of a surface X satisfies

b2(X) = 12χ(OX)−K2
X − 2 + 4q(X).

The result follows from

b2(V ) = b2(S) + t = 11 + 13 = 24, b2(W ) = 22−K2
W

and b2(V ) ≥ b2(W ). ♦

From Claim 5, we conclude that the resolution of B′ blows-up at most two
double points, thus

B′2 ≥ −2 + 2(−4) = −10 = β2 + (−4).

This implies that α is a smooth (−4)-curve when α 6= 0.

Claim 6: Only the following possibilities can occur:

· β has one double point and no other singularity, or
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· α, β are smooth, αβ = 2.

Proof : Recall that B′ = α + β is contained in fibres of fA and, since B′ has
only negligible singularities, then also B′ = α + β is contained in fibres of fA. In
particular α2, β

2 ≤ 0.

If α is singular, then it has arithmetic genus pa(α) = 1 and α2 = 0. But then α
has the same support of a fibre of fA, which is a contradiction because fA is not
elliptic. Therefore α is smooth.

Since KPα ≥ 0, KPB′ = 2 implies KPβ ≤ 2. We know that β is a smooth
rational curve and β2 = −6, thus KWβ = 4. If β is smooth, then one must have
αβ > 1. From Claim 5 the only possibility in this case is αβ = 2. If β is singular,
then β2 ≤ 0 implies that β has one ordinary double point and no other singularity.
♦

Let D := β if β is singular. Otherwise let D := α+ β.

The 2-connected divisor D̃ := 1
2(ρ◦π)∗(D) has arithmetic genus pa(D̃) = 1. We

know that (KV +nΛ)D̃ = 1 (because KVR
′ = 1) and that D̃ contains a component

A such that (KV + nΛ)A = 0 (because D has at least one negligible singularity).
These two facts imply, from Proposition 1.1.4, that the relative canonical map γ

has a base point in D̃. As mentioned above, γ is a morphism, which is a contradic-
tion.

Finally the assertion about deg(φ2) in Case 2): we have proved that S has a
genus 2 fibration, so it has an hyperelliptic involution j. The bicanonical map φ2

factors through both i and j, thus deg(φ2) ≥ 4.

This finishes the proof of case a), (ii) of Theorem 3.2.1.

We end the proof of Theorem 3.2.1 with Case a), (iii): A surface of general
type with a genus 2 fibration and pg = q = 1 satisfies K2 ≤ 6 (see [Xi1]). Denote
by j the map such that φ2 = j ◦ i. The quotient S/i is a K3 surface thus, from [St],
deg(j) ≤ 2. Analogously to Case 2, deg (φ2) ≥ 4, thus deg(j) = 2, deg(φ2) = 4 and
then K2

S 6= 2 (see Case 1).

It follows from [Xi1, p. 66] that, if the genus 2 fibration of S has a rational
basis, then K2

S = 3. It is shown in [Po3] that, in these conditions, deg(φ2) = 2. We
then conclude that the genus 2 fibration of S is the Albanese fibration.

Examples for case a), (iii) with K2
S = 3, 4 or 5 were given by Catanese in [Ca2].
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The existence of the other cases is proved in Sections 3.2.2, 6.1 and 6.2.

3.2.2 Example with K2 = 6 and φ2(S) birational to a K3

Here we construct a smooth minimal surface of general type S with pg = q = 1
having an involution i such that the bicanonical map φ2 of S is composed with i

and

· K2
S = 6, g = 3, deg(φ2) = 2, S/i is birational to a K3 surface,

where g denotes the genus of the Albanese fibration of S.

In [To2] Todorov gives the following construction of a surface of general type S
with pg = 1, q = 0 and K2 = 8. Consider a Kummer surface Q in IP3, i.e. a quartic
with 16 nodes (ordinary double points) and no other singularity. Let G ⊂ Q be
the intersection of Q with a general quadric, Q̃ be the minimal resolution of Q and
G̃ ⊂ Q̃ be the pullback of G. The surface S is the minimal model of the double
cover π : V → Q̃ ramified over G̃ +

∑16
1 Ai, where Ai ⊂ Q̃, i = 1, . . . , 16, are the

(−2)-curves which contract to the nodes of Q.
It follows from the double cover formulas (cf. [BPV, Chapter V, Section 22])

that the imposition of a quadruple point to the branch locus decreases K2 by 2
and the Euler characteristic χ by 1.

We will see that we can impose a quadruple point to the branch locus of the
Todorov construction, thus obtaining a surface S with K2 = 6. In this case I
claim that pg(S) = q(S) = 1. In fact, let W be the surface Q̃ blown-up at the
quadruple point, E be the corresponding (−1)-curve, B be the branch locus and L
be the line bundle such that 2L ≡ B. From formula (2.4) in Section 2.1, one has
h0(W,OW (2E +L)) = 0 (thus the bicanonical map of V factors through π), hence
also h0(W,OW (E + L)) = 0 and then

pg(S) = pg(W ) + h0(W,OW (E + L)) = 1.

We will show that deg(φ2) = 2, hence φ2(S) is a K3 surface and so S has no
genus 2 fibration.

The construction of the surface is divided on steps. The corresponding Magma
computations are in Appendix A.1.
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Step 1:
First we need to obtain an equation of a Kummer surface. The Computational
Algebra System Magma has a direct way to do this, but I prefer to do it using a
beautiful construction that I learned from Miles Reid.

We want a quartic surface Q ∈ IP3 whose singularities are exactly 16 nodes.
Projecting from one of the nodes to IP2, one realizes the ”Kummer” surface as a
double cover

ψ : X −→ IP2

with branch locus the union of 6 lines li (see [GH, p. 774]), each one tangent to a
conic C (the image of the projection point) at a point pi. The surface X contains
15 nodes (from the intersection of the lines) and two (−2)-curves (the pullback
ψ∗(C)) disjoint from these nodes. To obtain a Kummer surface we have just to
contract one of these curves.

Denote also by li the defining polynomial of each line li. An equation for X
is z2 = l1 · · · l6 in the weighted projective space IP(3, 1, 1, 1), with coordinates
(z, x1, x2, x3). We will see that this equation can be written in the form AB+DE =
0, where the system A = B = D = E = 0 has only the trivial solution and B,E

are the defining polynomials of one of the (−2)-curves in ψ∗(C). Now consider the
surface X ′ given by Bs = D, Es = −A in the space IP(3, 1, 1, 1, 1) with coordinates
(z, s, x1, x2, x3). There is a morphism X → X ′ which restricts to an isomorphism

X\{B = E = 0} −→ X ′\{[0 : 1 : 0 : 0 : 0]}

and which contracts the curve {B = E = 0} to the point [0 : 1 : 0 : 0 : 0]. This is
an example of unprojection (see [Re2]).

The variable z appears isolated in the equations of X ′, therefore eliminating z
we obtain the equation of the Kummer Q in IP3 with variables (s, x1, x2, x3).

Step 2:
We want to find a quadric H such that H

⋂
Q is a reduced curve B′ having an

ordinary quadruple point pt as only singularity. Since the computer is not fast
enough when working with more than 5 or 6 variables, we first need to think what
the most probable case is.

Like we have seen in Section 2.2, the branch locus B′+
∑16

1 Ai is contained in 4
fibres F 1

A, . . . , F
4
A of a fibration fA of W, where W is the resolution of Q blown-up

at pt and the curves Ai are the (−2)-curves which contract to the nodes of Q.
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Of course we have a quadric intersecting Q at a curve with a quadruple point
pt : the tangent space T to Q at pt counted twice. But this one is double, so we
need to find an irreducible one (and these two induce fA), the curve B′. These
curves 2T and B′ are good candidates for F 1

A and F 2
A (in the notation of Sections

2.2 and 3.2.1). If this configuration exists, then the 16 nodes must be contained in
the other two fibres, F 3

A and F 4
A. These fibres are divisible by 2, because F 1

A = 2T,
and are double outside the nodes. Since in a K3 surface only 0, 8 or 16 nodes can
have sum divisible by 2, it is reasonable to try the following configuration: each
of F 3

A and F 4
A contain 8 nodes with sum divisible by 2 and is double outside the

nodes.
It is well known (see e.g. [GH]) that the Kummer surface Q has 16 double

hyperplane sections Ti such that each one contains 6 nodes of Q and that any two
of them intersect in 2 nodes. The sum of the 8 nodes contained in

N := (T1 ∪ T2)\(T1 ∩ T2)

is divisible by 2. Magma will give 3 generators h1, h2, h3 for the linear system of
quadrics through these nodes.

Step 3:
Now we want to find a quadric H in the form h1 + bh2 + ch3, for some b, c (or,
less probably, in the form bh2 + ch3) such that the projection of H

⋂
Q to IP2 (by

elimination) is a curve with a quadruple point. To find a quadruple point we just
have to impose the annulation of the derivatives up to order 3 and ask Magma to
do the rest.

Step 4:
We have to choose one of the solutions, from the previous step, and show that
it works, i.e. we need to present a reduced curve in Q with self-intersection 16,
having a quadruple point and not containing any of the nodes of Q.

Step 5:
Finally, it remains to be shown that the degree of the bicanonical map φ2 is 2. As
(2KS)2 = 24, it suffices to show that φ2(S) is of degree 12. Since, in the notation
of diagram (2.6), h∗|2KS | = π∗|2KW + B′|, then φ2(S) is the image of W via the
map τ : W → φ2(S) given by |2KW +B′|. The projection of this linear system on
Q is the linear system of the quadrics whose intersection with Q has a double point
at pt. In order to easily write this linear system, we will translate the point pt to
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the origin (in affine coordinates). The calculations of Appendix A.1 confirm that
deg φ2(S) = 12.
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Chapter 4

φ2 composed with i and

Kod(S/i) = −∞

Suppose that S is a surface of general type, without a genus 2 fibration, with
pg = q = 1 and having an involution i such that S/i is ruled and the bicanonical
map φ2 of S is composed with i.

From Theorem 1.2.4, S is a Du Val double plane. But, to my knowledge, the
existence of such double planes with K2 = 3, . . . , 7 has not been shown yet. In
Section 4.2 we obtain equations of plane models of Du Val double planes with
pg = q = 1 and K2 = 2, . . . , 8.

4.1 Useful pencils

Here we show the existence of some pencils of plane curves that are useful on some
of the constructions of Section 4.2 and Chapter 6.

Notation 4.1.1 Let p0, . . . , pj , . . . , pj+s ∈ IP2 be distinct points and define Ti as
the line through p0 and pi, i = 1, . . . , j. We say that a plane curve is of type

d(m, (n, n)j
T , r

s)

if it is of degree d and if it has: an m-uple point at p0, an (n, n)-point at p1, . . . , pj ,

an r-uple point at pj+1, . . . , pj+s and no other non-negligible singularities. The
index T is used if Ti is tangent to the (n, n)-point at pi.

An obvious generalization is used if there are other singularities.

43
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Lemma 4.1.2 Let C be a smooth conic and p0 /∈ C, p1, . . . , p4 ∈ C be distinct
points. Consider the points p5, p6 ∈ C such that the lines through p0, p5 and p0, p6

are tangent to C.
There exists a smooth curve Q of type 3(1, (1, 1)4T , 1

2), through p0, . . . , p6.

Proof: Let Cx, x ∈ IP1, be a parametrization of the pencil of conics through
p1, . . . , p4. Let p1

x, p
2
x be the points of Cx (not distinct if Cx is singular) such that

the lines through p0, p
1
x and p0, p

2
x are tangent to Cx. The correspondence

x↔ {p1
x, p

2
x}

gives a plane algebraic curve Q, parametrized by x ∈ IP1, and a double cover
Q→ IP1. This cover is ramified over four points, corresponding to the three degen-
erate conics which contain the points p1, . . . , p4 plus the conic which contains p0.

Therefore, by the Hurwitz formula, Q is a cubic.
The conic through p0, . . . , p4 is not tangent to the line Ti (through p0, pi) at

p0, thus also Q is not tangent to Ti at p0, i = 1, . . . , 4. Since each conic Cx can
be tangent to Ti only at pi, i = 1, . . . , 4, then Q intersects Ti only at p0 and pi,

i = 1, . . . , 4. This means that Q is tangent to Ti at pi, i = 1, . . . , 4, and then Q is
smooth.

Proposition 4.1.3 In the notation of Notation 4.1.1, there exist pencils, without
base components, of plane curves of type:

[Br] a) 5(1, (2, 2)3T );

b) 6(2, (2, 2)4T );

c) 7(3, (2, 2)5T );

d) 8(4, (2, 2)6T ).

Proof:

a) This is proved in [Br]. Notice that we are imposing 19 conditions to a linear
system of dimension 20.

b) Let A(C) be an affine plane and a, b, c, d ∈ C\{0} be numbers such that a 6= c

and bc 6= ±ad. Consider the points of A :

p0 := (0, 0), p1 := (a, b), p2 := (c, d), p3 := (c,−d), p4 := (a,−b)
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and let Ti be the line through p0 and pi, i = 1, . . . , 4. Let C1 be the conic
through p1, . . . , p4 tangent to T1, T4 and C2 be the conic through p1, . . . , p4

tangent to T2, T3.

The curves

2C1 + T2 + T3 and 2C2 + T1 + T4

generate a pencil whose general member is a curve of type 6(2, (2, 2)4T ).

c) Let C ⊂ IP2 be a non-degenerate conic and p0 6∈ C, p1, . . . , p5 ∈ C be distinct
points such that the lines T1, T5, defined by p0, p1 and p0, p5, are tangent to
C. From Lemma 4.1.2, there exists a curve Q of type 3(1, (1, 1)4T , 1), through
p0, . . . , p5, respectively.

The curves

2C + T2 + T3 + T4 and 2Q+ T5

generate a pencil whose general member is a curve of type 7(3, (2, 2)5T ).

d) This is analogous to the previous case, but now the pencil is generated by

2C + T2 + · · ·+ T5 and 2Q+ T1 + T6.

4.2 Examples of double planes with pg = q = 1

In what follows I describe how to obtain some equations of plane models of minimal
Du Val double planes S (see Definition 1.1.8) of general type with pg = q = 1 and
K2 = 2, . . . , 8.

If f is the equation of the branch curve corresponding to the plane model
S′ of S, then an equation for S′ is w2 = f, in the weighted projective space
IP((deg f)/2, 1, 1, 1).

Table (4.1) lists the type of each branch curve that we are going to construct
and the corresponding values of (K2, g), where g denotes the genus of a general
Albanese fibre of S.

We keep Notation 4.1.1.
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Type of branch curve (K2, g)

22(14, (5, 5)6T ) (8, 5), (8, 4), (8, 3)

[10 + 2i]
(
2i+ 2, (5, 5)i

T , 4
6−i
)

(6, 4), (4, 3), (2, 2)
i = 5, 4, 3

[10 + 2i](2i+ 2, (5, 5)i
T , (3, 3), 45−i) (7, 5), (5, 4), (3, 3)

i = 5, 4, 3

18(10, (5, 5)4T , (3, 3)2) (6, 3)

(4.1)

The bicanonical map of each of these Du Val double planes is non-birational (see
Theorem 1.2.4). Since we are imposing 4-uple or (3, 3)-points to Du Val’s ancestors,
it is worth noting that each corresponding Du Val’s ancestor is of type Di, where
i is the number of (5, 5)T -points.

First we obtain double planes with (K2, g) = (8, 5) and (K2, g) = (7, 5) such
that the ramification curve is an Albanese fibre. From here constructions with
(K2, g) = (6, 4), (5, 4), (4, 3), (3, 3), (2, 2) will follow easily. A construction with
(K2, g) = (6, 3) and ramification curve strictly contained in two Albanese fibres
will be also given. Finally we will get surfaces with (K2, g) = (8, 4) or (8, 3).
These three surfaces with K2 = 8 were already obtained by F. Pollizi [Po4], using
quotients by the action of a group (see Theorem 1.3.2).

In order to obtain q = 1, all the singularities, except the one at p0, are chosen
to be contained in a conic.

Recall from Section 2.2 that the branch locus B is contained in 4 fibres F j
A of

a fibration fA (induced by the Albanese fibration). The projection B ⊂ IP2 is then
contained in 4 elements of the pencil fA, image of fA.

In Section 4.2.1, in order to get faster computations, our method is to try to
figure out the configuration of the fibres F j

A. Since each component of F j
A \ B is

of even multiplicity, the problem of finding the support of F j
A deals with curves

of lower degree and with simpler singularities, hence with faster computations. In
Section 4.2.2 the equation of B will be obtained directly.

The next sections of this chapter give a brief description of the principal steps.
The detailed calculations are done in Appendix A, using the Computational Alge-
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bra System Magma.

4.2.1 K2 = 8, 6, 4, 2 and g = 5, 4, 3, 2

To construct a Du Val’s ancestor S of type D6 (it has K2 = 8) it suffices to find a
branch locus B ⊂ IP2 of type 22

(
14, (5, 5)6T

)
, with singularities at points p0, . . . , p6,

respectively. In fact, since the lines Ti (through p0, pi) are in B, it suffices to find
a curve B′ of type

16
(
8, (4, 4)6T

)
such that B′+

∑6
1 Ti is reduced. If p1, . . . , p6 are contained in a conic, then pg(S) =

q(S) = 1.

Notice that the resolution of B′ has self-intersection equal to zero. We will look
to the case where B′ is an element of a pencil fA (this is case 3, iii) of Theorem
1.3.2). For this we are going to find points p0, . . . , p6 such that there is a curve D
of type

6
(
2, (2, 2)2T , (2, 1)4T

)
.

The divisor 2D + T3 + · · · + T6 is a good candidate for one of the divisors F j
A,

referred above. Now to obtain the pencil fA we could try to find another of the
curves F j

A, but there is a simpler way: the procedure LinSys (see Appendix A.2)
can be used to calculate the linear system of the curves of type 16

(
8, (4, 4)6T

)
, with

singularities at p0, . . . , p6.

So let us look for D. Briefly, the steps are as follows. Let A be an affine plane,
C be a smooth conic not containing the origin p0 of A and p1, . . . , p4 be points
in C. Denote by L the linear system of plane curves of type 6

(
2, (2, 2)2T , (2, 1)2T

)
,

with singularities at p0, . . . , p4, respectively. Let F be a general element of L and
p5, p6 be general points of A. We define a scheme Sch by imposing the following
conditions:

· p5, p6 ∈ C
⋂
F ;

· p5, p6 are double points of D (annulation of derivatives);

· the singularities of F at p5, p6 have one branch tangent to T5, T6;

· p5 6= p6 and p5, p6 6∈ {p0, . . . , p4}.
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Now we compute the points of Sch with Magma, choosing one of the solutions for
p5, p6, and we use the procedures defined in Appendix A.2 to compute B′ (a curve
of type 16(8, (4, 4)6T )), with singularities at p0, . . . , p6.

Finally we perform some verifications: that B′ is reduced, the singularities are
as expected, etc.

With this we find a minimal double plane with pg = q = 1 and K2 = 8. The
divisor 2D+T3 + · · ·+Ti is also a good candidate for one of the singular fibres F j

A

in the case where the branch locus is a curve of type

[10 + 2i]
(
2i+ 2, (5, 5)i

T , 4
6−i
)
, i = 5, 4, 3.

In fact, using the points p0, . . . , p6 and the procedure LinSys, one can find branch
locus of those types, obtaining then minimal double planes with pg = q = 1,
K2 = 6, 4, 2 and g = 4, 3, 2, respectively.

The corresponding Magma commands are in Appendix A.4.1. There we use
symmetry in order to obtain faster computations.

4.2.2 K2 = 7, 5, 3 and g = 5, 4, 3

Here we construct a plane curve B′ of type

15(7, (4, 4)5T , (3, 3))

such that B := B′ +
∑5

1 Ti is reduced (see Notation 4.1.1). The double cover with
branch locus B is a plane model of a Du Val double plane S with K2 = 7 and
χ = 1. Notice that we are imposing a (3, 3)-point to the branch locus of a Du Val’s
ancestor of type D5.

In this example the (3, 3)-point p6 is infinitely near to the (5, 5)-point p1 of B
(i.e. there is a (5, 5, 3, 3)-point at p1) and the line T1, through p0, p1, is tangent
to the conic C defined by p1, . . . , p5. This implies q(S) = 1, because C̃ −

∑6
1Ei

is effective, where the curves Ei are the exceptional divisors corresponding to the
blow-ups at the points pi and C̃ is the pullback of C.

To find B′ we proceed as follows. In an affine plane A, we fix a smooth conic
C not containing the origin p0 and we choose distinct points p1, . . . , p5 ∈ C such
that T1 is tangent to C at p1. We compute the linear system L of plane curves of
type 15(7, (4, 4)5T ) and we resolve the base point of L at p1, denoting the resulting
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linear system by L1. The defining polynomial of B′ is (the blow-down of) a linear
combination of elements of L1.

In order to obtain a (3, 3)-point p6 (infinitely near to p1) one needs to impose
conditions, the annulation of the derivatives up to order 3, to the elements of L1.

Also it is necessary to resolve this point and impose another triple (infinitely near)
point. With all these conditions we define a matrix, which is denoted by Mt in
Appendix A.4.2. To have a solution it is necessary that Mt has no maximal rank.

Let x, y be the coordinates of A and u, v be the coordinates of p6 on A. Define
a scheme Sch by imposing the following conditions:

· the annulation of the maximal minors of Mt;

· p6 infinitely near to p1.

Now we compute the points of Sch with Magma, choosing one of the solutions
for p6, and we use the procedures defined in Appendix A.2 to compute B′, with
singularities at p0, . . . , p6.

Finally we perform some verifications: that B′ is reduced, the singularities are
as expected, etc.

Notice that there is no need to verify the non-existence of other singularities:
in the presence of another non-negligible singularity, the computation of the invari-
ants of the corresponding double plane (using the formulas of [BPV, Section V.
22]) lead to a contradiction.

To find the pencil which induces the Albanese fibration, one computes the linear
system of curves of type

16(8, (4, 4)5T , (4, 4)),

through p0, . . . , p6. We will verify that the element of this pencil which contains B′

is T1 +B′.

With this we find a minimal double plane with pg = q = 1, K2 = 7 and g = 5.
Using again the Magma procedures referred above, one can verify that there exist
also branch loci of type

18
(
10, (5, 5)4T , 4, (3, 3)

)
and 16

(
8, (5, 5)3T , 4

2, (3, 3)
)
,

with singularities at p0, . . . , p6. The pencils which induce the Albanese fibration are
of type

15
(
7, (4, 4)4T , 4, (4, 4)

)
and 14

(
6, (4, 4)3T , 4

2, (4, 4)
)
,
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respectively. The corresponding minimal Du Val double planes are surfaces of gen-
eral type with pg = q = 1 and (K2, g) = (5, 4), (3, 3).

The Magma commands for this section are in Appendix A.4.2.

4.2.3 K2 = 6 and g = 3

Here we construct a curve B′ of type

14(6, (4, 4)4T , (3, 3)2),

with singularities at points p0, . . . , p6, such that the (3, 3)-points p5, p6 are tangent
to the conic C through p1, . . . , p6. The curve B′ is the union of curves D1 and D2

of types

8(4, (2, 2)4T , (2, 2)2) and 6
(
2, (2, 2)4T , (1, 1)2

)
,

respectively. First we construct D2 and then we use the procedure LinSys to
obtain D1 (a general element of fA).

Joining the lines Ti (defined by p0, pi) to B′ one obtains a branch curve B of
type 18(10, (5, 5)4T , (3, 3)2). The corresponding minimal Du Val double plane has
pg = q = 1, K2 = 6 and g = 3.

To find D2, follow the steps used in Section 4.2.1, but now with L the linear
system of curves of type 6

(
2, (2, 2)4T

)
and Sch defined by

· p5, p6 ∈ C
⋂
F ;

· F is smooth at p5, p6 (non-annulation of derivatives);

· F is tangent to C at p5, p6;

· p5 6= p6 and p5, p6 6∈ {p0, . . . , p4}.

The details can be found in Appendix A.4.3. Again we use symmetry in order
to increase speed of calculations.

4.2.4 K2 = 8 and g = 4 or 3

Now we construct a branch locus B which is the union of 6 lines Ti with curves of
types 12(6, (3, 3)6T ) and 4(2, (1, 1)6T ) (recall Notation 4.1.1). This is one of Polizzi’s
surfaces (case 3, ii) of Theorem 1.3.2).
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Given, in an affine plane A, a generic plane cubic C not containing the origin
p0, there are 6 points p1, . . . , p6 ∈ C such that each line Ti, defined by p0, pi, is
tangent to C. I chose an equation F of such a cubic to use in this construction.

Using the procedure LinSys (see Appendix A.2), one can verify the existence of
a reduced quartic G of type 4

(
2, (1, 1)6T

)
, through p0, . . . , p6. Let fA be the pencil

generated by the divisors 2F + T1 + · · · + T6 and 3G. The branch locus B is the
union of a general element of fA with G and the 6 lines Ti.

The corresponding Magma computations are in Appendix A.4.4.

Finally the other surface described by Polizzi (case 3, i) of Theorem 1.3.2): the
branch locus is the union of 6 lines Ti with two curves of type 8(4, (2, 2)6T ). From
Section 4.1, there is a pencil of such curves.
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Chapter 5

φ2 not composed with i

In Chapters 3 and 4 we have considered minimal smooth surfaces of general type
S having an involution i such that the bicanonical map φ2 of S is composed with
i. Now we are going to study the remaining cases, i.e. we suppose that φ2 is not
composed with i. This means that

h0(W,OW (2KW + L)) 6= 0,

where W is the minimal resolution of S/i and L ≡ 1
2B is the line bundle which

determines the double cover V →W, as in Section 2.1.
Suppose from now on that pg(S) = q(S) = 1. Notice that pg(P ) ≤ pg(S) = 1

and q(P ) ≤ q(S) = 1.
Let P be a minimal model of W and δ, B ≡ 2δ and the numbers ri be as defined

in Section 2.1. Recall that t denotes the number of nodes of S/i and g is the genus
of a general Albanese fibre of S.

5.1 Kod(S/i) ≥ 0

Here we give a list of possibilities for the case Kod(S/i) ≥ 0. Several examples are
constructed in Chapter 6.

Proposition 5.1.1 If Kod(P ) = 0, only the following cases can occur:

a) P is an Enriques surface and

· {ri 6= 2} = {4}, B2 = 0, t− 2 = K2
S ∈ {2, . . . , 7}, or

· {ri 6= 2} = {4, 4}, B2 = 8, t = K2
S ∈ {4, . . . , 8}, or

· {ri 6= 2} = {6}, B2 = 16, t = K2
S ∈ {4, . . . , 8};

53
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b) P is a bielliptic surface and

· {ri 6= 2} = ∅, B2 = 8, t = 0, K2
S = 4, or

· {ri 6= 2} = {4}, B2 = 16, t+ 6 = K2
S = 6 or 7, or

· {ri 6= 2} = {4, 4}, B2 = 24, t = 0, K2
S = 8, or

· {ri 6= 2} = {6}, B2 = 32, t = 0, K2
S = 8.

Furthermore, there are examples for

· a) with K2
S = 8;

· b) with K2
S = 4, 6, 7 or 8.

Proof : It is easy to see that P cannot be a K3 surface: in this case we get from
Proposition 2.1.4, b) that

K2
W ≥ 2h0(W,OW (2KW + L))− 2,

which implies h0(W,OW (2KW + L)) = 1 and K2
W = 0. This contradicts the fact∑

(ri − 2) = 4 6= 0, given by Proposition 2.1.2, a).
So, from the classification of surfaces (see e.g. [Be] or [BPV]), pg(P ) = q(P ) = 0

or pg(P ) = 0, q(P ) = 1 (notice that pg(P ), q(P ) ≤ 1), i.e. P is an Enriques surface
or a bielliptic surface.

a) Suppose P is an Enriques surface: Proposition 2.1.4, a) implies that h0(W,OW (2KW +
L)) ≤ 3, with equality holding only if K2

W = 0. In this case the branch locus
B is smooth, i.e.

∑
(ri − 2) = 0, which contradicts Proposition 2.1.2, a).

Therefore h0(W,OW (2KW + L)) = 1 or 2.

Now the only possibilities allowed by Propositions 2.1.2 and 2.1.3, a), b) are:

1)
∑

(ri − 2) = 2, B2 = 0, t = K2
S + 2 ≥ 4;

2)
∑

(ri − 2) = 4, B2 = 8 or 16, t = K2
S ≥ 4.

Moreover, if a nodal curve Ai ⊂ B is not contracted to a point, then it
is mapped onto a nodal curve of the Enriques surface P. Indeed, from the
adjunction formula, KWAi = 0, which means that Ai does not intersect any
(−1)-curve of W.

An Enriques surface has at most 8 disjoint (−2)-curves. In case 1), the non-
negligible singularities of B are a 4-uple or (3, 3)-point, hence t ≤ 9. In case
2), t = 9 only if B has a (3, 3)-point, which implies that S has an elliptic curve
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with negative self-intersection. Since in this case K2
S = 9, this is impossible

from Proposition 1.1.6, therefore t ≤ 8.

b) Suppose P is a bielliptic surface: from Proposition 2.1.4, a), one has h0(W,OW (2KW +
L)) ≤ 4, with equality holding only if K2

W = 0. In this case we get from
Proposition 2.1.2, a) that∑

(ri − 2) = 2h0(W,OW (2KW + L))− 2 = 6 6= 0,

which contradicts K2
W = 0. Hence h0(W,OW (2KW + L)) ≤ 3.

As in a), if a (−2)-curve Ai ⊂ B is not contracted to a point, then it is mapped
onto a (−2)-curve of P. But a bielliptic surface has no (−2)-curves (from
Proposition 1.1.5), thus the nodal curves of B are contracted to singularities
of B.

Using Propositions 2.1.2 and 2.1.3, a) one obtains the following possibilities:

1)
∑

(ri − 2) = 0, B2 = 8, K2
S = t+ 4;

2)
∑

(ri − 2) = 2, B2 = 16, K2
S = t+ 6;

3)
∑

(ri − 2) = 4, B2 = 24, K2
S = t+ 8;

4)
∑

(ri − 2) = 4, B2 = 32, K2
S = t+ 8.

In case 1), t = 0, because B has only negligible singularities. In case 2), B
can have a (3, 3)-point, thus t = 0 or 1. In case 3), t = 1 only if B has a
(3, 3)-point, but then K2

S = 9 and S has an elliptic curve, which is impossible
from Proposition 1.1.6. Finally, in case 4), the only non-negligible singularity
of B is a point of multiplicity 6 (from Proposition 2.1.2, b)), thus t = 0.

The examples are constructed in Sections 6.5, 6.7, 6.8, 6.9 and 6.11.

Proposition 5.1.2 If Kod(P ) = 1, only the following cases can occur:

a) χ(OP ) = 2, q(P ) = 0 and

· {ri} = ∅, KPB = 4, B2 = −32, t− 8 = K2
S ∈ {4, . . . , 8};

b) χ(OP ) = 1, q(P ) = 0 and

· {ri 6= 2} = ∅, KPB = 2, B2 = −12, t− 2 = K2
S ∈ {2, 3, 4}, or
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· {ri 6= 2} = ∅, KPB = 4, B2 = −16, t = K2
S ∈ {4, . . . , 8}, or

· {ri 6= 2} = {4}, KPB = 2, B2 = −4, t = K2
S ∈ {4, . . . , 8};

c) χ(OP ) = 1, q(P ) = 1 and

· {ri 6= 2} = ∅, KPB = 2, B2 = −12, t− 2 = K2
S ∈ {2, . . . , 6}, or

· {ri} = ∅, KPB = 4, B2 = −16, t = K2
S ∈ {4, . . . , 8}.

d) χ(OP ) = 0, q(P ) = 1 and

· {ri 6= 2} = ∅, KPB = 2, B2 = 4, t = 0, K2
S = 6, or

· {ri 6= 2} = ∅, KPB = 4, B2 = 0, t = 0, K2
S = 8, or

· {ri 6= 2} = {4}, KPB = 2, B2 = 12, t = 0, K2
S = 8.

Furthermore, there exist examples for

· a) with K2
S = 8;

· b) with K2
S = 4, 6 or 7;

· c) with K2
S = 8;

· d) with K2
S = 6 or 8.

Proof : Since pg(P ), q(P ) ≤ 1, we have the following cases:

a) χ(OP ) = 2, q(P ) = 0.
From Proposition 2.1.4, b) it is immediate that h0(W,OW (2KW +L)) = 1 and
K2

W = 0 (thus B is smooth). Proposition 2.1.2 givesKPB = 4 and B2 = −32.
If K2

S = 9, then the number of nodal curves of B is t = K2
S + 8 = 17, from

Proposition 2.1.3, a). This is impossible because Proposition 1.1.5 implies
t ≤ 16. Proposition 2.1.3, c) gives K2

S ≥ 4.

b) χ(OP ) = 1, q(P ) = 0.
Proposition 2.1.4, a) implies h0(W,OW (2KW + L)) ≤ 3, with equality only
if K2

S = 9 and K2
W = 0 (hence

∑
(ri − 2) = 0 and W = P ). In this case

Proposition 2.1.2, a) implies KWB′ = 6 and then B′ 6= ∅. Now pa(B′) =
1 (see Claim 1 in the proof of Proposition 2.1.4), thus B′ is an union of
elliptic components. But Proposition 1.1.6 implies that a minimal surface of
general type with χ = 1 and K2 = 9 contains no elliptic curves. Therefore
h0(W,OW (2KW + L)) ≤ 2.
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Since Kod(P ) = 1, KPB = 0 implies that B is contained in the elliptic
fibration of P and then S has an elliptic fibration, which is impossible because
S is of general type.

So KPB 6= 0. Now Propositions 2.1.2 and 2.1.3, a) give the following possi-
bilities:

1)
∑

(ri − 2) = 0, KPB = 2, B2 = −12, t = K2
S + 2;

2)
∑

(ri − 2) = 0, KPB = 4, B2 = −16, t = K2
S ;

3)
∑

(ri − 2) = 2, KPB = 2, B2 = −4, t = K2
S .

In case 1), t > 6 implies B′2 = B
2 +2t > 0, a contradiction (see Section 2.2).

Similarly t ≤ 8, in case 2). Proposition 2.1.3, c) gives K2
S ≥ 4, in this case.

In case 3), the quadruple or (3, 3)-point of B gives rise to an elliptic curve in
S, thus K2

S 6= 9, from Proposition 1.1.6. Again Proposition 2.1.3, c) implies
K2

S ≥ 4.

c) χ(OP ) = 1, q(P ) = 1.
This is analogous to the proof of b): just notice that Proposition 2.1.4, b)
excludes case 3) and implies K2

W = 0 in case 2); in case 1) is no longer true
that t ≤ 6, instead use Proposition 1.1.5 to obtain t ≤ 8 (thus K2

S ≤ 6).

d) χ(OP ) = 0, q(P ) = 1.
As in b), one shows that h0(W,OW (2KW + L)) ≤ 3 and KPB 6= 0. Proposi-
tions 2.1.2 and 2.1.3, a) give the following possibilities:

1)
∑

(ri − 2) = 0, KPB = 2, B2 = 4, t = K2
S − 6;

2)
∑

(ri − 2) = 0, KPB = 4, B2 = 0, t = K2
S − 8;

3)
∑

(ri − 2) = 2, KPB = 2, B2 = 12, t = K2
S − 8.

As in the proof of b), the existence of a quadruple or (3, 3)-point on B implies
K2

S 6= 9, in case 3).

Consider now cases 1) and 2). From Proposition 1.1.5, P has no smooth
rational curves. Any singular rational curve D of B satisfies D2 ≤ 0, because,
since B has only negligible singularities, D is contained in fibres of a fibration
fA of P (see Section 2.2). Therefore B has no (−2)-curves, i.e. t = 0.

The examples are given in Sections 6.3, 6.4, 6.6, 6.8, 6.9 and 6.10.
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Proposition 5.1.3 If Kod(P ) = 2, then B has at most negligible singularities and
only the following cases can occur:

a) χ(OP ) = 2, q(P ) = 0 and

· KPB = 0, B2 = −24, t = 12, K2
S = 2K2

P , K
2
P = 2, 3, 4, or

· KPB = 2, B2 = −28, t − 10 + 2K2
P = K2

S ∈ {2K2
P + 2, . . . , 2K2

P + 4},
K2

P = 1, 2;

b) χ(OP ) = 1, q(P ) = 1 and

· KPB = 0, B2 = −8, t = 4, K2
S = 2K2

P , K
2
P = 2, 3, 4, or

· KPB = 2, B2 = −12, K2
P = 2, t+ 2 = K2

S ∈ {6, 7, 8};

c) χ(OP ) = 1, q(P ) = 0 and

· KPB = 0, B2 = −8, t = 4, K2
S = 2K2

P , K
2
P = 1, . . . , 4, or

· KPB = 2, B2 = −12, t + 2K2
P − 2 = K2

S ∈ {2K2
P + 2, . . . , 2K2

P + 4},
K2

P = 1, 2, or

· KPB = 4, B2 = −16, K2
P = 1, t+ 2 = K2

S ∈ {6, 7, 8}.

Moreover, there exist examples for

· a) with K2
S = 4, 6, 7 or 8;

· b) with K2
S = 4.

Proof :

Claim : If KPB = 0, then B is a disjoint union of nodal curves.

Proof : As P is of general type, B is an union of nodal curves. Suppose that B has
a singularity. Then it contains two nodal curves D1, D2 such that D1D2 ≥ 2,
otherwise B has a (−3)-curve, contradicting B ≡ 0 (mod 2). Since K2

P > 0,
KP (D1 +D2) = 0 and (D1 +D2)2 6< 0, the index theorem implies that D1 +D2 is
homologous to zero, a contradiction. ♦

Since pg(P ), q(P ) ≤ 1 and pg(P ) ≥ q(P ), we have only the following three cases:
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a) χ(OP ) = 2, q(P ) = 0.
Propositions 2.1.2, a) and 2.1.4, b) give:

h0(W,OW (2KW + L)) = K2
P +KP δ +

1
2

∑
(ri − 2)− 1,

h0(W,OW (2KW + L)) ≤ 1
2
K2

W + 1 ≤ 1
2
K2

P + 1.

From this we get
1
2
K2

P +KP δ +
1
2

∑
(ri − 2) ≤ 2, (5.1)

with equality only if K2
W = K2

P . Since K2
P > 0, KP δ = 0 or 1.

If KP δ = 1, then
∑

(ri − 2) = 0 and K2
P = 1 or 2.

If KP δ = 0, then
∑

(ri − 2) = 0, from the Claim above. As K2
S ≤ 9,

Proposition 2.1.3 implies h0(W,OW (2KW + L)) ≤ 3.

Now the result follows from Propositions 2.1.2 and 2.1.3, a). Notice that
Proposition 2.1.2 gives B

2 ≥ −2(12 + 2KP δ). This implies t ≤ 12 + 2KP δ,

because, since q(P ) = 0 and B has only negligible singularities, every com-
ponent of B has non-positive self-intersection.

b) χ(OP ) = 1, q(P ) = 1.
Equation (5.1) is still valid here. As pg(P ) = q(P ) = 1, then K2

P ≥ 2, hence

KP δ +
1
2

∑
(ri − 2) ≤ 1.

Using the Claim above and Proposition 2.1.2, we have
KP δ = 0,

∑
(ri − 2) = 0, K2

P = 2, 3 or 4, B2 = −8, t = 4, or
KP δ = 1,

∑
(ri − 2) = 0, K2

P = 2, B2 = −12.
Now the result follows from Proposition 2.1.3, a) (notice that K2

P = 2 implies
t 6= 7, by Theorem 1.1.5).

c) χ(OP ) = 1, q(P ) = 0.
Propositions 2.1.2, a), 2.1.3, c) and 2.1.4, a) imply

h0(W,OW (2KW + L)) = KP (KP + δ) +
1
2

∑
(ri − 2) ≤ 4 (5.2)

and
h0(W,OW (2KW + L)) ≤ 3 +

1
3
K2

W , (5.3)

with equality only if K2
S = 9. As K2

P ≥ 1 and K2
W ≤ K2

P , this implies

KP δ ≤ 2.
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• Suppose KP δ = 0. We have
∑

(ri − 2) = 0, by the Claim above. Hence
h0(W,OW (2KW + L)) = K2

P ≤ 4, by (5.2). Now from Proposition 2.1.2, b)
and Proposition 2.1.3, b), we have B2 = (2δ)2 = −8 and t ≥ 4. Thus t = 4
and, using Proposition 2.1.3, a), we conclude that

K2
S = 2K2

P , 1 ≤ K2
P ≤ 4.

• Suppose KP δ = 1. Then h0(W,OW (2KW + L)) = 4 only if K2
S = 9, from

(5.2) and (5.3). If K2
P = 1/2

∑
(ri − 2) = 1, then K2

W = 0 and K2
S = 9,

by (5.3). The quadruple or (3, 3)-point of B gives rise to an elliptic curve
in S, which is impossible from Proposition 1.1.6. Therefore, using (5.2),
Proposition 2.1.2, b) and Proposition 2.1.3, we have

K2
P = 2,

∑
(ri − 2) = 0, δ2 = −3, t = K2

S − 2 ≥ 4

or

K2
P = 1,

∑
(ri − 2) = 0, δ2 = −3, t = K2

S ≥ 4.

Hence B2 = −12 and then t ≤ 6, because, since q(P ) = 0 and B has only neg-
ligible singularities, every component of B has non-positive self-intersection.

• SupposeKP δ = 2. ThenK2
P ≤ 2, from (5.2), and h0(W,OW (2KW +L)) ≤ 3,

from (5.3). The only possibility allowed by (5.2), Proposition 2.1.2, b) and
Proposition 2.1.3 is:

K2
P = 1, δ2 = −4, t = K2

S − 2 ≥ 4.

It remains to be shown that K2
S 6= 9. In this case, the curve B has at least 8

disjoint components contained in a fibration fA of P (see Section 2.2). These
are independent in Pic(P ) from a general fibre of fA and from KP , so Pic(P )
has 10 independent classes. This is a contradiction because the second Betti
number of P is

b2(P ) = 12χ(OP )−K2
P + 4q(P )− 2 = 9.

The examples can be found in Sections 6.4, 6.5, 6.6, 6.7, 6.8, 6.9 and 6.11.
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5.2 Kod(S/i) = −∞

Let S be a minimal smooth surface of general type, with pg = q = 1, having an
involution i such that the bicanonical map φ2 of S is not composed with i. Recall
that W denotes the minimal resolution of S/i and P is a minimal model of W. One
has q(P ) = 0 or 1.

Using formulas (2.1) and (2.2) of Section 2.1, one sees that if P = IP2 then there
exists a singularity in the branch locus B. Blowing up, if necessary, this singular
point, we can suppose that P is an Hirzebruch surface.

Suppose Kod(P ) = −∞. Define k, l by

B ≡: kC +
(
ek

2
+ l

)
F,

where F is a rational fibre of P and C is a section with lowest self-intersection −e.

Proposition 5.2.1 One has

h0(W,OW (2KW + L)) ≤ 2 + q(P )

and
∑

(ri − 2) = 2l + 2k − 16 + (14− 2k)q(P ) + 2h0(W,OW (2KW + L))

∑
(ri − 2)(ri − 4) = 2(k − 6)(l + 6q(P )− 6)− 8h0(W,OW (2KW + L)).

Moreover, K2
S ≥ 2 + 2q(P ) and there are examples with q(P ) = 1, K2

S = 4, 8
and q(P ) = 0, K2

S = 8.

Remark 5.2.2 Since the number of possibilities for S restricted by Proposition
5.2.1 is relatively big, I will not try to study them exhaustively. As an example,
I give below a list of possibilities for the case h0(W,OW (2KW + L)) = 1 (the
ones marked with ∗ do exist; ab means that a appears b times). One can try to
construct these branch curves using the methods of Chapter 4 and Appendix A, but
the problem here is that the calculations become too heavy for a normal computer.
I do not know if it is possible to have h0(W,OW (2KW + L)) = 2 or 3.

q(P ) = 1 :

k l {ri 6= 2}
∗ 8 2 {42}

8 4 {6, 42}
∗ 8 6 {62, 42}
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q(P ) = 0 :

k l {ri 6= 2}
8 8 + 2i {6i, 49} i ∈ {0, 1, 2, 3}
10 7 + i {6i, 410} i ∈ {0, 4, 5}
12 10 + 2i {8i, 65, 45−i} i ∈ {0, 2, 3, 4}

∗ 12 20 {85, 65}
14 15 {84, 65}
16 18 + 2i {102+i, 85, 62−i} i ∈ {0, 1, 2}

Proof of Proposition 5.2.1: If q(P ) = 1, Proposition 2.1.3, a) gives

K2
S ≥ 2h0(W,OW (2KW + L)) + 2,

hence K2
S ≥ 4 and h0(W,OW (2KW + L)) ≤ 3 (because K2

S ≤ 9).

Consider P rational. As

1 = pg(S) = pg(W ) + h0(W,OW (KW + L)) = h0(W,OW (KW + L))

and

h0(W,OW (2KW + L)) = h0(W,OW ((KW + L)− (−KW ))),

then

h0(W,OW (2KW + L)) > 1 ⇒ h0(W,OW (−KW )) = 0.

But the Riemann-Roch theorem gives h0(W,OW (−KP )) ≥ 9, therefore the map
W → P must contract at least 9 (−1)-curves, i.e. K2

W ≤ −1. Now using Proposi-
tion 2.1.4, a) we conclude that

h0(W,OW (2KW + L)) ≤ 2.

The rest of the proof is given by Proposition 2.1.2, using

KP ≡ −2C − (e+ 2− 2q(P ))F.

The examples are constructed in Sections 6.10, 6.11 and 6.12.
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5.3 φ2 birational

In Sections 6.8 and 6.9 we present examples of surfaces which allow us to enunciate
the following:

Theorem 5.3.1 There are smooth minimal surfaces of general type with pg = q =
1, K2 = 6, 7 and birational bicanonical map.

These surfaces were constructed to provide examples for Proposition 5.1.2, b),
i.e. for the case Kod(W ) = 1, pg(W ) = q(W ) = 0. The bicanonical map φ2 is not
composed with any of the 3 involutions associated to the bidouble cover; we verify
that φ2 is birational.

The surface of Section 6.6 is also an example for Proposition 5.1.2, b), but this
one contains a genus 2 fibration, therefore φ2 is not birational.
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Chapter 6

Examples of (bi)double covers

with pg = q = 1

The next sections contain constructions of surfaces of general type S with pg =
q = 1 which are examples for Theorem 3.2.1 and Propositions 5.1.1, 5.1.2, 5.1.3
and 5.2.1. Each one is the smoth minimal model V of a bidouble cover of a ruled
surface (irregular in Sections 6.10 and 6.11), except for the example in Section 6.12,
which is a double plane.

Sections 6.1 and 6.2 contain examples for Theorem 3.2.1 a) (i), (ii);
the surfaces constructed in Sections 6.3, 6.4 and 6.5 are Du Val double planes
which have other interesting involutions, giving examples for the propositions re-
ferred above;
Section 6.6 contains the construction of a surface with K2 = 4, g = 2 and
deg(φ2) = 2 (thus it is not the example in [Ca2], for which φ2 is composed with
the three involutions associated to the bidouble cover);
in Section 6.7 a new surface with K2 = 8 is obtained (it is not a standard isotrivial
fibration);
Sections 6.8 and 6.9 contain the construction of new surfaces with K2 = 7, 6 and
deg(φ2) = 1;
bidouble covers of irregular ruled surfaces give interesting examples in Sections 6.10
and 6.11;
finally, the equation of a double plane having bicanonical map not composed with
the associated involution is obtained in Section 6.12.

Following [Ca2] or [Pa], to define a bidouble cover V → X, with V, X smooth

65
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surfaces, it suffices to present:

· smooth divisors D1, D2, D3 ⊂ X with pairwise transverse intersections and no
common intersection;

· line bundles L1, L2, L3 such that 2Li ≡ Dj +Dk for each permutation (i, j, k) of
(1, 2, 3).

In Section 1.1 we recall the necessary formulas to compute the invariants of V.
Denote by i1, i2, i3 the involutions of V corresponding to L1, L2, L3, respectively.

In each example the invariants of Wj := V/ij , j = 1, 2, 3, are calculated.
We keep the notation as in Notation 4.1.1 and we use:

Notation 6.0.2 Let p0, . . . , pj , . . . , pj+s ∈ IP2 be as in Notation 4.1.1 and p′1, . . . , p
′
j

be the infinitely near points to p1, . . . , pj , respectively.
We denote by

µ : X → IP2

the blow-up with centers

p0, p1, p
′
1, . . . , pj , p

′
j , pj+1, . . . , pj+s

and by

E0, E1, E
′
1, . . . , Ej , E

′
j , Ej+1, . . . , Ej+s

the corresponding exceptional divisors (with self-intersection −1).
The notation ·̃ stands for the total transform µ∗(·) of a curve.
The letter T is reserved for a general line of IP2.

As before the letter g denotes the genus of a general Albanese fibre of S.

6.1 K2 = 4, g = 2,

W1 ruled, W2 rational, Kod(W3) = 1

Here we have the construction of a surface of general type S with pg = q = 1,
K2 = 4 and g = 2 as the minimal model of a bidouble cover V → X.

The quotients W1, W2, W3 satisfy:

· Kod(W1) = −∞, q(W1) = 1;

· W2 is rational;
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· Kod(W3) = 1, pg(W3) = 1, q(W3) = 0.

This gives an example for Theorem 3.2.1, a), (ii).

Step 1: Construction of S.
Let p0, . . . , p3 ∈ IP2 be distinct points such that p0, p2, p3 are colinear and let Ti be
the line through p0, pi, i = 1, 2. Denote by h the pencil of conics through p1, p2, p3

which are tangent to T1 at p1. Let C be a general element of h and Q be the union
of two general elements of h (hence C is of type 2(0, (1, 1)T , 12) and Q is of type
4(0, (2, 2)T , 22)). Let T3, T4, T5 be general lines through p0.

Set
D1 := T̃3 + T̃4 + T̃5 − 3E0 + (E1 − E′

1),
D2 := T̃1 + Q̃− E0 − 3E1 − 3E′

1 − 2E2 − 2E3,

D3 := T̃2 + C̃ − E0 − E1 − E′
1 − 2E2 − 2E3.

We have
L1 ≡ 4T̃ − E0 − 2E1 − 2E′

1 − 2E2 − 2E3,

L2 ≡ 3T̃ − 2E0 − E′
1 − E2 − E3,

L3 ≡ 4T̃ − 2E0 − E1 − 2E′
1 − E2 − E3,

KX + L1 ≡ T̃ − E1 − E′
1 − E2 − E3,

KX + L2 ≡ −E0 + E1,

KX + L3 ≡ T̃ − E0 − E′
1

and then

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 0 + 0 + 1 = 1,

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4− 2− 1 + 0 = 1.

Since
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 0,
h0(X,OX(2KX + L2 + L3)) = 0,

the bicanonical map of V is composed with each of the involutions i1, i2, i3.
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Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where
N1 := T̃1 + T̃2 − 2E0 − 2E′

1 − E2 − E3,

N2 := 3T̃ − E0 − E1 − E′
1 − E2 − E3.

As the support of the pullback of N1 is a disjoint union of 6 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0, then

K2
S = N2 −N2

1 = N2
2 = 4.

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. As

χ(OW1) = 2 +
1
2
L1(KX + L1) = 2− 2 = 0

and
pg(W1) = h0(X,OX(KX + L2)) = 0,

one has q(W1) = 1. The pencil of conics through p1, p
′
1, p2 and p3 induces a ratio-

nal fibration of W1, thus Kod(W1) = −∞. This pencil also lifts to the (genus 2)
Albanese fibration of S.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. As

χ(OW2) = 2 +
1
2
L2(KX + L2) = 2− 1 = 1

and
pg(W2) = h0(X,OX(KX + L2)) = 0,

one has q(W2) = 0. The pencil of lines through p0 gives a rational fibration of W2,

thus W2 is a rational surface.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. One has

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2
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and

pg(W3) = h0(X,OX(KX + L3)) = 1.

The pencil of lines through p0 gives an elliptic fibration f of W3. The divisor
KW3 is linearly equivalent to the pullback of

KX + L3 ≡ T̃1 − E0 − E′
1,

thus it is equivalent to half a fibre of f plus two (−1)-curves. Then Kod(W3) = 1.

6.2 K2 = 2, g = 2,

W1 ruled, W2 rational, Kod(W3) = 2

Here we obtain a surface of general type S with pg = q = 1, K2 = 2 and g = 2.

The quotients W1, W2, W3 satisfy:

· Kod(W1) = −∞, q(W1) = 1;

· W2 is rational;

· Kod(W3) = 2, pg(W3) = 1, q(W3) = 0; the branch locus of the cover V → W3 is
an union of twelve (−2)-curves.

This gives an example for Theorem 3.2.1, a), (i).

Step 1: Construction of S.
Let p0, . . . , p3 ∈ IP2 be points in general position and Ti be the line through p0 and
pi, i = 1, 2, 3. For each j ∈ {1, 2, 3} let Cj be the conic through p1, p2, p3 tangent to
the Ti’s except for Tj . Denote by Q a general element of the linear system generated
by 3C1 + 2T1, 3C2 + 2T2 and 3C3 + 2T3. The singularities of Q are a (3, 3)-point at
pi, tangent to Ti, i = 1, 2, 3, and a double point at p0. Let T4 be a line through p0

transverse to Q.

Set
D1 := Q̃− 2E0 −

∑3
1(3Ei + 3E′

i),
D2 := T̃1 + · · ·+ T̃4 − 4E0 −

∑3
1(Ei + E′

i),
D3 :=

∑3
1(Ei − E′

i).
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We have
L1 ≡ 2T̃ − 2E0 −

∑3
1E

′
i,

L2 ≡ 4T̃ − E0 −
∑3

1(Ei + 2E′
i),

L3 ≡ 6T̃ − 3E0 −
∑3

1(2Ei + 2E′
i),

KX + L1 ≡ −T̃ − E0 +
∑3

1Ei,

KX + L2 ≡ T̃ −
∑3

1E
′
i,

KX + L3 ≡ 3T̃ − 2E0 −
∑3

1(Ei + E′
i)

and then

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 0 + 0 + 1 = 1,

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4− 2− 1 + 0 = 1.

Since
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 0,
h0(X,OX(2KX + L2 + L3)) = 0,

the bicanonical map of V is composed with each of the involutions i1, i2, i3, where
V → X is the bidouble cover determined by the curves Di.

Let S be the minimal model of V.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + T̃2 + T̃3 − 3E0 −
3∑
1

2E′
i,

N2 := 3T̃ − E0 −
3∑
1

(Ei + E′
i).

As the support of the pullback of N1 is a disjoint union of 12 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0, one has

K2
S = N2 −N2

1 = N2
2 = 2.
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Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. It is easy to see that
W1 is a ruled surface with q = 1.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. As

χ(OW2) = 2 +
1
2
L2(KX + L2) = 2− 1 = 1

and

pg(W2) = h0(X,OX(KX + L2)) = 0,

it follows q(W2) = 0.

Since

2KX + 2L2 ≡ 2T̃ −
3∑
1

2E′
i

and

2KX + L2 ≡ −2T̃ + E0 +
3∑
1

Ei,

one has

h0(W2,OW2(2KW2)) = h0(X,OX(2KX + 2L2)) + h0(X,OX(2KX + L2)) = 0.

Therefore W2 is rational.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. One has

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2

and

pg(W3) = h0(X,OX(KX + L3)) = 1.

As 2(KX + L3)2 = −2, by the contraction of the three (−1)-curves contained in
the pullback of T1 + T2 + T3 we get K2

W ′
3

= 1, where W ′
3 is the minimal model of

W3. Therefore W3 is of general type.

The pencil of lines through p0 lifts to the (genus 2) Albanese fibration of S.
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6.3 K2 = 8, g = 3,

W1 ruled, W2 rational, Kod(W3) = 1

Here we are going to construct a surface of general type V with pg = q = 1 and
g = 3 such that K2

S = 8, where S is the minimal model of V. We will see that the
quotients Wj := V/ij , j = 1, 2, 3, satisfy:

· W1 is ruled, q(W1) = 1;

· W2 is rational;

· Kod(W3) = pg(W3) = 1, q(W3) = 0

and that this gives an example for Propositions 5.1.2, a) and 5.2.1.
The surface S is one of Polizzi’s Du Val double planes (see Theorem 1.3.2, 3.i)).
We use Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
Let Q be a reduced curve of type 4(0, (2, 2)2T ), i.e. Q is the union of two conics
tangent to the lines T1 and T2 at p1, p2. Let C be another non-degenerate conic
tangent to T1, T2 at p1, p2 and let T3, . . . , T6 6= T1, T2 be distinct lines through
p0 ∈ T1

⋂
T2.

Set:

D1 := T̃1 + · · ·+ T̃6 −
∑2

1(Ei + E′
i)− 6E0,

D2 := Q̃−
∑2

1(Ei + 3E′
i),

D3 := C̃ −
∑2

1(Ei + E′
i).

We have
L1 ≡ 3T̃ −

∑2
1(Ei + 2E′

i),
L2 ≡ 4T̃ −

∑2
1(Ei + E′

i)− 3E0,

L3 ≡ 5T̃ −
∑2

1(Ei + 2E′
i)− 3E0

and
KX + L1 ≡ −E′

1 − E′
2 + E0,

KX + L2 ≡ T̃ − 2E0,

KX + L3 ≡ 2T̃ − E′
1 − E′

2 − 2E0.

Let V → X be the bidouble cover determined by D1, D2, D3 and S be the minimal
model of V. We have

pg(S) =
3∑
1

h0(X,OX(KX + L)) = 0 + 0 + 1 = 1,
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χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4− 2− 1 + 0 = 1.

One has
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 1,
h0(X,OX(2KX + L2 + L3)) = 0,

thus the bicanonical map of V is composed with the involution i2 and is not com-
posed with the involutions i1 and i3.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + T̃2 − 2E0 −
2∑
1

2E′
i,

N2 := 4T̃ − 2E0 −
2∑
1

(Ei + E′
i).

Since the support of the pullback of N1 is a disjoint union of 8 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0,

K2
S = K2

V + (−N2
1 ) = N2 −N2

1 = N2
2 = 8

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. The pencil of conics
tangent to T1, T2 at p1, p2 lifts to a rational fibration of W1 (and to the Albanese
fibration of S, which is of genus 3). One has

χ(OW1) = 2 +
1
2
L1(KX + L1) = 2− 2 = 0

and then W1 is a ruled surface with q = 1.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. One has that W2 is
ruled and

χ(OW2) = 2 +
1
2
L2(KX + L2) = 2− 1 = 1,
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hence W2 is a rational surface.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. The canonical divisor
KW3 is the pullback of 2T̃ − E′

1 − E′
2 − 2E0 and

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2,

thus Kod(W3) = pg(W3) = 1 and q(W3) = 0.

6.4 K2 = 6, g = 4,

Kod(W1) = 2, W2 rational, Kod(W3) = 1

This section contains the construction of a bidouble cover V → X such that the
minimal model S of V is a surface of general type with K2 = 6, pg = q = 1, g = 4
and that the quotients Wj := V/ij satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· W2 is rational;

· Kod(W3) = 1, pg(W3) = 0, q(W3) = 1.

This is an example for Propositions 5.1.2, d) and 5.1.3, a).

One can verify that S is the Du Val double plane obtained imposing a 4-uple
point to the branch locus of a Du Val’s ancestor of type D5 (cf. Section 4.2.1).

Recall Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
From Proposition 4.1.3 in Section 4.1, there is a pencil l, with no base component,
of curves of type 7(3, (2, 2)5T ). Let Q be a general element of this pencil and C be
a reduced curve of type 4(2, (1, 1)5T ).

Set:

D1 := T̃1 + · · ·+ T̃4 −
∑4

1(Ei + E′
i) + (E5 − E′

5)− 4E0,

D2 := T̃5 + Q̃−
∑4

1(Ei + 3E′
i)− 3E5 − 3E′

5 − 4E0,

D3 := C̃ −
∑5

1(Ei + E′
i)− 2E0.
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We have
L1 ≡ 6T̃ −

∑4
1(Ei + 2E′

i)− 2E5 − 2E′
5 − 3E0,

L2 ≡ 4T̃ −
∑4

1(Ei + E′
i)− E′

5 − 3E0,

L3 ≡ 6T̃ −
∑5

1(Ei + 2E′
i)− 4E0

and
KX + L1 ≡

(
2T̃ −

∑4
1E

′
i − E0

)
+
(
T̃5 − E5 − E′

5 − E0

)
,

KX + L2 ≡ T̃ + E5 − 2E0,

KX + L3 ≡ 3T̃ −
∑5

1E
′
i − 3E0,

hence

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 1 + 0 + 0 = 1,

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4 + 0− 1− 2 = 1.

One has
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 2,
h0(X,OX(2KX + L2 + L3)) = 0,

thus the bicanonical map of V is composed with the involution i2 and is not com-
posed with the involutions i1 and i3.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + · · ·+ T̃5 − 5E0 −
5∑
1

2E′
i,

N2 := 5T̃ − 3E0 −
5∑
1

(Ei + E′
i).

As the support of the pullback of N1 is a disjoint union of 20 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0, then

K2
S = K2

V + (−N2
1 ) = N2 −N2

1 = N2
2 = 6.
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Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. One has

pg(W1) = h0(X,OX(KX + L1)) = 1

and
χ(OW1) = 2 +

1
2
L1(KX + L1) = 2.

Since 2(KX + L1)2 = −2, we get, by contraction of the five (−1)-curves con-
tained in the pullback of T1 + · · ·+ T5, K

2
W ′

1
= 3, where W ′

1 is the minimal model
of W1. Therefore W1 is of general type.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. The pencil of lines
through p0 lifts to a rational pencil of W2. As

χ(OW2) = 2 +
1
2
L2(KX + L2) = 2− 1 = 1,

then W2 is rational.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2 and W ′
3 be a minimal

model of W3. The equivalence

2KX + 2L3 ≡
5∑
1

(
T̃i − 2E′

i − E0

)
+
(
T̃ − E0

)
implies that 2KW ′

3
is linearly equivalent to a fibre of an elliptic fibration of W3,

hence Kod(W3) = 1. Also

pg(W3) = h0(X,OX(KX + L3)) = 0,

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2− 2 = 0

and then q(W3) = 1. The pencil l lifts to a genus 2 fibration of W3 and to the
(genus 4) Albanese fibration of S.

6.5 K2 = 4, g = 3,

Kod(W1) = 2, W2 rational, Kod(W3) = 0

In this section a surface of general type S with pg = q = 1, K2 = 4 and g = 3
is constructed. It is the minimal model of a double cover of surfaces W1, W2, W3

such that:
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· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· W2 is rational;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 1.

This gives an example for Propositions 5.1.1, b) and 5.1.3, a).

One can verify that S is the Du Val double plane obtained imposing two 4-uple
points to the branch locus of a Du Val’s ancestor of type D4 (cf. Section 4.2.1).

We keep Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
From Proposition 4.1.3, there is a pencil l, with no base component, of curves
of type 6(2, (2, 2)4T ), through points p0, . . . , p4 (i.e. of plane curves of degree 6
with a double point at p0 and a tacnode at pi tangent to the line through p0, pi,

i = 1, . . . , 4). Let Q be a general element of this pencil, C be a reduced curve of
type 4(2, (1, 1)4T ) and set:

D1 := T̃1 + · · ·+ T̃4 −
∑4

1(Ei + E′
i)− 4E0,

D2 := Q̃−
∑4

1(Ei + 3E′
i)− 2E0,

D3 := C̃ −
∑4

1(Ei + E′
i)− 2E0.

Let V → X be the bidouble cover determined by D1, D2, D3 and S be the minimal
model of V.

We have
L1 ≡ 5T̃ −

∑4
1(Ei + 2E′

i)− 2E0,

L2 ≡ 4T̃ −
∑4

1(Ei + E′
i)− 3E0,

L3 ≡ 5T̃ −
∑4

1(Ei + 2E′
i)− 3E0

and
KX + L1 ≡ 2T̃ −

∑4
1E

′
i − E0,

KX + L2 ≡ T̃ − 2E0,

KX + L3 ≡ 2T̃ −
∑4

1E
′
i − 2E0.

Then

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 1 + 0 + 0 = 1,

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4 + 0− 1− 2 = 1.
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As
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 1,
h0(X,OX(2KX + L2 + L3)) = 0,

the bicanonical map of V is composed with the involution i2, corresponding to L2,

and is not composed with the involutions i1, i3, corresponding to L1, L3.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + · · ·+ T̃4 − 4E0 −
4∑
1

2E′
i,

N2 := 4T̃ − 2E0 −
4∑
1

(Ei + E′
i).

As the support of the pullback of N1 is a disjoint union of 16 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0,

K2
S = K2

V + (−N2
1 ) = N2 −N2

1 = N2
2 = 4.

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. We have

pg(W1) = h0(X,OX(KX + L1)) = 1

and

χ(OW1) = 2 +
1
2
L1(KX + L1) = 2 + 0 = 2.

Since 2(KX +L1)2 = −2, we get, by contraction of the eight (−1)-curves contained
in the pullback of T1 + · · ·+ T4, K

2
W ′

1
= 6, where W ′

1 is the minimal model of W1.

Therefore W1 is of general type.

Step 4: The surface W2.
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Let W2 be the double cover of X with branch locus D1 +D3. The pencil of lines
through p0 lifts to a rational fibration of W2. As

χ(OW2) = 2 +
1
2
L2(KX + L2) = 2− 1 = 1,

W2 is rational.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. The divisor 2KW3 is
linearly equivalent to the pullback of the divisor

T̃1 + · · ·+ T̃4 −
4∑
1

2E′
i − 4E0,

whose support is a disjoint sum of (−1)-curves. Hence Kod(W3) = 0. One has

pg(W3) = h0(X,OX(KX + L3)) = 0

and
χ(OW3) = 2 +

1
2
L3(KX + L3) = 2− 2 = 0.

The pencil l lifts to an elliptic fibration of W3 and to the (genus 3) Albanese
fibration of S.

6.6 K2 = 4, g = 2,

W1 ruled, Kod(W2) = 1, Kod(W3) = 2

This section contains the construction of a surface of general type S with pg = q =
1, K2 = 4, g = 2 and deg(φ2) = 2. We will verify that S is the minimal model of a
double cover of surfaces W1, W2, W3 such that:

· W1 is ruled, q(W1) = 1;

· Kod(W2) = 1, pg(W2) = q(W2) = 0;

· Kod(W3) = 2, pg(W3) = 1, q(W3) = 0.

This gives an example for Propositions 5.1.2, b) and 5.1.3, a).
Notations 4.1.1 and 6.0.2 are used.

Step 1: Construction of S.
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By Proposition 4.1.3 in Section 4.1, there is a pencil l, with no base component,
of curves of type 6(2, (2, 2)4T ). Let Q1 be a general element of this pencil, Q2 be a
curve of type 3(1, (1, 1)4T ) and Q := Q1 +Q2. Let T5 be a line through p0 transverse
to Q.

Set:
D1 := T̃1 + Q̃− 4E1 − 4E′

1 −
∑4

2(3Ei + 3E′
i)− 4E0,

D2 := T̃2 + · · ·+ T̃5 −
∑4

2(Ei + E′
i)− 4E0,

D3 :=
∑4

2(Ei − E′
i).

We have
L1 ≡ 2T̃ −

∑4
2E

′
i − 2E0,

L2 ≡ 5T̃ − 2E1 − 2E′
1 −

∑4
2(Ei + 2E′

i)− 2E0,

L3 ≡ 7T̃ −
∑4

1(2Ei + 2E′
i)− 4E0

and
KX + L1 ≡ −T̃ +

∑4
1Ei + E′

1 − E0,

KX + L2 ≡ 2T̃ −
∑4

1E
′
i − E1 − E0,

KX + L3 ≡ T̃1 + · · ·+ T̃4 −
∑4

1(Ei + E′
i)− 3E0.

Let ψ : V → X be the bidouble cover determined by D1, D2, D3 and S be the
minimal model of V. Then:

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 0 + 0 + 1 = 1,

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4− 2− 1 + 0 = 1.

One can verify that

h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 0,
h0(X,OX(2KX + L2 + L3)) = 1,

thus the bicanonical map of V is composed with the involution i1 and is not com-
posed with the involutions i2 and i3.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,
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where

N1 := T̃1 + · · ·+ T̃4 − 4E0 − (E1 + E′
1)−

4∑
2

2E′
i

and

N2 := 4T̃ − 2E0 −
4∑
1

(Ei + E′
i).

As the support of the pullback of N1 is a disjoint union of 14 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0, then

K2
S = N2 + (−N2

1 ) = N2
2 = 4.

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. The pencil of lines
through p0 gives a rational fibration of W1. Since

χ(OW1) = 2 +
1
2
L1(KX + L1) = 2− 2 = 0,

then q(W1) = 1.
The above pencil lifts to the (genus 2) Albanese fibration of S.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. We have

pg(W2) = h0(X,OX(KX + L2)) = 0

and
χ(OW2) = 2 +

1
2
L2(KX + L2) = 2− 1 = 1.

Since 2(KX +L2)2 = −4, we get, by contraction of the four (−1)-curves contained
in the pullback of T1 + · · ·+ T4, a surface W ′

2 such that K2
W ′

2
= 0. Notice that W2

is not of general type, because

h0(X,OX(2KX + 2L2)) = h0(X,OX(2KX + L2)) = 0

implies h0(W2,OW2(2KW2)) = 0. Therefore W ′
2 is a minimal model of W2. The

pencil of lines through p0 lifts to a genus 2 pencil of W ′
2, hence Kod(W2) > 0 and

then Kod(W2) = 1.
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Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. We have

pg(W3) = h0(X,OX(KX + L3)) = 1

and

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2 + 0 = 2.

Since 2(KX +L3)2 = −2, we get, by contraction of the four (−1)-curves contained
in the pullback of T1 + · · · + T4, K

2
W ′

3
= 2, where W ′

3 is the minimal model of
W3.Therefore W3 is of general type.

Step 6: Degree of φ2.

The system |ψ∗(N)| is strictly contained in the bicanonical system of V. Since φ2

is composed with i1 and the map τ : X 99K IP2 induced by |N | is birational (this
can be verified using the Magma function IsInvertible), one has deg(φ2) = 2.

6.7 K2 = 8, g = 3,

Kod(W1) = 2, Kod(W2) = 0, Kod(W3) = 0

A smooth projective surface S of general type is said to be a standard isotrivial
fibration if there exists a finite group G which acts faithfully on two smooth pro-
jective curves C and F so that S is isomorphic to the minimal desingularization of
T := (C×F )/G. The paper [Po1] contains examples of such surfaces with K2 = 8.

This section contains the construction of the first surface of general type S with
pg = q = 1, K2 = 8 and g = 3 which is not a standard isotrivial fibration.

The surface S is the minimal model of a double cover of surfaces W1, W2, W3

such that:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· Kod(W2) = 0, pg(W2) = 0, q(W2) = 1;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 0.

This is an example for Propositions 5.1.1 a), b) and 5.1.3 a).
Recall Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
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Let G be a curve of type 6(2, (2, 2)4T ) and C be a curve of type 8(4, (2, 2)4T , (3, 3))
such that G+C is reduced and the (3, 3)-point of C is tangent to G. The existence
of these curves is shown in Appendix A.3.

Set:

D1 := T̃1 + T̃2 −
∑2

1 2E′
i + (E5 − E′

5)− 2E0,

D2 := G̃−
∑4

1(2Ei + 2E′
i)− (E5 + E′

5)− 2E0,

D3 := T̃3 + T̃4 + C̃ −
∑2

1(2Ei + 2E′
i)−

∑4
3(2Ei + 4E′

i)− (3E5 + 3E′
5)− 6E0.

We have

L1 ≡ 8T̃ −
∑2

1(2Ei + 2E′
i)−

∑4
3(2E4 + 3E′

4)− (2E5 + 2E′
5)− 4E0,

L2 ≡ 6T̃ −
∑5

1(Ei + 2E′
i)− 4E0,

L3 ≡ 4T̃ −
∑2

1(Ei + 2E′
i)−

∑4
3(Ei + E′

i)− E′
5 − 2E0

and

KX + L1 ≡ 5T̃ −
∑2

1(Ei + E′
i)−

∑4
3(E4 + 2E′

4)− (E5 + E′
5)− 3E0,

KX + L2 ≡ 3T̃ −
∑5

1E
′
i − 3E0,

KX + L3 ≡ T̃ −
∑2

1E
′
i + E5 − E0.

Let V → X be the bidouble cover determined by D1, D2, D3 and S be the minimal
model of V. Then

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4 + 0− 2− 1 = 1.

The procedure LinSys of Appendix A.2 can be used to confirm that

h0(X,OX(KX + L1)) = 1

and
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 1,
h0(X,OX(2KX + L2 + L3)) = 2,

therefore

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 1 + 0 + 0 = 1

and the bicanonical map of V is not composed with any of the involutions i1, i2,
i3.

The Albanese fibration of S is induced by a pencil of curves of type
14(6, (4, 4)4T , (4, 4)), which contains a fibre equal to G + C (see Appendix A.3).
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From [Po2, Theorem 3.2], the existence of such reducible fibre implies that S is not
a standard isotrivial fibration, so this is not one of Polizzi’s examples.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + · · ·+ T̃4 − 4E0 −
4∑
1

2E′
i + (E5 − E′

5)

and

N2 := 8T̃ − 4E0 −
5∑
1

(2Ei + 2E′
i).

As the support of the pullback of N1 is a disjoint union of 18 = −N2
1 (−1)-

curves, |N2| has no fixed component (again this can be confirmed with the Magma
procedure LinSys) and N1N2 = 0,

K2
S = N2 + (−N2

1 ) = N2
2 = 8.

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. We have

pg(W1) = h0(X,OX(KX + L1)) = 1

and
χ(OW1) = 2 +

1
2
L1(KX + L1) = 2 + 0 = 2.

Since 2(KX +L1)2 = 0, we get, by contraction of the four (−1)-curves contained in
the pullback of T̃3 + T̃4, K

2
W ′

1
= 4, where W ′

1 is the minimal model of W1. Therefore
W1 is of general type.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. One has

pg(W2) = h0(X,OX(KX + L2)) = 0

and
χ(OW2) = 2 +

1
2
L2(KX + L2) = 2− 2 = 0.
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Let T5 be the line through p0, p5. From

2(KX + L2) ≡

(
T̃1 + · · ·+ T̃4 − 4E0 −

4∑
1

2E′
i

)
+
(
2T̃5 − 2E0 − 2E′

5

)
,

one sees that 2KW ′
2
≡ 0, where W ′

2 is the minimal model of W2. So Kod(W2) = 0
and then W2 is a bielliptic surface.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. The divisor 2KW3 is
linearly equivalent to the pullback of the divisor

T̃1 + T̃2 −
2∑
1

2E′
i − 2E0 + 2E5,

whose support is the sum of the pullback of E5 with a disjoint sum of (−1)-curves.
Hence 2KW ′

3
≡ 0, where W ′

3 is the minimal model of W3, and then Kod(W3) = 0.
One has

pg(W3) = h0(X,OX(KX + L3)) = 0

and

χ(OW3) = 2 +
1
2
L3(KX + L3) = 2− 1 = 1,

thus W3 is an Enriques surface.

6.8 K2 = 7, g = 3,

Kod(W1) = 2, Kod(W2) = 1, Kod(W3) = 0

This section contains the construction of a a bidouble cover V → X, with X

rational, such that the minimal model S of V is a surface of general type with
K2 = 7, pg = q = 1, g = 3 and birational bicanonical map.

Let ij , j = 1, 2, 3, be the involutions associated to the bidouble cover. The
quotients Wj := V/ij , j = 1, 2, 3, satisfy:

· Kod(W1) = 2, pg(W1) = 1, q(W1) = 0;

· Kod(W2) = 1, pg(W2) = 0, q(W2) = 0;

· Kod(W3) = 0, pg(W3) = 0, q(W3) = 1.
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This is an example for Propositions 5.1.1, b), 5.1.2, b) and 5.1.3, a).
We keep Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
From Appendix A.3, there exist a curve C of type 7(3, (2, 2)4T , 3) (i.e. C is a plane
curve of degree 7 with triple points at p0, p5 and a tacnode at pi tangent to the line
Ti through p0, pi, i = 1, . . . , 4) and a curve G of type 6(2, (2, 2)4T , 1), both through
points p0, . . . , p5, such that C +G is reduced.

Set:

D1 := T̃1 + T̃2 + T̃3 −
∑3

1 2E′
i + E5 − 3E0,

D2 := T̃4 + G̃−
∑3

1(2Ei + 2E′
i)− (2E4 + 4E′

4)− E5 − 3E0,

D3 := C̃ −
∑4

1(2Ei + 2E′
i)− 3E5 − 3E0.

We have

L1 ≡ 7T̃ −
∑3

1(2Ei + 2E′
i)− (2E4 + 3E′

4)− 2E5 − 3E0,

L2 ≡ 5T̃ −
∑3

1(Ei + 2E′
i)− (E4 + E′

4)− E5 − 3E0,

L3 ≡ 5T̃ −
∑4

1(Ei + 2E′
i)− 3E0

and
KX + L1 ≡ 4T̃ −

∑3
1(Ei + E′

i)− (E4 + 2E′
4)− E5 − 2E0,

KX + L2 ≡ 2T̃ −
∑3

1E
′
i − 2E0,

KX + L3 ≡ 2T̃ −
∑4

1E
′
i + E5 − 2E0.

Let ψ : V → X be the bidouble cover determined by D1, D2, D3 and S be the
minimal model of V. Then

χ(OS) = 4 +
1
2

3∑
1

Li(KX + Li) = 4 + 0− 1− 2 = 1.

The procedure LinSys of Appendix A.2 can be used to verify that

h0(X,OX(KX + L1)) = 1

and
h0(X,OX(2KX + L1 + L2)) = 1,
h0(X,OX(2KX + L1 + L3)) = 1,
h0(X,OX(2KX + L2 + L3)) = 1,

therefore

pg(S) =
3∑
1

h0(X,OX(KX + Li)) = 1 + 0 + 0 = 1



6.8. K2 = 7, g = 3, Kod(W1) = 2, Kod(W2) = 1, Kod(W3) = 0 87

and the bicanonical map of V is not composed with any of the involutions i1, i2,
i3.

Step 2: Calculation of K2
S .

We have

N := 2KX +
3∑
1

Li ≡ N1 +N2,

where

N1 := T̃1 + · · ·+ T̃4 − 4E0 −
4∑
1

2E′
i

and

N2 := 7T̃ − 3E0 −
4∑
1

(2Ei + 2E′
i)− E5.

As the support of the pullback of N1 is a disjoint union of 16 = −N2
1 (−1)-curves,

|N2| has no fixed component (use the procedure LinSys) and N1N2 = 0,

K2
S = N2 + (−N2

1 ) = N2
2 = 7.

Step 3: The surface W1.

Let W1 be the double cover of X with branch locus D2 +D3. We have

pg(W1) = h0(X,OX(KX + L1)) = 1

and
χ(OW1) = 2 +

1
2
L1(KX + L1) = 2 + 0 = 2.

Since 2(KX + L1)2 = 0, we get, by contraction of the two (−1)-curves contained
in the pullback of T̃4, K

2
W ′

1
= 2, where W ′

1 is the minimal model of W1. Therefore
W1 is of general type.

Step 4: The surface W2.

Let W2 be the double cover of X with branch locus D1 +D3. The pencil of lines
through p0 lifts to an elliptic fibration f of W2. The divisor 2KW2 is linearly equiv-
alent to the pullback of the divisor(

T̃1 + T̃2 + T̃3 −
3∑
1

2E′
i − 3E0

)
+
(
T̃ − E0

)
,
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whose support is a disjoint sum of six (−1)-curves with a fibre of f.Hence Kod(W2) =
1.

One has
pg(W2) = h0(X,OX(KX + L2)) = 0

and
χ(OW2) = 2 +

1
2
L2(KX + L2) = 2− 1 = 1.

The pencil of curves of type 6(2, (2, 2)4T ) lifts to the (genus 3) Albanese fibration
of S.

Step 5: The surface W3.

Let W3 be the double cover of X with branch locus D1 +D2. The support of the
pullback of

2(KX + L3) ≡

(
T̃1 + · · ·+ T̃4 −

4∑
1

2E′
i − 4E0

)
+ 2E5

is a disjoint sum of (−1)-curves, hence Kod(W3) = 0.
One has

pg(W3) = h0(OX(KX + L3)) = 0

and
χ(OW3) = 2 +

1
2
L3(KX + L3) = 2− 2 = 0.

Step 6: Verification that φ2 is birational
The system |ψ∗(N)| is strictly contained in the bicanonical system of V. The bi-
canonical map of V is not composed with any of the involutions i1, i2, i3, hence it
is birational if the map τ given by |N | = N1 + |N2| is birational. This is in fact
the case, see Appendix A.3, where Magma is used to show that the image of τ is
of degree 7 = N2

2 .

6.9 K2 = 6, g = 3,

Kod(W1) = 2, Kod(W2) = 1, Kod(W3) = 0

One can obtain a construction analogous to the one of Example 6.8, but with
K2

S = 6 instead: replace the triple point of C by a (2, 2)-point, tangent to G. Such
a curve exists, see Appendix A.3. With this change the branch locus in W3 has a
4-uple point instead of a (3, 3)-point.



6.10. K2 = 8, g = 3, Kod(W1) = 1, W2 ruled, Kod(W3) = 1 89

6.10 K2 = 8, g = 3,

Kod(W1) = 1, W2 ruled, Kod(W3) = 1

In this section we give the construction of a surface of general type S, with K2 = 8,
pg = q = 1 and g = 3, as a bidouble cover of a ruled surface Z with q(Z) = 1.

Let ij , j = 1, 2, 3, be the involutions associated to the bidouble cover. The
quotients Wj := S/ij , j = 1, 2, 3, satisfy:

· Kod(W1) = 1, pg(W1) = 0, q(W1) = 1;

· W2 is ruled, q(W2) = 1;

· Kod(W3) = pg(W3) = q(W3) = 1.

This is an example for Propositions 5.1.2 c), d) and 5.2.1.
We keep Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
Let F1, . . . , F4 be distinct fibres of the Hirzebruch surface IF0 and Z → IF0 be the
double cover with branch locus F1 + · · · + F4. Clearly Z is a ruled surface with
irregularity 1. Denote by γ the rational fibration of Z.

Let G,G1, . . . , G6 be distinct smooth elliptic sections of γ and Γ1, . . . ,Γ4 be
distinct fibres of γ such that Γ1 + Γ2 ≡ 2Γ3 ≡ 2Γ4.

Set
D1 := Γ1 + Γ2,

D2 := G1 + · · ·+G4,

D3 := G5 +G6

and
L1 := 3G+ Γ3 − Γ4,

L2 := G+ Γ4,

L3 := 2G+ Γ3.

We have
KZ + L1 ≡ G+ Γ3 − Γ4,

KZ + L2 ≡ −G+ Γ4,

KZ + L3 ≡ Γ3

and then

pg(S) =
3∑
1

h0(Z,OZ(KZ + Li)) = 0 + 0 + 1 = 1,
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χ(OS) = 4 · 0 +
1
2

3∑
1

Li(KZ + Li) = 0 + 0 + 0 + 1 = 1.

The linear system

|N | := |2KZ +
3∑
1

Li| ≡ |2G+ 2Γ3|

has no base component, thus
K2

S = N2 = 8.

As
h0(X,OX(2KX + L1 + L2)) = 0,
h0(X,OX(2KX + L1 + L3)) = 2,
h0(X,OX(2KX + L2 + L3)) = 1,

the bicanonical map of V is not composed with any of the involutions i1, i2, i3.

Step 2: The surface W1.

Let W1 be the double cover of Z with branch locus D2 + D3, determined by L1.

We have
pg(W1) = h0(Z,OZ(KZ + L1)) = 0

and
χ(OW1) =

1
2
L1(KZ + L1) = 0,

hence q(W1) = 1. Since
2(KZ + L1) ≡ 2G,

we have Kod(W1) = 1.

Step 3: The surface W2.

Let W2 be the double cover of Z with branch locus D1 + D3, determined by L2.

The ruling of Z lifts to a ruling of W2 and to the (genus 3) Albanese fibration of
S. As

χ(OW2) =
1
2
L2(KZ + L2) = 0

then W2 is ruled and q(W2) = 1.

Step 4: The surface W3.

Let W3 be the double cover of Z with branch locus D1 + D2, determined by L3.

One has
pg(W3) = h0(Z,OZ(KZ + L3)) = 1
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and
χ(OW3) =

1
2
L3(KZ + L3) = 1.

Since
KZ + L3 ≡ Γ3,

then Kod(W1) = 1.

6.11 K2 = 4, g = 3,

W1 ruled, Kod(W2) = 1, Kod(W3) = 2

This section contains the construction of a bidouble cover V → Z, with Z ruled
and q(Z) = 1, such that the minimal model S of V is a surface of general type with
K2 = 4, pg = q = 1, g = 3 and that the bicanonical map φ2 of S is not composed
with any of the involutions i1, i2, i3 associated to the bidouble cover.

The quotients Wj := V/ij , j = 1, 2, 3, satisfy:

· Kod(W1) = −∞, q(W1) = 1;

· Kod(W2) = 0, pg(W2) = 0, q(W2) = 1;

· Kod(W3) = 2, pg(W3) = 1, q(W3) = 1; the branch locus of the cover V → W3 is
an union of four (−2)-curves.

This is an example for Propositions 5.1.1, b), 5.1.3, b) and 5.2.1.
We use Notations 4.1.1 and 6.0.2.

Step 1: Construction of S.
Let Q1 be a general curve of type 5(1, (2, 2)3T ) (there is a pencil of such curves, see
Section 4.1) and Q2 be a general curve of type 3(1, (1, 1)3T ), both through points
p0, . . . , p3.

Let

Q′
1 := Q̃1 −

3∑
1

(2Ei + 2E′
i)− E0 ≡ 5T̃ −

3∑
1

(2Ei + 2E′
i)− E0,

Q′
2 := Q̃2 −

3∑
1

(Ei + E′
i)− E0 ≡ 3T̃ −

3∑
1

(Ei + E′
i)− E0.

Consider the double cover ψ : Z → X with branch locus

T̃1 + · · ·+ T̃4 −
4∑
1

2E′
i − 4E0,
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where T4 is a general line through p0. Notice that ψ is determined by
l ≡ 2T̃ −

∑3
1E

′
i − 2E0.

Let

Γ :=
1
2
ψ∗(T̃4 − E0), Γi :=

1
2
ψ∗(T̃i − E0),

C0 := ψ∗(E0),

ei :=
1
2
ψ∗(Ei − E′

i),

e′i := ψ∗(E′
i) i = 1, 2, 3.

Set:
D1 := ψ∗(Q′

1) ≡ 4C0 + 10Γ−
∑3

1(4ei + 4e′i),
D2 := ψ∗(Q′

2) ≡ 2C0 + 6Γ−
∑3

1(2ei + 2e′i),
D3 := 0

and
L1 := C0 + 3Γ−

∑3
1(ei + e′i),

L2 := 2C0 + 5Γ−
∑3

1(2ei + 2e′i),
L3 := 3C0 + 8Γ−

∑3
1(3ei + 3e′i).

Let V be the bidouble cover of Z determined by the curves Di and by the divisors
Li and let S be the minimal model of V. Since Z is a ruled surface with q = 1,

KZ ≡ −2C0 − 2Γ +
3∑
1

[
(ei + e′i) + ei

]
.

Therefore,
KZ + L1 = −C0 + Γ +

∑3
1 ei,

KZ + L2 = 3Γ−
∑3

1 e
′
i,

KZ + L3 = C0 + 6Γ−
∑3

1(ei + 2e′i).

One has

χ(OS) = 4 · 0 +
1
2

3∑
1

Li(KZ + Li) = 0 + 0 + 1 = 1.

Let

G = T̃1 + T̃2 + T̃3 −
3∑
1

(Ei + E′
i) + E4 − 2E0.

As KZ + L3 ≡ ψ∗(G) and G− l ≡ T̃ −
∑3

1Ei, then

h0(Z,OZ(KZ + L3)) = h0(X,OX(G)) + h0(X,OX(G− l)) = 1 + 0 = 1.
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This way,

pg(S) =
3∑
1

h0(Z,OZ(KZ + Li)) = 0 + 0 + 1 = 1.

As
h0(Z,OZ(2KZ + L1 + L2)) = 0,
h0(Z,OZ(2KZ + L1 + L3)) > 0,
h0(Z,OZ(2KZ + L2 + L3)) > 0,

the bicanonical map of V is not composed with any of the involutions i1, i2, i3,
corresponding to L1, L2, L3.

Step 2: Calculation of K2
S .

We have

N := 2KZ +
3∑
1

Li ≡ N1 +N2,

where

N1 := 2Γ1 + 2Γ2 + 2Γ3 −
3∑
1

2e′i

and

N2 := 2C0 + 6Γ−
3∑
1

(2ei + 2e′i) ≡ ψ∗

(
3T̃ −

3∑
1

(Ei + E′
i)− E0

)
.

As the support of the pullback of N1 is a disjoint union of 24 = −N2
1 (−1)-curves,

|N2| has no fixed component and N1N2 = 0, then

K2
S = N2 + (−N2

1 ) = N2
2 = 4.

Step 3: The surface W1.

Let W1 be the double cover of Z with branch locus D2 +D3, determined by L1. It
is a ruled surface with q = 1 (because q(Z) = q(S) = 1).

Step 4: The surface W2.

Let W2 be the double cover of Z with branch locus D1 + D3, determined by L2.

As q(Z) = q(S) = 1, h0(Z,OZ(KZ + L2)) = 0 and the support of

2(KZ + L2) ≡ 2Γ1 + 2Γ2 + 2Γ3 − 2
3∑
1

e′i
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is a disjoint union of (−1)-curves, then q(W2) = 1, pg(W2) = 0 and Kod(W2) = 0.

Step 5: The surface W3.

Let W3 be the double cover of Z with branch locus D1 + D2, determined by L3.

As q(Z) = q(S) = 1 and h0(Z,OZ(KZ + L3)) = 1, then pg(W3) = q(W3) = 1.
Since 2(KX + L3)2 = −10, we get, by contraction of the 12 (−1)-curves contained
in the pullback of T̃1 + T̃2 + T̃3, K

2
W ′

3
= 2, where W ′

3 is the minimal model of W3.

Therefore W3 is of general type.

6.12 K2 = 8, g = 4, non-Du Val double plane

This section describes the steps to obtain an equation of a double plane S of general
type with K2 = 8, pg = q = 1 and g = 4 such that the bicanonical map of S is not
composed with the associated involution. The corresponding Magma computations
are in Appendix A.4.5.

We keep Notations 4.1.1 and 6.0.2.

Let B′ be a reduced curve of type 21(9, (6, 6)5T ), i.e. a reduced plane curve of
degree 21 with a 9-uple point at p0 and a (6, 6)-point at pi tangent to the line Ti

through p0, pi, i = 1, . . . , 5. Let µ : X → IP2 be the blow-up as in Notation 6.0.2
and

B := µ∗

(
B′ +

5∑
1

Ti

)
− 14E0 −

5∑
1

(6Ei + 8E′
i).

Let S be the minimal model of the double cover of X with branch locus B and
i be the corresponding involution of S. One has K2

S = 8 and χ(OS) = 1. From
Proposition 2.1.2, a) we get h0(X,OX(2KX + L)) = 1, where L is the line bundle
such that 2L ≡ B, thus the bicanonical map of S is not composed with i.

Let us see that such a curve B′ exists (hence also S exists) and that pg(S) = 1.
First we find points p0, . . . , p5 ∈ IP2 such that there exists a curve C1 of type

10
(
4, (3, 3)4T , (3, 2)T

)
.

For this we use the methods of Section 4.2. Then we verify the existence of a cubic
C2 of type 3

(
1, 1, (1, 1)4T

)
, containing p0, . . . , p5. The curve B′ is an element of

the pencil generated by 2C1 + T5 and 6C2 + 3T1. This pencil lifts to the (genus 4)
Albanese fibration of S.
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One has

KX + L ≡
10∑
1

Ai +

(
5T̃ − E0 −

5∑
1

(2Ei + E′
i)

)
,

where Ai, i = 1, . . . , 10, are the (−2)-curves contained in T̃1 + · · · + T̃5. Using the
Magma procedure LinSys (defined in Appendix A.2) we see that

h0

(
X,OX

(
KX + L−

10∑
1

Ai

))
= 1.

Since (KX + L)Ai = −1, i = 1, . . . , 10, each Ai is fixed in |KX + L|, thus
pg(S) = h0(X,OX(KX + L)) = 1.

All these calculations are done in Appendix A.4.5, using Magma.
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Appendix A

Magma computations

In this appendix several computations are done using the Computational Algebra
System MAGMA (version V2.11-14).

On the web page
http://magma.maths.usyd.edu.au
one can read
’Magma is a large, well-supported software package designed to solve computa-
tionally hard problems in algebra, number theory, geometry and combinatorics.
It provides a mathematically rigorous environment for computing with algebraic,
number-theoretic, combinatoric and geometric objects.’

More information about Magma can be found on the Magma on-line help system
http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm .

In Magma, a line preceded by > means an input line, something preceded by
// means a comment and the symbol \ at the end of a line means continuation in
the next line. The other lines are output ones.

There are two functions of Magma, which are used several times in the next
sections, that deserve some words of explanation.

· ResolutionGraph(C,p)
’Calculate a transverse resolution graph of the plane curve singularity of C at the
point p’,
as one can read on the Magma online help system. For instance, the resolution of
a (3, 3)-point on a plane curve:

> A<x,y> := AffineSpace(Rationals(),2);

97
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> C := Curve(A,x*((x-1)^2+y^2-1)*((x+1)^2+y^2-1));

> ResolutionGraph(C,Origin(A));

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 3, 1, 0 ]) 2 ;

2 ([ -1, 6, 2, 3 ]) ;

The first two columns indicate the self-intersection and the multiplicity of the ex-
ceptional curve, respectively. The third column refers to the canonical class and
the fourth to the transverse intersection of the strict transform of C with the ex-
ceptional curve.

· PointsOverSplittingField(Z)
On the Magma online help system:
’If Z is a cluster [zero-dimensional scheme] this will determine some (not necessarily
optimal) point set Z(L) in which all points of Z having coordinates in an algebraic
closure of the base field lie and will return all points of Z(L).’

The following functions will be useful:

function D(F,i);

P:=Parent(F);

return Derivative(F,P.i);

end function;

function D2(F,i,j);

P:=Parent(F);

return Derivative(Derivative(F,P.i),P.j);

end function;

function D3(F,i,j,g);

P:=Parent(F);

return Derivative(Derivative(Derivative(F,P.i),P.j),P.g);

end function;

i.e. from now on
D(F,i) means Derivative(F,P.i),
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D2(F,i,j) means Derivative(Derivative(F,P.i),P.j) and
D3(F,i,j,g) means Derivative(Derivative(Derivative(F,P.i),P.j),P.g).

A.1 K2 = 6, φ2(S) birational to a K3

The computations of Section 3.2.2 are as follows:

Step 1:

> K<e>:=CyclotomicField(6);//e denotes the 6th root of unity.

> //We choose a conic C with equation x1x3-x2^2=0 and fix the

> //p_i’s: (1:1:1), (e^2:e:1), (e^4:e^2:1), (e^6:e^3:1),

> //(e^8:e^4:1), (e^10:e^5:1).

> R<z,s,x1,x2,x3>:=PolynomialRing(K,[3,1,1,1,1]);

> g:=&*[e^(2*i)*x1-2*e^i*x2+x3:i in [0..5]];

> //g is the product of the defining polynomials

> //of the tangent lines l_i to C at p_i.

> X:=z^2-g;

> X eq (z+x1^3-x3^3)*(z-x1^3+x3^3)+4*(x1*x3-4*x2^2)^2*\

> (-x1*x3+x2^2);//The decomposition AB+DE.

true

> i:=Ideal([s*(z-x1^3+x3^3)-4*(x1*x3-4*x2^2)^2,\

> s*(x1*x3-x2^2)-(z+x1^3-x3^3)]);

> j:=EliminationIdeal(i,1);

> j;

Ideal of Graded Polynomial ring of rank 5 over K

Lexicographical Order Variables: z, s, x1, x2, x3

Variable weights: 3 1 1 1 1 Basis:

[-1/2*s^2*x1*x3+1/2*s^2*x2^2+s*x1^3-s*x3^3+2*x1^2*x3^2-

16*x1*x2^2*x3+32*x2^4]

> 2*Basis(j)[1];

-s^2*x1*x3+s^2*x2^2+2*s*x1^3-2*s*x3^3+4*x1^2*x3^2-

32*x1*x2^2*x3+64*x2^4

> //This is the equation of the Kummer Q.

Step 2:

> K<e>:=CyclotomicField(6);
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> P3<s,x1,x2,x3>:=ProjectiveSpace(K,3);

> F:=-s^2*x1*x3+s^2*x2^2+2*s*x1^3-2*s*x3^3+4*x1^2*x3^2-\

> 32*x1*x2^2*x3+64*x2^4;

> Q:=Scheme(P3,F);//The Kummer.

> SQ:=SingularSubscheme(Q);

> T1:=Scheme(P3,x1-2*x2+x3); T2:=Scheme(P3,s);

> N:=Difference((T1 join T2) meet SQ, T1 meet T2);

> s:=SetToSequence(RationalPoints(N));

> //s is the sequence of the 8 nodes.

> L:=LinearSystem(P3,2);

>//This will give the h_i’s:

> LinearSystem(L,[P3!s[i] : i in [1..8]]);

Linear system on Projective Space of dimension 3

Variables: s, x1, x2, x3 with 3 sections:

s*x1-2*x1^2-4*x1*x2-2*x1*x3+8*x2^2+4*x2*x3+2*x3^2

s*x2-2*x1^2-4*x1*x2+4*x2*x3+2*x3^2

s*x3-2*x1^2-4*x1*x2+2*x1*x3-8*x2^2+4*x2*x3+2*x3^2

Step 3:

> R<s,b,c,x1,x2,x3>:=PolynomialRing(Rationals(),6);

> F:=-s^2*x1*x3+s^2*x2^2+2*s*x1^3-2*s*x3^3+4*x1^2*x3^2-\

> 32*x1*x2^2*x3+64*x2^4;

> h1:=s*x1-2*x1^2-4*x1*x2-2*x1*x3+8*x2^2+4*x2*x3+2*x3^2;

> h2:=s*x2-2*x1^2-4*x1*x2+4*x2*x3+2*x3^2;

> h3:=s*x3-2*x1^2-4*x1*x2+2*x1*x3-8*x2^2+4*x2*x3+2*x3^2;

> H:=h1+b*h2+c*h3;

> I:=ideal<R|[F,H]>;

> I1:=EliminationIdeal(I,1);

> q0:=Evaluate(Basis(I1)[1],x3,1);//We work in the affine plane.

> R4<B,C,X1,X2>:=PolynomialRing(Rationals(),4);

> h:=hom<R->R4|[0,B,C,X1,X2,0]>;

> q:=h(q0);

> A4:=AffineSpace(R4);

> Sch:=Scheme(A4,[q,D(q,3),D(q,4),D2(q,3,3),D2(q,3,4),\

> D2(q,4,4),D3(q,3,3,3),D3(q,3,3,4),D3(q,3,4,4),D3(q,4,4,4)]);

> Dimension(Sch);
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0

> PointsOverSplittingField(Sch);

This last command gives the points of Sch, as well as the necessary equations
to define the field extensions where their coordinates belong. There are various
solutions. One of them gives the desired quadruple point. The confirmation is as
follows:

Step 4:

> R<x>:=PolynomialRing(Rationals());

> K<r13>:=ext<Rationals()|x^4 + x^3 + 1/4*x^2 + 3/32>;

> P3<s,x1,x2,x3>:=ProjectiveSpace(K,3);

> F:=-s^2*x1*x3+s^2*x2^2+2*s*x1^3-2*s*x3^3+4*x1^2*x3^2-\

> 32*x1*x2^2*x3+64*x2^4;

> b:=64/55*r13^3-272/55*r13^2-96/55*r13-46/55;

> c:=-2176/605*r13^3+448/605*r13^2+624/605*r13-361/605;

> H:=(s*x1-2*x1^2-4*x1*x2-2*x1*x3+8*x2^2+4*x2*x3+2*x3^2)+\

> b*(s*x2-2*x1^2-4*x1*x2+4*x2*x3+2*x3^2)+\

> c*(s*x3-2*x1^2-4*x1*x2+2*x1*x3-8*x2^2+4*x2*x3+2*x3^2);

> Q:=Scheme(P3,F);

> C:=Scheme(Q,H);

> IsReduced(C);

false

> RC:=ReducedSubscheme(C);

> #SingularPoints(RC);//# means "number of".

1

> HasSingularPointsOverExtension(RC);

false

> pt:=Representative(SingularPoints(RC));

> pt in SingularSubscheme(Q);//pt is not a node of Q.

false

> T:=DefiningPolynomial(TangentSpace(Q,pt));

> T2:=Scheme(Q,T^2);

> #RationalPoints(T2 meet C);

1

> pt in RationalPoints(T2 meet C);
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true

> HasPointsOverExtension(T2 meet C);

false

This way T2 and C generate a pencil of curves with a quadruple base point. The
curve B′ is a general element of this pencil.

Step 5:

> QA:=AffinePatch(Q,4);

> p:=Representative(RationalPoints(AffinePatch(Cluster(pt),4)));

> A3<x,y,z>:=Ambient(QA);

> psi:=map<A3->A3|[x-p[1],y-p[2],z-p[3]]>;

> Q0:=psi(QA);

> FA:=DefiningPolynomial(Q0);

> j:=[Evaluate(Derivative(FA,A3.i),Origin(A3)):i in [1,2,3]];

> J:=LinearSystem(A3,[j[1]*x+j[2]*y+j[3]*z,x^2,x*y,x*z,y^2,y*z,\

> z^2]);

> P6:=ProjectiveSpace(K,6);

> tau:=map<A3->P6|Sections(J)>;

> Degree(tau(Q0));

12

A.2 The procedures LinSys and LinSys2

Magma has a function which calculates linear systems of plane curves with ordinary
singularities, but we want to work with non-ordinary singularities. To achieve this,
we define two procedures. The first one, LinSys, calculates the linear system L of
plane curves of degree d, in an affine plane A, having singular points pi of order
(mi,m2i) with tangent direction given by tdi. To define LinSys run the following
lines:

procedure LinSys(A,d,p,m,m2,td,~L)

//p,m,... are tuples of p_i,m_i,...

x:=A.1;y:=A.2;//The coordinates of A.

L:=LinearSystem(LinearSystem(A,d),p,m);

for j:=1 to #m2 do

if #Sections(L) eq 0 then break;end if;
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a:=p[j][1];b:=p[j][2];

Bup:=[Evaluate(Sections(L)[i],y,(x-a)*y+b) div (x-a)^m[j]:\

i in [1..#Sections(L)]];//The strict transform of the

//blown-up curves.

L1:=LinearSystem(A,Bup);

L2:=LinearSystem(L1,A![a,td[j]],m2[j]);//Imposing the

//infinitely neighbor singularity.

if #Sections(L2) eq 0 then L:=L2;break;end if;

Bdn:=[Evaluate((x-a)^m[j]*Sections(L2)[i],y,(y-b)/(x-a)):\

i in [1..#Sections(L2)]];//The blown-down curves.

R:=Universe(Bdn);

//R is a Rational function field. We need an homomorphism

//to send the elements of Bdn into a polynomial ring.

h:=hom<R->CoordinateRing(A)|[x,y]>;

L:=LinearSystem(A,[h(Bdn[i]):i in [1..#Bdn]]);

end for;

end procedure;

The other procedure, LinSys2, calculates the sub-system J, of a given linear
system L of plane curves, of those sections which have a singularity at a point q of
type m = (m1, . . . ,mj) with tangent directions given by td = [td1, . . . , tdj−1].

procedure LinSys2(A,L,q,m,td,~J)

x:=A.1;y:=A.2;//The coordinates of A.

J:=LinearSystem(L,q,m[1]);

td:=[q[2]] cat td;

for j:=1 to #td-1 do

if #Sections(J) eq 0 then break;end if;

b:=td[j];

Bup:=[Evaluate(Sections(J)[i],y,(x-q[1])*y+b) div\

(x-q[1])^m[j]:i in [1..#Sections(J)]];

J1:=LinearSystem(A,Bup);

J:=LinearSystem(J1,A![q[1],td[j+1]],m[j+1]);

end for;

//

for j:=#td-1 to 1 by -1 do

if #Sections(J) eq 0 then break;end if;

b:=td[j];
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Bdn:=[Evaluate((x-q[1])^m[j]*Sections(J)[i],y,(y-b)/\

(x-q[1])):i in [1..#Sections(J)]];

R:=Universe(Bdn);

h:=hom<R->CoordinateRing(A)|[x,y]>;

J:=LinearSystem(A,[h(Bdn[i]):i in [1..#Bdn]]);

end for;

end procedure;

A.3 Useful curves

Here we construct some curves that are useful in constructions of Chapter 6. We
use the procedure LinSys, defined in Appendix A.2. Recall Notation 4.1.1.

Consider, in a affine plane A, the points

p0 := (0, 0), p1 := (2, 2), p2 := (−2, 2), p3 := (3, 1), p4 := (−3, 1).

From Section 4.1, there exists a pencil of curves of type 6(2, (2, 2)4T ), with singular-
ities at p0, . . . , p4, respectively. Let G be the element of this pencil which contains
the point p5 := (0, 5).

· The curve G is reduced and the tangent line to G at p5 is horizontal:

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],A![0,5],Origin(A)];

> d:=6;m:=[2,2,2,2,1,2];m2:=[2,2,2,2,1];

> td:=[p[i][2]/p[i][1]:i in [1..4]] cat [0];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1

> G:=Curve(A,Sections(L)[1]);

> IsReduced(G);

true

· There exists a reduced curve C of type 8(4, (2, 2)4T , (3, 3)), singular at p0, . . . , p5,

such that the (3, 3)-point is tangent to G. Moreover, G+ C is an reduced element
of a pencil of curves of type 14(6, (4, 4)4T , (4, 4)) :

> d:=8;m:=[2,2,2,2,3,4];m2:=[2,2,2,2,3];
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> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1

> C:=Curve(A,Sections(L)[1]);

> IsReduced(G join C);

true

> d:=14;m:=[4,4,4,4,4,6];m2:=[4,4,4,4,4];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

2

Scheme over Rational Field defined by

1

> #Sections(LinearSystem(L,G join C));

1

Analogously, one can verify that:

· there exists a reduced curve of type 7(3, (2, 2)4T , (2, 2)), singular at p0, . . . , p5,

such that the (2, 2)-point is tangent to G.

Finally we will see that p5 can be chosen such that

· there exist reduced curves C1 of type 7(3, (2, 2)4T , 3) and C2 of type
6(2, (2, 2)4T , 1), both through p0, . . . , p5, such that C1 + C2 is reduced and the sin-
gularity of C1 + C2 at p5 is ordinary.

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],Origin(A)];

> d:=7;m:=[2,2,2,2,3];m2:=[2,2,2,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

6

Scheme over Rational Field defined by

1

Now we impose a triple point to the elements of L. This is done by asking for
annulation of minors of a matrix of derivatives.
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> R<x,y,n>:=PolynomialRing(Rationals(),3);

> h:=hom<PolynomialRing(L)->R|[x,y]>;

> H:=h(Sections(L));

> M:=[[H[i],D(H[i],1),D(H[i],2),D2(H[i],1,1),D2(H[i],1,2),\

> D2(H[i],2,2)]:i in [1..#H]];

> Mt:=Matrix(M);min:=Minors(Mt,#H);

> A:=AffineSpace(R);

> S:=Scheme(A,min cat [x-3,1+n*(y-x)*(y+x)*(3*y-x)*(3*y+x)]);

> //The condition 1+n*(..)=0 guarantees that

> //the solution is not in p.

> Dimension(S);

0

> PointsOverSplittingField(S);

We choose one of the solutions and show that it works:

> R<r1>:=PolynomialRing(Rationals());

> K<r1>:=NumberField(r1^2 - 1761803/139426560*r1 + \

> 1387488001/33730073395200);

> A<x,y>:=AffineSpace(K,2);

> y1:=-33462374400/102856069*r1 + 419793163/102856069;

> p:=[A![2,2],A![-2,2],A![3,1],A![-3,1],A![3,y1],Origin(A)];

> d:=7;m:=[2,2,2,2,3,3];m2:=[2,2,2,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);#Sections(L);

1

> C1:=Curve(A,Sections(L)[1]);

> IsOrdinarySingularity(C1,p[5]);

true

> d:=6;m:=[2,2,2,2,1,2];m2:=[2,2,2,2];

> LinSys(A,d,p,m,m2,td,~L);#Sections(L);

1

> C2:=Curve(A,Sections(L)[1]);

> IsReduced(C1 join C2);

true

> IsSingular(C2,p[5]);

false

> IsOrdinarySingularity(C1 join C2,p[5]);
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true

The verification that the singularities are no worst than stated is left to the reader
(use the Magma functions SingularPoints, HasSingularPointsOverExtension and
ResolutionGraph). To verify the non-existence of singularities at infinity, proceed
as in the end of Appendix A.4.3.

The calculations of Section 6.8, Step 6 are as follows:

> d:=7;m:=[2,2,2,2,1,3];m2:=[2,2,2,2];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

5

Scheme over K defined by

1

> P4:=ProjectiveSpace(K,4);

> tau:=map<A->P4|Sections(L)>;

> Degree(tau(Scheme(A,Sections(L)[3])));

7

thus an hyperplane section of the image of τ is of degree 7.

A.4 Double planes

A.4.1 K2 = 8, 6, 4, 2 and g = 5, 4, 3, 2

Here are the computations announced in section 4.2.1, with details for the case of
a double plane with pg = q = 1 and K2 = 6.

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![7/5,4/5],A![7/5,-4/5],A![2,1],A![2,-1],Origin(A)];

> d:=6;m:=[2,2,2,2,2];m2:=[2,2,1,1];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

5

Scheme over Rational Field defined by

1

We are using symmetry: we want to find p5 = (x, y) and p6 = (x,−y).
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> R<x,y,b,c,d,e,n>:=PolynomialRing(Rationals(),7);

> h:=hom<PolynomialRing(L)->R|[x,y]>;

> l:=h(Sections(L));

> F:=l[1]+b*l[2]+c*l[3]+d*l[4]+e*l[5];

> G:=Evaluate(F,y,-y);

> //

> eqF:=2*x*y*D2(F,1,2)+x^2*D2(F,1,1)+y^2*D2(F,2,2);

> //The condition eqF=0 forces the double point p_5=(x,y)

> //to have one branch tangent to the line T_5.

> eqG:=Evaluate(eqF,y,-y);//The same to the point p_6=(x,-y).

> //

> dif:=y*(y-1/2*x)*(y-4/7*x)*(y+1/2*x)*(y+4/7*x);

In order to obtain p5, p6 6∈ Ti, i = 1, . . . , 4, and p5 6= p6, we need dif to be different
from zero. This is achieved by imposing the condition 1 + n · dif = 0.

> A:=AffineSpace(R);

> Sch:=Scheme(A,[(x-2)^2+y^2-1,F,D(F,1),D(F,2),G,D(G,1),D(G,2),\

> eqF,eqG,1+n*dif]);

> Dimension(Sch);

0

> PointsOverSplittingField(Sch);

This command gives the points of Sch and the necessary field extensions to
define them. Choosing one of the solutions we obtain the points p5, p6. Asking
Magma for the pencil fA, we find a reduced curve B0 of type 15(7, (4, 4)5T , 4). The
branch locus B := B0 +

∑5
1 Ti is of type 20(12, (5, 5)5T , 4). The corresponding min-

imal double plane is a surface of general type with pg = q = 1, K2 = 6 and g = 4.

Verification that B0 is as stated:

> R<r3>:=PolynomialRing(Rationals());

> K<r3>:=NumberField(r3^4 - 570063504574501/8986626*r3^2+\

> 194676993199491455085153141001/323037787455504);

> x1:=-1225449/218906496039245*r3^2 + 6763320857703/401161\

> 4254780;

> y1:=-7879209182423568/1971150953143623770162761495*r3^3 +

> 37270947258282841632/117281546566527266624785*r3;
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> //

> A<x,y>:=AffineSpace(K,2);

> p:=[A![7/5,4/5],A![7/5,-4/5],A![2,1],A![2,-1],A![x1,y1],\

> A![x1,-y1],Origin(A)];

> d:=15;m:=[4,4,4,4,4,4,7];m2:=[4,4,4,4,4];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

2

Scheme over K defined by

1

> B0:=Curve(A,Sections(L)[1]+Sections(L)[2]);

> IsReduced(B0);

true

> Multiplicity(B0,Origin(A));

7

> IsOrdinarySingularity(B0,Origin(A));

true

> [Multiplicity(B0,p[i]):i in [1..6]];

[ 4, 4, 4, 4, 4, 4 ]

> IsOrdinarySingularity(B0,p[6]);

true

> T:=[Curve(A,y-p[i][2]/p[i][1]*x):i in [1..5]];

> [IntersectionNumber(B0,T[i],p[i]):i in [1..5]];

[ 8, 8, 8, 8, 8 ]

> ResolutionGraph(B0,p[1]);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 4, 1, 0 ]) 2 ;

2 ([ -1, 8, 2, 4 ]) ;

One obtains the same resolution graph for p2, ..., p5.

The singularities of a general element of L are no worst than the ones above,
hence we do not need to verify that B0 has no other singularities.
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The other cases, pg = q = 1, K2 = 8, 4, 2 and g = 5, 3, 2, are analogous to
the previous one. One needs only to ask Magma (using the procedure LinSys) for
curves of type

[10 + 2i](2i+ 2, (5, 5)i
T , 4

6−i), i = 6, 4, 3,

with singularities at the previous points p0, . . . , p6. We leave this to the reader.

A.4.2 K2 = 7, 5, 3 and g = 5, 4, 3

Here we have the detailed computations of section 4.2.2.

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![1,0],A![1/5,2/5],A![2/5,1/5],A![8/5,9/5],\

> A![9/5,8/5],Origin(A)];

> d:=15;m:=[4,4,4,4,4,7];m2:=[4,4,4,4,4];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

8

Scheme over Rational Field defined by

1

> Bup:=[Evaluate(Sections(L)[i],y,(x-1)*y+0) div (x-1)^4:\

> i in [1..#Sections(L)]];

> L:=LinearSystem(A,Bup);

> Bup:=[Evaluate(Sections(L)[i],y,(x-1)*y+0) div (x-1)^4:\

> i in [1..#Sections(L)]];

> L1:=LinearSystem(A,Bup);

At this stage we have imposed the (4, 4)-points and resolved p1.

> R<x,y,u,v,n>:=PolynomialRing(Rationals(),5);

> h:=hom<PolynomialRing(L1)->R|[x,y]>;

> l:=h(Sections(L1));

Now we impose, to the elements of l, the necessary conditions in order to obtain
the (3, 3)-point p6 = (u, v). The matrix Mt defined by these conditions cannot have
maximal rank.

> H:=[Evaluate(l[i],[u,v,u,v,n]):i in [1..#l]];

> F:=[Evaluate(l[i],y,(x-u)*y+v):i in [1..#l]];
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> G:=[(F[i]-Evaluate(F[i],x,u)) div (x-u):i in [1..#l]];

> G1:=[(G[i]-Evaluate(G[i],x,u)) div (x-u):i in [1..#l]];

> G2:=[(G1[i]-Evaluate(G1[i],x,u)) div (x-u):i in [1..#l]];

> F:=G2;

> M:=[[H[i],D(H[i],3),D(H[i],4),D2(H[i],3,3),D2(H[i],3,4),\

> D2(H[i],4,4),F[i],D(F[i],1),D(F[i],2),D2(F[i],1,1),\

> D2(F[i],1,2),D2(F[i],2,2)]:i in [1..#l]];

> ME:=[[Evaluate(M[i][o],[1,y,1,v,n]):o in [1..12]]:\

> i in [1..#M]];

> //This last step is needed to increase speed of calculations.

> Mt:=Matrix(ME);

> min:=Minors(Mt,#l);

> A:=AffineSpace(R);

> Sch:=Scheme(A,min cat [x-1,u-1,1+n*v]);

> Dimension(Sch);

0

> PointsOverSplittingField(Sch);

As before, this gives various solutions. We choose one who works. Here goes the
verifications:

> R<r2>:=PolynomialRing(Rationals());

> K<r2>:=NumberField(r2^2 - 1292/35);

> A<x,y>:=AffineSpace(K,2);

> p:=[A![1/5,2/5],A![2/5,1/5],A![8/5,9/5],A![9/5,8/5],\

> Origin(A)];

> d:=15;m:=[4,4,4,4,7];m2:=[4,4,4,4];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> //

> q:=A![1,0];m:=[4,4,3,3];

> td:=[0,35/1292*r2,-455/15504*r2 + 455/7752];

> LinSys2(A,L,q,m,td,~J);

> #Sections(J);

1

> B0:=Curve(A,Sections(J)[1]);

> IsReduced(B0);
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true

> Degree(B0);

15

> Insert(~p,1,q);

> T:=[Curve(A,y-p[i][2]/p[i][1]*x):i in [1..5]];

> [Multiplicity(B0,p[i]):i in [1..6]];

[ 4, 4, 4, 4, 4, 7 ]

> [IntersectionNumber(T[i],B0,p[i]):i in [1..5]];

[ 8, 8, 8, 8, 8 ]

> [ResolutionGraph(B0,p[i]):i in [1,7,2]];

[

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 8, 2, 1 ]) 2 3 ;

2 ([ -2, 4, 1, 0 ]) ;

3 ([ -2, 11, 3, 0 ]) 4 ;

4 ([ -1, 14, 4, 3 ]) ;

,

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -1, 7, 1, 7 ]) ;

,

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 4, 1, 0 ]) 2 ;

2 ([ -1, 8, 2, 4 ]) ;

]

The resolution graphs for the points p3, p4 and p5 are equal to this last one.

Now we calculate the pencil which induces the Albanese fibration.

> d:=16;m:=[4,4,4,4,8];m2:=[4,4,4,4];
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> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> q:=A![1,0];m:=[4,4,4,4];

> td:=[0,35/1292*r2,-455/15504*r2 + 455/7752];

> LinSys2(A,L,q,m,td,~J);

> #Sections(J);BaseComponent(J);

2

Scheme over K defined by

1

> Jy:=LinearSystem(J,Curve(A,y));

> B0 eq Curve(A,Sections(Jy)[1] div y);

true

With this we have constructed a minimal double plane with pg = q = 1, K2 = 7
and g = 5.

A.4.3 K2 = 6 and g = 3

Here we give the detailed computations of Section 4.2.3.

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![4/5,7/5],A![-4/5,7/5],A![1,2],A![-1,2],Origin(A)];

> d:=6;m:=[2,2,2,2,2];m2:=[2,2,2,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

2

Scheme over Rational Field defined by

1

> R<x,y,b,n>:=PolynomialRing(Rationals(),4);

> h:=hom<PolynomialRing(L)->R|[x,y]>;

> l:=h(Sections(L));

> F:=l[1]+b*l[2];

> G:=Evaluate(F,x,-x);

> C:=x^2+(y-2)^2-1;

> //

> eqF:=D(C,1)*D(F,2)-D(C,2)*D(F,1);//To obtain a curve

> //tangent to the conic C at p_5=(x,y).
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> eqG:=Evaluate(eqF,x,-x);//The same to p_6=(-x,y).

> dif:=x*(y-2*x)*(y-7/4*x)*(y+2*x)*(y+7/4*x);

> //We need dif to be non-zero.

> //

> A:=AffineSpace(R);

> Sch:=Scheme(A,[C,F,G,eqF,eqG,1+n*D(F,1)*D(F,2)*dif]);

> Dimension(Sch);

0

> PointsOverSplittingField(Sch);

{@ (-r2, 0, 5377/5292, -3/307328),\

(r2, 0, 5377/5292, -3/307328) @}

Algebraically closed field with 2 variables

Defining relations: [

r2^2 + 3,

r1^2 + 3 ]

We found the points p5, p6. Now we ask for B′ =: B0:

> R<r2>:=PolynomialRing(Rationals());

> K<r2>:=NumberField(r2^2 + 3);

> A<x,y>:=AffineSpace(K,2);

> p:=[A![4/5,7/5],A![-4/5,7/5],A![1,2],A![-1,2],\

> A![-r2,0],A![r2,0],Origin(A)];

> C:=Curve(A,x^2+(y-2)^2-1);

> TangentSpace(C,p[5]);TangentSpace(C,p[6]);

Curve over K defined by -2*r2*x - 4*y + 6

Curve over K defined by 2*r2*x - 4*y + 6

> slp5:=-2*r2/4;slp6:=2*r2/4;

> //

> td:=[p[i][2]/p[i][1]:i in [1..4]] cat [slp5,slp6];

> d:=6;m:=[2,2,2,2,1,1,2];m2:=[2,2,2,2,1,1];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1

> f1:=Sections(L)[1];

> //

> d:=8;m:=[2,2,2,2,2,2,4];m2:=[2,2,2,2,2,2];

> LinSys(A,d,p,m,m2,td,~L);
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> #Sections(L);BaseComponent(L);

2

Scheme over K defined by

1

> #Sections(LinearSystem(L,Curve(A,f1)));

1

Notice that L lifts to the Albanese fibration.

> f2:=Sections(L)[1]+Sections(L)[2];

> B0:=Curve(A,f1*f2);

> IsReduced(B0);

true

> Multiplicity(B0,Origin(A));

6

> IsOrdinarySingularity(B0,Origin(A));

true

> [Multiplicity(B0,p[i]):i in [1..6]];

[ 4, 4, 4, 4, 3, 3 ]

> T:=[Curve(A,y-p[i][2]/p[i][1]*x):i in [1..4]];

> [IntersectionNumber(B0,T[i],p[i]):i in [1..4]];

[ 8, 8, 8, 8 ]

> ResolutionGraph(B0,p[1]);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 4, 1, 0 ]) 2 ;

2 ([ -1, 8, 2, 4 ]) ;

One obtains the same resolution graph for p2, p3 and p4.

> ResolutionGraph(B0,p[5]);

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -2, 3, 1, 0 ]) 2 ;

2 ([ -1, 6, 2, 3 ]) ;
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One obtains the same resolution graph for p6.

We verify that the curve given by f1 has no other singularities in A :

> C:=Curve(A,f1);

> SingularPoints(C);

{@ (0, 0), (-1, 2), (-4/5, 7/5), (4/5, 7/5), (1, 2) @}

> HasSingularPointsOverExtension(C);

false

and that there are no singularities at infinity:

> PB0:=ProjectiveClosure(B0);

> Dimension(SingularSubscheme(PB0) meet LineAtInfinity(A));

-1

A.4.4 K2 = 8 and g = 4

This section contains the computations of Section 4.2.4.

> R<r>:=PolynomialRing(Rationals());

> K<r>:=NumberField(r^2 - 53/485);

> A<x,y>:=AffineSpace(K,2);

> p:=[A![7/5,4/5],A![7/5,-4/5],A![2,1],A![2,-1],\

> A![50/97,-r],A![50/97,r],Origin(A)];

> LinearSystem(LinearSystem(A,2),[p[i]:i in [1..6]]);

Linear system on Affine Space of dimension 2

Variables : x, y with 1 section:

-3*x + 5*y^2 + 1

> //Thus the points are contained in a conic.

> F:=x^3 - 633/97*x*y^2 - 315/97*x + 1050/97*y^2 + 70/97;

> //F gives a cubic tangent to the T_i’s at the p[i]’s,

> //i=1,...,6.

> d:=4;m:=[1,1,1,1,1,1,2];m2:=[1,1,1,1,1,1];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1



A.4. Double planes 117

The remaining verifications are left to the reader.

A.4.5 K2 = 8, g = 4, non-Du Val double plane

The detailed calculations of Section 6.12 are as follows:

> A<x,y>:=AffineSpace(Rationals(),2);

> p:=[A![1,0],A![2,1],A![1,2],A![8/5,9/5],Origin(A)];

> d:=10;m:=[3,3,3,3,4];m2:=[3,3,3,3];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);BaseComponent(L);

8

Scheme over Rational Field defined by

1

Now we look for the (3, 2)-point p5 =: (u, v) :

> R<n,x,y,u,v>:=PolynomialRing(Rationals(),5);

> h:=hom<PolynomialRing(L)->R|[x,y]>;

> l:=h(Sections(L));

> H:=[Evaluate(l[i],[n,u,v,u,v]):i in [1..#l]];

> F:=[Evaluate(l[i],y,(x-u)*y+v):i in [1..#l]];

> G:=[(F[i]-Evaluate(F[i],x,u)) div (x-u):i in [1..#l]];

> G1:=[(G[i]-Evaluate(G[i],x,u)) div (x-u):i in [1..#l]];

> G2:=[(G1[i]-Evaluate(G1[i],x,u)) div (x-u):i in [1..#l]];

> F:=G2;

> M:=[[H[i],D(H[i],4),D(H[i],5),D2(H[i],4,4),D2(H[i],4,5),\

> D2(H[i],5,5),F[i],D(F[i],2),D(F[i],3)]:i in [1..#l]];

> ME:=[[Evaluate(M[i][o],x,u):o in [1..#M[1]]]:i in [1..#M]];

> Mt:=Matrix(ME);

> min:=Minors(Mt,#l);

> A:=AffineSpace(R);

> dif:=v*(u-2*v)*(2*u-v)*(9*u-8*v);

> S:=Scheme(A,min cat [(u-1)^2+(v-1)^2-1,u*y-v,x-u,1+n*dif]);

> Dimension(S);

0

>

> PointsOverSplittingField(S);
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We verify that the solution works:

> R<r1>:=PolynomialRing(Rationals());

> K<r1>:=NumberField(r1^4 - 6452/2005*r1^3 + \

> 627046/218545*r1^2 - 39636/43709*r1 + 3645/43709);

> A<x,y>:=AffineSpace(K,2);

> u1:=-5070244/445797*r1^3 + 133654601/4457970*r1^2 - \

> 33576941/2228985*r1 + 70335/33022;

> //

> p:=[A![1,0],A![2,1],A![1,2],A![8/5,9/5],A![u1,r1],A![0,0]];

> d:=10;m:=[3,3,3,3,3,4];m2:=[3,3,3,3,2];

> td:=[p[i][2]/p[i][1]:i in [1..#m2]];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1

> f1:=Sections(L)[1];

> d:=3;m:=[1,1,1,1,1,1];m2:=[0,1,1,1,1];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1

> f2:=Sections(L)[1];

> L:=LinearSystem(A,[f1^2*(u1*y-r1*x),f2^6*y^3]);

> BaseComponent(L);

Scheme over K defined by

1

> B1:=Curve(A,Sections(L)[1]+Sections(L)[2]);

> IsReduced(B1);

true

> Degree(B1);

21

> T:=[Curve(A,p[i][1]*y-p[i][2]*x):i in [1..5]];

> [Multiplicity(B1,p[i]):i in [1..6]];

[ 6, 6, 6, 6, 6, 9 ]

> IsOrdinarySingularity(B1,p[6]);

true

> [IntersectionNumber(T[i],B1,p[i]):i in [1..5]];

[ 12, 12, 12, 12, 12 ]
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> [ResolutionGraph(B1,p[i]):i in [1..5]];

The resolution graph on the Digraph

Vertex Neighbours

1 ([ -1, 12, 2, 6 ]) 2 ;

2 ([ -2, 6, 1, 0 ]) ;

The points p2, . . . , p5 have resolution graph equal to this one. Finally we check
that pg(S) = 1.

> d:=5;m:=[2,2,2,2,2,1];m2:=[1,1,1,1,1];

> LinSys(A,d,p,m,m2,td,~L);

> #Sections(L);

1
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[Fr] P. Francia, On the base points of the bicanonical system, Symp. Math. 32,
Academic Press, 141–150 (1991).

[GH] P. Griffiths and J. Harris, Principles of algebraic geometry , Wiley Classics
Library, New York (1994).

[Ha] R. Hartshorne, Algebraic geometry , vol. 52, Springer-Verlag (1983).

[Hu] J. Hutchinson, The Hessian of the cubic surface, Bull. Amer. Math. Soc.,
5 (1898), 282–292.

[Is] H. Ishida, Bounds for the relative Euler-Poincaré characteristic of certain
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