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Abstract. Understanding the role of the climate on the wine production is one of the major concerns of this 
sector since the environment usually determines the output of this industry. There are only a few previous 
studies that attempted to compile these environmental effects as an index, usually considering the temperature 
and the precipitation as their core variables. The present study suggests a new climate index which is based on 
descriptive statistics. Our index tries to mimic the target region characteristics and avoid the past studies 
premise of imposing previously conceived restrictions such as a fixed optimal climate. We then used yearly 
production and daily temperature data (1950-2016) from the Portuguese Minho wine region to test our 
proposed index and compare it with Ribéreau-Gayon and Peynaud (RGP, Ribéreau-Gayon et al., 2003) and 
Growing Degree-Days (GDD, Winkler et al., 1974) indexes. Our results showed that the newly proposed index 
may outperform the explanatory power of the other indexes and, in addition, may output interesting and 
unknown characteristics such as the different ideal temperatures regarding the studied region. 

 

1 Introduction 

The climate plays an important role on the wine 
production since its quality and quantity is strongly 
dependant on the inherent weather conditions as stated 
on Malheiro et al. [1] and Salinger et al. [2]. That strong 
bond made the yearly grape quality become a feature 
included in the study of the effects of the climate 
change [3,4]. Even though many individual climate 
factors make their contribution in the grape 
development and the following grape quality (e.g. solar 
radiation, wind, humidity, among others), the 
temperature and the water supply are among the most 
important [5]. 
The vines are capable to grow in a wide range of 
climatic conditions, nonetheless the most remarkable 
wine-growing regions are located between the 35th and 
the 50th parallels in the Northern Hemisphere and 
between the 30th and the 45th parallels in the Southern 
Hemisphere [6]. During the growing season, the 
extreme high temperatures can affect the grape quality 
and the vineyard overall production in many ways, 

inducing high grape mortality or total failure of flavour 
ripening [7]. 
In the opposite way, low and frosting temperatures can 
also harm the grape flavour and colour due to the slower 
grape fermentation. In the worst-case scenario extreme 
cold can also cause the total wipe-out of the vineyard 
production. Summarily, Gladstones [8] suggests that the 
grape growing process usually requires mild and narrow 
ranged temperatures (avoiding the extreme heat or the 
extreme cold) and actually, according to Gladstones [9] 
and Jones [10] the most remarkable quality wines are 
associated with low frost damage and mild winters 
(January, February, March), early flowering, and warm 
springs (April, May, June) and optimal maturation 
associated with short range variability in the summer 
temperature (July, August, September). 
The temperature has such a heavy impact on the grape 
growing process that the different vine stages can be 
predicted by simple single based temperature models 
[11]. The amount of the precipitation that a vineyard 
receives is also an important feature that determines the 
following grape quality and output. During the grape 



2

E3S Web of Conferences 50, 01028 (2018)	 https://doi.org/10.1051/e3sconf/20185001028
XII Congreso Internacional Terroir 

Web of Conferences 

maturation period a vineyard should only be exposed to 
a certain amount of precipitation since its excess may 
cause major quality issues, including disease 
susceptibility and rotten grapes. The lack of 
precipitation in every non-irrigated farm may also cause 
production problems such as shrinking berries, and of 
course vineyard mortality and low production levels 
[12]. Nonetheless, a moderate water deficit may reduce 
the grape yield but improve the grape quality [13,14]. 
This work gathers information about the climate impact 
on the wine production and presents an overview of the 
current bibliography about the existent wine-oriented 
climate indexes. Afterwards a new climate index based 
on descriptive statistical parameters is created and 
evaluated using a simple case study of the Portuguese 
Minho wine production. In order to test the proposed 
index, we compare its explanatory power upon the 
Ribéreau-Gayon and Peynaud (RGP) [15] and Growing 
Degree-Days (GDD) [16] indexes.  
The article is divided in four sections. Besides the 
overview of environmental effects on the vineyard 
production, the next section introduces the notion of 
climate index, with a few examples from the available 
bibliography, and presents in more detail two indexes 
(GDD and RGP indexes). The New Index is described 
in section three. Finally, section four summarizes the 
main conclusions and suggestions for further research. 

2 Climate Index 

The weather conditions are roughly random and 
regarding the vineyard farms there is not much to do to 
avoid extremal conditions, apart from irrigated farms 
that can overcome dry and low precipitation periods. 
The effects of the weather conditions, particularly the 
temperature and the precipitation have been the subject 
of many studies [8,17-19] due to their strong link with 
good grape quality and the following premium wines. 
With such randomness brought into the wine sector and 
overall agricultural production there’s also a substantial 
research on risk protection using financial assets such as 
weather derivatives as stated by Zara [20] or Leggio 
[21]. Those studies also consider weather indexes to 
determine the asset price and the possible hedging 
strategies.   
The great majority of the bioclimatic indexes that are 
typically used to evaluate the wine production calculate 
the accumulated heat over the growing season (often 
since October 1st until April 30th). This growing season 
index originally stated on Winkler et al. [16] is usually 
called Growing Degree Days (GDD) or Winkler Index 
(WI) and it is used to describe a general climate and 
determine if it is suitable for wine production. Another 
remark about the WI is that the author defines five 

possible temperature outcomes (1-very cold until 5-very 
hot).  
The Huglin Index (HI), in Huglin [22], follows the same 
premise of WI, although, it differs in some features 
since it uses simultaneously the mean and maximum 
temperatures in the daytime temperature estimation. It is 
also calculated using a shorter 6-month period rather 
than seven. Furthermore, the HI incorporates a “length 
of the day” coefficient into their calculations which is 
self-explanatory.  
The research by Stock et al. [23] showed that it is 
expected an overall northern hemisphere increase of 
100 to 600 units in the HI until 2050. That fact may 
indicate a latitudinal shift of the grapevine cultivation in 
Europe, with new areas on the northern territories 
becoming more suitable to wine production opposed to 
the southern ones which may become inadequate due to 
the excessive heat.  
Jones et al. [18] demonstrated that the simple average 
growing season temperatures on WI and HI are 
associated to quality vintages. The biologically effective 
degree-day index (BEDD) created by Gladstones [9] is 
also a heat sum index. One difference between HI and 
BEDD is the way that the daytime temperature is 
estimated. The BEDD index incorporates a new feature 
which is calculated based on the diurnal temperature 
range. This index is considered overly adjusted if the 
diurnal temperature range is greater than 13° C, and it is 
under adjusted when the temperature range is less than 
10° C.  
Other available indexes compile more than the 
cumulative temperature such as Branas et al. [24] which 
suggested an index that compiles the daily average 
temperature multiplied by the daily precipitation in 
order to estimate the risk of the downy mildew disease 
appearance. Ribéreau-Gayon et al. [15] created 
Ribéreau-Gayon and Peynaud bifactorial hydrothermal 
scale also known as the RGP index (RGP), even though 
it presents the similar cumulative temperature approach 
as its predecessors, the RGP also considers the daily 
precipitation and shifts the index cycle, starting at 1st 
April until 30th October. Fregoni [25] actually found a 
meaningful relationship between the RGP index and the 
Pinot Noir grape production. Similarly, Zara [20] also 
validated the RGP index utility for their hedging 
strategy development.  
Other authors successfully connected different indexes 
such as Tonietto and Carbonneau [26]. They combined 
HI, the Dryness Index (DI) and the Cool Night Index 
(CI) to classify the climate stations in featured wine 
regions. Nemani et al. [27] also combined the WI and 
extreme event frequencies to highlight possible shifts 
and expansion/contraction of grapevine areas, while 
Fraga et al. [28] used the natural variables such as 
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validated the RGP index utility for their hedging 
strategy development.  
Other authors successfully connected different indexes 
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minimum/maximum temperature and precipitation as 
straight-forward model regressors in a logistic model. 
Even though many features can be considered and 
included when the climate suitability is evaluated, the 
temperature grabs the first place as the most relevant 
and unavoidable (at least on viticulture). 

3 A new climate index 

In this section we will purpose a new index (NI), but in 
order to furtherly compare it to the available previous 
studies, we describe the aforementioned indexes GDD 
(WI) and RGP. These two indexes were selected since 
they use the temperature value, which is the core 
variable of the model of this work.
The specific formulation of GDD and RGP lays on the 
expression (1) and (2) respectively. 

(1)

(2)
(2)

where n is equal to 214, corresponding to the number of 
days between April 1st and October 31th, and m is equal 
to 212 or 213, corresponding to the days between 1 
October and 30 April, for each year. 
Each index i corresponds to a single day, and  is the 
average daily temperature recorded during ith day;  is 
the amount of rainfall in the ith day. 

The RGP and GDD have quite similar expressions, in 
fact the RGP only shifts the analysed timeline and adds 
up the precipitation variable. One feature that 
immediately comes upfront is their lethargic nature 
since they both have a fixed reference temperature (10º 
C). According to Nemani et al. [27] the ideal 
temperature for grape growing changes across the 
whole production process, therefore, settling an average 
temperature (RGP and GDD) may generalize the 
calculations too much.  
The main goal of this work is to find a more suitable 
way to consider the weather effects on the wine 
production and overcome some flaws pinpointed on the 
featured two indexes. The NI is suggested based on the 
descriptive statistics of the data, such as Kurtosis and 
Skewness which measures the tailedness and 
asymmetry of the distribution [29].  

(3)

(4)

For univariate data  the Kurtosis and 
Skewness values are given by equations (3) and (4) 
respectively, where  represents the standard deviation 
of the data, while represents its mean value. Apart 
from the newly introduced parameters we also adopt a 
different timeline suggested by Gladstones [9] and 
Jones [10] in order to better define the vineyard 
lifecycle. Therefore, we consider three different periods 
of three months each (equation 5).  

(5)

Where j = 1 corresponds to the first time interval with 
days, the period between the 1st of January and 30th

of March; j = 2 corresponds to the second time interval 
with days, the period between the 1st of April and 
30th of June and, finally, j = 3 with days, 
corresponds to the period between the1st of July and 30th

of September. The parameter  is the average 
temperature for each period j and the parameters 

 are, respectively, the optimal value of kurtosis, 
skewness and mean temperature for the correspondent 
period, which will be explained in the following. 

The suggested index tries to mimic the descriptive 
statistical values of a target distribution. Therefore, to 
calculate these “optimal” values we fitted a polynomial 
single regression (equation 6). 

(6)

The dependant variable Z corresponds to the production 
values (in litres) and the single explanatory variable X is 
the kurtosis, skewness, or the mean temperature values 
for each period j (j = 1,2,3).  
Considering 67 values for variable Z of Minho’s green 
wine production from 1950 until 2016, collected from 
CVRVV [30,31], nine different polynomial single 
regression were performed to obtain the three optimal 
parameters for each period and each variable.  
We gathered the daily averaged temperature data and 
precipitation values from the E-OBS observational 
interpolated/gridded dataset, version 15 [32]. Despite a 
few limitations explained at Hofstra et al. [33], this 
dataset provides uninterrupted and homogeneous 
gridded fields of daily average temperatures and daily 
cumulative precipitation over Europe from 01-01-1950 
until 31-12-2016, on an approximate 27 km spatial 
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resolution. The climatic data is extracted from a 16 
square grid-box (41.12º to 42.12º latitude and 7.87º to 
8.87º longitude) that covers the Minho territory. 
Considering those 16 values we calculate their total 
average which in the end samples a good approximation 
to the Minho’s overall weather conditions.  
First, we test our available data in the previously 
mentioned GDD (WI) and RGP indexes.  
There are some interpretation difficulties associated 
with the polynomial regression. These problems can be 
surpassed performing algebraic manipulations, 
according to Stimson [34], and equation (6) can be 
reparametrized as equation (7):  
 
   (7) 
 
where M is the minimum/maximum value of Z 
(equation 8) while F is the minimizing (for convex, 

) or the maximizing (for concave, ) value 
of Z (equation 9).  
 
 

 
 (8) 

    
 

 

 (9) 

 
Table 1 displays the nine Polynomial regression results 
and the target F calculated as Stimson [34]. Each 
regression was performed individually settling the 
dependant variable as the yearly production upon of 
kurtosis , skewness  and mean temperature  for 
each period j = 1,2,3 corresponding to each previously 
mentioned trimester. The kurtosis values that maximize 
the output tend to be higher than three (heavier tails 
than the normal distribution) while skewness values 
should linger around zero (similar to the normal 
distribution). 
 

Table 1. Polynomial regression results of Production 
(dependent-variable) upon kurtosis, skewness and mean 

temperature for each period 
 
Variable X   F 

 76012408* -5590239 6.7987 

 92450299* -10763386* 4.2947 

 75220789* -5819973* 6.4623 

 -102728129* 432115254* 0.1189 

 135225197* 165552672* -0.4084 

 -68206445 570990174* 0.0597 

 65840653* -5500094* 5.9854 

 54500304* -2988560* 9.1182 

 47406145* -2033064* 11.6588 

* Statistically significant results for a 5% level of significance. 
Source: Own elaboration with CVRVV [30,31] data. 
 
There is not much to say about   since they 
represent the target mean temperature values, although 
the increasing temperature  displays the 
typical differences between Winter, Spring and Summer 
respectively. That is actually another concern, since the 
negative regression coefficient ( ) illustrate that F 
accounts the value where the production is maximized. 
On the other hand, that doesn’t apply to the skewness 
values where , since F retrieves a minimum for 

 and . Given that, we need to accommodate 
equation (5) for each situation and also ensure that the 
three variables contribute equally to the final result. To 
overcome that problem, we normalized each variable 
within [0,1] settling 1 as the major penalty to the overall 
result (Table 3) while 0 represents the optimal target. 
Since the parameter F absorbs different meanings we 
need to settle a set of rules for each F representation 
(while x denotes a single observation), presented in 
Table 2. 
 
Table 2. Different boundaries per each polynomial regression 

result 
 
    
F is a Maximum (A) 1 0 1 
F is a Minimum (B) 0 1 0 
 
Where:  

  (10) 
   

 
After gathering information about the F representation, 
we settle the normalization process accordingly (Table 
3). 
 

Table 3. Normalization scenarios per each F formulation 
 
 Normalization Formula 
Scenario A 

 
Scenario B 

 
 
The equation (5) only gives us the general sum and 
dispersion guideline when F represents a maximum. But 
technically each F can be a maximum (A) or a 
minimum (B) suggested value to place on equation (5), 
therefore the input calculation varies accordingly. 
Substituting each optimal  and the temperature 
values  on equation (5) we gather a set of raw values 

that don’t acquaint their F as a maximum/minimum 
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value. By labelling them properly according to Table 2 
and applying the normalization on Table 3 the final 
index data series (67 observations, 1950-2016) is 
obtained.  
To test our index, we performed an Ordinary Least 
Squares such as Fregoni [25] and Cossu et al. [35] 
opposed to other indexes already presented during this 
work (RGP, GDD). Equation (11) relates each index 
value (D) with the production (Z).   
 
  (11) 
 
The Table 4 displays the OLS regression output 
coefficients for the three different indexes considering 
the Minho region production values as the dependent 
variable. 
 

Table 4. OLS regression output for three different indexes 
 
Index    
RGP 1.421^8* -1.651^3* 0.07545 
GDD 482586786* -231452* 0.251 
NI 569342373* -66472298* 0.3036 
* Statistically significant results for a 5% level of significance. 
 
The first remark that we’ve notice is the substantially 
low R-Squared values, that fact may be explained by the 
omission of many other explanatory variables that 
actually also affect the production output, such as the 
harvested land, the economic policies and market 
environment. Nonetheless, our suggested model 
manages to achieve a higher R-Squared upon the other 
two indexes. All three indexes reveal a negative 
coefficient  indicating that increments on each index 
value may result in a decrease on the output variable (Z) 
– production as expected (since higher index values 
logically represent worse weather conditions). The 
straightforward interpretation of our suggested index 
(NI) is that the more the distributional weather values 
drift away from the settled as optimal, the smaller the 
production values should be. Other advantage of the NI 
against the other common indexes is that it doesn’t 
settle arbitrary bounds since it is constructed to evaluate 
a specific production environment. Therefore, the 
optimal values  should vary upon different 
regions and adapt to different environment in order to 
become a versatile and suitable index. A well calibrated 
index may play an important role in production hedging 
calculations resembling Zara [20] or efficiency related 
works where the climate is quite responsible for 
apparent outliers and general data noise. Nonetheless, 
we present a quite complex formulation reinforced by 
the necessary set of rules upon the F values.   

4 Conclusions 

This empirical work tries to understand the role of the 
climate effects upon the wine industry production. After 
considering the available bibliography regarding the 
environment effect measures (climate indexes) we 
noticed that even though each existing index underpins 
and justifies its features in solid theoretical background, 
all of them used pre-formulated values that generalizes 
the index application apart from the production 
geographic position. Therefore, our main goal was to 
provide an index that can be adjusted individually per 
each wine production that we are actually studying. Our 
suggested index assembles descriptive statistics features 
such as the temperature mean, the kurtosis and 
skewness with optimal values calculated according to 
Stimson [34] polynomial regression approach. 
Regarding the Minho region and our model 
formulations, generally heavy-tailed and non-skewed 
(roughly normal) temperature distributions during the 
three period subsets are suggested in order to maximize 
target region output. In order to evaluate our index 
performance, we made an OLS regression such as 
Fregoni [25], Zara [20] and Cossu [35] to study if the 
suggested index actually does have better explanatory 
capabilities than the others. Using Minho’s region wine 
production dataset our proposed index reveals himself 
statistically significant and also outperforms GDD and 
RGP, considering explanatory power parameters. For 
further development it is suggested to add more 
environmental parameters such as the precipitation to 
the model in order to increase his accuracy, the NI also 
computes the observation dispersion linearly on the 
objective function (OB), so, it might be interesting to 
test non-linear OB formulations. All inputs 
(temperature, kurtosis and skewness) were weighted 
equally, changing the formulation weights may also 
display important and relevant information since we 
might overvaluing/undervaluing the parameters. Such 
study may zoom even further geographic characteristics 
and find the core parameter for each specific farm. It 
would be also interesting to see a further NI application 
on vineyard hedging problems or efficiency-based 
studies.  
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