INTERPRETAÇÃO DE TIPOLOGIAS QUİMICAS ATRAVÉS DA UTILIZAÇÃO DE ANÁLISE DE CORRESPONDÊNCIAS

F. Pacheco ${ }^{1}$, M.R. Portugal Ferreira 2

${ }_{2}^{1}$ Seccáa de Geologia, Universidade de Trás-os Montes e Alto Douro, 5000 Vila Real
${ }^{2}$ Instituto de Investigação da Água, 3000 Coimbra
Abstract

Based on the interpretation of factors, defined by the method of Correspondence Analysis, it was possible to distinguish: 1) waters whose chemistry is dominated by pollution from waters whose chemistry is controlled by the weathering reactions of silicate minerals, biotite muscovite and quartz; 2) waters with chemistries derived from different weathering reactions.
Localização da Área de Estudo

Figura 1: Localização da área de estudo (Balugas - Vila Pouca de Aguiar).

A zona estudada compreende o sector da Serra da Padrela entre Tinhela de Baixo e Lagoa (Vila Pouca de Aguiar), e representa-se por um quadrado com 5 Km de lado, que se estende pelas folhas $N^{0} 74$ e 75 da Carta Topográfica Militar à escala 1/25000; as coordenadas Gauss dos cantos inferior esquerdo e superior direito desse quadrado são, respectivamente, $(M, P)=(245,505) \mathrm{Km}$ e $(\mathrm{M}, \mathrm{P})=(250,510) \mathrm{Km}$.

O principal acesso à região é a estrada que liga Vila Pouca de Aguiar a Valpaços (EN206); a zona estudada localiza-se entre os kilómetros 129 e 136. Na Figura 1 mostra-se a localização da área de estudo no território nacional.

Enquadramento Geológico Regional

No contexto geotectónico, a área de estudo enquadra-se na Sub-Zona Galiza Média Trás-os-Montes, que corresponde a um subdominio da zona Centro lbérica (Figura 2). m

A geologia regional caracteriza-se, fundamentalmente, por corpos graniticos, de várias fàcies e idades, intruídos em formações metassedimentares pertencentes, principalmente, ao Complexo Xistoso do Grupo Peritransmontano definido por Ribeiro (1974). Importa referir, ainda, a ocorréncia de depósitos cenozóicos relacionados com o acidente tectónico de Vila Real-Verin; säo constituidos, essencialmente, por sedimentos arcósicos, arenosos, argilosos:\%
cascalhentos, correspondentes a depósitos de orige cascalhentos, correspondentes a depósitos de origem lacustre, fluvial e de vertente. Em associação com a mega-estrutura de Vila Real-Verin, salienta-se a ocorrênciapd emergéncias de águas minerais, na regiäo de Pedras Salgadas, Vidago, Chaves Vilarelho da Raia (Sousa Oliveira, 1995).

Legenda:

SINAIS CONYENCIONAIS
——Limite geológico.
———Falha.
ニー? F Falha prováve!.
A-? Carreamento(?).
6 Nascente hidromeral.

Figura 2: Enquadramento Geologico da zona de Balugas; adaptado de Sousa Oliveira (1995).
Unidades Litológicas e Tipologias Químicas
As unidades metamórficas que afloram na área de estudo (Portugal Ferreira \& Pacheco, 1993; Pacheco, 1995) podem agrupar-se, de acordo com as suas composições mineralógicas e características mecânicas, em (Figura 3):

Filádios: rochas pouco compactas, constituídas essencialmente por quartzo, moscovite e biotite;

Quartzitos: rochas muito compactas, constituidas, fundamentalmente, por quartzo, moscovite, clorite e biotite;

Xistos carbonosos: rochas compactas, formadas por quartzo, matéria carbonosa e escassa moscovite.

As amostras de água, colhidas nas unidades acima referidas, apresentam concentrações de silica e bicarbonato que permitem distinguir 5 grupos (Figura 4):

Grupo 1 (*): as amostras deste grupo foram recolhidas nos xistos carbonosos;

Tinhela de Baixo - Balugas - Lagoa (Vila Pouca de Aguiar)

Legenda:

[Gupo : *
Grupe 20
Lirupe 30
larupe 40 Grupo 5 .

Escoun grafica:

Figura 3: Mapa que agrupa as unidades geológicas existentes na zona de Balugas de acordo com as suas composiçóes mineralógicas e características mecânicas. No mesmo mapa, projectam-se, com símbolos diferentes, as amostras de água colhidas em cada uma daquelas unidades. As amostras de água colhidas nos filádios dividem-se em dois grupos, um contém as amostras que se localizam nas zonas mais acidentadas, e o outro, aquelas que surgem nas zonas mais aplanadas.

Grupo $2(\otimes)$ e $3(\odot)$: A Figura 3 põe em evidéncia uma associação com os filádios, estando as amostras do grupo 2 localizadas na vizinhança das zonas mais acidentadas (declive superior a 20\%) e as do grupo 3 nas zonas mais aplanadas;

Grupo 4 (0): e $5(\cdot)$: relação provável com os quartzitos, mas associados a reacções de alteração diferentes.

Análise de Correspondências
No Quadro 1 estão expressas as composições químicas de amostras de água colhidas na zona de Balugas. Esse conjunto de amostras foi estudado através da Análise de Correspondências (Benzecri, 1973), estando os resultados expressos nos Quadros 2, 3 e 4. O ião sulfato não foi incluído na análise por apresentar, em quase todas as amostras, valores iguais ou muito próximos de zero.

Figura 4: Distribuição das concentraçōes de sílica e bicarbonato em amostras de água colhidas na zona de Balugas. Esta distribuição permite descriminar visualmente 5 grupos: Grupo 1 (*), Grupo $2(\otimes)$, Grupo 3 (©), Grupo 4 (O) e Grupo 5 (०).

Quadro 1: Composição química de 17 amostras de água colhidas na zona de Balugas; concentraçóes em $\mathrm{mg} /$; recolha feila em $5 / 8 / 94$; análises efectuadas no Laboratório de Quimica da Universidade de Trás-os-Montes e Alto Douro; concluidas em 31/8/94.

Amostra	Na^{+}	K^{+}	Mg^{2+}	Ca^{2+}	$\mathrm{HCO}_{3}{ }^{-}$	Cl	$\mathrm{SO}_{4}{ }^{2}$	$\mathrm{NO}_{3}{ }^{\circ}$	SiO_{2}
A 1	3.0	0.6	1.0	1.5	5.8	4.6	v	2.5	5.4
A 2	3.5	0.7	1.5	1.0	5.8	4.3	v	5.9	8.8
A4	2.0	0.6	0.5	0.5	1.4	3.4	v	0.3	6.6
A5	3.5	0.2	1.0	1.5	7.1	4.4	0.6	1.5	6.2
A6	2.5	0.5	0.5	0.5	1.4	3.6	1.9	0.3	7.5
A7	3.0	1.1	1.5	2.0	6.7	3.3	9.4	0.1	9.4
A8	2.5	1.0	1.0	1.5	4.4	4.0	0.1	1.6	5.4
A9	3.0	0.5	1.0	2.0	8.5	4.1	v	1.6	6.2
A10	4.5	1.7	1.0	1.5	8.1	6.2	0.5	2.1	6.1
A11	3.0	1.0	1.0	0.5	8.4	3.5	v	0.4	8.1
A12	3.0	1.2	1.0	0.5	6.4	3.8	v	1.8	7.7
A13	2.0	1.4	0.5	0.5	4.4	3.5	v	2.2	6.6
A14	3.5	1.4	1.5	1.5	13.2	4.5	v	2.2	7.7
A15	4.5	0.8	1.0	0.5	12.5	3.6	v	2.2	9.1
A16	3.5	1.8	1.0	2.0	13.8	3.3	v	2.2	3.9
A17	3.5	1.8	1.0	0.5	8.8	4.3	v	2.2	9.1
A21	2.5	0.4	1.5	1.0	4.4	3.7	v	2.2	5.5

Quadro 2: Resultados da Análise de Correspondências - distribuicâo da variăncia pelos 2 primeiros factores

Factor	Valor próprio	Percentagem	Percentagem cumulativa
F1	0.090	58.8	58.8
F2	0.039	25.1	83.9

Quadro 3: Resultados da Análise de Correspondéncias - peso das variáveis (factor loadings) nos factores 1 e 2, multiplicados por 1000

Factor	Na^{+}	K^{+}	Mg^{2+}	Ca^{2+}	$\mathrm{HCO}_{3}{ }^{-}$	Cr	$\mathrm{NO}_{3}{ }^{-}$	SiO_{2}
F 1	-5.3	-78.5	37.6	158.3	-344.4	105.4	774.4	-41.6
F 2	39.5	-22.0	12.2	-130.1	-234.1	113.7	-245.2	250.4

Quadro 4: Resultados da Análise de Correspondèncias - coordenadas das amostras (factor scores) nos factores 1 e 2, multiplicados por 1000.

Factor	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16	17	21
F1	55.9	295.6	-27.4	-109.7	-27.2	-245.9	18.1	-150.3	-88.9	-324.9	-94.8	40.8	-236.5	-250.1	-281.9	-138.2	81.5
F2	-36.0	-18.2	547.1	-5.2	580.1	185.7	66	-95.2	-38.0	79.7	82.2	113.5	-180.4	-89.7	-44.7	35.0	49.7

O Factor 1 (58.8%) da variância apresenta loadings positivos nos iōes associados à poluição (cloreto e nitrato) e loadings negativos nos iões ligados à hidrólise de silicatos (bicarbonato e sílica). Tal facto sugere que as amostras com score positivo tenham composição química dominada pela poluição, e que nas amostras com score negativo o quimismo seja controlado pela hidrólise.

Pacheco \& van der Weijden (1995) definem percentagem de poluição de uma amostra de água pela expressão (concentrações em equivalentes por litro)

$$
\%-\text { poluição }=\frac{[\mathrm{Cl}]+\left[\mathrm{SO}_{4}\right]+\left[\mathrm{NO}_{3}\right]}{[\mathrm{Cl}]+[\mathrm{SO} 4]+\left[\mathrm{NO}_{3}\right]+[\mathrm{HCO} 3]} \times 100
$$

considerando poluídas as amostras que apresentem \%-poluição superior a 50%.
Na figura 5 estão projectadas as \%-poluição das amostras contra os respectivos scores no factor 1; as amostras com score negativo definem uma recta de regressão e as amostras com score positivo uma recta de regressão diferente. Tal facto sugere que o factor 1 permite, de facto, distinguir amostras poluidas de amostras näo poluídas; no entanto, não é o patamar de \%-poluição $=50 \%$ que permite estabelecer essa distinção, mas sim, o sinal (positivo ou negativo) dos scores.

Projectando as razões molares $\mathrm{HCO} 3 / \mathrm{SiO} 2$ das amostras, em função dos scores no factor 2, obtém-se a distribuição expressa na Figura 6. É clara a separação entre as amostras que constituem os grupos definidos anteriormente.

A composição quimica das biotites e moscovites, presentes nas unidades metamórficas (Pacheco, 1995), permite definir relações molares $\mathrm{HCO} 3 / \mathrm{SiO} 2$, típicas das alterações daqueles minerais em caulinite e gibsite. Essas relações estão representadas por linhas na Figura 6. A posição das amostras dos diferentes grupos, relativamente a essas linhas, sugere que: 1) a composição química do grupo 1 relaciona-se com a dissolução do quartzo, acompanhada pela hidrólise da moscovite com formação de gibsite. Tal associação é compativel com a mineralogia dos xistos carbonosos; 2) a composição química dos grupos 2 e 3 (filádios) relaciona-se com a hidrólise da biotite (fundamentalmente), havendo produção de uma mistura de caulinite e gibsite. O grupo 2 (zonas de maior declive) associa-se a estágios de alteração mais intensos, caracterizados pela produção de misturas mais ricas em gibsite; 3) a composição química do grupo 4 (quartzitos) relaciona-se com a alteração da biotite, sendo produzida uma mistura de caulinite e gibsite rica em caulinite (alteração menos intensa que a dos filádios, provavelmente relacionada com a maior resistência mecânica destas rochas).

Figura 5: Regressâo entre a \%-poluição das amostras e os respectivos scores no factor 1.

Figura 6: Regressạo entre a razảo molar $\mathrm{HCO} / \mathrm{SiO} 2$, na água, e os scores no factor 2. * = Grupo 1 (xistos carbonosos); $\otimes=$ Grupo 2 e $\odot=$ Grupo 3 (filádios); $\mathrm{O}=$ Grupo $4 \mathrm{e} *=$ Grupo 5 (quartzitos).

O ajuste das amostras a uma função exponencial denuncia as diferenças nas taxas de libertação de silica, experimentadas pelas diferentes reacções de alteração: 1) as amostras do grupo 1 estão associadas a reações em que há libertação de sílica sem que haja libertação de bicarbonato (dissolução de quartzo); 2) a composição química das amostras dos grupos 2, 3 e 4 resultou da hidrólise da biotite, com produção de caulinite e gibsite, reacções que libertam silica e bicarbonato; 3) embora não tenha sido associado a nenhum conjunto de reacções, a composição química do grupo 5 deverá estar relaciodada com reacções de alteração que ocorrem com consumo de sílica, ou reacções em que a taxa de libertação de silica é consideravelmente inferior às das reacções referidas anteriormente.

Referências

Benzecri, J. P., 1973. L'analyse des donées. Volume II: L'analyse des correspondences. Duncd, Paris.
Pacheco, F. \& van der Weijden, C.H. , 1995. Contributions of water-mineral interactions to the composition of groundwater in areas with a sizeable anthropogenic input: II - a case study of the waters from the Fundåo area (central Portugal). Submetido para publicação na revista Water Resources Research (WR95-036).

Pacheco, F., 1995. Interaç̧âo água-rocha em unidades do grupo peritransmontano (Serra da Padrela-Vila Pouca de Aguiar). Tese de Mestrado, Universidade de Coimbra.

Portugal Ferreira, M.R. \& Pacheco, F. , 1993. Hidrogeologia em quartzitos peritransmontanos carreados da Serra da Padrela: a recarga e a produtividade. In Seminário de Ȧguas Subterrâneas e Ambiente, Associação Portuguesa de Recursos Hidricos (APRH).

Ribeiro, A. , 1974. Contribuiton à l"étưde tectonique de Trás-os-Montes Oriental Serviços Geológicos de Portugal (24).
Sousa Oliveira A. , 1995. Hidrogeologia da regiâo de Pedras Salgadas. Provas de Aptidão Pedagógica e Capacidade Cientfica, Universidade de Trás-os-Montes e Alto Douro.

