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Cytogenetic and biochemical characterization of the progeny of plants of 

bread wheat ‘Jordão’ biofortified with Iron and/or Zinc 

 

Abstract 

Seed priming with micronutrients (nutripriming) has several agronomic advantages if 

performed with suitable dosages. Nutripriming has been commonly used in the 

biofortification of crops such as bread wheat (Triticum aestivum L. em Thell.). However, the 

usage of excessive amounts of micronutrients like Iron (Fe) and Zinc (Zn) can induce 

cytotoxicity (traceable by both cytogenetic and biochemical analyses) and phytotoxicity 

(detectable upon the characterization of yield-related components). Nutripriming is performed 

in each generation, but the benefits and/or the cytotoxicity-related stress memory of 

nutripriming in the next unprimed generation/offspring is unknown. Therefore, this work 

evaluated how hydropriming and nutripriming performed in the parental S0 seeds influenced 

the germination, mitosis, biochemical profile and yield-related components of the first 

generation of unprimed bread wheat cv. ‘Jordão’ seeds (S1 seeds). The S0 seeds were 

previously primed with distilled water (hydropriming) and nutriprimed with 4 mg.L-1 and/or 8 

mg.L-1 of Fe and/or Zn. These concentrations induced cytotoxicity, nucleolar stress and 

increased the total soluble protein content. Unprimed S1 seeds were used as control (control 

S1). 

In the whole wheat flour samples of each S1 offspring, sixteen free amino acids (a.a.) 

and five soluble sugars were identified and quantified using HPLC-FLD and HPLC-PAD, 

respectively. In most of the S1, the content of each a.a. increased relative to the control being 

glutamic acid and glutamine, proline and glycine the most abundant. Glucose, ash content and 

crude protein (CP) of the S1 offspring increased relative to the control. However, only the ash 

content was significantly different (p ˂ 0.05) among the control and remaining offspring. 

Sucrose, fructose, raffinose, maltose and total starch showed a significant decrease (p ˂ 0.05) 

in few S1 offspring relative to the control. The protein amount previously determined in the 

whole wheat flour of S0 seeds was significantly higher (p ˂ 0.05) in those primed with 4 

mg.L-1 or 8 mg.L-1 of Fe + Zn. Similar results were observed in their S1. The overall 

biochemical data revealed that the Fe and/or Zn nutripriming improved the grain nutritional 



 

x 

status and the stress tolerance in the S0 seeds and plants, and these advantages were 

transmitted to the unprimed S1 offspring. 

The cytotoxicity generated by nutripriming with 4 mg.L-1 and/or 8 mg.L-1 of Fe and/or 

Zn in the S0 seeds resulted in longer mean germination time (MT) values and high 

frequencies of cell cycle and chromosomal anomalies. However, their respective S1 offspring 

showed a higher germination rate, shorter MT values and higher mitotic index (MI). 

Nonetheless, despite the higher percentages of dividing cells with anomalies (%DCA) 

observed in the S1, revealing the inheritance of a stress memory, a lower number of 

anomalies was detected in this offspring. In sum, the germination and cytogenetic data of the 

S1 suggested an attenuation of the cytotoxicity detected in the S0. Furthermore, the S1 plants 

surpassed the average values of seven yield-related components characterized previously in 

the S0 plants.  

The biochemical, cytogenetic and the yield-related components characterizations 

performed in this work evidenced the transmission of an attenuated cytotoxicity-related stress 

memory from the S0 to the S1. A higher intergenerational inheritance of benefits at the 

biochemical, germination, mitotic and yield level was also detected. 

Our results demonstrated that the repetition of nutripriming in each generation is 

unnecessary converting this method on an even more affordable biofortification approach. 

 

Keywords: Biochemical profile; cell cycle; cytotoxicity; intergenerational effects; 

nutripriming; stress memory; yield-related components. 
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Caracterização citogenética e bioquímica da descendência de plantas de 

trigo mole ‘Jordão’ biofortificadas com Ferro e/ou Zinco 

 

Resumo 

O priming de sementes com micronutrientes (nutripriming) tem vantagens agronómicas 

quando realizado com dosagens adequadas e é frequentemente usado na biofortificação de 

trigo mole (Triticum aestivum L. em Thell.). Porém, dosagens excessivas de micronutrientes 

como o Ferro (Fe) e Zinco (Zn) induzem citotoxidade (detetável através de análises 

citogenéticas e bioquímicas) e fitotoxicidade (observável pela caracterização de componentes 

relacionados com o rendimento). Como o priming de sementes é realizado em cada geração, 

desconhece-se se ocorre transmissão de benefícios e/ou memória de stress relacionada com a 

citotoxicidade para a descendência não-tratada. Assim, este trabalho avaliou a influência do 

priming de sementes na germinação, mitose, perfil bioquímico e componentes relacionados 

com o rendimento da primeira geração de sementes não-tratadas da cultivar ‘Jordão’ de trigo 

mole (sementes S1). Esta descendência teve origem em sementes S0 tratadas com água 

destilada (hydropriming) e com 4 mg.L-1 e/ou 8 mg.L-1 de Fe e/ou Zn. Estas concentrações 

induziram citotoxicidade, stress nucleolar e aumento do conteúdo proteico. Uma descendência 

S1 de sementes não-tratadas foi usada como controlo (controlo S1). 

Nas amostras de farinha de trigo integral de cada descendência S1, identificaram-se e 

quantificaram-se dezasseis aminoácidos (a.a.) e cinco açúcares solúveis usando HPLC-FLD e 

HPLC-PAD, respetivamente. Na maioria das descendências S1, o conteúdo de cada a.a. 

aumentou relativamente ao controlo. Os mais abundantes foram o ácido glutâmico + 

glutamina, prolina e glicina. A glucose, o conteúdo de cinza e a proteína bruta (PB) das 

descendências S1 aumentaram relativamente ao controlo. Contudo, apenas o conteúdo de 

cinza foi significativamente diferente (p ˂ 0.05) entre o controlo e as restantes descendências. 

A concentração de sacarose, frutose, rafinose, maltose e amido apresentaram uma diminuição 

significativa (p ˂ 0.05) num reduzido número de descendências relativamente ao controlo. O 

conteúdo proteico previamente determinado em farinha integral das sementes S0 foi 

significativamente (p ˂ 0.05) mais elevado nos tratamentos com 4 mg.L-1 ou 8 mg.L-1 de Fe + 

Zn. Resultados semelhantes foram encontrados nas suas descendências S1. Os dados 

bioquímicos revelaram que o nutripriming com Fe e/ou Zn terá melhorado o valor nutricional 
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e a tolerância ao stress nas sementes e plantas S0, e que estas vantagens foram transmitidas à 

descendência S1 não-tratada. 

Sementes S0 tratadas com 4 mg.L-1 e/ou 8 mg.L-1 de Fe e/ou Zn apresentaram tempos 

médios de germinação (TM) longos e elevadas frequências de anomalias no ciclo celular. 

Contudo, as respetivas descendências S1 apresentaram uma taxa de germinação superior, 

menores valores de TM, e índice mitótico (IM) superior à S0. Embora na S1 se tenham 

observado percentagens de células em divisão com anomalias (%CDA) superiores às da S0, 

revelando a transmissão de uma memória de stress, o número de anomalias foi mais reduzido. 

Globalmente, os dados de germinação e citogenéticos da S1 sugeriram uma atenuação da 

citotoxicidade detetada na S0. Adicionalmente, as plantas S1 ultrapassaram as médias 

relativas a sete componentes relacionados com o rendimento previamente caracterizados nas 

plantas S0. 

As caracterizações realizadas neste trabalho evidenciaram a transmissão da S0 para a S1 

de uma memória de stress relacionada com a citotoxicidade, embora atenuada, e de benefícios 

ao nível bioquímico, de germinação, mitótico e de rendimento. 

Este trabalho demonstrou que não é necessário repetir o priming de sementes em cada 

geração, tornando este método de biofortificação ainda mais económico. 

 

Palavras-chave: Ciclo celular; citotoxicidade; componentes relacionados com o rendimento; 

efeitos intergeracionais; memória de stress; nutripriming; perfil bioquímico. 
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1. General literature review 

1.1. Introduction 

 

This literature review will focus on: (i) the economic and nutritional value of wheat; (ii) 

the importance of the micronutrients Iron (Fe) and Zinc (Zn) in plants and humans; (iii) the 

strategies that have been used to ameliorate the Fe and Zn concentration in crops; (iv) the 

cytotoxic effects of micronutrient excess in the plants’ biochemical composition, seed 

germination, early stages of plant development and yield-related characters; and (v) the 

transmission of beneficial effects and stress memory to the next generation(s). 

 

1.2. Bread wheat and its global importance 

 

Cereals like maize, wheat and rice, and their products, constitute the main source of 

feed and food worldwide, providing a significant number of calories and protein in the human 

diet (Qayyum et al. 2011; Henry et al., 2016; [1]).  

In 2017, the global production of wheat (Triticum spp.) was 771 million tonnes, being 

ranked in second among all cereals [1]. Wheat represents about 72% of the human 

consumption of cereals [2], supplying one-third of the world population with more than half 

of their daily calorie intake (Amiri et al., 2018; [1]).  

Bread wheat (Triticum aestivum L. em Thell; AABBDD; 2n = 6× = 42) is the most 

produced wheat species throughout the world (Shewry and Hey, 2015). It is mainly consumed 

in the form of baked products, and its nutritional quality is tied to the milling process it 

undergoes.  

The wheat grain (also known as kernel or caryopsis) is composed of several different 

tissues which can be partitioned into three parts: bran, germ or embryo, and endosperm (Fig. 

1).  
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The endosperm is rich in starch and constitutes 80 to 85% of the grain weight, followed 

by the bran with 13 to 17% and the germ with 2 to 3%.  

Most of the minerals, vitamins, dietary fibre and bioactive compounds reside in the bran 

(Curti et al., 2013) that has been considered an excellent ingredient in the food (Prückler et 

al., 2014; Babu et al., 2018). Due to its high content of micronutrients, the wheat bran has 

been gradually included in the human diet over the years (Prückler et al., 2014; Babu et al., 

2018). Moreover, several studies have linked the consumption of wheat bran and whole-wheat 

products to the prevention of several diseases and the improvement of the quality of life (see 

review by Călinoiu and Vodnar, 2018). However, during the milling process, the endosperm 

is separated from the other parts of the wheat kernel to obtain white flour containing mostly 

starch, storage proteins, amino acids and sugars (Shewry and Halford, 2002; Wrigley et al., 

2016). As a consequence, most of the minerals present in the bran are lost during the milling 

process (Sarwar et al., 2013; Borrill et al., 2014). Therefore, in developing countries where 

wheat constitutes the main source of food, breeding programs have been focusing on the 

improvement of its nutritional quality (Myers et al., 2004; Soares et al., 2019). This quality is 

also highly influenced by the bioavailability of micronutrients in the soil, and their effects in 

plant growth and development (Nagajyoti et al., 2010; Cakmak and Kutman, 2018). 

  

Figure 1. Whole-wheat grain main sections. Adapted from Bernstein et al. (2013) 
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1.3. The importance of micronutrients 

 

The essential minerals are crucial for the plant’s growth, development and reproduction 

(DalCorso et al., 2014) and can be classified into macronutrients or micronutrients depending 

on the concentration that they are required by plants (Barker and Pilbeam, 2015).  

Boron (B), Chlorine (Cl), Copper (Cu), Iron (Fe), Manganese (Mn), Molybdenum (Mo), 

Nickel (Ni) and Zinc (Zn) are considered micronutrients since they are required in reduced 

amount by plants (Barker and Pilbeam, 2015). These are involved in organelle synthesis, 

structural integrity, cell division and elongation, photosynthesis, respiration, protein synthesis, 

hormone activation, oxidation-reduction reactions and nitrogen metabolism (Page and Feller, 

2015). 

The uptake of micronutrients by plants depends on their available forms and physical-

chemical properties of the soil (e.g. pH) which are greatly influenced by natural processes and 

anthropogenic activities (Noulas et al., 2018). In addition,  micronutrient deficiency or excess 

can seriously affect the life cycle of plants, causing various symptoms and ultimately leading 

to plant death if not treated. This not only influences the production of the crops and 

nutritional quality of the seeds but also affects human health (Bouis, 2007; Mayer et al., 

2008).  

A large portion of the world’s population have diets that consist mostly of starchy 

cereals, roots and tubers grown in nutrient-poor soils (Dimkpa and Bindraban, 2016) that lead 

to health problems related to micronutrient deficiency (Fig. 2; Samoraj et al., 2018). 

  

Figure 2. World map representing the population affected by hidden hunger associated with Fe, Zn 
and vitamin A deficiencies. (Adapted from Muthayya et al., 2013). 
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It is estimated that two billion lives are affected by hidden hunger, a chronic deficiency 

of essential micronutrients and vitamins. As the name implies, the symptoms of hidden 

hunger are usually not visible. However, it is linked to higher disease and mortality rates 

(Muthayya et al., 2013). Fe and Zn are two of the main culprits in a hidden hunger. Among 

the 7 billion of people in the world, it is estimated that over 60% have diseases related to Fe 

deficiency while around 30% have problems of Zn deficiency (Samoraj et al., 2018). 

The most severe Fe-deficient population are children and women, causing them to be 

debilitated in both physical and mental work capacity. Severe cases of this deficiency also 

lead to complications in childbirth and mortality for both mothers and children (Graham et al., 

2012). It is believed human Fe deficiency is the most common cause for anaemia worldwide, 

as it is essential in red cells (Milto et al. 2016). Other common clinical problems include 

fatigue, angular stomatitis, painful glossitis, dysphagia and restless leg syndrome; and more 

importantly, long-term cognitive impairment and behavioural problems during infancy (Moll 

and Davis, 2017). Zn deficiency is also correlated to a variety of physiological issues: 

increased susceptibility to diseases, reduced physical performance, growth retardation, 

impaired brain development and birthing problems in women (Gibson, 2012; Terrin et al., 

2015). Inadequate zinc intake is especially important in children under the five years of age, 

as this leads to a stunt in growth but can ultimately lead to death (Wessells and Brown, 2012). 

Nonetheless, this deficiency leads to DNA damage and has been previously linked to an 

increase in the risk of cancer (Ho, 2004). 

 

1.3.1. Iron and Zinc 

 

As previously mentioned, Fe and Zn are fundamental for plant growth and 

development, playing an important role in various biochemical and physiological processes 

(Barker and Pilbeam, 2015).  

In plants, Fe is essential in many metabolic processes such as photosynthesis, 

respiration, nitrogen assimilation, hormone biosynthesis, production and scavenging of 

reactive oxygen species (ROS), osmoprotection, and pathogen defence (Kim and Guerinot, 

2007; Hänsch and Mendel, 2009; Rout and Sahoo, 2015). Most of the cellular Fe is found in 

the chloroplasts, being consistent with its major function in photosynthesis (Hänsch and 
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Mendel 2009). Another hotspot for Fe is the mitochondria, where it is a major constituent in 

clusters involved in the respiration process (Connorton et al., 2017). 

Zn is a functional, structural and regulatory cofactor of various essential enzymes and 

proteins in plants (Sinclair and Krämer, 2012). Over 1200 proteins are predicted to bind, 

contain or transport Zn (Hänsch and Mendel, 2009). These include transcriptions factors, 

oxireductases, hydrolytic enzymes, and a large number of zinc-finger proteins (Krämer and 

Clemens, 2005; Sinclair and Krämer, 2012). Moreover, DNA and RNA synthesis and 

maintenance are performed by Zn dependent enzymes such as DNA-polymerases, RNA-

polymerases, histone deacetylases, splicing factors and RNA-editing enzymes present in the 

mitochondria and chloroplasts (Krämer and Clemens, 2005). Zn also plays an important role 

in seed development, and Zn-deficient plants show a delayed maturity (Cakmak and Kutman, 

2018). 

The deficit but also the excess of micronutrients affect the plant yield, nutritional 

quality, morphology, biomass and photosynthesis negatively.  

Despite being fundamental to plants, Fe and Zn also integrate the list of hazardous 

heavy metals (Vodyanitskii, 2016). The excess of micronutrients or heavy metals derived 

from natural sources or anthropogenic activities induces plant osmotic stress and consequent 

redox imbalance due to the accumulation of ROS (Truta et al., 2013; Anand et al., 2017; 

Noulas et al., 2018). Osmotic stress leads to changes in different compounds such as total 

soluble sugars, a.a., protein, phenolics, hormones, and lipids (Gzik, 1996; Anand et al., 2017). 

Moreover, their accumulation also causes problems at the molecular level such as DNA 

damage and disruption of normal enzyme activity, affecting the cell cycle (Sinclair and 

Krämer, 2012; Kobayashi and Nishizawa, 2014; Briat et al., 2015; Taranath et al., 2015).  

On the other hand, intensive cropping systems, high-yielding cultivars lacking 

nutritional content and acid soils, are increasing the micronutrient deficiency worldwide 

(Alloway, 2008; Imtiaz et al., 2010). In this sense, increasing the nutritional quality and 

producing micronutrient enriched cereals has been one of the major priorities for researchers 

and breeders (Zeidan et al., 2010; Gao et al., 2012; Bharti et al., 2013; Trijatmiko et al., 2016; 

FAO 2017; Soares et al., 2019). 
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1.4.  Biofortification – an overview 

 

Reducing micronutrient malnutrition has been the focus of agronomists, nutritionists 

and researchers. Thus, strategies such as food diversity, food supplements, food fortification 

and biofortification have been intensively studied (Wakeel et al., 2018). 

Despite food diversity being considered the most obvious choice to remediate 

malnutrition, access to healthy food is limited in developing countries which are the most 

affected. Food supplementation and food fortification, the addition of micronutrients to a 

person diet or processed foods, respectively, are also expensive and difficult to sustain 

(Wakeel et al., 2018).  

Biofortification is the process of increasing the concentration of nutrients in food crops 

(Singh et al., 2016). It poses as an excellent alternative to the approaches mentioned above, 

being more cost-effective, sustainable, and a suited long-term solution (Samoraj et al., 2018). 

Furthermore, biofortification aims the reduction of human mortality and morbidity rates 

related to micronutrients deficiency, while increasing the crops yield and resistance (Samoraj 

et al., 2018). Although its efficiency is still not comparable to food fortification, biofortified 

crops have been shown to impact the human diet significantly (Bouis, 2018). Two main 

strategies of biofortification have been used to increase the nutritional value of crops: genetic 

biofortification and agronomic biofortification (Singh et al., 2016; Ali et al., 2018). 

Genetic biofortification is achieved either through traditional breeding of crops or 

through genetic engineering. Conventional breeding of crops uses several varieties of the 

same plant with different nutritional characteristics to develop an improved food crop (Bouis, 

2007). Although it is overall more accepted than genetic engineering, traditional breeding is 

very limited. Furthermore, a focus on yield despite other traits; complexities of the gene × 

environment interaction, and the difficulty in introducing the desired traits, have been limiting 

the success of this approach (Tester and Bacic, 2005). Breeders also found other adversities in 

traditional breeding since they must combine quantity and quality, grain yield with flour 

quality, or the use of varieties or lines with restricted genetic variability whose success is 

highly dependent on the availability of minerals in the soil (Beyer, 2010; Bouis et al., 2011; 

Vodyanitskii, 2016; Venske et al., 2019).  

Genetic engineering relies on the unlimited genetic pool of different species, allowing 

the transfer and expression of desirable genes independently of their evolutionary and 

taxonomic relations (Garg et al., 2018). The development of transgenic crops involves 
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substantial efforts and investment during their development phase (Hefferon, 2016). Although 

genetic engineering seems promising, and has become easier and faster to perform nowadays, 

it is still limited by problems of approval and public acceptance of genetically modified crops 

(Wakeel et al., 2018). 

Agronomic biofortification could be more cost-effective in increasing micronutrients in 

the edible parts of crops. Evidence suggested that this approach can increase both the crops 

yield and nutritional food quality (de Valença et al., 2017). Strategies of agronomic 

biofortification include the micronutrient application to the soil, the exogenous application of 

micronutrients enriched solutions to the leaves; or seed treatments such as seed priming. The 

soil fertilization and foliar application are an immediate solution to the lack of micronutrients 

in the soil and/or plants, respectively (White and Broadley, 2009; Zhang et al., 2012). 

However, the success of these approaches  is limited by the mobility of the minerals through 

the phloem. For instance, Zn has lower mobility in the phloem than Fe, restricting the 

accumulation of the former in the edible parts of the plant (Broadley et al., 2007).  

Seed priming is considered one of the most accessible, successful and cost-effective 

agronomic biofortification methods and has been extensively studied and widely used in the 

past years (Harris et al., 2008; Farooq et al., 2012; Ali et al., 2018). 

 

1.4.1. Seed priming 

 

Seed priming consists of the control of the hydration level of the seed to trigger 

metabolic and enzymatic processes usually occurring during the early germination phase. It is 

considered one of the best approaches to enhance seed quality (Paparella et al., 2015). This 

biofortification technique leads to an increased germination rate, greater tolerance to biotic 

and abiotic stresses, higher grain yield and a more vigorous plant (Farooq et al., 2008; Afzal 

et al., 2008; Rajjou et al., 2012; Reis et al., 2018; Sundaria et al., 2019; among others). 

Seed priming can be performed with various agents, and each technique is named 

accordingly. Table 1 presents different priming methods and summarizes their benefits and 

applications in recent wheat research. 
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Table 1. Summary of different priming techniques and recent applications in wheat. Adapted from Bhowmick 
(2018) and Choudhary et al. (2019). 

Priming 
technique 

Priming medium Advantages 
Examples of recent 
research in wheat 

Hydropriming Distilled water 
Enhancement of seed germination, 
seedling emergence and enzyme 
activity. 

Anwar et al. (2018); Arif 
et al. (2019); Saddiq et al. 
(2019). 

Halopriming 
Organic salt solutions (e.g. 
NaCl, KNO3, CaCl2) 

Enhancement of seed germination, 
seedling emergence and crop yield 
under adverse conditions. 

Kumar et al. (2017); Arif 
et al. (2019); Saddiq et al 
(2019). 

Osmopriming 
Osmotic solutions (e.g sugars, 
polyethylene glycol) 

Enhancement of seed germination 
and crop performance. 

Hakeem et al. (2017); 
Abid et al. (2018) 

Hormopriming 
Hormone solutions (e.g. 
kinetin, abscisic acid, salicylic 
acid) 

Enhancement of vegetative growth 
and photosynthetic activity. 

Sher et al. (2017); Ulfat et 
al. (2017); Bagheri et al. 
(2018) 

Solid matrix 
priming 

Water and a solid material (e.g. 
vermiculite, expanded calcined 
clay) 

Enhancement of seed germination, 
seedling emergence and antioxidant 
enzymes activity. 

Ahmed et al. (2016) 

Biopriming 

Solutions containing beneficial 
microorganisms (e.g. 
Pseudomonas spp., 
Trichoderma spp.) 

Enhancement of seed germination, 
crop establishment, quality and 
yield. 

Meena et al., (2017); 
Bagheri et al. (2018) 

Nutripriming 
Solutions containing macro- or 
micronutrients (e.g. Fe, Zn, B.) 

Improves seed germination, nutrient 
content, quality, seedling 
establishment, plant growth, yield-
related components and protein 
content. 

Rehman et al. (2015); 
Reis et al. (2018); 
Carvalho et al. (2019) 

Nanopriming 
Solutions containing 
engineered nanoparticles (NPs) 
(e.g. ZnNPs, FeNPs, etc.) 

Increases germination, nutrient 
concentration in the grain, improves 
seedling dry weight and vigour. 

Hatami et al. (2018); 
Medina-Velo et al. 
(2018); 
Sundaria et al. (2019) 

 

As sustainable agriculture becomes more relevant due to climate change and world 

resource management, seed priming poses as one of the best alternatives to maintain the 

quality and production of crops (Raj and Raj, 2019).  

Nutripriming constitutes a promising method for increasing the micronutrient amount in 

the crop seeds (like Fe and Zn) or edible portions of the plant, to overcome their insufficiency 

in the soil or cultivars (see review by Farooq et al., 2012). This affordable method can also 

enhance yield and/or protein amount in various crops, including wheat (Farooq et al., 2012; 

Prom-u-thai et al., 2012; Ali et al., 2018; Cakmak and Kutman, 2018; Reis et al., 2018; 

Carvalho et al., 2019; Nadeem et al., 2019). In addition to the biochemical advantages, 

nutripriming also benefits morpho-physiological and molecular aspects of the plants, and in 

most of the cases, it seems to function better than the other biofortification strategies (Harris 
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et al. 2008; Farooq et al., 2012; Mondal and Bose, 2019). Nonetheless, nutripriming is only 

beneficial when suited micronutrient doses are used, since their excess may cause abiotic 

stress, leading to cyto- and phytotoxicity (Moussa and El-Gamal, 2010; Iqbal et al., 2012; 

Nawaz et al. 2013; Rehman et al. 2015; Reis et al., 2018).  

The analysis of yield-related components can monitor the toxicity effects of 

nutripriming, germination rate and time (Prom-u-thai et al., 2012; Rehman et al., 2015; Ali et 

al., 2018; Sundaria et al., 2019) and/or through the occurrence of anomalies in the mitotic cell 

cycle and chromosomes (Kumari et al., 2011; Taranath et al., 2015; Reis et al., 2018).  

Seed nutripriming presents many agronomic advantages if performed with proper 

dosages of micronutrients. Although the excessive amounts of micronutrients like Fe and Zn 

are tightly regulated in plants, the use of high dosages in seed priming can cause cyto- and 

phytotoxicity (Palmgren et al., 2008; Reis et al., 2018). In this sense, seed nutripriming can be 

helpful to unravel and contribute for the understanding of mechanisms underlying plant stress 

responses (Sharma and Dietz, 2006; Emamverdian et al., 2015; Sheteiwy et al., 2016). 

 

1.5. Abiotic stress due to micronutrients excess  

 

In plants, stress is a disruption in homeostasis that produces changes at the 

physiological, biochemical, cellular and molecular level (Gaspar et al., 2002).  

The plant stress can be biotic if including attacks from herbivores and pathogens or 

abiotic like exposure to extreme temperatures, reduced water availability, nutrient deficiency, 

heavy metals and salinity (Gill et al., 2016), among others.  

Plants are sessile organisms, being continuously subjected to environmental fluctuations 

which affect their growth, development and productivity (Gaspar et al., 2002).  

Improving plant stress tolerance is crucial for adaptation to environmental fluctuations 

and sustainable production since susceptible crops require high water availability and 

fertilizer amounts and present lower nutritional quality (Soares et al., 2019).  

Cereals are moderately sensitive to a variety of abiotic stresses causing significant 

reductions in crop production and quality (Dolferus et al., 2011; Bowne et al., 2018). Abiotic 

stresses caused by extreme weather episodes are predicted to increase in frequency and 

severity due to climate change (IPCC 2014), influencing the micronutrient availability 

(Fedoroff et al., 2010; Soares et al., 2019).  
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The high concentrations of heavy metals like Fe and Zn in soils result naturally from the 

geochemical material but also from the anthropogenic activity, such as pollution, the use of 

pesticides and fertilizers in agriculture, mining, metalwork, industrial practices and 

construction (Broadley et al., 2007; Nagajyoti et al., 2010; Truta et al., 2013). These 

micronutrients, despite essential to plants in a reduced amount, when present in excess, cause 

cyto-, geno- and phytotoxicity (Manara, 2012; Truta et al., 2013). Additionally, the 

micronutrients excess induces several adverse effects like the accumulation of ROS, 

cytotoxicity, lower germination rate and delay in seedlings production as well as reduced 

yield (Shafi et al., 2009; Sheteiwy et al., 2016; Reis et al., 2018).  

 

1.5.1. Influence on germination, cell cycle and early stages of development 

 

Previously, it was demonstrated that seed priming with highly concentrated solutions of 

Fe is cytotoxic and lead to a decrease in the germination rate and seedling growth 

(Mirshekari, 2010). More recently, Reis et al. (2018) observed that concentrations of Zn and 

Fe higher than 2 mg.L-1 significantly increased the mean germination time, decreased the 

germination rate and mitotic index, and increased the number of cells with anomalies in bread 

wheat. 

Seed priming performed with concentrated solutions of Zn were also toxic to the 

germination and seedling growth of bread wheat (Harris et al., 2008; Rehman et al., 2015; 

Hassan et al., 2019; Shilpie and Mishra, 2019).  

Cytogenetic studies performed in bread wheat and other species have demonstrated that 

the abiotic stress generated by the excess of micronutrients causes cytotoxicity which affect 

the seed germination, seedling growth, and the regularity of the cell cycle (El-Shahaby et al., 

2003; Rout and Das, 2003; Li et al., 2005; Street et al., 2007; Kranner and Colville, 2011; 

Reis et al., 2018).  

The evaluation of the mitotic index (MI) is a measure of cytotoxicity (Smaka-Kincl et 

al., 1996). Moreover, the frequency of chromosomal anomalies such as breaks, chromatin 

stickiness, metaphase arrest (C-mitosis), chromatin bridges, among many others, also 

indicates the level of toxicity at which the plant is subjected (Pekol et al., 2016).  

Studies of the effects of seed priming with Fe or Zn in different crops have been 

previously performed (Prasad et al., 1999; Harris et al., 2008; Truta et al., 2013; Rehman et 
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al., 2015; Reis et al., 2018). A high concentration of Zn is known to affect cell division, and 

in turn, reduce root growth (Prasad et al., 1999; El-Ghamery et al., 2003). 

 

1.5.2. Influence on yield components 

 

The analysis of yield components is crucial in the determination of the productivity of 

crops such as wheat (Singh and Diwivedi, 2002). Despite the genetic properties of each 

cultivar, the habitat and the agronomic factors also affect productivity. These conditions are 

translated into quantitative parameters at each different stage of development (Khan et al., 

2003; Sainis et al., 2006). Hence, it is essential to understand the relationships between grain 

yield and grain weight per spike (Harasim et al., 2016).  

Interactions between genetic and environmental factors play an important role in crop 

development. Furthermore, abiotic stresses can significantly influence the crops yield, and 

researchers emphasize that yield components are much dependent on environmental 

conditions (Harasim et al., 2016). Even mild abiotic stresses can affect grain yield despite the 

vegetative parts suffering no alterations (Dolferus et al., 2011). Extreme temperatures and 

drought are of the most studied abiotic stresses, with results indicating that heat or cold, and 

water scarcity reduce the crop production, even in tolerant varieties of the same species 

(Mirbahar et al., 2009; Pimentel et al., 2015; Kaur et al., 2016; among others).  

A major threat in agriculture productivity is the contamination of soils with heavy 

metals. Heavy metal toxicity, such as those resulting from a high concentration of cadmium, 

copper and chromium in the soil, cause yield reduction (Wani et al., 2007; Wani et al., 2008; 

Ma et al., 2015).  

Seed priming performed with Fe and/or Zn solutions with concentrations above  

2 mg.L-1 reduced yield-related components in bread wheat (Reis et al., 2018).  

Therefore, to overcome crop yield losses due to various abiotic stresses, one of the 

major goals of plant breeding is to improve stress tolerance (Lämke and Bäurle, 2017). 
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1.5.3. Influence on the biochemical profile 

 

Plants have developed sophisticated adaptation and defence mechanisms to mitigate the 

impacts of abiotic stress (Lämke and Bäurle, 2017).  

Physical barriers, heavy metal storage organs, proteins, cellular exudates, a.a. and 

hormones are all part of a first defensive mechanism against heavy metal toxicity 

(Emamverdian et al., 2015). Thus, the accumulation of osmolytes in the cytoplasm, such as 

sugars, a.a. and organic acids is a plant stress response (Parida and Das, 2005). 

The synthesis of a.a. is essential as they are crucial constituents of proteins. Moreover, 

they are necessary for cellular reactions, influencing several physiological processes such as 

plant growth, development, generation of metabolic energy, and resistance to stress (Anjum et 

al., 2014; Hildebrandt et al. 2015). Furthermore, abiotic stress, such as heavy metal 

concentrations, increase the biosynthesis of some a.a. (Sharma and Dietz, 2006). 

Asparagine is crucial in the regular transport and storage of nitrogen (Lea et al., 2007). 

It is known to accumulate in cereals grains in response to abiotic stress, such as deficiency of 

micronutrients (Lea et al., 2007; Gao et al., 2016).  

Serine is required for the biosynthesis of biomolecules necessary for cell proliferation 

and along with arginine are constituents of proteins involved in plant development and rapid 

reprogramming of the transcriptome during stress (Reddy and Shad Ali, 2011).  

Lignin, a central structural component of the cell wall, has phenylalanine as a vital 

component. Moreover, phenylalanine, along with tyrosine are precursors of specialized 

compounds related to plant fitness (Yoo et al., 2013).  

Histidine is a known component of metal chelator enzymes in cells and has been 

observed to increase during heavy metal stress (Sharma and Dietz, 2006).  

Threonine, methionine and glycine are essential in the seed development (Jander et al., 

2004; Joshi et al., 2010). The catabolism of isoleucine leads to the production of cellular 

energy (Mooney et al., 2002). The above a.a. are usually accumulated during abiotic stress, 

providing an alternative carbon source (Joshi et al., 2010). 

Though several amino acids are major components used for cellular growth and 

differentiation, proline is distinct. Proline is vital in the recovery of plants from various 

abiotic stresses, and it is accumulated during adverse environmental conditions (Verslues and 

Sharma, 2010; Kaur and Asthir, 2015). This a.a. can act as ROS scavenger, osmolyte, metal 

chelator and signalling molecule, protecting cells from damage originated from abiotic stress 
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(Szabados and Savouré 2010). Abiotic stresses can cause osmotic stress, increasing the 

production of ROS beyond normal. Also, antioxidant mechanisms have limited action during 

stress (Baxter et al., 2013). Proline brings ROS concentration to normal ranges by modulating 

mitochondrial functions, triggering specific gene expression and stabilizing membranes (Kaur 

and Asthir, 2015). Moreover, the production of proline also enhances the hydrolysis of 

storage proteins during germination (Copeland and McDonald, 2001). 

Proteins are macro-biomolecules composed of a large number of a.a.. These 

biomolecules can also contain hydrogen, oxygen, carbon, and nitrogen and are involved in a 

series of metabolic pathways in both humans and plants (Young and Pellett, 1994). Some of 

these pathways are essential such as the DNA replication and the transport of molecules. 

Besides, proteins are the building blocks of cell membranes. The biosynthesis of proteins 

plays a critical role in the energy requirement of plant growth. Plants produce most of its 

protein content during the day, while at night, the starch degradation restores the low 

availability of carbon and energy (Amthor, 2000). Abiotic stresses like salinity, heat, cold and 

drought, lead to the production of different types of proteins to mitigate the adverse effects of 

these factors (Joshi, 2018). It is known that abiotic stress cause damage to cellular 

components such as membrane lipids, proteins and nucleic acids (Zhu ,2016). Previous 

studies reported that proteins could accumulate during heat stress (Gurusinghe et al., 2002). 

Also, the protein residues can be affected by chemical processes ongoing during stress leading 

to some proteins being irreversibly damaged, and consequently degraded by proteases, 

increasing the amount of free a.a. (Joshi et al., 2010). For example, under water stress, 

proteins accumulate due to abscisic acid stimulating their synthesis (Iqbal et al., 2010). The 

expression of heat-shock proteins also increases the tolerance to subsequent rises in 

temperature as sudden differences can lead to cell death (Wahid et al., 2007). Regarding the 

effects of seed priming in protein content, several authors observed that this treatment 

increased the total amount of protein (Nouman, et al. 2014; Sheteiwy et al. 2017; Cao et al. 

2019; Carvalho et al., 2019). In particular, the priming of bread wheat seeds with 4 mg L−1 

and 8 mg L−1 of Fe and/or Zn allowed an increase of the total soluble protein content in bread 

the whole wheat flour despite the observation of toxicity at the nucleolar level. 

Sugar molecules act as regulators of the plant metabolism, growth and stress responses 

(Rolland and Sheen, 2005; Rolland et al., 2006; O’Hara et al., 2013). Soluble sugars are 

involved in the photosynthesis, metabolism of carbohydrates and lipids, protein synthesis and 

gene expression during abiotic stress (Rosa et al., 2009). Furthermore, during abiotic or biotic 
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stress, the concentration of soluble sugars increases in plant tissues affected by the 

accumulation of ROS (Roitsch, 1999, Couée et al., 2006). Glucose has been observed to 

increase proline concentration under salinity (Gadallah, 1999; Hayat et al., 2012). Fructose 

and sucrose are also known to provide membrane protection and scavenge ROS under 

oxidative-stress (Keunen et al., 2013; Singh et al., 2015).  

Starch is a simple molecule composed of glucose residues. It functions as the 

carbohydrate storage in plants, being associated with storage organs such as roots, rhizomes, 

tubers, stems and seeds (Zeeman et al., 2010). Besides acting as a storage molecule, starch is 

also linked to the mediation of plant abiotic stress responses, improving stress tolerance 

correlated to starch degradation. When photosynthesis is limited, plants remobilize starch to 

provide energy and carbon. The degradation of this molecule releases sugars and other 

metabolites that support plant growth and act as osmoprotectants, mitigating the effects of 

stress (Krasensky and Jonak, 2012). Additionally, under stress conditions, plants increase 

starch degradation in the vegetative tissues and remobilize sugars to the seed (Cuellar-Ortiz et 

al., 2008). 

 

1.6. Intergenerational effects and stress memory 

 

The effects of the environmental stress on a plant offspring have been well known for 

several years (see Roach and Wulff, 1987; Rossiter, 1996). Under stress, the parental 

generation alters specific traits in its offspring to enhance their growth, development and 

success under the same conditions (Herman and Sultan, 2011). The influence of the 

environmental experiences of a parental generation in its offspring can be defined as an 

intergenerational effect if extending to the first stress-free generation, or as transgenerational 

effect if transmitted to at least two stress-free generations (Herman and Sultan, 2011; Lämke 

and Bäurle, 2017; Wang et al., 2018).  

Stress memory is the information retained by a plant after being submitted to a first 

biotic or abiotic cue, leading to a modified or sustained response upon recurring stress (Fig. 3; 

Lämke and Bäurle, 2017). This memory usually acts at the phenotypic level and does not 

introduce changes in DNA sequence in the stressed plant (Hilker et al., 2016). In the past few 

years, attempts to understand how the stress memory developed by plants exposed to different 
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abiotic or biotic stimuli affect the next stress-free generation or offspring have been made 

(Lämke and Bäurle, 2017; Mauch-Mani et al., 2017).  

Abiotic stress has effects in the morphological, physiological and metabolic 

characteristics of plants, influencing traits such as germination, growth, biochemical profile 

and overall production. However, how these factors influence the same traits in the offspring 

is not entirely known. Hence, in the last decade, efforts have been made to understand the 

inter- and transgenerational effects caused by abiotic stress (Lämke and Bäurle, 2017, and 

references therein; Mauch-Mani et al., 2017).  

The offspring of Aegilops triuncialis grown under drought, nutrient stress and exposure 

to high heavy metal concentrations in the soil has been shown to germinate faster and to 

flower earlier in comparison with the offspring of plants under normal conditions (Dyer et al., 

2010). Similar results concerning nutrient concentration were obtained by Latzel et al., (2010) 

in other species. The stress caused by drought and extreme temperatures in the parental 

generation also appears to benefit the development of the next stress-free generation 

(Mondoni et al., 2014; Lu et al., 2016; Wang et al., 2018). The effects of stress memory have 

also been related to increases in yield and improvements in germination and seedling growth 

(Whittle et al. 2009; Rajjou et al. 2012). 

There appears to be a correlation between the stress experienced by the parental 

generation and the phenotype of the resulting stress-free offspring (Herman and Sultan, 2011). 

Figure 3. Priming modifies responses to a triggering stress cue. Adapted from Lämke and Bäurle (2017) 
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Probably during the seed maturation, the parental generation prepares the next offspring to the 

adverse conditions that it is experiencing (Herman and Sultan, 2011).  

The maternal plant mobilizes carbohydrates, proteins and nutrients to the developing 

seed (Aguirre et al., 2018). In certain species, maternal plants can maintain or increase seed 

provisioning under stress conditions despite producing fewer offspring (Metz et al., 2010; 

Larios and Venable, 2015). Thus, inter- and transgenerational effects mediate the seed 

provisioning and can promote offspring success (Herman and Sultan, 2011).  

Since seed priming is usually performed in each generation, during the literature review, 

works related to the knowledge of the effects of nutripriming in the next unprimed offspring 

were not found. 

 

1.7. Objectives 

 

This works aims to evaluate the effects of seed priming with water (hydropriming) and 

different concentrations of Fe and/or Zn on the germination, mitosis, biochemical profile and 

yield-related components of the untreated S1 offspring of the bread wheat cv. ‘Jordão’ by 

comparison with an untreated offspring (control).  
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2. Materials and methods 

2.1. Plant material and whole wheat flour samples preparation 

 

The ‘parental’ seeds generation (S0) of bread wheat (T. aestivum; AABBDD; 

2n=6×=42) cv. ‘Jordão’ were primed with distilled water (hydropriming) and aqueous 

solutions with different concentrations of Fe [Iron (II) sulphate heptahydrate, FeSO4.7H2O] 

and/or Zn [Zinc sulphate heptahydrate, ZnSO4.7H2O]. The resulting plants were potted and 

followed till their maturity by Reis et al. (2018). 

In this work, we used the first seed generation (S1 seeds) of those plants, particularly, 

those that resulted from plants whose S0 seeds were hydroprimed and primed with 4 mg.L-1 

and/or 8 mg.L-1 of Fe and/or Zn. The first seed generation of seeds (S1 seeds) derived from 

the different seed priming treatments will be named through this work as S1 offspring (Table 

2). We included an unprimed S1 offspring as control.  

 

Table 2. Plant material used in this work: S1 offspring of unprimed S0 seeds (control) and S1 offspring of S0 
seeds that were hydroprimed and nutriprimed with Fe and/or Zn by Reis et al. (2018). 

S1 offspring of S0 seeds that were: 

Unprimed  Control  

Soaked in distilled water Hydropriming (0 mg.L-1 Fe + 0 mg.L-1 Zn) 

Soaked in single micronutrient solutions 4 mg.L-1 Fe + 0 mg.L-1 Zn 

 8 mg.L-1 Fe + 0 mg.L-1 Zn 

 0 mg.L-1 Fe + 4 mg.L-1 Zn 

 0 mg.L-1 Fe + 8 mg.L-1 Zn 

Soaked in double micronutrient solutions 4 mg.L-1 Fe + 4 mg.L-1 Zn 

 8 mg.L-1 Fe + 8 mg.L-1 Zn 

 

For the analyses of germination (see item 2.4.1) and mitotic cell cycle in chromosome 

spreads obtained from root-tips (see items 2.4.2 and 2.4.3), a total of 80 S1 seeds (10 seeds 

per S1 offspring) were used. The resulting plantlets were potted and followed until the plant 

maturity for the characterization of the yield-related components. 
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For the biochemical analyses, 24 groups of S1 seeds were prepared, corresponding to 

three repetitions (n = 3) of seeds of three to five plants from each S1 offspring (Table 2). The 

overall weight of each group or repetition of S1 seeds ranged from 5 to 19 g.  

All S1 seeds were lyophilised at -80oC and 200mT for 4 days, milled to achieve a fine 

whole wheat flour and then protected from humidity until the analysis.  

 

2.2.  Solvents and chemicals 

All chemicals and reagents were of analytical grade unless specified otherwise. Amino 

acids standards (L-alanine, L-arginine, L-aspartic acid, glycine, L-glutamic acid, L-histidine, 

L-isoleucine, L-leucine, L-lysine, L-norvaline, L-phenylalanine, L-serine, L-threonine, L-

tyrosine, L-tryptophan and L-valine) were purchased from Sigma-Aldrich (Steinheim 

Germany). 6-Aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was acquired from 

Santa Cruz Biotechnology, Inc. (Heidelberg, Germany). Acetonitrile (UPLC grade), calcium 

disodium ethylenediaminetetraacetic acid (EDTA), sodium borate, sodium hydroxide (NaOH) 

and hydrochloric acid (HCl) were obtained from Panreac (Castelar del Vallés, Barcelona, 

Spain). Sodium acetate (anhydrous), triethylamine (TEA), absolute ethanol, glacial acetic 

acid, carmine and phosphoric acid were purchased from Sigma-Aldrich. 

 

2.3. Biochemical analysis 

2.3.1. Analysis of the free amino acids profile by high-performance liquid 

chromatography with fluorescence detection (HPLC-FLD) 

 

For determination of the free a.a. concentration (except for tryptophan and tyrosine) 25 

mg of each whole wheat flour sample was added to 5 ml of 6M HCl and tightly sealed with a 

cap. The hydrolysis was carried out at 110oC for 24h, after which the samples were left to 

cool at room temperature (RT) and adjusted to pH 2.0 with NaOH. To each sample, 1 ml of 

5mM of the internal standard L-norvaline solution was added and completed with distilled 

water till a final volume of 50 ml in a volumetric flask. An aliquot of 1 ml was then filtered 

through a 0.22 µm filter and stored at 4oC until initiating the analysis.  

For tryptophan and tyrosine, 25 mg of each sample was added to 5 ml of 5M NaOH, 

and the hydrolysed at 120 oC for 12 h. The samples were left to cool at RT, and the pH was 



Materials and methods 
 

19 

adjusted to 2.0 with HCl. To each sample were added 100 µl of tramadol hydrochloride at 500 

µg.ml-1 and distilled water till a final volume of 50 ml within a volumetric flask. An aliquot of 

500 µl was filtered through a 0.22 µm filter into an HPLC vial and stored at 4oC until 

analysis.  

Processed samples and calibration curve standards were prepared according to the pre-

column derivatization procedure using AQC, as described by Cohen (2001) with slight 

modifications. In an HPLC vial insert, 5 µl of sample or standard along with 35 µl of borate 

buffer mixture (0.2M of sodium borate and 5mM of Calcium disodium EDTA, pH 8.8) and 10 

µl of AQC (3 mg.ml-1 in acetonitrile) were added and immediately mixed for 30 sec. Vials 

were tightly capped and stored at 50oC for 10 min and placed in the autosampler system 

maintained at 10oC. 

For tyrosine and tryptophan, no derivatization procedure was necessary, and processed 

samples were directly injected into the HPLC system. 

The a.a. separation was carried out on an ACE 5 C 18 column (5 µm, 150 x 4.6 mm i.d., 

Advanced Chromatography Technologies Ltd., Aberdeen, Scotland). In all a.a., except for 

tyrosine and tryptophan, a ternary gradient program was employed with the mobile phases 

being 140mM of Sodium acetate, 17mM of triethylamine, 1mM of EDTA in water, pH 4.95 

(phase A), acetonitrile/distilled water (60:40, v/v) (phase B) and water (phase C). The 

program started at 100% phase A, increasing to 33% phase B and 7% phase C during 40 min; 

following an increase to 40% phase B and reduction of phase C to 0% during 8 min; and 

finally increasing to 100% phase B in 0.5 min, and maintained for 5.5 min. The column was 

re-equilibrated for 10 min among injections. Fluorescence detection occurred at excitation 

250 nm and emission 395 nm. For tyrosine and tryptophan, a gradient program consisting of 

50 mM NaH2PO4 (phase A) and acetonitrile (phase B) was used. The program started at 5% 

phase B, increasing to 60% phase B during 8 min and maintained for 1 min. The program 

then returned to the initial conditions in 0.5 min, which were kept for another 3.5 min for 

column re-equilibration. The injection volume was 5 µl with the column oven set to 40oC. 

Fluorescence detection was performed according to a timetable: excitation at 274 nm, 

emission at 304 nm; changing to excitation at 280 nm and emission at 340 nm at 3 min; 

changing to excitation at 202 nm and emission at 296 nm at the 5 min mark of the 

chromatographic run.  

The chromatographic analyses were performed on a Thermo Scientific Dionex UltiMate 

3000 Series system (Thermo Fisher Scientific, Inc., Waltham, USA), composed by a RS 



Materials and methods 
 

20 

quaternary pump, a WPS-3000RS autosampler (maintained at 4 oC), a TCC-3000RS column 

compartment (maintained at 35 oC), and a FLD-3400RS fluorescence detector (excitation and 

emission wavelength were set to 250 and 395 nm, respectively).  

Results were interpreted on the Chromeleon software version 7.2 (Thermo Fisher 

Scientific, Inc., Waltham, USA). The a.a. identification was performed by comparison with 

authentic standards and quantification according to calibration curves prepared and analysed 

anew during every day of analysis. 

 

2.3.2.  Analysis of soluble sugars by high-performance liquid chromatography 

with pulsed amperometric detection (HPLC-PAD) 

 

An amount of 100 mg of each whole wheat flour sample was added to 6 ml of distilled 

water, and the extraction was performed at 80 oC for 30 min. Each solution was transferred to 

a volumetric flask, and the volume was completed to 50 ml with distilled water. An aliquot of 

1 ml was filtered through a 0.22 µm filter and stored at 4oC until analysis.  

The soluble sugars separation was achieved in a Dionex CarboPac PA200 (3 x 250 mm 

i.d.) analytical column (Thermo Fisher Scientific, Inc., Waltham, USA), performed with 30 

mM NaOH. To all mobile phases, 2 mM of Barium hydroxide was added to prevent the 

formation of carbonates, filtered through a 0.22 µm membrane filter and kept under a helium 

atmosphere (0.3-0.5 bar) during the entire time of analysis. The column oven was kept at 28 
oC, and the injection volume was 5 µl. The soluble sugars were detected by pulsed 

amperometric detection using a 6041RS amperometric cell with gold working electrode 

through a quadrupole waveform: +200 mV (500 ms), -2000 mV (10 ms), +600 mV (10 ms) 

and -100 mV (10 ms). The chromatographic analyses occurred on a Thermo Scientific Dionex 

UltiMate 3000 Series system (Thermo Fisher Scientific, Inc., Waltham, USA), composed by 

an LPG-3400RS quaternary pump, a WPS-3000TRS autosampler (maintained at 4 oC) and an 

ECD-3000RS electrochemical detector with an incorporated column compartment. Results 

were interpreted  using the Chromeleon software version 7.2 (Thermo Fisher Scientific, Inc., 

Waltham, USA). 
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2.3.3. Quantification of ash, crude protein and total starch 

 

The lyophilised whole wheat flour samples were analysed using the official procedures 

described by the Association of Official Analytical Chemists (AOAC, 1990) for ash 

(#942.05), crude protein (#954.01) and total starch (#996.11). 

For the quantification of ash content (#942.05), porcelain capsules were previously 

identified and incinerated at 550 ºC for 30 min, following 30 min in an oven at 105 ºC. After 

cooling in an exsiccator, each capsule weight was registered with and without 1 g of whole 

wheat flour and left at 105 ºC overnight. Capsules with the sample were weighted the next 

day to obtain the dry matter (DM) content (g) and submitted to 550 ºC for 3h to register the 

ash content (g.Kg-1 DM) following the equation [Ashes weight (g) / DM (kg)]. 

Crude protein (CP) was determined following the Kjedahl method, procedure #954.01 

of the AOAC (1990). In sum, 0.2 g of the milled sample was dried at 65 ºC and placed in test 

tubes. A Selenium tablet (99.9% Potassium sulphate and 0.1% Selenium) was added to each 

tube followed by 5 ml of sulfuric acid. Digestion occurred in a lab digester for 1h at 420 ºC, 

and test tubes cooled to RT. Distillation was performed by an automatic Kjedahl distiller 

(UDK 149 Automatic Kjeldahl Distillation Unit, VELP Scientifica, Italy) by adding water, 

40% Sodium hydroxide and 4% Boric acid for 4 min and 20 s. The titration process was 

conducted by an automatic titrator (TITROLINE EASY K automatic titrator, VELP 

Scientifica, Italy) using sodium tetraborate decahydrate. Crude protein content (g.Kg-1 DM) 

was obtained based on the following equation [(Titration volume × (acid titration value – 

blank value))*1.4*6.25/ DM (kg)] 

For the determination of the total starch content, a Megazyme Total Starch Assay Kit 

(Product code: K-TSTA-100A, Megazyme) was used with accordance to the procedure 

described by the AOAC (1990) (#996.11). Briefly, 100 mg of whole wheat flour were 

weighted to a glass test tube and added 0.2 mL of aqueous ethanol (80% v/v) to wet and aid 

the dispersion of the sample. There were then stirred, and 3 mL of thermostable α-amylase 

was added. Incubation took place in a water bath for 12 min, and shaken after 4, 8, and 12 

min to ensure complete homogeneity of the slurry, as well as ensuring sample was deposited. 

After, 0.1mL amyloglucosidase was added tubes stirred and placed in a bath at 50 ºC for 30 

min. Contents of each tube were transferred to a 100 mL volumetric flask and a wash bottle 

used to rinse the whole contents of the tube. Volume was adjusted with distilled water and 

mixed thoroughly. Aliquots of each sample were centrifuged at 3.000 rpm for 10 min, and 
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0.1mL of the clear undiluted filtrate was transferred to glass test tubes. 3.0mL of glucose 

oxidase/peroxidase reagent (GOPOD) was added to each tube and to the D-glucose controls 

and reagent blanks, followed by incubation at 50 ºC for 20 min.  

The absorbance of each sample was read at 510 nm in a spectrophotometer, and the 

starch concentration obtained by comparison with the D-glucose calibration curve obtained. 

 

2.4. Germination and cytogenetic analyses  

2.4.1. Germination, collection and fixation of root-tips 

 

A total of 80 S1 seeds (including the control) were allowed to germinate in Petri dishes 

containing filter paper moistened with distilled water. The germination occurred at 25 ºC in 

the dark.  

Seeds were monitored daily for a total of 8 days and considered germinated when the 

radicle presented around 2 mm of length. The percentage of germination (number of 

germinated seeds/ total number of seeds placed in Petri dishes × 100%) and the mean 

germination time (MT) (in days) were evaluated. 

Root-tips with 1 to 1.5 cm in length were collected and immediately fixed in a solution 

of absolute ethanol and glacial acetic acid (3:1, v/v) freshly prepared. The fixed root-tips were 

stored at -20 ºC till the preparation of chromosome spreads. 

 

2.4.2. Preparation of mitotic chromosome spreads 

 

The fixed root tips were stained with 2% of aceto-carmine for 48h at 25 ºC and used for 

the preparation of chromosome spreads following Lima-Brito et al. (1996). After the removal 

of the glass coverslip, the slides were air-dried and mounted with a drop of 

VECTASHIELD® Antifade Mounting Medium (Vector Laboratories, Peterborough, UK) and 

a glass coverslip of 24 × 50 mm.  
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2.4.3. Cells scoring and images capturing 

 

Three chromosomal preparations of each S1 offspring were observed and scored on the 

optical microscope. Fifty fields were observed per preparation, and all the cells (interphase 

nuclei, normal and abnormal cells) of each field were scored. For the dividing cells, all the 

mitotic phases were also identified. The mitotic index (MI) [number of diving cells/number of 

counted cells × 100%] was calculated based on the observed results, where the number of 

counted cells corresponds to the sum of interphase and mitotic cells. The percentage of 

dividing cells with anomalies (%DCA) [number of dividing cells with anomalies/number of 

diving cells × 100%] was also determined. 

The cell images were captured using an Olympus BX41 microscope (Olympus 

America, Inc., New York, USA) with a CCD digital camera XC10 (Olympus America, Inc., 

New York, USA) with the software cellSens (Olympus Soft Imaging Solutions GmbH, 

Münster, Germany). 

 

2.5. Characterization of yield-related components 

 

In total, 80 plants (including the control) of the S1 generation were potted and installed 

at UTAD and further characterized for the following seven yield-related components: (i) 

number of spikelets of the main spike (NSkMS); (ii) number of seeds of the main spike 

(NSMS); (iii) number of seeds per spikelet (NSperSk); (iv) weight of the seeds of the main 

spike (WSMS); (v) tiller number with spike (TN); (vi) number of seeds of the secondary 

spikes (NSSS); and (vii) weight of seeds of the secondary spikes (WSSS). The same yield-

related components were characterized in the S0 plants by Reis et al. (2018).  
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2.6. Statistical analyses 

 

All results are shown as mean ± standard error (S.E.) values per offspring. For the 

statistical analyses of the cell counting, each preparation was considered a repetition.  

For the biochemical analyses, namely for the identification and/or quantification of the 

free a.a. and soluble sugars, ash, crude protein (CP) and total starch, nine replicates of whole 

wheat flour samples were used. 

One-way analyses of variance (ANOVA) and Tukey’s honestly significant difference 

(HSD) tests were performed with the software IBM SPSS Statistics for Windows, Version 20 

(IBM Corp., Armonk, NY., USA). The p-value significance was set for probabilities lower 

than 5% (p < 0.05). 
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3. Results 

3.1. Identification and quantification of free amino acids 

 

Most of the (untreated) S1 offspring of bread wheat plants whose S0 seeds were primed 

with distilled water (hydropriming) and solutions with 4 and 8 mg.L-1 of Fe and/or Zn showed 

higher concentrations of each free a.a, when compared to the control offspring (unprimed 

seeds) (Table 3).  

In all S1 offspring, including the control, the most abundant a.a. were the combination 

of glutamic acid and glutamine that ranged from 0.163 to 0.351 mmol.g-1, proline (varying 

from 0.108 to 0.199 mmol.g-1) and glycine (0.105 to 0.135 mmol.g-1) (Table 3). On the other 

hand, a.a. with the lowest average concentrations in all offspring was tryptophan which 

ranged from 0.008 to 0.010 mmol.g-1 (Table 3).  

Apart from threonine, the average concentration of all a.a. showed significant 

differences (p < 0.05) among the S1 offspring (Table 3). In particular, the offspring of S0 

seeds primed with 8 mg.L-1 Fe + 8 mg.L-1 Zn treatment showed the highest mean values for 

nine of the sixteen analysed a.a. Six of them (histidine, threonine, valine, isoleucine, leucine 

and phenylalanine) (Table 3) considered as essential for the human diet (Tessari et al., 2016; 

Garg et al., 2018). 

The S1 offspring of S0 seeds primed with 4 mg.L-1 Fe + 4 mg.L-1 Zn showed higher 

mean values of aspartic acid + asparagine, alanine and lysine when compared to the 

remaining offspring. In contrast, the offspring of treatments performed just with Fe showed 

the highest serine concentrations (Table 3). Histidine content was higher in the S1 offspring 

of the: 8 mg.L-1 Zn, 8 mg.L-1 Fe + 8 mg.L-1 Zn, and 4 mg.L-1 Fe + 4 mg.L-1 treatments (Table 

3). Tryptophan concentration (0.01 mmol.g-1) was higher in the S1 offspring of 4 mg.L-1 Zn 

treatment (Table 3) 

.
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Table 3. Mean (± standard error, SE) concentration of free amino acids (mmol.g-1) determined per S1 (unprimed) offspring. The mean values resulted from nine replicates. 
Values followed by different lowercase letters are statistically significant different (p < 0.05) among the S1 offspring. 

S1 offspring of: 

Concentration (mmol.g-1) of the amino acids: 

Aspartic acid 
+ Asparagine 

Serine 
Glutamic acid + 
Glutamine 

Histidine Glycine Arginine Threonine Alanine Proline 

Control 0.068 ± 0.010 a 0.086 ± 0.004 a 0.163 ± 0.003 a 0.017 ± 0.001 a 0.107 ± 0.008 a 0.033 ± 0.002 a 0.040 ± 0.004 0.059 ± 0.003 a 0.108 ± 0.002 a 

Hydropriming 0.072 ± 0.011 a 0.089 ± 0.003 a,b 0.161 ± 0.003 a 0.017 ± 0.001 a 0.110 ± 0.009 a,b 0.034 ± 0.002 a 0.042 ± 0.004 0.060 ± 0.003 a,b 0.108 ± 0.002 a 

4 mg.L-1 Fe +  
0 mg.L-1 Zn 

0.073 ± 0.005 a,b 0.112 ± 0.006 c 0.233 ± 0.019 b 0.022 ± 0.001 b,c 0.114 ± 0.005 a,b 0.036 ± 0.003 a 0.038 ± 0.002 0.067 ± 0.004 a,b,c 0.142 ± 0.009 b 

8 mg.L-1 Fe +  
0 mg.L-1 Zn 

0.078 ± 0.007 a,b 0.117 ± 0.005 c 0.240 ± 0.018 b 0.018 ± 0.001 a,b 0.105 ± 0.004 a 0.034 ± 0.003 a 0.037 ± 0.002 0.072 ± 0.004 a,b,c,d 0.141 ± 0.01 b 

0 mg.L-1 Fe +  
4 mg.L-1 Zn 

0.113 ± 0.014 b,c 0.099 ± 0.003 a,b,c 0.310 ± 0.007 c 0.023 ± 0.001 c,d 0.123 ± 0.004 a,b 0.046 ± 0.001 b 0.042 ± 0.002 0.068 ± 0.003 a,b,c 0.189 ± 0.008 c 

0 mg.L-1 Fe + 
 8 mg.L-1 Zn 

0.139 ± 0.005 c,d 0.106 ± 0.005 a,b,c 0.351 ± 0.01 c 0.027 ± 0.001 c 0.126 ± 0.005 a,b 0.050 ± 0.002 b 0.041 ± 0.001 0.079 ± 0.003 b,c,d 0.189 ± 0.004 c 

4 mg.L-1 Fe + 
 4 mg.L-1 Zn 

0.162 ± 0.012 d 0.111 ± 0.005 c 0.323 ± 0.009 c 0.024 ± 0.001 c,d,e 0.124 ± 0.004 a,b 0.048 ± 0.002 b 0.042 ± 0.002 0.090 ± 0.004 c 0.176 ± 0.001 c 

8 mg.L-1 Fe + 
 8 mg.L-1 Zn 

0.106 ± 0.007 
a,b,c 

0.108 ± 0.005 b,c 0.314 ± 0.009 c 0.027 ± 0.001 d,c 0.135 ± 0.004 b 0.051 ± 0.001 b 0.047 ± 0.002 0.081 ± 0.006 c,d 0.199 ± 0.002 c 

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.005 < 0.001 > 0.05 < 0.001 < 0.001 
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Table 3. (continued). Mean (± standard error, SE) concentration of free amino acids (mmol.g-1) determined per S1 (unprimed) offspring. The mean values resulted from 
nine replicates. Values followed by different lowercase letters are statistically significant different (p < 0.05) among the S1 offspring. 

S1 offspring of: 

Concentration (mmol.g-1) of the amino acids: 

Valine Lysine Isoleucine Leucine Phenylalanine Tyrosine Tryptophan 

Control 0.043 ± 0.002 a 0.029 ± 0.001 a 0.030 ± 0.002 a 0.061 ± 0.003 a 0.037 ± 0.001 a 0.019 ± 0.00 a,b 0.008 ± 0.00 a 

Hydropriming 0.044 ± 0.002 a 0.030 ± 0.002 a 0.030 ± 0.002 a 0.062 ± 0.003 a 0.038 ± 0.002 a 0.032 ± 0.001 b,c 0.009 ± 0.00 c 

4 mg.L-1 Fe + 
0 mg.L-1 Zn 

0.049 ± 0.003 c,b 0.035 ± 0.003 a,b 0.033 ± 0.002 a,b 0.071 ± 0.005 a,b 0.045 ± 0.003 a 0.025 ± 0.002 a 0.008 ± 0.00 b 

8 mg.L-1 Fe + 
0 mg.L-1 Zn 

0.047 ± 0.003 c,b 0.036 ± 0.002 c,b 0.032 ± 0.002 c,b 0.070 ± 0.005 c,b 0.040 ± 0.003 a 0.026 ± 0.002 a,b 0.008 ± 0.00 a 

0 mg.L-1 Fe + 
4 mg.L-1 Zn 

0.051 ± 0.001 a,b 0.038 ± 0.002 a,b,c 0.037 ± 0.001 a,b 0.085 ± 0.003 b,c 0.064 ± 0.003 c 0.034 ± 0.001 c 0.010 ± 0.00 c 

0 mg.L-1 Fe + 
8 mg.L-1 Zn 

0.054 ± 0.002 b 0.045 ± 0.002 c,d 0.039 ± 0.001 b 0.086 ± 0.002 c 0.059 ± 0.003 b.c 0.033 ± 0.00 a,b,c 0.009 ± 0.00 c 

4 mg.L-1 Fe + 
4 mg.L-1 Zn 

0.052 ± 0.002 a,b 0.047 ± 0.001 d 0.035 ± 0.001 a,b 0.079 ± 0.002 b,c 0.048 ± 0.001 a,b 0.032 ± 0.001 a,b 0.009 ± 0.00 c 

8 mg.L-1 Fe + 
8 mg.L-1 Zn 

0.056 ± 0.002 b 0.040 ± 0.002 b,c,d 0.039 ± 0.001 b 0.087 ± 0.001 c 0.067 ± 0.003 c 0.032 ± 0.001 a,b,c 0.009 ± 0.00 c 

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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3.2. Identification and quantification of soluble sugars 

 

The average concentrations of total sugars showed statistically significant differences (p 

< 0.05) among the different S1 offspring (Table 4). 

The highest concentration of total sugars (102.47 mg.g-1) was found in the control 

offspring (Table 4). On the other hand, the lowest total sugars content (69.89 mg.g-1) was 

detected in the S1 offspring of plants whose S0 seeds were primed with 8 mg.L-1 Zn (Table 

4).  

Table 4. Mean (± SE) concentration of soluble sugars (mg.g-1 sample) determined per S1 (unprimed) offspring. 
The mean values resulted from nine replicates. Values followed by different lower-case letters are statistically 
significant different (p < 0.05) among the S1 offspring. 

S1 offspring 
of: 

Concentration (mg.g-1 sample) of the soluble sugars: 

Glucose Sucrose Fructose Raffinose Maltose Total sugars 

Control  1.25 ± 0.11 a 13.99 ± 0.34 c 0.90 ± 0.11 b 3.00 ± 0.08 b,c,d 83.34 ± 2.02 c 102.47 ± 2.18 c 

Hydropriming 1.62 ± 0.09 a,b 9.77 ± 0.3 a 0.70 ± 0.04 a,b 2.22 ± 0.11 a 62.2 ± 1.36 a,b,c 76.5 ± 1.62 a,b 

4 mg.L-1 Fe + 
 0 mg.L-1 Zn 

1.49 ± 0.06 a,b 11.93 ± 0.66 a,b,c 0.71 ± 0.06 a,b 2.66 ± 0.1 a,b,c 76.67 ± 9.32 b,c 93.45 ± 9.78 b,c 

8 mg.L-1 Fe + 
 0 mg.L-1 Zn 

1.57 ± 0.09 a,b 10.37 ± 0.18 a,b 0.90 ± 0.05 b 3.15 ± 0.09 c,d 67.86 ± 2.41 a,b,c 83.85 ± 2.57 a,b,c 

0 mg.L-1 Fe +  
4 mg.L-1 Zn 

1.43 ± 0.08 a,b 10.96 ± 0.63 a,b 0.54 ± 0.03 a 2.47 ± 0.09 a,b 58.37 ± 3.86 a,b 73.76 ± 4.24 a,b 

0 mg.L-1 Fe +  
8 mg.L-1 Zn 

1.72 ± 0.10 a,b 11.02 ± 0.67 a,b 0.53 ± 0.04 a 2.61 ± 0.25 a,b,c 54.02 ± 3.86 a 69.89 ± 4.01 a 

4 mg.L-1 Fe +  
4 mg.L-1 Zn 

1.91 ± 0.27 b 11.11 ± 0.52 a,b 0.77 ± 0.15 a,b 2.63 ± 0.22 a,b,c 68.86 ± 7.46 a,b,c 85.26 ± 7.3 a,b,c 

8 mg.L-1 Fe + 
 8 mg.L-1 Zn 

1.66 ± 0.07 a,b 12.18 ± 0.41 b,c 0.69 ± 0.02 a,b 3.35 ± 0.15 d 53.3 ± 3.77 a 71.18 ± 3.91 a,b 

p-value < 0.05 < 0.001 < 0.05 < 0.001 < 0.05 < 0.001 

 

Glucose increased in all S1 offspring relative to control, being significantly higher (p < 0.05) 

than the control in the S1 offspring of 4 mg.L-1 Fe + 4 mg.L-1 Zn (1.91 mg.g-1) (Table 4). 

Relative to the other sugars, in few S1 offspring was detected a significant decrease (p < 0.05) 

in comparison with the control (Table 4). The lowest mean values of sucrose and raffinose 

were observed in the S1 offspring of hydropriming (9.77 mg.g-1 and 2.22 mg.g-1, respectively) 

(Table 4). The lowest average value of fructose was observed in the S1 offspring of 8 mg.L-1 
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Zn (0.53 mg.g-1) and the lowest of maltose in the offspring of 8 mg.L-1 Fe + 8 mg.L-1 Zn (53.3 

mg.g-1) (Table 4). Although the S1 offspring of 8 mg.L-1 Fe + 8 mg.L-1 Zn and 8 mg.L-1 Fe 

presented higher average concentrations of raffinose (3.35 mg.g-1 and 3.15 mg.g-1, 

respectively) than the control, no statistically significant differences (p ˃ 0.05) among these 

offspring were found (Table 4).  

 

3.3. Determination and quantification of ash, crude protein and total 

starch 

 

The average concentration of ash, crude protein (CP) and total starch showed significant 

differences (p < 0.05) among the studied S1 offspring (Table 4). 

For ash, the lowest average concentration was observed in the control offspring (18.0 

g.kg-1) and the highest one in the S1 of 8 mg.L-1 Fe + 8 mg.L-1 Zn (25.2 g.kg-1) (Table 5). 

The lowest average CP content was found in the control offspring (120.6 g.kg-1) 

whereas the highest was detected in the S1 of 8 mg.L-1 Fe + 8 mg.L-1 Zn (209.7 g.kg-1), and 8 

mg.l-1 Zn (206.7 g.kg-1) (Table 5).  

 

Table 5. Mean (± SE) concentration (g.Kg-1 dry matter, DM) of ash, crude protein and total starch determined 
per S1 (unprimed) offspring. The mean values resulted from nine replicates. Values followed by different 
lowercase letters are statistically significant different (p < 0.05) among the S1 offspring. 

S1 offspring of: 
Concentration (g.Kg-1 DM) of: 

Ash  Crude protein Total starch 

Control  18.00 ±0.77 a 120.60 ±0.70 a 628.40 ±5.50 d 

Hydropriming 22.90 ±0.65 b 188.80 ±11.80 b,c,d 546.60 ±6.20 a,b 

4 mg.L-1 Fe + 0 mg.L-1 Zn 23.10 ±1.10 b 145.50 ±10.30 a,b 594.60 ±13.30 c,d 

8 mg.L-1 Fe + 0 mg.L-1 Zn 22.60 ±1.45 b 157.70 ±13.10 a,b,c 630.10 ±15.90 d 

0 mg.L-1 Fe + 4 mg.L-1 Zn 24.40 ±0.42 b 201.40 ±5.40 c,d 560.90 ±7.90 b,c 

0 mg.L-1 Fe + 8 mg.L-1 Zn 24.90 ±0.24 b 206.70 ±8.80 d 537.90 ±13.70 a,b 

4 mg.L-1 Fe + 4 mg.L-1 Zn 22.50 ±0.36 b 187.90 ±10.60 b,c,d 537.40 ±8.00 a,b 

8 mg.L-1 Fe + 8 mg.L-1 Zn 25.20 ±0.23 b 209.70 ±11.20 d 512.80 ±7.80 a 

p-value < 0.001 < 0.001 < 0.001 
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The highest average concentration of total starch was found in the S1 offspring of plants 

whose S0 seeds were primed with 8 mg.L-1 Fe (630.1 g.kg-1) and in control (628.4 g.kg-1) 

(Table 5). The lowest average concentration of total starch was found in the S1 offspring of 

plants resulting from seed priming with 8 mg.L-1 Fe + 8 mg.L-1 Zn (512.8 g.kg-1) (Table 5). 

 

3.4. Analysis of the mean germination time 

 

A germination percentage of 100% was observed in all S1 offspring seeds.  

The S1 offspring of plants whose seeds were primed with 4 mg.L-1 Fe, 4 mg.L-1 Zn, 8 

mg.L-1 Zn and 4 mg.L-1 Fe + 4 mg.L-1 Zn showed the lowest mean germination time (MT = 

2.0 days) (Table 6).  

Table 6. Mean germination time (MT) determined per S1 (unprimed) offspring that resulted from different 
priming treatments performed in the S0 seeds (indicated in table) and unprimed seeds (control). The mean values 
are representative of 10 seeds. Values followed by different lower-case letters are statistically significant 
different (p < 0.05) among offspring 

S1 offspring of: 
MT (days) 
(Mean ± SE) 

Control 2.70 ± 0.38 a 

Hydropriming 2.40 ± 0.29 a 

4 mg.L-1 Fe + 0 mg.L-1 Zn 2.00 ± 0.00 a 

8 mg.L-1 Fe + 0 mg.L-1 Zn 2.10 ± 0.09 a 

0 mg.L-1 Fe + 4 mg.L-1 Zn 2.00 ± 0.00 a 

0 mg.L-1 Fe + 8 mg.L-1 Zn 2.00 ± 0.00 a 

4 mg.L-1 Fe + 4 mg.L-1 Zn 2.00 ± 0.00 a 

8 mg.L-1 Fe + 8 mg.L-1 Zn 7.20 ± 1.08 b 

p value < 0.001 

 

Although the hydroprimed and unprimed seeds (control) revealed higher MT values 

(2.4 and 2.7 days, respectively) than the previous ones, only the S1 offspring of 8 mg.L-1 Fe + 

8 mg.L-1 Zn showed a significantly higher MT value (p < 0.001) that showed statistically 

significant differences relative to the remaining offspring, including the control (Table 6). 
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3.5. Evaluation of the mitotic cell cycle 

 

A total of 25,742 cells were counted in this work, with an average of 3,218 cells per S1 

offspring. Normal and abnormal dividing cells in different mitotic phases were scored in all 

S1 descendants (Tables 7 and 8). 

 

Table 7. Total number of counted (interphase + mitotic) cells and normal dividing cells, values of mitotic index 
(MI) presented as mean (± SE) and percentage of normal dividing cells in different mitotic phases determined 
per S1 (unprimed) offspring that resulted from various priming treatments performed in the S0 seeds (indicated 
in table) and unprimed seeds (control). The mean values resulted from the score of three chromosomal 
preparations per S1 offspring. Values followed by different lower-case letters are statistically significant 
different (p < 0.05) among offspring. 

S1 offspring 
of: 

Counted 
cells  

Normal 
dividing 
cells 

MI (%)  
(Mean ± SE) 

Mean percentage ± SE of normal dividing cells in: 

Prophase Metaphase Anaphase Telophase 

Control  3041 1601 52.06 ± 1.39 b 89.24 ± 1.57 a,b 7.75 ± 1.40 b,c 1.58 ± 0.20 a 1.16 ± 0.08 

Hydropriming 3246 1592 49.07 ± 0.42 a,b 87.9 ± 0.42 a,b 5.09 ± 0.03 a,b,c 4.1 ± 0.18 b 1.59 ± 0.58 

4 mg.L-1 Fe +  
0 mg.L-1 Zn 

2718 1277 46.98 ± 0.38 a,b 91.64 ± 0.82 b 3.44 ± 0.27 a,b 1.6 ± 0.25 a 1.29 ± 0.44 

8 mg.L-1 Fe +  
0 mg.L-1 Zn 

3911 1730 44.27 ± 1.02 a 88.93 ± 0.52 a,b 4.17 ± 0.18 a,b,c 2.32 ± 0.28 a,b 1.83 ± 0.37 

0 mg.L-1 Fe +  
4 mg.L-1 Zn 

3885 1871 48.16 ± 0.48 a,b 91.45 ± 1.03 b 4.05 ± 1.02 a,b,c 1.84 ± 0.17 a 0.91 ± 0.04 

0 mg.L-1 Fe +  
8 mg.L-1 Zn 

2744 1258 45.98 ± 1.48 a 87.37 ± 0.40 a,b 5.41 ± 0.64 a,b,c 2.38 ± 0.11 a,b 1.67 ± 0.12 

4 mg.L-1 Fe +  
4 mg.L-1 Zn 

3164 1529 48.35 ± 0.18 a,b 86.05 ± 1.00 a 9.48 ± 2.06 c 1.81 ± 0.68 a 1.24 ± 0.36 

8 mg.L-1 Fe +  
8 mg.L-1 Zn 

3033 1400 46.14 ± 0.64 a 90.53 ± 0.60 a,b 1.92 ± 0.22 a 2.77 ± 0.36 a,b 1.16 ± 0.28 

p value - - < 0.05 < 0.05 < 0.05 < 0.05 0.764 

 

The highest mitotic index (MI) value was found in the control offspring (52.06%) and 

the lowest one in the S1 offspring of plants whose S0 seeds were primed with 8 mg.L-1 Zn 

(44.27%) (Table 7). Statistically significant differences (p < 0.05) for the MI values were 

detected between the control and the S1 offspring of plants that resulted from seed priming 

with 8 mg.L-1 Fe, 8 mg.L-1 Zn and 8 mg.L-1 Zn + 8 mg.L-1 Fe (Table 7). 

The average percentage of normal diving cells was determined according to the mitotic 

phase. Among the S1 offspring, we found statistically significant differences (p< 0.05) for 

prophase, metaphase and anaphase cells (Table 7).  
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In all S1 offspring, most of the normal dividing cells were in prophase (Fig. 4a). Its 

highest value was observed in the offspring of plants that resulted from seed priming with 4 

mg.L-1 Fe (91.64%) whereas the lowest one was detected in the S1 offspring of 4 mg.L-1 Zn + 

4 mg.L-1 Fe (86.05%) (Table 7). The lowest average percentage of normal metaphase cells 

(Fig. 4c) was found in the S1 offspring of plants derived from seed priming with 8 mg.L-1 Zn 

+ 8 mg.L-1 Fe (1.92%) and the highest value in the S1 offspring of S0 seeds primed with 4 

mg.L-1 Zn + 4 mg.L-1 Fe (9.48%) (Table 7). The highest average percentage of normal 

anaphase cells (Fig. 4f) was found in the S1 offspring of hydropriming (4.1%), and the lowest 

value was observed in control (1.58%) (Table 7). The average percentage of normal 

telophases (Fig. 4i) show no statistically significant differences (p = 0.764) among S1 

offspring. Its highest value was found in the offspring of S0 plants resulting from 

nutripriming with 8 mg.L-1 Fe (1.83%) while the lowest was detected in the S1 offspring of 

plants treated with 4 mg.L-1 Zn (0.91%) (Table 7). 

Different irregularities were found in the dividing cells (Fig. 4b, d, e, g, h and j; Table 

8).  

The abnormal prophase cells showed a single type of irregularity which was chromatin 

stickiness (Fig. 4b). The irregular metaphases presented mitotic spindle disturbance (Fig. 4e) 

and chromatin stickiness (Fig. 4d). Chromatin stickiness was also observed in both anaphase 

(Fig. 4h) and telophase irregular cells (Fig. 4j). Some irregular anaphases showed chromatin 

bridges (Fig. 4g). 

Most of the S1 offspring showed prophase, metaphase and anaphase cells with 

irregularities (Table 8). However, irregular telophase cells were only found in the S1 

offspring of plants whose S0 seeds were primed with 8 mg.L-1 Fe + 8 mg.L-1 Zn (Table 8).  

The average percentage of irregular cells in prophase and metaphase showed 

statistically significant differences (p < 0.001) among the S1 offspring (Table 8). However, no 

significant differences (p ˃ 0.05) were found for the average percentage of anaphase and 

telophase cells among the S1 offspring (Table 8). 
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Figure 4. Normal (a, c, f, i) and abnormal (b, d, e, g, h, j) dividing cells in different mitotic phases observed in 
one or various S1 offspring. (a) Normal (late) prophase; (b) early prophase (at left) and sticky prophase (at right); 
(c) normal metaphase; (d) sticky metaphase; (e) C-metaphase; (f) normal anaphase; (g) anaphase with chromatin 
bridges; (h) sticky anaphase; (i) normal telophase and (j) sticky telophase. 
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Chromatin stickiness was detected in irregular prophase and metaphase cells except for 

the control S1 offspring that did not show sticky prophases (Table 8). Sticky anaphases and 

telophases were only found in the S1 offspring of plants whose S0 seeds were primed with 8 

mg.L-1 Fe + 8 mg.L-1 Zn (Table 8). The chromatin stickiness was the only type of irregularity 

found in both prophase and telophase (Table 8). The average percentage of sticky prophase 

cells in the S1 offspring analysed here increased with the augment of Fe, Zn, and Fe + Zn 

concentrations (Table 8). Hence, the highest average percentage of sticky prophases was 

found in the S1 offspring of plants resulting from seed priming with 8 mg.L-1 Fe + 8 mg.L-1 

Zn (2.51%) (Table 8). 

The irregular metaphase cells showed chromatin stickiness as well as mitotic spindle 

disturbance that generated C-metaphases (Table 8). The lowest average of sticky metaphases 

was observed in the control S1 offspring (0.71%) whereas the highest value was registered in 

the S1 offspring of plants resulting from S0 primed with 8 mg.L-1 Fe + 8 mg.L-1 Zn (31.75%) 

(Table 8). Therefore, the average of sticky and/or disturbed metaphases differed significantly 

(p < 0.001) among the S1 offspring (Table 8). The mean percentage of C-metaphases 

presented no statistically significant differences (p = 0.225) among the S1 offspring (Table 8). 

The highest average value of C-metaphases (30.16%) was detected in the S1 offspring of 

plants whose S0 seeds were primed with 8 mg.L-1 Fe + 8 mg.L-1 Zn (Table 8). 

The irregular anaphase cells showed chromatin bridges that were detected in six of the 

eight S1 offspring analysed here. Chromatin stickiness was only found in the offspring of 

plants whose S0 seeds were primed with 8 mg.L-1 Fe + 8 mg.L-1 Zn (Table 8). The average 

percentage of abnormal anaphase cells with stickiness or chromatin bridges did not present 

significant differences among the S1 offspring (p > 0.05) (Table 8). The same was verified for 

the sticky telophases (Table 8). 

The lowest average percentage of dividing cells with anomalies (% DCA) were found in 

control (0.27%) whereas the highest one was detected in the S1 offspring of plants resulting 

from 8 mg.L-1 Fe + 8 mg.L-1 Zn (3.62%; Table 8). Moreover, the average % DCA determined 

per S1 offspring evidenced an increase with the augment of Fe, Zn, Fe + Zn (Table 8). The 

average % DCA showed statistically significant differences (p ˂ 0.001) among the S1 

offspring (Table 8). 

. 
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Table 8. Mean ± SE percentage values of abnormal cells in different mitotic phases, with particular irregularities per mitotic phase, and percentage of diving cells with 
anomalies (% DCA) per S1 (unprimed) offspring that resulted from various priming treatments performed in the S0 seeds (indicated in table) and unprimed seeds 
(control). The mean values resulted from the score of three chromosomal preparations per S1 offspring. Values followed by different lower-case letters are statistically 
significant different (p < 0.05) among offspring 

S1 offspring of: 

Mean percentage (± SE) of abnormal dividing cells in: Mean percentage (± SE) of abnormal dividing cells with the following irregularities: 
% DCA 
(Mean ± SE) 

Prophase Metaphase Anaphase Telophase Sticky prophase 
Sticky and/or 
disturbed 
metaphase 

C-metaphase  
Sticky 
anaphase 

Bridges in 
anaphase 

Sticky 
telophase 

Control  0.00 ± 0.00 a 4.10 ± 1.25 a 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 a 0.71 ± 0.58 a 3.39 ± 1.35 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.27 ± 0.06 a 

Hydropriming 0.49 ± 0.11 a,b 17.34 ± 2.06 a 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.11 a,b 9.73 ± 1.66 a,b 7.60 ± 3.50 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.32 ± 0.17 a,b 

4 mg.L-1 Fe +  
0 mg.L-1 Zn 

0.76 ± 0.40 a,b,c 30.32 ± 2.25 a,b 20.00 ± 9.43 0.00 ± 0.00 0.76 ± 0.4 a,b,c 18.57 ± 1.78 b 11.75 ± 2.07 0.00 ± 0.00 20.00 ± 9.43 0.00 ± 0.00 2.03 ± 0.43 b,c,d 

8 mg.L-1 Fe + 
0 mg.L-1 Zn 

1.95 ± 0.15 b,c,d 19.68 ± 1.85 a 8.63 ± 4.85 0.00 ± 0.00 1.95 ± 0.15 b,c,d 10.97 ± 1.84 a,b 8.71 ± 2.48 0.00 ± 0.00 8.63 ± 4.85 0.00 ± 0.00 2.75 ± 0.23 b,c,d 

0 mg.L-1 Fe +  
4 mg.L-1 Zn 

0.97 ± 0.29 a,b,c 23.69 ± 10.75 a 11.67 ± 2.08 0.00 ± 0.00 0.97 ± 0.29 a,b,c 10.33 ± 4.02 a,b 13.36 ± 6.91 0.00 ± 0.00 11.67 ± 2.08 0.00 ± 0.00 1.74 ± 0.18 a,b,c 

0 mg.L-1 Fe +  
8 mg.L-1 Zn 

2.09 ± 0.32 c,d 20.47 ± 5.25 a 6.73 ± 2.79 0.00 ± 0.00 2.09 ± 0.32 c,d 7.33 ± 0.95 a,b 13.15 ± 5.99 0.00 ± 0.00 6.73 ± 2.79 0.00 ± 0.00 3.01 ± 0.49 c,d 

4 mg.L-1 Fe +  
4 mg.L-1 Zn 

0.64 ± 0.14 a,b,c 7.85 ± 0.97 a 3.52 ± 2.03 0.00 ± 0.00 0.64 ± 0.14 a,b,c 3.59 ± 0.21 a 4.27 ± 0.76 0.00 ± 0.00 4.74 ± 2.02 0.00 ± 0.00 1.42 ± 0.14 a,b 

8 mg.L-1 Fe +  
8 mg.L-1 Zn 

2.51 ± 0.29 d 61.9 ± 9.72 b 5.66 ± 2.62 4.17 ± 3.40 2.51 ± 0.29 d 31.75 ± 4.14 c 30.16 ± 11.7 3.70 ± 3.02 1.96 ± 1.60 4.17 ± 3.40 3.62 ± 0.32 d 

p value < 0.001 < 0.001 0.175 0.466 < 0.001 < 0.001 0.225 0.466 0.142 0.466 < 0.001 
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3.6. Yield-related components characterization 

 

Seven yield-related components were characterized in the mature S1 offspring plants, 

including the control (Table 9).  

Table 9. Mean ± SE values of yield-related components characterized per S1 offspring that resulted from various 
priming treatments performed in the S0 seeds (indicated in table) and unprimed seeds (control). The mean values 
resulted from the characterization of 10 adult plants per S1 offspring. Values followed by different lower-case 
letters are statistically significant different (p < 0.05) among offspring.  
Note: NSkMS - number of spikelets of the main spike; NSMS - number of seeds of the main spike; NSperSk - 
number of seeds per spikelet; WSMS -weight of seeds of the main spike; NT – number of tillers with spike; 
NSSS - number of seeds of the secondary spikes; WSSS -weight of seeds of the secondary spikes; TNS – total 
number of seeds (sum of the main spike seeds with seeds of the secondary spikes). 

 

S1 offspring of: NSkMS NSMS NSperSk WSMS (g) NT NSSS WSSS (g) TNS 

Control  18.40 ± 0.38 a 54.60 ± 2.84 a 2.98 ± 0.18 1.48 ± 0.16 a 9.10 ± 1.20 283.80 ± 43.48 5.71 ± 1.08 a 338.4 ±  45.70 a 

Hydropriming 20.00 ± 0.49 a,b 71.60 ± 3.97 b,c,d 3.58 ± 0.18 2.27 ± 0.18 a,b,c 9.40 ± 0.70 382.60 ± 35.69 10.56 ± 1.19 a,b 454.2 ± 39.50 a,b 

4 mg.L-1 Fe +  
0 mg.L-1 Zn 

20.80 ± 0.31 b 65.90 ± 3.87 a,b,c 3.15 ± 0.15 1.82 ± 0.26 a,b 10.10 ± 0.96 365.90 ± 41.13 6.87 ± 0.9 a,b 431.8 ± 39.50 a,b 

8 mg.L-1 Fe + 
0 mg.L-1 Zn 

23.10 ± 0.54 c 76.20 ± 3.73 c,d 3.33 ± 0.20 2.86 ± 0.11 c 11.90 ± 0.97 516.10 ± 64.01 12.51 ± 1.51 b 592.3 ± 67.84 a,b 

0 mg.L-1 Fe + 
4 mg.L-1 Zn 

18.50 ± 0.25 a 61.80 ± 2.56 a,b,c 3.34 ± 0.13 2.12 ± 0.17 a,b,c 12.40 ± 1.10 450.40 ± 50.26 8.79 ± 1.17 a,b 512.2 ± 54.11 a,b 

0 mg.L-1 Fe +  
8 mg.L-1 Zn 

23.40 ± 0.49 c 83.40 ± 2.73 d 3.58 ± 0.15 2.87 ± 0.20 c 9.40 ± 1.29 470.80 ± 92.01 11.4 ± 2.32 a,b 554.2 ± 98.96 a,b 

4 mg.L-1 Fe +  
4 mg.L-1 Zn 

18.00 ± 0.28 a 58.80 ± 3.96 a,b 3.26 ± 0.21 2.03 ± 0.21 a,b,c 10.90 ± 0.93 376.50 ± 41.28 7.53 ± 0.89 a,b 435.3 ± 45.06 a,b 

8 mg.L-1 Fe +  
8 mg.L-1 Zn 

21.60 ± 0.62 b,c 76.60 ± 3.09 c,d 3.54 ± 0.11 2.65 ± 0.20 b,c 11.90 ± 1.11 544.60 ± 73.19 11.19 ± 1.65 a,b 621.2 ± 79.14 b 

p value < 0.001 < 0.001 0.141 < 0.001 0.214 0.064 < 0.05 < 0.05 

 

In all S1 offspring, the average values of the seven yield-related components were 

higher than the control except for the NSkMS (Table 9).  

Most of the yield-related components, except NSperSK, NT and NSSS, showed 

statistically significant differences (p < 0.05) among the S1 offspring.  

The S1 offspring of nutripriming with 8 mg.L-1 Zn showed the highest mean values of 

four yield-related components, namely, NSkMS, NSMS, NSperSK and WSMS (Table 9). 

The highest mean values of NSkMS were found in the S1 offspring of S0 seeds 

primed with 8 mg.L-1 Zn (23.4) and 8 mg.L-1 Fe (23.1), while the lowest means were 
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observed in the 4 mg.L-1 Fe + 4 mg.L-1 Zn, and in control (Table 9). Regarding the yield-

related component NSMS, the highest average value was detected in the S1 offspring of S0 

seeds treated with 8 mg.L-1 Zn (83.4) and the lowest mean value was observed in control 

(54.6) (Table 9). For the yield-related component NSperSK, there were no significant 

differences among the S1 offspring (p = 0.141). All the S1 offspring showed higher values 

than the control. The highest mean values (3.58) for the NSperSK were found in the offspring 

of S0 seeds hydroprimed and primed with 8 mg.L-1 Zn while the lowest one was detected in 

control (Table 9).  

Relatively to the WSMS parameter, the highest mean value was observed in the S1 

offspring of 8 mg.L-1 Zn (2.87 g) whereas the lowest mean value (1.48 g) was found in 

control (Table 9). The lowest mean value of TN was found in control (9.1) while the highest 

average was observed in the S1 offspring of 4 mg.L-1 Zn (12.4) (Table 9). Concerning the 

NSSS, the lowest average value was detected in control (283.8), whereas the highest one was 

found in the S1 offspring of 8 mg.L-1 Zn + 8 mg.L-1 Fe (544.6) (Table 9). The lowest mean 

value of WSSS was detected in control (5.71 g) and the highest one in the S1 offspring of 8 

mg.L-1 Fe (12.51 g) (Table 9). 

The average of TNS was higher in all S1 offspring relative to the control (338.4), but it 

was only significantly higher (p ˂ 0.05) in the offspring of 8 mg.L-1 Fe + 8 mg.L-1 Zn (621.2) 

(Table 9). 
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4. Discussion 

 

Hidden hunger is a global issue caused by micronutrient deficiencies. Cereal crops, such 

as wheat are the most consumed food by humans [2]. However, some wheat cultivars have 

low contents of Fe and Zn, leading to several problems in human health, especially in 

developing countries (Dimkpa and Bindraban, 2016). To overcome this problem, the 

scientific community and plant breeders have been studying and developing approaches to 

improve the nutritional quality of wheat and other crops (Garg et al., 2018; Venske et al., 

2019). 

Agronomic biofortification aims not only at the increase of micronutrients availability 

in the soil but also to improve the concentration of essential micronutrients in the edible parts 

of the plant (Singh et al., 2016). Seed priming has been considered one of the most suited, 

easy and affordable agronomic biofortification strategies to overcome the micronutrients 

deficiency in crops (Harris et al., 2008; Rehman et al. 2018). However, there is an absence of 

information related to the seed priming effects in the offspring of the primed plants, as seed 

priming is commonly performed in each generation. Moreover, if done with excessive 

dosages, seed priming cause adverse effects in the germination, mitotic cell cycle, and yield-

related components, acting as abiotic stress (Gill et al. 2016, Reis et al., 2018). It is known 

that the environment surrounding plants influence their offspring, but the underlying 

mechanisms are far from being wholly understood (Herman and Sultan, 2011; Lämke and 

Bäurle, 2017; Wang et al., 2018).  

This work was performed with S1 unprimed offspring of S0 plants that resulted from 

hydropriming and nutripriming with 4 and 8 mg.L-1 of Fe and/or Zn and which were 

characterized at the germination, cytogenetic, and yield-related levels (Reis et al., 2018). 

These authors verified that concentrations of Fe and/or Zn above 2 mg.L-1 were cytotoxic and 

negatively affected the germination and yield-related components. Specifically, priming 

treatments with 4 mg.L-1 Fe + 4 mg.L-1 Zn, and 8 mg.L-1 Fe + 8 mg.L-1 Zn showed the highest 

values of %DCA and allowed nucleolar stress (Reis et al., 2018; Carvalho et al., 2019). 

However, the whole wheat flour samples of the S0 seeds primed with the previously 

mentioned treatments presented a higher amount of total soluble proteins than that resulting 

from hydropriming (Carvalho et al., 2019). The determination of the total protein content was 

the single biochemical characterization performed in the S0 generation. Nonetheless, 
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regarding the benefits in terms of yield-related components observed in the S0 plants primed 

with Fe and/or Zn concentrations up to 2 mg.L-1 (Reis et al., 2018), and the high total protein 

content in S0 seeds primed with higher concentrations, allowed us to deeply explore the 

biochemical benefits of seed priming by including in the present work, an unprimed S1 

offspring as control. Hence, in this work along with the evaluation of the effects of 

hydropriming and nutripriming with 4 and/or 8 mg.L-1 of Fe and/or Zn on germination, 

mitosis and yield-related components in their respective unprimed S1 offspring, we also 

characterized their biochemical profile in whole wheat flour samples in relation to free a.a., 

soluble sugars, ash, CP and total starch, by comparison with unprimed seeds (control), and the 

results achieved by Reis et al. (2018) in the S0 parental generation.  

 

4.1. Free amino acids profile and protein content 

 

The a.a. have different roles in plants, including their use as building blocks of proteins, 

involvement in signalling processes and plant stress response (Zafar et al., 2014; Hildebrandt 

et al., 2015; Parlak, 2016; Zemanová et al., 2017). Additionally, the a.a. influence cellular 

reactions, physiological and metabolic processes (Hildebrandt et al., 2015). The essential a.a. 

are required in adequate amounts in the daily diet because they are not synthesised by animals 

(Anjum et al., 2005).  

In the whole wheat flour samples analysed in this work, 16 free a.a. were identified. 

Eight of them (histidine, threonine, valine, lysine, isoleucine, leucine, phenylalanine and 

tryptophan) are considered essential for the human diet (Tessari et al., 2016; Garg et al., 

2018). Besides, the S1 offspring of plants derived from seed priming with 8 mg.L-1 Fe + 8 

mg.L-1 Zn presented high concentrations of six of this eight essential a.a., namely, histidine, 

threonine, valine, isoleucine, leucine and phenylalanine.  

The free a.a. composition in the whole wheat flour or white flour differs among bread 

and durum wheat varieties, but the high content of glutamic acid and/or glutamine is common 

among them (McDermott and Pace, 1957; García del Moral et al., 2007; Zafar et al., 2014). 

As demonstrated here, the cv. ‘Jordão’ is not an exception. The same feature was noticed in 

the control offspring. Despite a non-significant decrease in the S1 offspring of hydropriming, 

the combination of glutamic acid and glutamine increased in the remaining S1 offspring 

resulting from the nutripriming performed with Fe and/or Zn in the S0 generation. 
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Glutamic acid is synthesised from α-ketoglutarate and other a.a. like ornithine, proline, 

arginine and glutamine (Zafar et al., 2014). Hence, the high levels of proline and glutamine 

contributed to the high glutamic acid found in the whole wheat flour samples analysed in this 

work. Also, proline and glutamine are the functional a.a. for dough formation (Zafar et al., 

2014). The bread wheat cv. ‘Jordão’ analysed here belongs to the Portuguese Catalogue of 

Varieties since 1996, and it has been reported as high-quality wheat for baking (Catálogo 

Nacional de Variedades, 2018).  

An important feature related to the baking use of the wheat flour is the amount of free 

asparagine and its role in the formation of the carcinogenic acrylamide during high-

temperature cooking and processing (Sofo et al. 2018). The concentration of free asparagine 

in plants may vary with micronutrient availability, environment, genotype, and crop 

management or can be accumulated to high concentrations (along with proline and glycine 

betaine) in response to abiotic (salinity and drought) and biotic stresses, influencing the crop 

yield (Curtis et al., 2018; Wang et al., 2018; Sofo et al., 2018). In the present study, all S1 

offspring showed an increase in the average concentration of the combination of aspartic acid 

and asparagine. Nevertheless, only those resulting from plants whose S0 seeds were primed 

with 4 mg.L-1 Fe + 4 mg.L-1 Zn and with Zn alone differed from the control. Curtis et al. 

(2018) reported that asparagine could become the predominant a.a. in cereal grains under 

some stress conditions.  

Nonetheless, in this work, the combination of aspartic acid and asparagine was not 

among the more abundant free a.a. quantified in any of the analysed whole wheat flour 

samples. Asparagine and aspartic acid also have beneficial effects being associated with 

nitrogen transport and recycling, storage and metabolism in plants (Herrera-Rodríguez et al., 

2007; Lea et al., 2007; Gaufichon et al., 2010; Gao et al., 2016).  

Other a.a., like serine, threonine, arginine, glutamine, histidine, glycine, isoleucine, 

leucine and tryptophan are involved in crucial pathways. Furthermore, these a.a. are also 

constituents of proteins and enzymes that are upregulated during stress (País et al., 2009; 

Wang et al., 2010; Joshi et al., 2010; Reddy and Shad Ali, 2011; Zemanová et al., 2014; 

Kumar and Verslues, 2015; Kan et al., 2015). 

Leucine is one of the essential branched-chain a.a., along with valine and isoleucine. It 

promotes energy metabolism (glucose uptake, mitochondrial biogenesis and fatty acids 

oxidation), improving protein synthesis and inhibiting protein degradation in mammals (Duan 
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et al., 2016). Leucine, isoleucine and valine significantly increased in all S1 offspring relative 

to the control.  

The a.a. content highly determines the nutritional value and quality of the wheat grain 

profile and protein content, but environmental conditions significantly affect these features as 

well as the grain production (Zafar et al., 2014). High temperature and drought shorten the 

duration of grain filling period and influence the a.a. composition by increasing the content of 

phenylalanine, glutamine and proline, and decreasing other a.a. due to the accumulation of 

gliadins, albumins and globulins (Zafar et al., 2014). The storage proteins gliadins are rich in 

glutamine and proline. They are accumulated in detriment of albumins and globulins that have 

structural and metabolic roles and are rich in threonine, lysine, methionine, valine and 

histidine (Zafar et al., 2014). The albumins and globulins accumulate early during the grain 

growth when the endosperm cells are still dividing whereas the amount of storage proteins 

increases in a later stage when the cell division stops (Triboi et al., 2003; Martre et al., 2003). 

This assumption can also explain the higher amounts of glutamine and proline found in the 

whole wheat flour samples analysed here and which were obtained from mature grain. 

Arginine, phenylalanine, glycine and aspartic acid are less prone to variation among 

environments than tyrosine, lysine, threonine and valine (Zafar et al., 2014).  

Proline which is one of the most studied a.a. in plants under stress, was also among the 

most abundant free a.a. detected in the flour samples analysed in this work. Proline 

accumulates in plants under biotic and abiotic stresses (osmotic, high salt concentrations, 

heat, drought and exposure to heavy metals) to protect the cell by decreasing the lipid 

peroxidation, improving the stability of the membrane, proteins and enzymes, and rising the 

activity of proteases (Khan et al., 2009; Verslues and Sharma, 2010; Hayat et al., 2012; Liang 

et al., 2013; Kaur and Asthir, 2015; Anand et al., 2017). Proline accumulation improves the 

plant tolerance to stress but may decline the protein content (Anand et al., 2017). Other 

authors reported a negative correlation between the content of essential a.a. and the 

percentage of protein under abiotic stress (García del Moral et al., 2007; Zafar et al., 2014). 

Nevertheless, in this work, all S1 offspring showed higher content of all a.a. (including 

proline and nine essential ones) and CP than the control. 

Previously, the S0 generation was only analysed in terms of total soluble proteins 

amount for integration with the nucleolar activity data, and an increase of protein content was 

detected in seeds primed with 4 mg.L-1 Fe + 4 mg.L-1 Zn, 8 mg.L-1 Fe + 8 mg.L-1 Zn and 8 

mg.L-1 Zn, relative to the hydroprimed seeds (Carvalho et al., 2019). Also, the lowest average 
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value of protein content was found in S0 seeds primed with 8 mg.L-1 Fe but did not differ 

statistically from the hydroprimed seeds (Carvalho et al., 2019). Similar results were found 

hereupon comparison with the S1 offspring of those hydroprimed seeds. In the present work, 

due to the inclusion of unprimed seeds as control, it was noticed that the S1 offspring of 

hydroprimed seeds presented higher CP content than the control.  

Hydropriming induces the secretion of the gibberellin hormone by the embryo and its 

transference to the aleurone whose functions rely on storage and secretion of hydrolytic 

enzymes (Copeland and McDonald, 2001). The enhancement of protein synthesis contributes 

for the embryo growth and degradation of storage proteins, triggering genetic and epigenetic 

changes involved in DNA repair mechanisms that affect the nucleolar morphology, 

organization (Lutts et al., 2016) and activity (Carvalho et al., 2019). The enzymes are 

transferred to other tissues, and the production of proline enhances the hydrolysis of storage 

proteins during germination (Copeland and McDonald, 2001). A variety of proteases allow 

the conversion of insoluble storage proteins into soluble peptides and free a.a. (Anand et al., 

2017). In this work, the average concentration of proline did not show significant differences 

between the S1 offspring of hydropriming and control. Nonetheless, the increased protein 

amount in hydroprimed seeds also justifies the shortening of mean germination time, the 

increased germination rate and seedlings emergence, as well as the improvement of specific 

yield-related components (Reis et al., 2018). Due to its advantages, ‘on-farm’ hydropriming 

before sowing has been widely adopted by lower economic strength farmers for a range of 

crops, including wheat (Harris et al., 2008). 

The lowest CP content was shown by the control (unprimed seeds) offspring. Hence, 

independently of using distilled water or micronutrient-rich solutions, the seed priming 

performed in the S0 seeds by Reis et al. (2018) enhanced the protein content in that 

generation (Carvalho et al., 2019) as well as in the S1 offspring (this work). Like the a.a. 

composition, the wheat grain-protein amount fluctuates widely among genotypes and 

environments (Boila et al. 1996; Tanács et al., 1995; Zafar et al., 2014). Punia et al. (2019) 

classified wheat cultivars based on their protein content as following: those having protein 

content higher than 12% were classified as high protein cultivars; between 10 and 12% were 

considered medium protein cultivars and less than 10% protein content were categorized as 

low protein cultivars. The control offspring presented an average percentage of protein of 

12.06% (120.60 g.kg-1 dry matter) that places the bread wheat cv. ‘Jordão’ in the margin of 

the high and medium protein cultivar, according to Punia et al. (2019). Therefore, the 
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remaining S1 offspring can be considered in the category of high protein cultivar (protein 

content higher than 12%). Despite increased, the CP concentration in the S1 offspring of S0 

seeds primed with Fe alone was not significantly different from the control. This result 

evidenced that seed priming with Zn alone or in combination with Fe contributed more for 

protein content improvement. This can be explained by the higher mobility of Zn in phloem 

than Fe (Raven et al., 2003) and also by the significant biological roles of Zn as activator or 

co-factor of metalloenzymes involved in carbohydrate metabolism and protein synthesis, 

among others (Anand et al., 2017; Noulas et al., 2018). During the early seed development, 

the increase of the abscisic acid amount contributes to the dormancy to avoid premature 

germination and stimulates the production of storage proteins (Raven et al., 2003).  

 

4.2. Soluble sugars and total starch content 

 

In this work, the total soluble sugar content decreased in all S1 offspring resulting from 

primed S0 seeds. Nevertheless, this decrease was only significantly different from the control 

offspring in the S1 offspring whose seeds were hydroprimed, primed just with Zn, and treated 

with 8 mg.L-1 Fe + 8 mg.L-1 Zn. Among the five soluble sugars identified in the whole wheat 

flour samples of the different S1 offspring, only glucose showed an increase relative to the 

control. However, this value was only significant in the S1 offspring of plants whose S0 seeds 

were primed with 4 mg.L-1 Fe + 4 mg.L-1 Zn. Bowne et al. (2012) reported that some wheat 

cultivars tolerant to drought might respond slowly with an increase of glucose and a.a. like 

proline, tryptophan, leucine, isoleucine and valine, since these biochemical molecules 

contribute to the osmotic adjustment and the synthesis of proteins involved in ROS 

scavenging. Though the periodical irrigation, the S0 plants probably experienced water deficit 

during the grain filling period, contributing to the increase of glucose in their offspring (S1 

seeds). As suggested by Wang et al. (2018), the drought priming of parental wheat plants 

increased the drought tolerance of the offspring. Nevertheless, the high amount of glucose in 

mature grain is expected because, upon the disruption of the seed coat favoured by imbibition 

and in the presence of oxygen, glycolysis constitutes the first step of respiration needed for 

germination, though the possible occurrence of glucose breakdown under anaerobic 

conditions in early stages of germination (Raven et al., 2003). 
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The remaining sugars, sucrose, fructose, raffinose and maltose, demonstrated a 

significant decrease relative to the control. Seed priming also improves the seedlings dry 

weight, leaf area, leaf CO2 net assimilation, maximising the photochemical efficiency of 

photosystem II and activity of α-amylase under abiotic stress (Farooq et al., 2017). Therefore, 

the more significant enzymatic activity of amylases during the grain maturation resulted in the 

degradation of oligosaccharides. This fact can explain the reduction of most of the soluble 

sugars and increase in the glucose relative to control, the latter being higher in the S1 

offspring of S0 seeds primed with 4 mg.L-1 Fe + 4 mg.L-1 Zn, 8 mg.L-1 Zn and 8 mg.L-1 Fe + 

8 mg.L-1 Zn that also presented the highest amount of CP. 

Odunlade et al. (2017) used green leafy powdered extracts to improve the nutritional 

value of wheat flour. The authors found that despite the increase in minerals (Mg, Fe, Na, Zn 

and Ca) with the augment of powder concentration there is a significant decrease in the 

antioxidant capacity and carbohydrates amount accompanied by a considerable increase of 

protein, fibre, ash and fat.  

Punia et al. (2017) also found that the high protein content wheat cultivars (above 12% 

of protein content) showed a low content of carbohydrates. Similar results were found in the 

present study, namely the decrease of total sugars amount, as well as the increase of ash and 

CP concentration. The reduced antioxidant capacity may be explained by the decrease of the 

antioxidant glutathione pool (Anand et al., 2017).  

Sucrose and starch are the major products of carbon assimilation pathways in most of 

the plants, and when carbon is fixed in excess during the day is exported to non-

photosynthetic sink organs, including seeds (Koch, 2004). The assimilated carbon can also be 

transiently stored as starch in chloroplasts or as sucrose in vacuoles and then remobilised 

when sink demand exceeds photosynthetic carbon supply (during the night) (Durand et al., 

2018). Probably the enhancement of grain yield-related components reported by Reis et al. 

(2018) required higher demands of carbon explaining the decrease of sucrose and total starch 

in the S1 offspring resulting from the priming of the S0 seeds with Fe and/or Zn.  

In this work, the total starch content significantly decreased in all S1 offspring relative 

to the control, except for the offspring of 8 mg.L-1 Fe that showed a non-significant increase. 

The lowest amounts of total starch were detected in the S1 offspring of Fe + Zn. The activity 

of enzymes responsible for the starch breakdown, like α- amylase, β-amylase or α-

glucosidase, can be inhibited by heavy metal stress. This fact can result in the accumulation of 

total carbohydrates (soluble saccharides and polysaccharides), impairing the mobilization of 
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storage protein and the translocation of soluble sugars and a.a., affecting the plant growth and 

development (Deef, 2007; Anand et al., 2017). All S1 offspring evaluated in this work 

showed a significant decrease of total starch amount relative to the control, demonstrating that 

the Fe and Zn dosages used for the priming of S0 seeds were not stressful enough to inhibit 

the enzymatic activity. The starch hydrolysis might be in the origin of the increased amounts 

of glucose detected in all offspring relative to the control. 

 

4.3. Intergenerational effects of hydropriming and nutripriming in the 

next unprimed offspring  

4.3.1. Impact on germination 

 

The germination rate (100%) of all S1 offspring analysed here was improved relative to 

the values achieved in the S0 seeds by Reis et al. (2018).  

Excluding the control, five out of the seven S1 offspring resulting from hydropriming 

and nutripriming with Fe and/or Zn presented lower mean germination time values than those 

reported by Reis et al. (2018) for their respective S0 seeds. Additionally, except for the S1 

offspring of 8 mg.L-1 Fe + 8 mg.L-1 Zn that showed the highest mean germination time, the 

remaining S1 offspring presented lower mean germination time values than the control. 

These results evidenced that the seed priming performed in the S0 generation probably 

contributed for a uniform and fast germination of the S1 seeds constituting intergenerational 

benefits. This fact can be explained by an improved nutritional status of the mother S0 plants, 

particularly regarding the availability of Fe, since its deficiency induces seed dormancy 

(Murgia and Morandini 2017). Hence, the improved Fe nutritional status of the S0 plants 

contributed to the amelioration of germination of their progeny seeds. 

 

4.3.2. Mitotic cell cycle evaluation  

 

Different abiotic stresses affect negatively the mitotic division and increase the number 

of cell cycle and chromosomal anomalies (Prom-u-thai et al., 2012; Rehman et al. 2015; 

Abdelsalam et al., 2018; Ali et al., 2018; Carvalho et al., 2018, 2019; Reis et al., 2018). The 
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extent of the negative impacts of nutripriming with high dosages of Fe and/or Zn on the 

mitotic cell in the first stress-free generation is unknown. 

Based on our observations, the lowest average MI values were found in the S1 offspring 

of seeds primed with 8 mg.L-1 of Fe and/or Zn corroborating the data of Reis et al. (2018). 

Furthermore, the decrease in the average MI with Fe and/or Zn augment was also noticed in 

the S1 offspring. These results suggested an intergenerational stress memory related to the 

cytotoxicity that arose from the priming of S0 seeds with the highest concentration of Fe 

and/or Zn.  

The S1 offspring of hydroprimed S0 seeds showed the second-highest average MI 

(49.07%). Hydropriming is widely used as a trigger to biochemical and enzymatic processes 

that enhance germination, plant growth and development (Paparella et al., 2015). However, 

its effects on the next unprimed offspring were not studied. The average MI of the S1 

offspring of hydroprimed seeds was similar to that reported for the S0 seeds (Reis et al. 

2018). Thus, we can suggest that hydropriming did not have a significant influence on the MI 

of the first unprimed offspring.  

In this work, most of the normal dividing cells of each S1 offspring were in prophase, 

but those average values were lower than the ones reported for the S0 generation (Reis et al., 

2018). The high average number of normal and irregular prophases scored in plants during or 

after abiotic stress is indicative of cell cycle arresting (Pekol et al., 2016; Carvalho et al., 

2018, 2019; Reis et al. 2018). Therefore, the decrease in the average number of normal 

prophases suggested that the dividing cells were able to proceed with the mitotic cycle. This 

fact is also confirmed by the higher number of normal metaphases, anaphases and telophases 

observed in most of the S1 offspring.  

Additionally, most of the abnormal dividing cells were in metaphase and showed higher 

values than those reported by Reis et al. (2018). However, abnormal dividing cells in all 

mitotic phases and for the seven priming treatments (hydropriming and nutripriming) were 

found in the previous generation. Here, some S1 offspring did not show abnormal dividing 

cells in prophase, anaphase and/or telophase.  

Only six types of cell cycle and chromosomal irregularities were found contrarily to the 

observed in the work of Reis et al. (2018). These results evidenced the inheritance of a stress 

memory related to the cytotoxicity, mostly evidenced in the S1 offspring of 8 mg.L-1 Fe 

and/or 8 mg.L-1 Zn. Nevertheless, some of those effects seem to be attenuated in the S1 

offspring probably due to the occurrence of DNA repair mechanisms. Another argument for 
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the previous assumption is that in the S0 generation, chromatin stickiness was observed in all 

treatments and mitotic phases (Reis et al., 2018). However, in the present work, this anomaly 

was only detected in prophases and metaphases of S1 offspring, except in control for the case 

of sticky prophases. Also, sticky anaphases and telophases were only observed in the S1 

offspring of 8 mg.L-1 Fe + 8 mg.L-1 Zn. Concerning that chromatin stickiness reflects high 

toxicity and may result in cell death upon the accumulation of chromosomal aberrations, and 

cell division anomalies (Liu et al., 1996), its reduction in the S1 offspring indicates that the 

cytotoxicity induced by high dosages of micronutrients can become diluted throughout the 

next seed generations. In most of the cases studied so far, the stress memory is reset after one 

stress-free generation, and insights into the molecular conservation of stress memory in crops 

are scarce (Lämke and Bäurle, 2017). This study evidenced that the cytotoxicity-related stress 

memory was not reset in the S1 offspring as evidenced by the detection of cell cycle and 

chromosomal irregularities. These anomalies were previously reported in wheat and other 

plant species under abiotic stress (Liu et al., 1996; Oladele et al., 2013; Pekol et al., 2016; 

Carvalho et al. 2018).  

Overall the average values of %DCA decreased in the S1 offspring relative to the S0 

generation (Reis et al. 2018), except for the offspring of hydropriming, 8 mg.L-1 Zn, and 4 

mg.L-1 Fe + 4 mg.L-1 Zn. The lowest average %DCA was observed in the control offspring.  

 

4.3.3. Enhancement of yield-related components  

 

Reis et al. (2018) observed that nutripriming with concentrations above 2 mg.L-1 Fe + 2 

mg.L-1 Zn negatively affected most of the yield-related components when compared to 

hydropriming. Even though the S1 seeds were not primed, we intended to analyse how the 

nutripriming with Fe and/or Zn performed in the S0 seeds can affect yield-related parameters 

in the S1 descendants. Therefore, we characterized seven yield-related components in all S1 

offspring, including the control which showed the lowest results for all yield-related 

components except for the number of spikelets of the main spike (NSkMS). The same yield-

related components were analysed in the S0 plants (Reis et al. 2018), and the values reached 

in all S1 offspring surpassed those achieved in the previous generation. The present results 

evidenced that the seed priming performed in the S0 seeds improved the yield-related 

components of the S1 plants suggesting the transmission of intergenerational benefits. Similar 
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results were reported by other authors (Sultan et al., 2009; Wang et al., 2016; Tabassum et al., 

2017). 

The S1 offspring of 8 mg.L-1 Fe, 8 mg.L-1 Zn, and 8 mg.L-1 Fe + 8 mg.L-1 Zn showed 

the highest values for most of the yield-related components analysed here. Additionally, the 

whole wheat flour of the S0 seeds primed with these treatments previously demonstrated high 

contents of total soluble proteins (Carvalho et al., 2019). Similar results were also verified in 

the whole wheat flour of the respective unprimed S1. Therefore, the high protein content 

observed in both S0 and S1 seeds could be in the origin of the yield-related components 

enhancement observed in the S1 generation of unprimed seeds analysed in this work.  
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5. Conclusions 

 

The present work constitutes the first approach in the evaluation of the effects of seed 

priming with different dosages of Fe and/or Zn on the biochemical profile, germination, 

mitotic cell cycle, and yield-related components of the respective unprimed S1 offspring.  

We observed that the seed priming with concentrations of 4 mg.L-1 and 8 mg.L-1 of Zn 

alone and the combination of Fe and Zn performed in the S0 seeds resulted in the highest 

average concentration of most of the free a.a. identified in the respective S1 offspring.  

These treatments also led to the highest levels of glucose, sucrose and/or raffinose, the 

highest CP and ash content, and the lowest amounts of total starch in the S1 offspring. Most 

of these biochemical molecules act during the plant stress response.  

Accordingly, our results demonstrated that the nutripriming treatment performed in the 

S0 seeds improved the nutritional quality of the unprimed S1 seeds as revealed upon 

comparison with the control offspring.  

The germination of the S1 offspring was improved relative to the S0 seeds since the 

former presented a higher germination rate (100%) and lower MT values. Moreover, all the 

S1 offspring except for those resulting from priming with 8 mg.L-1 Fe + 8 mg.L-1 Zn showed 

lower MT values than the control. Based on the biochemical and germination data achieved in 

the unprimed S1 offspring particularly in comparison with the control, it seems that the S0 

“parental” generation provided the means for faster and uniform germination, due to the stress 

they endured. 

The analysis of the mitotic cells of the S1 offspring suggested a partial inheritance of 

the stress memory endured by S0 seeds. Although the MI increased from one generation to 

the other, the trend of MI reduction with the increase of Fe and/or Zn concentration noticed in 

the S0 was maintained in the S1 offspring.  

In our work, the proportionality between the number of anomalies and concentration of 

Fe and/or Zn was observed. However, the frequency of anomalies was low. 

Despite the evidence of inheritance of a stress memory related to the cytotoxicity 

induced by the nutripriming with high dosages of Fe and/or Zn from S0 to the unprimed S1 

offspring, some attenuation of cytotoxic effects on the mitotic cell cycle was observed. The 

attenuation of cytotoxicity observed in S1 offspring was also corroborated by the 

improvement of the yield-related parameters observed in the S1 plants.  
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Our work evidenced that the abiotic stress endured by the previous generation led to 

better results in the offspring it generated. 

The data evidenced that despite the abiotic stress originated by nutripriming with high 

dosages of Fe and/or Zn in the parental generation, improved biochemical composition, 

germination and yield-related components was detected in its offspring. However, some 

cytotoxicity-related stress memory was also inherited as reflected by the MI and %DCA 

results. 

In conclusion, the hydropriming and nutripriming performed in the S0 seeds benefited 

the germination and the yield-related parameters in the unprimed S1 offspring without the 

need to repeat the treatment in each generation. 
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