Development of a Framework for Chatbots

by

Joao Carlos de Almeida Valente

Supervisor: Pedro Miguel Mestre Alves da Silva, PhD
Co-supervisor: Rui Zhang, PhD

A Thesis submitted to the
UNIVERSITY OF TRAS-OS-MONTES AND ALTO DOURO
for the degree of Master of Science-Philosophiae Doctor
in Electrical and Computer Engineering, according to the
Regulamento Geral dos Ciclos de Estudos Conducentes ao Grau de Mestre na UTAD
DR, 2° série-N.2133- Regulamento no 658/2016 de 13 de julho de 2016

Development of a Framework for Chatbots

by

Joao Carlos de Almeida Valente

Supervisor: Pedro Miguel Mestre Alves da Silva, PhD
Co-supervisor: Rui Zhang, PhD

A Thesis submitted to the
UNIVERSITY OF TRAS-OS-MONTES AND ALTO DOURO
for the degree of Master of Science-Philosophiae Doctor
in Electrical and Computer Engineering, according to the
Regulamento Geral dos Ciclos de Estudos Conducentes ao Grau de Mestre na UTAD
DR, 2° série-N.2133- Regulamento no 658/2016 de 13 de julho de 2016

Scientific Supervision:

Pedro Miguel Mestre Alves da Silva, PhD

Assistant Professor of the
Engineering Department
School of Science and Technology
of the University of Tras-os-Montes and Alto Douro, Portugal

Rui Zhang, PhD

Assistant Professor of the
College of Computer Science & Technology
of the Jilin University, China

”Have the courage to follow your heart and intuition. They somehow already know what

you truly want to become. Everything else is secondary.”

Steve Jobs (1955 — 2011)

- A minha mae, ao meu pai e irmao.

vil

Desenvolvimento de uma Framework para Chatbots

Joao Carlos de Almeida Valente

Submetido na Universidade de Tras-os-Montes e Alto Douro
para o preenchimento dos requisitos parciais para obtencao do grau de

Mestre em Engenharia Electrotécnica e de Computadores

Resumo — O crescente interesse pela utilizacao de chatbots tem levado muitas
empresas a investirem neste tipo de solugoes para aprimorar o seu servigo de apoio
ao clientes. Nao s6 nesse campo como muitos outros, os chatbots tém vindo a gan-
har fama e o facto de estarem instalados nos dispositivos que usamos no dia a dia,
como 0s nossos smartphones, contribuiu favoravelmente para o seu crescimento. O
problema que se enfrenta agora, nao passa pela interpretacao da informagao, mas
sim pelo aumento da rentabilizacao da aplicacao. Isto deve-se ao facto de existir um
numero cada vez maior de servigos de comunicagao onde os utilizadores escolhem
passar o seu tempo. Além disso, tendo tecnologias como o Node.js, ganhado uma
enorme fama no departamento da web, sao reduzidas as ferramentas que existem
para o desenvolvimento de chatbots em Java. Nao obstante, esta linguagem de pro-
gramagao continua a ser uma das mais utilizadas a nivel mundial, sobretudo no
desenvolvimento de servidores web, necessarios para o tipo de aplicagoes como é o
caso dos chatbots. Nesse sentido, sente-se a falta de uma solugao para o desenvolvi-
mento de chatbots, em ambiente Java, para um vasto nimero de servigos de men-
sagens existentes. Esta dissertacao procura solucionar este problema, propondo uma
framework em Java para o desenvolvimento universal de chatbots. Assim, com um
Unico codigo passara a ser possivel implementar um chatbot em diversas plataformas
de mensagem, aumentando o nimero de pessoas abrangidas pelo mesmo e reduzindo
substancilamente o tempo de producao e desenvolvimento da aplicagao. Ainda, per-
mitindo que desenvolvedores consigam implementar novas plataformas que poderao
emergir no futuro, proporcionando assim uma solugao duradoura e flexivel.

Palavras Chave: Chatbot, Framework, Java.

X

Development of a Framework for Chatbots

Joao Carlos de Almeida Valente

Submitted to the University of Tras-os-Montes and Alto Douro
in partial fulfillment of the requirements for the degree of

Master of Science-Philosophiae Doctor in Electrical and Computer Engineering

Abstract — The growing interest in the use of chatbots has led many companies
to invest in these solutions to improve their customer relations services. In this
field and many other fields, chatbots have been gaining fame, and the fact that
they are installed in the devices we use daily, such as our smartphones, contributed
favorably to their growth. The problem now faced is not the interpretation of the
information but the increase the profitability of the application. It is because there
is an increasing number of communication services where users prefer to spend their
time. Also, having technologies such as Node.js gained a considerable reputation
in the web department, the tools that exist for the development of chatbots in
Java are reduced. Nevertheless, this programming language remains one of the
most used worldwide, especially in web server development, necessary for the type
of applications such as chatbots. In this sense, there is a lack of a solution for
developing chatbots in the Java environment for many messaging services. This
dissertation seeks to solve this problem, proposing a Java framework for the universal
development of chatbots. Thus, with a single code, it will be possible to implement
a chatbot on multiple platforms, increasing the number of people covered by it and
substantially reducing the time of production and development of the application.
Also, allowing developers to implement new platforms that may emerge in the future,
thus providing a durable and flexible solution.

Key Words: Chatbot, Framework, Java.

x1

Agradecimentos

Ao longo do meu percurso académico, que inclui o desenvolvimento desta dissertacao
de mestrado, muitos contribuiram para a minha formacao académica e pessoal. Tive
o enorme privilégio em poder contar com o apoio de varias pessoas a quem passo a

agradecer individualmente.

Aos meus pais, Paula Almeida e Carlos Valente, e ao meu irmao, Nuno Valente, por
todo o apoio, por nunca me deixarem vacilar e por sempre me fazerem acreditar em
mim e nunca desistir do que quero para mim. Um agradecimento especial aos meus
pais por todos os sacrificios que fizeram para me poderem proporcionar os estudos
que eu sempre quis e tudo o que a vida universitaria sempre implicou. Ainda, por
todos os ensinamentos e educacao que me transmitiram. Nao consigo expressar o

quanto vos agradeco. A vos dedico este trabalho.

Aos meus orientadores, Professor Pedro Mestre e Professor Rui Zhang por toda a
ajuda prestada durante o desenvolvimento deste trabalho. Em particular ao Pro-
fessor Pedro Mestre, por todos os bons momentos, paciéncia, orientagao e, acima
de tudo, toda a ajuda, tanto a nivel pessoal como académico, prestada ao longo do

meu percurso académico.

A pessoa mais importante que a universidade trouxe para a minha vida, Jorge Sousa,

por, a sua maneira, sempre me fazer seguir os meus sonhos e ajudar a cumprir os

xiil

meus objetivos. Sem ti, muitos deles nao teriam sido possiveis.

A mais antiga de todas as amigas, Joana Cabral, porque sem ti nada disto faria
sentido. Por me encorajares, por me dizeres quando estou errado e quando nao
estou a dar tudo de mim. Por me ensinares tanto, tanto, mas, acima de tudo, por
fazeres de mim uma pessoa melhor.

A irma que a UTAD me deu, Sara Crespo, agradeco por toda a camaradagem, noites
de estudo ininterrupto e trabalho conjunto. Por todas as gargalhadas e conselhos
que partilhamos juntos. E, claro, por todas as noites de diversao que tornaram os
dias de estudo mais apeteciveis.

Aos meus amigos e colegas Bruno Novo, Davide Machado e Tiago Barbosa. Esta
jornada comegou com vocés e com vocés termina. Obrigado por toda amizade,
lealdade e companheirismo que sempre tiveram comigo e que marcou a minha vida
universitaria.

A Sofia Teixeira Guedes e Inés Silva, por estarem sempre disponiveis para me pro-
porcionarem com a vossa ajuda e amizade quando mais precisei.

Por fim, um enorme agradecimento a toda a universidade de Tras-os-Montes e Alto
Douro, incluindo professores e funcionarios que fizeram desta universidade uma se-
gunda casa para mim.

Muito obrigado a todos!

UTAD, Joao Valente
Vila Real, 20 de julho de 2021

xiv

Acknowledgments

Throughout my academic journey, which includes developing this master’s thesis,
many contributed to my good academic and personal training. I had the enor-
mous privilege of counting on the support of several people I would like to thank

individually.

To my parents, Paula Almeida and Carlos Valente, and to my brother, Nuno Valente,
for all the support, never letting me falter, and always making me believe in myself,
and never giving up what I want for myself. Special thanks to my parents for all
the sacrifices they made to provide me with the studies that I wanted for myself and
everything that university life has always entailed. Still, for all the teachings and
education that they transmitted to me. I cannot express how much I thank you. I

dedicate this work to you.

To my advisors, Professor Pedro Mestre, and Professor Rui Zhang, for all the help
provided during this work’s development. In particular to Professor Pedro Mestre,
for all the good times, patience, guidance, and, above all, all the help, both person-

ally and academically, provided throughout my university life.

To the most important person that the university brought into my life, Jorge Sousa,
for, in his own way, always making me follow my dreams and helping to fulfill my

goals. Without you, many of them would not have been possible.

XV

To the oldest of all friends, Joana Cabral, because without you, none of this would
make sense. For encouraging me, for telling me when I'm wrong and when I'm not
giving it my all. For teaching me so much, so much, but, above all, for making me
a better person.

To the sister UTAD gave me, Sara Crespo, I thank you for all the camaraderie,
nights of uninterrupted study, and working together. For all the laughs and advice
we shared together. And, of course, for all the fun nights that made the study days
more desirable.

To my friends and colleagues Bruno Novo, Davide Machado and Tiago Barbosa.
This journey started with you and ends with you. Thank you for all the friend-
ship, loyalty, and companionship you have always had with me, which marked my
academic path.

To Sofia Teixeira Guedes and Inés Silva, for always being available to provide me
with your help and friendship when I needed it most.

Finally, a huge thank you to the entire university in Tras-os-Montes and Alto Douro,
including professors and staff who made this university a second home for me.
Thank you all!

UTAD, Joao Valente
Vila Real, 20 July 2021

xXvi

Contents

—

Resumo ix
Abstract xi
Agradecimentos xiii
Acknowledgments XV
List of Tables xXi
List of Figures xxi
Abbreviations XXV
1 Introduction 1
1.1 Backgroundo 1
1.2 Motivation and Objectives 2
1.3 Document Structure 4

2 Chatbots 5
2.1 Chatbot Definition 5)
2.2 History of Chatbots 6
2.3 Chatbots Usage 7
2.4 Advantages and Limitations 9
24.1 Advantages 9

2.4.2 Timitations 9

2.5 Real-world Existing Applications 10
2.5.1 Cleverbot 10
2.5.2 Imnstalocate 12
2.5.3 HealthTap 13
2.5.4 Domino’s Pizza 14
2.5.5 Personal Assistants L. 15

2.6 Related Work 16
2.6.1 Chatbot Frameworks 16
2.6.2 Conclusion. 20

Messaging platforms 23

3.1 Usage . . . o 23

3.2 Facebook Messenger 25
3.2.1 Structure 26
3.2.2 Parameters 28
3.2.3 Handling HTTP Requests 32
3.24 Webhook 33

3.3 Telegramo 34
3.3.1 Structure 34
3.3.2 Parameters 35
3.3.3 Handling HTTP Requests 38
3.3.4 Webhook 39

3.4 WeChat e 40
3.4.1 Structure 40
3.4.2 Parameters 41
3.4.3 Handling HTTP Requests 42
3.44 Webhook 43

3.5 Other Platforms 45

Software Concepts 47

4.1 Development Methodology L. 47
4.1.1 The Waterfall Model 47

4.2 Design Patterns Lo Lo 49
4.2.1 Factory Design Pattern, 50
4.2.2 Observer Design Pattern 51

4.3 HTTP Protocol 53
4.3.1 Methods 23
4.3.2 URIL e 55
4.3.3 HTTP versions 55

4.3.4 HTTP Message Structure 26

4.3.5 HTTPS Protocol 58

4.4 Data formats 59
441 XML vsJSON 59

4.5 JSON Web Token (JWT) 63

5 Framework Design and Implementation 67
5.1 Used Technologies 68
5.1.1 Development Platform 68

5.1.2 Server 70

5.2 Requirements 72
5.3 Architecture 73
5.3.1 Framework Components 76

5.3.2 Message and User Objects 7

54 Developed System L Lo 78
5.4.1 Framework 78

5.4.2 Application 84

6 Tests & results 95
6.1 Putting Everything Online 96
6.1.1 Ngrok 96

6.2 Test Scenarios 98
6.2.1 Scenario 1: Only one chatbot working with a single service . . 98

6.2.2 Scenario 2: Two chatbots working with a single service 103

6.2.3 Scenario 3: Two services working with one chatbot each . . . 104

6.2.4 Scenario 4: One single chatbot working with two distinct services106

6.2.5 Scenario 5: Adding support for a new messaging service 108

7 Conclusion 113
7.1 Conclusions 113
7.2 Future Work 114
References 115

xix

List of Figures

E—
2.1 Screenshot of a conversation with Cleverbot 11
2.2 Screenshot of the Instalocate working 12
2.3 Screenshot of a conversation with HealthTap chatbot 13
2.4 Screenshot of a conversation with Domino’s Pizza chatbot 14
2.5 Google Assistant (left), Bixby by Samsung (center) and Siri by Apple
(right) 15
3.1 Time spent on social media APPs in July 2020 24
3.2 Messaging platforms usage statistics 25
3.3 Facebook Messenger basic structure 26
3.4 Facebook Messenger setting webhook interface. 33
3.5 WeChat original setting webhook interface. 43
3.6 WeChat translated setting webhook interface. 44
4.1 Waterfall Model of software development 48
4.2 A Factory Design Pattern UML diagram. 50
4.3 The complete Factory Design Pattern implementation UML diagram 51
4.4 Observer Design Pattern UML diagram 52
45 OSI Model o 54

xxi

4.6
4.7

5.1
5.2
5.3
5.4
9.9
5.6

6.1
6.2
6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

HTTP message structure. 26

JSON Web Token online debugger screenshot 65
Java Servlet APl diagram 71
Working process of a webhook 0oL 72
Factory Design Pattern UML diagram implementation. 74
General concept of the framework developed 75
Factory Design Pattern UML diagram implementation. 81
Observer Design Pattern UML implementation. 83
ngrok running on macOS terminalo 97

Example diagram of one single chatbot working with only one service. 98

Text shown on the application debug terminal. 100
Testing Facebook Messenger chatbot. 101
Text shown on the application debug terminal after setting the web-

hook on telegram.o 102
Testing Telegram chatbot. 103
Example diagram of two chatbots working with one service only. . . . 104
Example diagram of two chatbots working with one service each. . . . 105

Testing Facebook Messenger and Telegram chatbots at the same time. 105
Example diagram of one single chatbot working with one distinct
SETVICES. © v v v v v v e e e e e e e e e 106
Testing Facebook Messenger and Telegram with only one chatbot for
both services. L 107
Example diagram of one single chatbot working with three distinct
services, being one of them not implemented in the framework. 108

Text shown on the application debug terminal when setting WeChat’s

Results of the tests performed with three messaging platforms being

one of them not included in the Framework. 110

xxil

Acronyms

AIML Artificial Intelligence Markup Language. 6, 19
ALICE Artificial Linguistic Internet Computer Entity. 6

API Application Programming Interface. xxii, 26, 28, 31, 32, 39, 69-71

CRUD Create, Read, Update and Delete. 54

FAQ Frequently Asked Questions. 5

HMAC Hash-based Message Authentication Code. 64
HTML HyperText Markup Language. 59, 64

HTTP Hypertext Transfer Protocol. xviii, xix, 26, 32-34, 37, 40, 42, 44, 53, 56,
58,59, 64, 71, 72, 74,79, 89, 97

HTTPS Hypertext Transfer Protocol Secure. xix, 53, 58, 59, 80, 97

Java EE Java Enterprise Edition. 68-70

Java SE Java Standard Edition. 69

xxiii

JSON JavaScript Object Notation. 28, 29, 31, 32, 37-39, 41, 42, 59, 61-64, 70

JWT JSON Web Token. xxii, 32-34, 6365

OSI Open System Interconnection. 53, 58

REST Representational State Transfer. 70

RSA Rivest-Shamir-Adleman. 64

SDK Software Development Kit. 17
SGML Standard Generalized Markup Language. 60
SHA Sccure Hash Algorithm. 64

SSL Secure Sockets Layer. 59

TCP Transmission Control Protocol. 56
TLS Transport Layer Security. 56, 59

TT Turing Test. 6, 11

UML Unified Modeling Language. xxii, 50-52, 74, 81, 83
URI Uniform Resource Identifier. 32, 39, 53-55

URL Uniform Resource Locator. 26, 33, 34, 38, 39, 43, 44, 72, 82, 84, 85, 91, 98,
100

XML eXtended Markup Language. 42, 59-61, 63, 90

XX1v

Abbreviations

Abbreviation = Meaning(s)

etc. etecetera, others
et. al. and others (authors)
i.c. that is

XXV

Introduction

This dissertation aims the development solution for chatbot development that allows
the developers to build one chatbot application and deploy it on multiple messaging
services. Building chatbots for multiple platforms can be both exhausting and un-
realistic because spending hours and hours coding for the different services is not a
good investment for any company. For that matter, this framework intends to allow
developers to create chatbots for multiple messaging platforms, reduce the amount
of code needed and time spent in development, and also make the chatbot more

easy to grow in the future and expand to new messaging platforms.

1.1 Background

Communicating is intrinsic to the human being. We do it every day. Nowadays,
we can even keep communicating at a considerable distance thanks to the web
services available and all the devices we carry with us daily. The evolution of mobile
phones, currently better known as smartphones, came to meet this same need for
communication. As time goes by and as technology evolves, much of what we do in

our daily lives go through a call or telephone conversation. Events include making an

1

2 CHAPTER 1. INTRODUCTION

appointment with the dentist, filing a complaint to the telecommunications operator,
ordering a hamburger for dinner, or even asking random questions to our personal
voice assistant, Kongaut and Bohlin (2016). Chatbots emerged as a technology
to mimic the human behaviour and to fool human to think that they are really
talking with another human, Later, they evolved as a solution to help customers of
a business in order to reduce costs. More than just being pleasant for users, chatbots
can help them be more agile and more effective. Also, for those who implemented
them, chatbots are a less expensive solution than any other that requires a human

to perform it, for example, customer service, Lindvall and Ljungstrom (2018).

Although chatbots can be implemented on a variety of different platforms, it is
common to see them on messaging platforms and services like Facebook Messenger
and Telegram. However, despite the desire to make the chatbot more accessible, any
administrator is forced to choose between some of those platforms, mainly because
having a chatbot running on a vast number of messaging services requires much
time on the part of the development team, giving that they must have to code one
chatbot for each messaging platform. Furthermore, for companies, reducing the time
needed for achieving a goal, means saving more money, thereby increasing profits.
To fill this gap in the chatbots market, and in order to make it possible to expand
this type of solutions to the largest number of platforms, this dissertation proposes
a framework for the development of chatbots that allows programming one chatbot

and making it available to more than just one instant messaging service.

1.2 Motivation and Objectives

Messaging platforms are becoming more popular each year. People have been choos-
ing to type on their smartphones over the traditional phone calls, whether it is to
talk to a friend or family member or to solve an issue, let us say, with the water com-
pany receipt, Spectrm (2020). Between 2007 and 2015, a third to half of the online
interactions are due to chatbots usage. We realize that most companies, especially

the big ones that most times need some kind of customer service, for example, a call

1.2. MOTIVATION AND OBJECTIVES 3

center, adopt chatbots to perform some screening and reduce flow to their customer

help center, whether it is physical or over a call center, Radziwill and Benton (2017).

The mentioned above reasons are only the tip of the iceberg that could lead a

company to implement a chatbot service.

If we consider the development teams’ perspective, if a company decides to have
their chatbot service available in a wide number of platforms as possible, that could
mean a lot of effort, money, and time to create a chatbot specifically for each plat-

form, Chung et al. (2020).

For that reason, the main focus of this dissertation is to develop a universal frame-
work for chatbots that would give the developers the possibility to have one chatbot
available in multiple platforms, in the same server application, thereby reducing the

amount of code and resources needed.

The framework has to simultaneously support more than one messaging application
in order to fix the problem of coding for multiple platforms, allowing to reduce the
amount of code and time needed to create a working chatbot. The framework has

to fulfill the aspects listed below:

e If possible, it should be completely standalone, i.c., should not require the
developer to acquire, download or install any other software, dependency, or

library to use the framework;
e Perform connections with multiple messaging services at the same time;

e Allow the developer that implements it to be able to customize the chatbot

actions;

e When the framework does not have the implementation for a specific messaging
service, the subject using it should be able to add support for the required

service.

As a case of study, there reference implementation will be made using Java pro-

gramming language.

4 CHAPTER 1. INTRODUCTION

1.3 Document Structure

This document is divided into seven chapters as described bellow.

The present chapter introduces the main subject of this dissertation and summarizes

its main objectives.

Chapter 2 refers to state of the art. It explains a chatbot’s definition, followed by a
brief history of how the concept was born and how it has evolved until now. How
people use chatbots and its functionalities and limitations are also topics within
this section. It additionally makes a quick approach to some real applications for
chatbots and how they can help us. Finally, some related works on this dissertation’s

topic are presented.

In chapter 3 it is presented the usage of messaging platforms and their growth
along time. Additionally, it shows an analysis of Facebook Messenger, Telegram,
and WeChat platforms structure which is a necessary step before the framework

implementation.

In chapter 4 it can be found some of the core technological concepts relevant for this

framework’s development, without which its implementation would not be possible.

Chapter 5 explains the entire framework design and implementation, together with

all the details necessary to understand the development process and its structure.

In chapter 6 are presented all the tests made to the framework as well as the obtained

results.

Finally, chapter 7 makes a final analysis of the results and overall conclusions about

future work that can improve the framework to another level.

Chatbots

This chapter makes a full description of a chatbot and provides useful information
to understand this document, such as chatbot history, usage, and critical function-
alities and limitations. Also, it presents some real-world applications of chatbot
services and shows a list of all the current most well known frameworks for chatbot

development.

2.1 Chatbot Definition

The Oxford Dictionary describes a chatbot as “a computer program that can hold a
conversation with a person, usually over the internet”, Dictionary (2020). Chatbots
can have various purposes, such as information seeking, site guidance, and FAQ
(Frequently Asked Questions). Not only that, but they can help the user in many
different subjects like customer service, education, website support, and entertain-
ment, Chen (2019). A chatbot can help or assist users in performing tasks or giving
them some information, according to the user requests and the purpose of the chat-
bot, Arnaud Gellens (2019).

It is important not to confuse a chatbot with a bot. A bot is a “computer program

5

6 CHAPTER 2. CHATBOTS

that performs tasks repeatedly”, which is not the purpose of a chatbot.

2.2 History of Chatbots

The concept of a chatbot is as old as the computer itself, that was introduced in 1950
by Alan Turing. At that time, he also introduced a test that became very famous,
known as the “Turing Test” (TT), Sannikova (2018). This test’s starting point was
seeking an alternative to the question, “Can machines think?”. Since that time,
when Turing released its article about the subject, the T'T has become the ultimate

goal that a chatbot should achieve to be considered a good chatbot, Redstone (2019).

For this project’s matter, the Turning Test is not a point of interest, giving that it
evaluates the level of “intelligence” of a chatbot, and the goal of this dissertation
is not to create a functional chatbot. Nevertheless, it is crucial to understand how
chatbots have grown in time, how important they became to people in the present,

and what their future may be.

Since the first chatbot creation, we have been watching a constant evolution over
the years, leading to the chatbots we know nowadays. Even during this evolution,
not only have chatbots evolved, but they have also contributed to the birth of some

technologies that we still use today.

ELIZA, developed in 1966 by Joseph Weizenbaum, is considered the first func-
tional chatbot, created to prove how superficial the interactions between humans
and computers are, Anna and Weilensteiner (2018). Despite not being endowed
with intelligence, ELIZA inspired another chatbot called ALICE (Artificial Linguis-
tic Internet Computer Entity). Created in 1995 by Dr. Richard Wallace, ALICE
promoted a new markup language still used today, AIML (Artificial Intelligence
Markup Language). ALICE kept information collected from conversations in AIML
files, guaranteeing some learning skills and, consequently, a certain level of intelli-

gence, Bhagwat (2018).

2.3. CHATBOTS USAGE 7

These are just two examples of how chatbots came about. Since then, many oth-
ers have been developed, and even the way to interact with them has changed.
For example, nowadays, we can use chatbots over voice, the ones we call voice as-
sistants, such as Apple’s Siri or Alexa from Amazon — more about them in later

sections, Merisalo (2018).

In conclusion, the way we interact with chatbots has also changed over the years
since their first appearance, and many applications and services make use of them

today for a lot more than just fake a human to human conversation.

Later in Section 2.5, are detailed some examples of chatbots that make use of the

modern messaging platforms.

2.3 Chatbots Usage

As the years go by, we see an increment in the number of people using instant
messaging APPs in their daily life. Smartphones lay in our pockets every day, and
we take them wherever we go. We have applications for many different ends inside
our smartphones, from productivity in college to procrastination on a social media
while scrolling through content shared by our friends and family. Thousands of
applications that stand for a variety of different things. However, the most used
and the most important for us in our daily lives are messaging APPs. As humans,
we cannot live without communicating with each other, and for that reason, the
majority of the time we spend on our smartphones is inside a messaging APP.
Nowadays, those messaging APPs do a lot more than allow us to keep in touch
with each other. Those applications enable us to share instant pictures with all our
followers of what we are doing at the moment, play games, do business meetings,
share our location with someone we are going to meet, and some let us pay for
our purchases at any store. At some point in time, we started thinking about the
possibilities of having a “robot” inside of those messaging applications that people
could use to chat when they need help with any subject. It was when the concept

of chatbot arrived in the APPs that we use everyday. Not only there, but also in

8 CHAPTER 2. CHATBOTS

websites and other web services.

A chatbot’s popularity increases as its convenience also increase. In other words, the
more people tend to need that service, or the more people like to use that service,

the more popular that chatbot will be.

A very convenient advantage of chatbots is that, in most cases, they “live” inside
an instant messaging APP, and for that reason, people do not have to download
additional applications for their smartphones and do not have to learn how to use
them. They can search for the chatbot on the contact list of their favorite messaging
APP and simply start a conversation, which we already know how to do, and we

love to do.

Nowadays, most chatbots use machine learning. They can have personalized service
and conversations and learn from every experience they go through. They can also
provide feedback to developers with their users’ questions and issues that the chatbot
could not answer. By doing that, the developer can later update the service to meet

its users needs, Ojapuska (2018).

As with everything in this world, we cannot say that chatbots have unique and
specific use. People tend to adopt technologies to their own needs, and for that
reason, there are always several applications for every piece of tech, and chatbots

are no different.

Businesses have been taking advantage of chatbots by using them to chat with users
and solve the most common problems or questions instead of having one or more
people dedicated to answer the same problem repeatedly. Their conversation focuses
on the user’s needs and questions. Let us take, for example, a restaurant chatbot.
Its objective should be answering questions about the kind of food the restaurant

has, what the prices are, book a table, and so on.

Conversations with business chatbots are usually short and take less than 15 min-
utes, knowing that the user typically only wants to have answered a couple of ques-
tions, Amondarain (2018).

2.4. ADVANTAGES AND LIMITATIONS 9

2.4 Advantages and Limitations

As with every system, chatbots also have some advantages and features that make
them great and some limitations that reduce their implementation as a perfect
solution. The next sections make an overview of the main advantages and limitations

found within chatbots.

2.4.1 Advantages

The first significant advantage is that a chatbot allows a business improvement. By
implementing a chatbot as a feature to provide to its customers, a company can
improve its services. Moreover, a chatbot can be available 24x7, which means it is
always available to serve customers at any time and without adding more salaries

for multiple employees that would be needed if the chatbot was not implemented.

Chatbots can also provide faster customer service and save time to any company
by handling with the customers simple and more common questions and letting a

specific team focus on the more complex issues.

Companies can also track the user interests and behaviours in order to improve its

marketing strategies or its own investments priorities, Arsenijevic and Jovic (2019).

If we expand the chatbot implementation to the personal usage, we could say that a
chatbot can also make us more productive, for example, by having a chatbot on one
messaging platform and use it to control smart house accessories. Another example
is using a chatbot to constantly check a specific service and send a message notifying

when the service status changed or it is not working correctly.

2.4.2 Limitations

Although there are a great variety of applications making use of chatbots, they

still have some limitations. The most remarkable one relates to its ability to keep

10 CHAPTER 2. CHATBOTS

an efficient and effective conversation with the human Tiha (2018a). Some other

drawback of chatbots arc:

Not having the ability to recognize grammatical errors;

e Being limited to a closed-domain or being based on what is predefined in a

database;
e Not being able to ask questions based on the previous answers;

e Being ambiguous and having some sentences with no context and unclear

meaning;

e Having bad accuracy and sometimes suddenly change subject leading to un-

predictable responses;
e Begin limited by language structure;
e Not being able to detect the emotion of the human chatting with;

e Poor documentation.

2.5 Real-world Existing Applications

The best way to understand how chatbots are essential in our lives and how they
can help us be more productive and efficient is to show examples of real-world appli-
cations. The following examples refer to specific and already existing applications,

and their objectives are exposed separately.

2.5.1 Cleverbot

Cleverbot was developed by Rollo Carpenter in 1988 and its goal is to perform

a human-like conversation with another human. In other words, users can enter

2.5. REAL-WORLD EXISTING APPLICATIONS 11

the application and start chatting with the chatbot with no singular purpose. The

chatbot will try to maintain a rational conversation in cach answer, Orin (2017).

It communicates by implementing rule-based Al techniques and collecting all the
data from every conversation with the human. Cleverbot does not have any pro-
grammed reply, which means it builds its responses to the human subject based on
every knowledge it collected in previous conversations. The chatbot was classified
with 59% score by the Turing Test, Nuruzzaman and Hussain (2018). Figure 2.1

shows a screenshot of a conversation with Cleverbot.

cleverbot

How old are you?

23.
What's your name?
John.

You're not in Moscow you would speak Russian.

kay to cleverbot... =

think about it think for me thoughts so far

it does not understand - you do - see what you agreed again

by sending input you also agree that we may process data for or about you
see our privacy policy and how Google manages data in its ads products

Figure 2.1 — Screenshot of a conversation with Cleverbot, Cleverbot (2006).

12 CHAPTER 2. CHATBOTS

This chatbot’s most significant purpose is to prove that good algorithms applied in
the right chatbots can trick humans and make them think that they are actually
talking with another human, Arnaud Gellens (2019).

2.5.2 Instalocate

Instalocate is a chatbot that works on Facebook Messenger and was built as an Al
travel assistant to provide the user with a worry-free travel experience. The service
combines the power of machine learning with the Internet of Moving Things and

voice to help reduce travel anxiety.

Its operation is simple: the service locates flights in real-time, predicts possible
problems that may occur, and translates them into delay times, Orin (2017). Figure

2.2 shows a screenshot of a conversation with Instalocate.

1 ee000 Airtel T 4:52PM)
Instalocate >
pically replies in minutes

< Recent Manage

Has indigo 123 landed?

‘ Sure! Let me check info of IndiGo

6E-123.

Flight landed at BLR 22 hr, 10 min
ago
Landing Time: 6:42 PM, Terminal Info:
Not Available

Airport Directions

Where is ek 2257

Okay! Let me check info of
Emirates EK-225.

The flight is in air - somewhere

i

Figure 2.2 — Screenshot of the Instalocate working, Instalocate (2019).

2.5. REAL-WORLD EXISTING APPLICATIONS 13

2.5.3 HealthTap

The HealthTap, Inc. is the company that owns Dr. A.I, which is a chatbot dedicated
to health care. Dr. A.L is available not only through text but also via personal
assistant with Alexa, for example. This chatbot’s main objective is to help people

with health issues by analyzing the symptoms and diagnosing it, Ma et al. (2018).

Massive implementation of this king of chatbots could be the solution for world-wide
crises, such as the one we are living right now with the COVID-19 pandemic. A
chatbot similar to this one could be the national health system’s savior by making

medical screening and reducing contacts to the services phone line.

- \ L] b
I 1 f \
@ — | B —
‘ wawen ATLT E W20 P e - | [eeack it e [T
HastnTap 2 HsaliTan
1 | € Recen

e
DOr. Scott Kaiz atenvered:

HealthTap
239K paapss e ths R.!r’. Change, Creams: MD?[
L disper tashes ane due 1o irrtation
’ 1 from urine and/or stool, as well

as constant medsture. Tharafone
moat rashes will respond to

1 frequant diaper changes,
My faui meivh ald batyy Bay Ras [allowing the skin to be exposad
i diape: ! L to b air fresuently, and a deaper
gnr crgam or ointment to protect the
rash fraom further irritation. if the
Our doctors have answersd rash parsists, it may be due o
samilar questions. See il these yeast or 4 bactenial infection. Call
@ help you yaur pediatrician
iL H 20 doctors agreed
|
- o
& | W this answer helpfut?
W o “Thane vl poul
atraklion Lo eloetury ce ik 1o & doey
[- - - |
20 doctors weighed in: 8 doe Tharis, vary helph
Mo art | brwat iy baby's Saper rash? Wiat
|
(,—\ | /.—\ |
/
- By & —

Figure 2.3 — Screenshot of a conversation with HealthTap chatbot, Robeznikes (2016).

Figure 2.3 shows two screenshots of a conversation with the HealthTap chatbot on

Facebook Messenger APP.

14 CHAPTER 2. CHATBOTS

2.5.4 Domino’s Pizza

Domino’s Pizza chatbot is the perfect example of how this kind of solutions can free
up employees for other tasks. Having a chatbot that handles all the online orders,
that helps and advises the customers without the need of human interaction allows
to improve customer satisfaction. More than that, the chatbot can learn the user
preferences and make suggestions based on that knowledge. Also, it helps reduce the
time needed in every order because customers do not need to wait for an employee

to be available.

The chatbot allows customers to perform three starting actions: Order, Track Or-
der or Customer Support. Everything a user could need in a basic experience,
AdEspresso (2020). Figure 2.4 shows a screenshot of a conversation with Domino’s

Pizza chatbot on Facebook Messenger APP.

Qo Domino's Pizza ©

& Got it! Is this being delivered to a house, or to an apartment?

House

0 Great, what's your street address?

0 Got it. What would you like to order today?

Sure, which item would you like?

Pacific Veggie 7

asted red peppers, fresh baby s h, fresh onions, f

& Add to Order P
e @ " Q Type a message. 9 .b

Figure 2.4 — Screenshot of a conversation with Domino's Pizza chatbot, AdEspresso (2020).

2.5. REAL-WORLD EXISTING APPLICATIONS 15

2.5.5 Personal Assistants

Personal assistants have been growing in the last years and can help us with our
daily tasks. People tend to interact with this kind of chatbots with their voices over
their thumbs. Even though personal assistants are a category of chatbots, they're

built to interact with the user with their voices over text.

These type of chatbots are probably the most used by the everyday user. That
is because they are intuitive, and people do not even need to touch their devices
to interact with them. A voice command like “Hey Siri”, “Ok Google” or, only,
“Alexa” wake up these personal assistants that are ready to listen to us and answer
our questions. Personal assistants can tell us the weather, search for news or facts
like, “what is the highest building in the world”, send messages through messaging
applications, turn on/off the lights of the house, call a friend, answer an email from

work and a lot other more tasks, Wei et al. (2018).

Figure 2.5 shows three different personal assistants from three different companies:

Google Assistant, Bixby and Siri.

What can | help
you with?

Figure 2.5 — Google Assistant (left), Bixby by Samsung (center) and Siri by Apple
(right), Jackson (2018).

16 CHAPTER 2. CHATBOTS

2.6 Related Work

After going through some examples of good applications of chatbots and its usage, let

us take a closer look on some already existing solutions for the chatbot development.

The objective of this dissertation is to develop a framework for the development
of chatbots. For that reason, it is essential to be familiar with other frameworks
related to the subject. Chatbots are very popular nowadays, and there is an excellent
variety of solutions in this field. This section lists some of the most used frameworks

in chatbot development.

2.6.1 Chatbot Frameworks

A critical concept to attempt when developing a program is the reuse of code.
The intent of code reuse is simple and obvious: instead of repeatedly coding the
same thing from scratch, reuse in new projects what we have already done in other

projects Wang et al. (2013).

When we think more in-depth about this matter, we can define three levels of reuse.
The lowest level is when the programmer reuses classes like libraries or containers in
its code. Frameworks sit at the highest level and make the code the more abstract
possible it can get for solving the problem pretended and represent the problems by
classes and define relationships between them. The Hollywood principle of “don’t
call us, we’ll call you” is the basis behind frameworks. For that reason, it lets
us define the behavior we desire, and it will call us when it is our time to do
something. Between classes and frameworks, it still is the middle level. This level
covers the concept of patterns since they are smaller and even more abstract than
frameworks, Shvets (2019).

From the above definition of a framework, we can easily describe the concept of a
chatbot framework. It is a set of methods and classes that are predefined and can be

used by chatbot developers, making the programming process more logical, quick,

2.6. RELATED WORK 17

and straightforward.

The next sections present some of the popular frameworks for chatbot development

at the writing time of this dissertation.

Microsoft Bot Framework

Microsoft Bot Framework is an open-source SDK (Software Development Kit) that
provides everything a developer might need for a chatbot. It comes with support for
C#, JavaScript, Node.js, Python, Ruby and Java programming languages. Besides,
this framework allows the implementation for multiple platforms such as email, Face-
book Messenger, Kik, Line, Skype, Slack, Telegram, WeChat, and others more, De-
velopers (2019).

It is widely integrated with Microsoft’s Azure cloud service, which is a great benefit
for developers aiming to build a chatbot with most of the work simplified and saved
on the cloud. Besides that it has free and paid plans that offer some advantages

from one to another, Patil et al. (2017).

Wit.ai

Unlike Microsoft Bot Framework, which covers a wide range of the most used mes-
saging platforms, Wit.ai focuses on Facebook services only. Additionally, it is not
just for chatbots, and its objective is to provide an easy implementation for nat-
ural language. Like most of the frameworks, Wit.ai is also free, but its SDK is
only available for Node.js, Python, and Ruby programming languages, Siegert et al.
(2020).

This framework is not open-source, but is completely free to use.

18 CHAPTER 2. CHATBOTS

Dialogflow

Dialogflow is an online service owned by Google, based on natural language conver-
sation, Keszocze and Harris (2019). This service’s fundamental purpose is to provide
developers with tools to build chatbots with more natural and rich conversations

with the users, providing it with some level of AI, Muhammad et al. (2020).

Although Dialogflow works on many different platforms like Google Assistant, Alexa,
Cortana, Facebook Messenger, Skype and Telegram, its focus resides on providing
an excellent natural language conversation solution to the developer and not the

support for multiple platforms, Google (2019).

This framework requires to be implemented in Node.js and provides both free and

paid plans for different approaches and implementations.

Watson Assistant

Similar to Google’s Dialogflow, IBM’s Watson Assistant powers chatbots with Al
technology natural language on various platforms. IBM Watson uses machine learn-
ing built over a neural network of one billion Wikipedia words to accomplish this
kind of response, Watson (2019a).

The Watson API contains many different packages that make it a good choice for
a variety of solutions. It works over webchat, voice, and messaging platforms like
Facebook, Slack, and Intercom, Watson (2019b). It is not open-source and, like

Dialogflow, also has free and paid plans.

Pandorabots

Pandorabots has integration with the most popular messaging platforms and ser-
vices, and it has Al support. Besides being a development platform, Pandorabots is
also a hosting platform and allows building chatbots on an online web service. One of

the most significant advantages of this platform is the support for the open standard

2.6. RELATED WORK 19

scripting language — AIML (Artificial Intelligence Markup Language), Pandorabots
(2019).

It SDKs are available for the following programming languages:

o Java;

Node.js;

Python;

Ruby;

e PHP;

This framework is open-source and has a free and paid plans.

Botpress

Botpress has a modular architecture and is open-source. It allows us to build local
chatbots and deploy them to any cloud hosting service. It has natural language
understanding, an editor, and is multi-channel, i.e., its chatbots can be used on

various platforms, Botpress (2019a).

Its platforms support expands to the following services, Botpress (2019b):

Facebook Messenger;

Whatsapp (available through Smooch.io);

Slack;

Microsoft Teams.

20 CHAPTER 2. CHATBOTS

ChatterBot

Chatterbot is a Python library that adds machine learning algorithms to a chatbot,
allowing it to be more efficient and useful. It is easy to implement and can make a

software engage in a conversation.

The software starts with zero knowledge of how to communicate and leans with each
statement that the user inputs. That means that as more input the Chatterbot

receives, the more accurate and smart its answers will be, Chatterbot (2019).

2.6.2 Conclusion

Although there are already many frameworks out there, some do not support Java
programming language and services. Besides that, the base core of all of them
is machine learning and natural language, which might not be the primary focus
of every chatbot developer. Also, some are paid and cannot scale to new or not
supported messaging services. Chatbots have become so popular that they are being
used for more purposes than just chatting. A good example could be a chatbot used
to control the smart devices inside a house. It does not need to have natural language
processing, only needing to recognize some specific keywords related to the name

and type of devices, the room where each device is, or the action to perform.

To summarize, Table 2.1 makes a comparison between all the referenced chatbot

frameworks.

2.6. RELATED WORK 21
Open Programming | Messaging Free or
Framework Al .
Source | Language Platforms Paid?
Node.js f{a.mlc{ebook Messenger
i
C# .
Microsoft Bot JavaScript Line
Yes P Skype No | Both
Framework Python Slack
Ruby ac
] Telegram
e WeChat
Python
Wit.ai No Ruby Facebook Messenger | Yes | Free
Node.js
Facebook Messenger
Skype
Telegram
Dialogflow No Node.js Kik Yes | Both
Line
Viber
Slack
Facebook Messenger
Wats J
a.bon No ava Slack Yes | Both
Assistant C++
Intercom
Java
Node.js
Pot}? » Facebook Messenger
0
Pandorabots | Yes yron Viber Yes | Both
Ruby WeChat
eCha
PHP
Go
Facebook Messenger
WhatsA
Botpress Yes JavaScript ASAPD Yes | Free
Slack
Microsoft Teams
Pyth
ChatterBot No Y o.n Facebook Messenger | Yes | Paid
Node.js

Table 2.1 — Comparison between all the mentioned chatbots frameworks.

Messaging platforms

Before getting our hands into the Framework’s design and implementation, it is
crucial to analyze all the messaging platforms used in the development and testing

of the Framework.

The development and testing of the Framework requires the usage of different mes-
saging platforms in order to confirm its purpose. For that matter, two messaging
platforms were used during the development stage (Facebook Messenger and Tele-
gram) and a third messaging service (WeChat) was later used during the testing of
the Framework in order to prove that the Framework can be used in the future with
another messaging platforms. The structure of all three used messaging platforms

used will still be detailed in the current chapter.

3.1 Usage

Over the years, the use of messaging APPs has been growing considerably, and it
does not seem it is even near to stabilize, MindSea (2020). As seen in Figure 3.1, half
of the time that people spend on their mobile devices is on social and communication

APPs, Kemp (2020). With that in consideration, a chatbot is an excellent tool for

23

24 CHAPTER 3. MESSAGING PLATFORMS

companies that want to save money and make their customers happier. When we
want to use a chatbot, we do not even need to exit the APP we are already using.
We can simply search for the chatbot as if it were part of our contact list and start
chatting with it.

AVERAGE TIME SPENT USING MOBILE DEVICES EACH DAY WORLDWIDE, WITH SHARE OF TIME SPENT IN TOP MOBILE APP CATEGORIES

AVERAGE TIME SHARE OF MOBILE TIME SHARE OF MOBILE TIME SHARE OF MOBILE TIME SHARE OF MOBILE TIME
SPENT USING MOBILE SPENT IN SOCIAL & SPENT IN VIDEO & SPENT PLAYING GAMES SPENT USING OTHER
DEVICES EACH DAY COMMUNICATIONS APPS ENTERTAINMENT APPS (ANY GAME KIND) KINDS OF APPS

o

3H40M 50% 21% 19%

we

are Hootsuite

social

Figure 3.1 — Time spent on social media APPs in July 2020, from Kemp (2020).

In a recent research of the world’s most used social platforms, we can take a closer
look at the preferred messaging APPs in the whole world. Figure 3.2 shows that
the most used messaging service in July of 2019 was WhatsApp, with 1.600 million
users, followed by Facebook Messenger, with 1.300 million users. At last, WeChat

has over 1.151 million active users, Bucher (2020).

It is to notice that Tencent owns WeChat, one of the biggest Chinese companies,
and, for that and other reasons, the Chinese market is its primary focus. In China,
WeChat is the most used messaging service and it is integrated with pretty much
everything Chinese people use, from trains to buying things in a supermarket. Ev-
erything can be done inside WeChat. In contrast, outside of China, WeChat is not
very common among users, and WhatsApp and Facebook Messenger are the most

famous. However, although those are the most used globally, they are not used in

3.2. FACEBOOK MESSENGER 25

Most popular global mobile messenger apps as of July 2019, based on
number of monthly active users (in millions)

WhatsApp

Facebook Messenger

WeChat

QQ Mabile

Snapchat**

Viber*

Discord

Telegram

0 200 400 600 800 1000 1200 1400 1600 1800
Monthly active users in millions
Sources Additional Information:
We Are Social; Various sources (Company data); Worldwide; Various sources (Company data); DataReportal; as of July

Hootsuite: DataReportal 18,2019
@ Statista 2019

Figure 3.2 — Messaging platforms usage statistics, from Bucher (2020).

China.

Knowing that preferred messaging APPs change from country to country and that
companies may want to cover different markets with their chatbot systems, a frame-
work with the ability to develop one code to fit all different platforms could be a

game-changer for many companies.

3.2 Facebook Messenger

Being Facebook Messenger, one of the most used messaging APP in July of 2019,
and it has support for chatbot implementations, makes it the perfect choice to be

one of the first messaging services to be supported by the Framework.

26 CHAPTER 3. MESSAGING PLATFORMS

Far from being just a messaging service, Facebook Messenger has an integration
with the Facebook company services. That means that businesses with pages on
that social media service can expand their services or customer support over to
Messenger service and improve its customer satisfaction, reduce the waiting time,

and maybe the costs.

3.2.1 Structure

When analyzing the Facebook Messenger platform documentation, we can see the
diagram shown in Figure 3.3. It represents how a chatbot works with Facebook
Messenger platform and how the communication between the user and the chatbot

itself is made.

Business Facebook
Server Server
R [
*‘ Webhooks ™
Business to People
< I > ® Conversatlon
-~ o PR, o
Messenger — —]
App

Figure 3.3 — Facebook Messenger basic structure, from Facebook (2021).

We can decompose the diagram in Figure 3.3 to better understand its functionality.
When someone sends a message using the Facebook Messenger APP (Person), the
message’s content is sent directly to a Facebook Server. This server will then use the
callback URL defined by the developer for the webhook to send that content to the
Business Server. The chatbot will be running as an application inside the Business
Server and will process the message and send a reply back to the Facebook Server
through the Send API. Finally, the Facebook Server will send the message back to

the user (Person) that will receive it on its Facebook Messenger APP.

All the communications between the chatbot application and the Person chatting

with the chatbot follow the HT'TP protocol and use its methods to make changes

3.2. FACEBOOK MESSENGER 27

happen in both sides.

With this description of the Facebook Messenger structure, we now understand the

steps required for a message to be exchanged between a user and chatbot service.

Components

Facebook Messenger platform offers support for different conversation styles through

a variety of components, namely:

o Text messages

o Assets and Attachments

— Audio
— Video
— Images

— Files

Message Templates

Quick Replies

Sender Actions

Welcome Screen

Persistent Menu

These components bring versatility to the service and allow different chatbots im-
plementations. Despite its versatility, this dissertation will mainly focus on sending

and receiving text messages only.

28 CHAPTER 3. MESSAGING PLATFORMS

3.2.2 Parameters

This platform bases its workflow on Facebook’s Send API. This API is used to send
messages to users in JSON format that the both parties of this process have to be
able to understand and parse. With that said, the Messenger APP that a person
uses to chat with a chatbot has to understand the content of that JSON file, as well
as any chatbot that wants to make use of that same platform. An example of a
JSON payload sent to from a chatbot to a Facebook Messenger server following the
Send API is shown in Listing 1.

{
"messaging_type": "UPDATE",
"recipient": {
"id": "417583215476"
Iy
"message": {
"text": "Hello, World!"
}
}

Listing 1: Example of a JSON message sent by a chatbot to Facebook Messenger
server, from Facebook (2021).

Although the JSON file sent from a chatbot to a Facebook Messenger server follows
the Send API, the content of the JSON messages received by the chatbot from the
Facebook Messenger server are quit different. Listing 2 shows an example of a JSON

message received by a chatbot from a Facebook Messenger server.

11

12

13

14

15

16

17

18

19

20

3.2. FACEBOOK MESSENGER 29

{
"object": "page",
"entry": [{
"id": "100172858287426",
"time": 1617959435680,
"messaging": [{
"sender": {
"id": "2035175412698512"
e
"recipient": {
"id": "100172858287426"
Ve
"timestamp": 1617959435070,
"message": {
"mid": "m_8K5HwUvDmFA5fqDtH",
"text": "Mensagem."
}
3]
]
}

Listing 2: Example of a JSON request sent by Facebook Messenger to a chatbot,
from Facebook (2021).

As it can be seen in Listing 1, Facebook Messenger requires the chatbot to send
some basic parameters for the message to reach the user. The required parameters
change depending on a variety of factors, such as the type of message sent. Table 3.1
lists the basic objects needed in a JSON payload to successfully send a message from

the chatbot to the user.

30

CHAPTER 3. MESSAGING PLATFORMS

Content Type Required | Value
RESPONSE
messaging_type | String Yes UPDATE
MESSAGE_TAG
recipient Recipient | Yes -
message Message Yes -
typing_on
sender_action String No typing_off
mark _seen
REGULAR
notification_type | String No SILENT_PUSH
NO_PUSH
CONFIRMED_EVENT_UPDATE
. POST_PURCHASE_UPDATE
tag String No
ACCOUNT_UPDATE
HUMAN_AGENT

Table 3.1 — Facebook Messenger payload parameters, from Facebook (2021).

All the non-required parameters can be used in simple requests to show actions
or events in the user messaging APP. For example, the payload value “typing_on”
assigned to the parameters “sender_action” can be used by the chatbot to show the
user that its message is being processed. Or, the “mark_seen” can be used to show

the user that the chatbot is running and has received its message.

The “recipient” and “message” objects, shown in Table 3.1 are detailed in tables 3.2

and 3.3, respectively.

3.2. FACEBOOK MESSENGER 31

Content Type
id String
user _ref String
post_id String
comment_id String

Table 3.2 — Facebook Messenger Recipient object parameters, from Facebook (2021).

The Recipient object is mandatory and the platform will not accept the message if
this parameter is not set. That is because it is this object that tells the platform
to whom to send the message to. For that reason, at least one of the Recipient

parameter has to be present.

Content Type

text String

attachment Object

quick_replies Array <quick_reply>
metadata String

Table 3.3 — Facebook Messenger Message object parameters, from Facebook (2021).

In the same way, the Message object cannot be skipped and represents the type of
content and actually contains the content that the chatbot is sending to the user.
In this object, either text or attachment have to be present, and both quick_replies

and metadata are optional.

All these values will be important during the development of the framework in order
to create objects and classes that represent them in a universal way and allow to

communicate with other messaging platforms.

On the other hand, as mentioned earlier, the events sent by the Messenger platform
to the chatbot application are quite different than the ones requested by the Send
API. Listing 2, written in JSON format, is an example of a text message event

received from Facebook Messenger API.

32 CHAPTER 3. MESSAGING PLATFORMS

All events received from the Messenger platform follow the same basic structure as

the one seen in Listing 2.

Now that we already know how the platform structures its content, we have to
understand how to establish a communication between the chatbot application and

the Facebook Messenger platform.

3.2.3 Handling HTTP Requests

Messenger’s API sends and receives data using the HT'TP protocol and uses mostly
GET and POST requests. It performs a GET request to set or verify if the webhook

is correctly working and POST requests to send/receive messages.

When the API performs a GET request it expects the application to return a 200
OK HTTP response after receiving the event. If this step is not successful, the
Messenger platform will send the webhook event again every 20 seconds until it
receives the application server’s right response. After the webhook is set, messages

are sent and received using the HTTP POST method.

If the chatbot wants to send a message to a user, it must perform a POST request to a
specific URI with a JSON message on its payload. The request is sent to a URI simi-
lar to the following example: https://graph.facebook.com/v8.0/me/messages?6NJD
UriblZBI78QZAmqDsvZAsOZCithVEd=3ASgqKoKo3Fpam3WhqggON;j74shCqle.

An example of a JSON payload sent to the Facebook server is shown in Listing 1

and 2 above mentioned.

When handling the HTTP requests from and to the Facebook Messenger platform,
is important to notice that some of them might use JSON Web Token (JWT) to
increase data security. This technology will be detailed later in Chapter 4.

3.2. FACEBOOK MESSENGER 33

3.2.4 Webhook

Giving that the communication is made using the HTTP protocol, is is required
a callback URL to be set inside the service’s platform. Therefore, it is essential
to understand how to set the callback URL for the webhook events. Besides, this
is also a required step to validate that the developer controls or owns the domain
hosting the chatbot application. To do that, we first have to create an APP inside
the Facebook Messenger Developers Platform ans then access the following URL in

order to access the APP created:
hitps://developers.facebook.com/apps/

We can then select the application that will be our chatbot and change its settings
inside the “products” menu. In the “Webhooks” section, we can enter the callback
URL together with the Verify Token. This token is a random string generated by the
developer. Figure 3.4 highlights the interface where we have to set all the webhook

properties used to authenticate every attempt of communication from the chatbot.

Edit Callback URL X

Callback URL

https:// /messenger

Verify Token

EAAB53CB8WKbEBABO7Gkvm5RVRL7ZBah97wAHJuYkdZCZAFmIhZALyChvVno5dYL4UmZAuldzmpGwIvExiJ! ’

Learn more Cancel Verify and Save

Figure 3.4 — Facebook Messenger setting webhook interface, from Facebook (2021).

After these settings are applied and with the chatbot application running, the ap-
plication will receive an HTTP GET request with a JSON Web Token explicit in
Table 3.4.

34 CHAPTER 3. MESSAGING PLATFORMS

Parameter Description
hub.mode Set to subscribe

hub.verify_token | The custom verify token that the developer provided

hub.challenge Generated by the Messenger Platform. Contains the

expected response.

Table 3.4 — JWT received from the Facebook Messenger platform when setting a callback
URL, from Facebook (2021).

By analyzing the GET request, those parameters have to be set according to the
provided documentation. In other words, the mode has to be set as “subscribe”,
the verify_token needs to contain a string with the same token provided inside
the Messenger platform and, at last, the challenge has to be returned in a GET
response to the platform with the HT'TP status code 200 OK. With all this done,
the callback URL is defined, and a connection can be effectively established between
our chatbot and Messenger platform, ensuring that the messages can be exchanged

between our chatbot and any person using the Messenger service, Facebook (2021).

3.3 Telegram

Famous thanks to it’s end-to-end encryption and the ability to subscribe to channels
inside the APP, Telegram is also very popular among young users or freelancers that
want to share their work. In addition, Telegram chatbots are very versatile and allow

for multiple configurations.

Also, remembering Figure 3.2, in July of 2019, Telegram was the eighth most used

messaging service.

3.3.1 Structure

Telegram’s platform supports two exclusive ways of receiving updates: Webhooks

and Long Polling. the key differences between them two is that while webhooks just

3.3. TELEGRAM 35

wait for an update message, the long polling method is constanly “asking” to the
server if there is new information available. Between these two, webhooks represent
a better option mainly because it is the same method already used by the Facebook

Messenger platform.

Knowing that the webhook usage is barely the same, we can consider that the
diagram relative to Facebook Messenger shown in Figure 3.3 also applies to the

Telegram platform ans its chatbots, Telegram (2020).

3.3.2 Parameters

Telegram structure is very different from the Facebook Messenger structure. Ta-
ble 3.5 represents the Telegram API update object. This is the base object of every

event, either it represents a text message, and image or a poll.

Content Type Required
update_id Integer Yes
message Message No
edited_message Message No
channel _post Message No

Table 3.5 — Telegram Update object parameters, Telegram (2020).

The above is truncated because the rest of the parameters are not of interest for the
development of this dissertation and can be consulted in Telegram API documenta-

tion.

Observing the composition of the update object, for the development of this disser-

tation, we have special interest only in the Message object.

The Message object covers all the types of messages that can be sent using the
platform. For that reason, its contains a great variety of parameters that do not

have interest for the case of study. Table 3.6 shows some parameters of interest of

36 CHAPTER 3. MESSAGING PLATFORMS

the Message object.

Content Type Required
message_id Integer Yes

from User No
sender_chat Chat No

date Integer Yes

text String Yes

chat Chat Yes

Table 3.6 — Telegram Message object parameters, Telegram (2020).

The User object represents the user sending and receiving messages using the Tele-
gram messaging service. In Telegram API, chatbots are also considered users, and
for that reason, they have to follow this object. A chatbot also has a user ID, and

all the parameters that any other user has. Table 3.7 lists all the parameters of this

object.
Content Type Required
id Integer Yes
is_bot Boolean Yes
first_name String Yes
last_name String No
username String No
language_code String No
can_join_groups Boolean No
can_read_all_group_messages | Boolean No
supports_inline_queries Boolean No

Table 3.7 — Telegram User object parameters, Telegram (2020).

At last, the Chat object. This object represents a chat and it is important to identify

a conversation although its main parameters are identical to the User parameters.

3.3. TELEGRAM

37

Table 3.8 — Telegram Chat object parameters, Telegram (2020).

Content Type Required
id Integer Yes

type String Yes

title String No
username String No
first_name String No
last_name String No

photo ChatPhoto | No

bio String No

All the objects mentioned above are parsed into a JSON formatted payload that

is sent over an HTTP request. Listing 3 shows a JSON formatted file containing

those objects.

38 CHAPTER 3. MESSAGING PLATFORMS

{
"update_id": 80611948,
"message": {
"message_id": 312,
"from": {
"id": 813501482,
"is_bot": false,
"first_name": "Jo\u0OOe3o0",
"last_name": "Valente",
"username": "joaovalentee",
"language_code": "pt-br"
s
"chat": {
"id": 813501482,
"first_name": "Jo\uOOe3o0",
"last_name": "Valente",
"username": "joaovalentee",
"type": "private"
T,
"date": 1603727532,
"text": "Testing Telegram"
3
b

Listing 3: JSON payload received from the Telegram platform.

3.3.3 Handling HTTP Requests

Similarly to the Messenger platform, Telegram also exchanges its messages using
HTTP POST requests. In this case, the request has to be sent to the following
URL: https://api.telegram.org/bot123456:ABC-DEF1234ghlk23ewl1/sendMessage.

The content of the payload for text messages has to be similar to the example in

Listing 4.

3.3. TELEGRAM 39

"chat_id": "3546875132",
"text": "Testing Telegram chatbot."

Listing 4: Example of a JSON formated file for the Telegram text messages.

Although the example in Listing 4 is quite simple, Telegram has an extensive list of

parameters that make its chatbots very diverse.

3.3.4 Webhook

We need a webhook in order to establish a communication between the chatbot and

the Telegram platform, that will then communicate with the users.

The process to declare the callback URL to the Telegram platform is different than
the one used by the Messenger platform specified in Section 3.2.4. In this case, we do
not need to submit the parameters in the service platform. Instead, our chatbot has
to perform a POST request to the Telegram API containing a JSON payload with
the callback URL directly to a URI like this: https://api.telegram.org/bot123456:
ABC-DEF1234ghlk23ew!1/set Webhook.

Listing 5 shows the JSON file sent to the Telegram platform in order to define the
callback URL for the webhook events.

"url": "https://3b8b44fbOafd.ngrok.io/telegram"

Listing 5: Telegram JSON text to the the webhook.

More parameters can be sent inside this message but the URL is the only one
required to make a chatbot work. Other parameters needed can be found inside the

Telegram documentation.

40 CHAPTER 3. MESSAGING PLATFORMS

After submitting the POST request to set the webhook, a response will be received
inside the chatbot application. If the response is a 200 HTTP status code then the

webhook is successfully set, otherwise, something went wrong with this process.

3.4 WeChat

WeChat is mainly used by the population of China, being the most famous messaging
application in China, right next to QQ, also from Tencent. In there, WeChat is
used to do a lot more than just chatting with friends and family. Chinese pcople
understood pretty soon the power of the messaging applications and have put every
major services inside of it. They can chat, order items from stores, pay in every
shop, restaurant or even the subway, play games, share moments of their lives in
the feed of moments, and a lot more things. One of those things is, of course, talk
to chatbots. Chatbots are everywhere, whether it is a store or a service, and being
WeChat on the third place of the statistics of the most used messaging APPs in the
world, as mentioned in Figure 3.2, it would be the APP of choice if any company

wants to expand its business to China.

Being more focused on the Chinese market, WeChat has its documentation mainly
written in Chinese, which can represent a barrier to understand how its chatbots

can be implemented. A translator was used in order to surpass this obstacle.

3.4.1 Structure

Exactly as both Facebook Messenger and Telegram platforms, WeChat is based on
the same concept shown in Figure 3.3. It means that WeChat communication also
works using HTTP protocol with the help of webhooks, and the process to send a
message from a user to the chatbot application and the reply sent by the chatbot

back to user is identical to the process in that figure, WeChat (2020).

3.4. WECHAT 41

3.4.2 Parameters

Unlike Facebook Messenger and Telegram, WeChat’s platform does not send its
data to a chatbot in a JSON format. That means that the content is not structured
as an object and, because of that, in its documentation, WeChat has the content of

each type of message individually detailed.

Considering that all the parameters inside the API documentation may not be of
interest for this implementation, only the basic parameters together with the param-
eters to send a text message and an image attachment will be taken in consideration
for the analysis, WeChat (2020).

Table 3.9 lists all the common parameters used in every message sent by the API to
the chatbot application. These parameters are all required and have to be present

in every message sent.

Content Type

ToUserName Integer

FromUserName | String

CreatTime Integer
MsgType String
Msgld Integer

Table 3.9 — WeChat payload basic parameters, from WeChat (2020).

Depending on the type of message sent, different parameters are added to the ones
present in Table 3.9. With that said, to send a text message, the parameter in

Table 3.10 has to be added to the the previous list of parameters in 3.9.

Content Type

Content String

Table 3.10 — WeChat text message parameters, from WeChat (2020).

In the same way, when an image is meant to be sent, the parameters in Table 3.11

have to be added to the ones on Table 3.9.

42

CHAPTER 3. MESSAGING PLATFORMS

Content

Type

PicUrl

String

Mediald

String

Table 3.11 — WeChat image object parameters, from WeChat (2020).

3.4.3 Handling HTTP Requests

WeChat requires the chatbot application to send its content in JSON format in the
body of an HTTP POST request. But, when the platform redirects the messages

sent by the users to the chatbot server, it uses an XML structure. For that reason,

the payload the chatbot receives is different than the payload it sends. Listing 6

shows an example of a payload received by a WeChat chatbot application in XML

format.

<xml>

<ToUserName>

<! [CDATA[gh_1450e947aefa]]>

</ToUserName>

<FromUserName>

<![CDATA[05dd36M20 fun3f9A-kOfe5vVTI]]>

</FromUserName>

<CreateTime>1615302952</CreateTime>
<MsgType><![CDATA[text]]></MsgType>
<Content><![CDATA[Hello World!]]></Content>
<MsgId>2312531644507951182</MsgIld>

</xml>

Listing 6: Example of a WeChat payload message sent by the WeChat server.

Listing 7 shows an example of a message sent for the chatbot to the WeChat server

in order to reply to a user. This time, the content is JSON-formatted.

3.4. WECHAT 43

{
"touser":"ob5dd36M20fwn3f9A-k0feb5vVTI",
"msgtype":"text",
"text":
{
"content":"WeChat: Hello World!"
}
}

Listing 7: Example of a WeChat payload message sent by the chatbot application.

3.4.4 Webhook

As Facebook Messenger and Telegram, WeChat also works with webhooks to send

the messages received from the users to the chatbot application.

Setting the callback URL for the webhook events for the WeChat chatbot is identical
to the process performed in the Facebook Messenger platform. With that said, we
can find the interface shown in Figure 3.5 when accessing the WeChat developer

page the URL:

https://mp.weizin.qq.com/debug/cgi\-bin/sandbozinfo ?action=showinfo | &t=sandboz/index

BOREES
BHEEOREES, WEEREMEECHRSHBRR, MENURLFEZREMIMERXNTokendOIE, BHBHERIECERER,

URL https:// /wechat

Token

’R

Figure 3.5 — WeChat original setting webhook interface.

44

CHAPTER 3. MESSAGING PLATFORMS

Giving that this page has only a Chinese version, the interface in Figure 3.6 was

obtained using a built-in translator inside the browser.

Interface configuration information

Please fill in the interface configuration information. This information requires you to have your own server resources. The URL filled in needs to
correctly respond to the Token verification sent by WeChat. Please read the message interface user guide.

URL https://

token

/wechat

Figure 3.6 — WeChat translated setting webhook interface.

After setting the URL and the token values, clicking the “Submit” button makes

the platform perform a GET HTTP request to the chatbot application with four

important parameters, shown in Table 3.12.

Parameter Description

signature Weixin encrypted signature. The signature combines the
token parameter entered by the developer and the
timestamp and nonce parameters in the request.

echostr Random number.

timestamp Timestamp.

nonce Random String.

Table 3.12 — GET request received by the application from the WeChat platform when

setting a callback URL, from WeChat (2020).

The application has to verify the content of the payload received from the WeChat

platform and reply back with a 200 status code response, containing the echostr

value from the above table value in its body.

3.5. OTHER PLATFORMS 45

3.5 Other Platforms

As said previously, the framework has to be prepared to receive new platforms to
come in the future. For that matter, Facebook Messenger and Telegram will be
integrated into the framework and later, when testing it, WeChat will be imple-
mented as an external messaging service, to simulate a future new platform that

could emerge and be added to the framework by a chatbot developer.

Software Concepts

Before presenting the development of the Framework proposed in this dissertation,
it is essential to understand the technologies and methodologies that were used in its
development. Therefore, these concepts and methodologies are going to be presented

in this chapter, to better understand all the framework development choices.

4.1 Development Methodology

All work that involves software development must follow a specific model with its
own software development methodologies. In this sense, the Waterfall model was

the base behind all software work during this project.

4.1.1 The Waterfall Model

When coding, the developer should always follow a good model of software devel-
opment. Over the years, different software development approaches have emerged,
and some of them have become more popular than others. The Waterfall model is

the first and most traditional of them all. However, despite its age, it is still used

47

48 CHAPTER 4. SOFTWARE CONCEPTS

in the current days, Dooley (2017).

Another widely used model is Agile. This plan-driven process model is based on
the simple concept that everything always changes. The Waterfall model assumes
that what is set during the requirements analysis, which is the model’s first step,
never changes. On the other hand, the Agile model wants frequent software deliver-
ies. Regular deliveries lead to frequent and fast feedback from the customers using
the software in development and, consequently, changes in the requirements that

improve the future software, Filipova and Vilao (2018).

The Waterfall model is the basis behind the development of this Framework. In
comparison with Agile, the Waterfall model is more set to the type of projects with
a limit date and not so frequent and regular feedback. This does not invalidate the
fact that the project can be improved in the future or that it receives feedback from

the users, only that the feedback is not quick and regular.

With that said, and before detailing the Framework’s design, let us have a closer
look at what the Waterfall model requires. Figure 4.1 shows all the steps taken into

account during the software development process.

Requirement
Analysis

Design

A 4

Implementation

\ 4

Testing

Operation and
Maintenance

Figure 4.1 — Waterfall model of software development, from Adenowo and Adenowo (2020).

4.2. DESIGN PATTERNS 49

The first step to take is to analyze all the requirements for the project. In other
words, the final result of this dissertation has to fulfill all the requirements settled in
its beginning. After having all the requirements properly listed, the Waterfall model
suggests the design of the code. During this step, it is analyzed the data collected
in the requirements stage, Petersen et al. (2009). The system’s design is made
independently of the hardware and software, so it can be considered an abstract
implementation study of the future code to be made. This stage can be taken to
the lower-level of the design only after the higher-level logical design is completed.
When reaching that step, the hardware and software can be taken in place for the
design, Eason (2016). The third stage reflects the actual implementation that, in
this case, represents the writing of all the code that will make the framework. The
verification, and fourth stage, is relative to the testing made to the code before
declaring it finalized and will be explained in Chapter 6 of this document, Gallagher
et al. (2019). The last, but not least critical stage, the maintenance phase, is covered

in this dissertation’s last chapter.

4.2 Design Patterns

Design patterns are solutions to common problems in software development. They
work as a blueprint that can solve a particular problem by adapting them to the
problem in hands, Nahar and Sakib (2016). There is a big variety of different
patterns, but for the development of this Framework, only two seem to be important:
the Factory and the Observer Design Patterns. While the Factory Design Pattern
is related to creating objects, the Observer Design Pattern is a behavioral design
pattern that, as its name implies, handles the behavior of a specific part of the

software.

The reason why these two are important and how these concepts will help to ac-

complish a working framework will be detailed in the next sections.

50 CHAPTER 4. SOFTWARE CONCEPTS

4.2.1 Factory Design Pattern

The Factory Design Pattern is a software model that provides an interface for cre-
ating objects through a superclass, ensuring that its subclasses can change the type

of object that will be created, Shvets (2019).

This concept will allow the developer using the framework to simply “ask” the frame-
work to create an object that will allow the communication with a specific messaging
service, and get an object back from the factory method inside the framework. By

applying this pattern, the usage of the framework becomes a lot more simplified.

To better understand the concept of the Factory Design Pattern, Figure 4.2 shows
a simple UML (Unified Modeling Language) diagram of this pattern.

<<interface>>
Product

+ doSomething()

ConcreteProductA ConcreteProductB

+ doSomething() + doSomething()

Figure 4.2 — A Factory Design Pattern UML diagram, adapted from Shvets (2019).

The Product declares an interface representing the basic methods of the concrete
product that will be produced. The ConcreteProduct is the actual product that
the developer wants to build, and it is a specific implementation of the Product
interface. Even knowing that the ConcreteProduct implements the Product in-
terface, each implementation can have its own specific methods. In the example
of the diagram represented in Figure 4.2, the implementation of the method do-
Something() will define what the ConcreteProduct is supposed to do. But, for
example, ConcreteProductA can have more methods that are unique to it that the

ConcreteProductB does not need to have, and vice-versa.

4.2. DESIGN PATTERNS 51

As it is, this concept is already handy in this case scenario. However, there is still
missing a vital feature of this design pattern. Like in a real factory, the example in
Figure 4.2 also needs a creator. The Creator represents the method that can create
something specific by returning new product objects. Figure 4.3 shows a complete

UML diagram implementation of this concept.

Creator

<<interface>>
Product

+ someOperation() + doSomething()

+ createProduct(): Product

A
ZP === FRSSSs————)
1 1
ConcreteProductA ConcreteProductB
ConcreteCreatorA ConcreteCreatorB + doSomething() + doSomething()
+ createProduct(): Product + createProduct(): Product

Figure 4.3 — The complete Factory Design Pattern implementation UML diagram, adapted
from Shvets (2019).

The Creator usually is an interface or an abstract class that forces its implementa-
tions to override and specify its methods. For that reason, the ConcreteCreator
is responsible to create a specific ConcreteProduct. For example, the Concrete-

CreatorA will return an object of the kind of ConcreteProductA.

The implementation of this pattern in the Framework is later described in Chapter 5.

4.2.2 Observer Design Pattern

The basic operation of the Observer Design Pattern is simple: it allows the estab-
lishment of a subscription system that will notify multiple objects when an event

occurs in the object being observed, Shvets (2019).

In the framework, this pattern will allow the developer implementing it to subscribe

to a notification system for each chatbot messages. Therefore, the object subscribing

52 CHAPTER 4. SOFTWARE CONCEPTS

to the notification system will be notified every time a new event occurs in that

specific messaging platform.

<<interface>>
Subscriber
é + update(publisher)
Publisher AN
1
- subscribers:Subscriber|] !
1
+ subscriber(s: Subscriber) X
+ unsubscribe(s: Subscriber) Concrete —
+ notifySubscribers() Subscribers

+ update(publisher)
L

Figure 4.4 — Observer Design Pattern UML diagram, adapted from Shvets (2019).

An abstract implementation of this pattern is detailed in the UML diagram in Fig-
ure 4.4. In there, the Concrete Subscribers implement the Subscriber interface.
They are interested in knowing when some event occurs in the Publisher object.
For that reason, they have to subscribe to the Publisher to be notified when that

event happens.

On the other hand, the Publisher has to have a list of all its subscribers. When
a change happens on its states or an event occurs, the Publisher will run through
its subscribers’ list and call each notify method. If it is necessary, it can send data

through that same method.

Now, when the Publisher calls the notify method, each Concrete Subscriber will

have its own and personal update method that will produce a unique reply.

43. PROTOCOL 53

4.3 HTTP Protocol

The chatbot application has to communicate with a platform unique to each messag-
ing service when creating a chatbot solution. The process of exchanging messages
between a chatbot and each platform is made through HTTP (Hypertext Transfer
Protocol), or HTTPS (detailed later in this chapter). HTTP is a request/response
protocol, where the client sends a request to the server using one of the methods
provided by the protocol with all the necessary information. After processing the
request, the server sends a response to the client with a response code, Stanivuk
et al. (2017).

According to the OSI (Open System Interconnection), the HT'TP protocol sits on
the last layer — the Application layer.

Every HTTP request must contain the following fields, RFC2616 (1999):
e Method — responsible to identify the type of request performed by the client
to the HTTP server, and vice-versa;

e Uniform Resource Identifier (URI) — identifies the resource that the client

desires to access via name, location, or any other characteristic;

e HTTP version — represents the version of the HT'TP protocol in use and it

is required to inform the client how the message is structured.

Since all of these fields are required for the HTTP protocol to work correctly, the

next sections describe each of them in more detail.

4.3.1 Methods

The HTTP protocol relies on multiple methods to be functional. Although all of

them are important for the protocol to work, we will focus on those necessary to

54 CHAPTER 4. SOFTWARE CONCEPTS

‘i“«mﬁ 6@“

Path determination and Inglcal addressmg

Figure 4.5 — OS| Model, from Suite (2019).

manipulate data. These methods are responsible for performing CRUD (Create,
Read, Update and Delete) operations, RFC2616 (1999):

GET - this method requires the data of a specific resource;

e POST — used to submit data to a specific resource, usually causing changes

on the server;

PUT - requests that the supplied Request-URI stores the enclosed entity;

DELETE — requests that the server delete the resource identified by the
Request-URI.

43. PROTOCOL 55

4.3.2 URI

The URI is what allows the client to access a specific resource. In practice, this is
what enables the messaging platform to reach a chatbot application. An example

of a URI is present in the Listing 8, RFC3986 (1999).

https://3b8b44fbOafd.ngrok. i0/messenger

Listing 8: Example of an URI

The usage of URIs makes possible the use of multiple platforms by the same appli-
cation without having different chatbots answering for the wrong service because it

allows to identify cach different messaging platform.

4.3.3 HTTP versions

HTTP has been used as the most common worldwide web protocol since 1990 and,
because of that, it makes it being in constant development. Since the 1990s, HTTP

has improved that has gone through several versions.

Although version 1.1 is the most adopted version, HT'TP has already moved to ver-
sion 2.0 and has some important differences compared to the HT'TP /1.1, namely, AB-
COM (2019):

e it is a binary protocol rather than text. This allows for faster transfers, and

also, it unleashes new techniques that may be implemented;

e it is a multiplexed protocol which means that multiple requests can be handled

at the same time and over the same connection;
e reduces the number of headers when it detects that there are duplicates;

e allows the server to push data into the client cache, instead of being the client

to require that information.

56 CHAPTER 4. SOFTWARE CONCEPTS

The protocol continues to evolve, and the version HTTP/3 is already in development
and will bring changes in the transport layer by replacing TCP/TLS (Transmission
Control Protocol/Transport Layer Security) in advance for QUIC when a secure

connection is needed, Mozilla (2020a).

4.3.4 HTTP Message Structure

Each message send or received through the HT'TP protocol has a specific structure.
Both the requests and responses share a same structure and are composed by, Mozilla
(2020b):

Start-line — it is the first line of the HTTP messages and describes the method

for the request or the status code in case of a response;

Headers — a set of HI'TP optional headers that can specify a request or

describe the body of the response message;

Empty-line — indicates that all the meta-information needed has been sent;

Body - contains the actual information that is meant to be sent, either in

requests or responsces.

Figure 4.6 shows an example of the structure of an HT'TP request and response

message where are explicit all the parameters and concepts previously detailed.

Requests Responses

| POST / HTTP/1.1

ure-Reque
pe: mul
c nt : 345 empt
| -« \
i -12656974 : {<!DOCTYPE HTML PUBLIC "-//IETF//DTD HIML

{ (more data) < body —» 2.0//EN"> :
i ! (more data) I

Figure 4.6 — HTTP message structure, from Mozilla (2020b).

43. PROTOCOL 57

As above mentioned, this protocol messages have status codes that inform the client
about the result and state of the sent request, Salvadori (2015). The codes are
a three-digit integer that can represent multiple situation. Giving that there arc a
several number of different codes, they are divided into five main categories of states
that are listed bellow, RFC7231 (2014):

e 1xx (informational): the request has been received and the process is flowing;

— 100: Continue;

— 101: Switching protocols.
e 2xx (successful): the request was successfully received and accepted:;

— 200: OK;
— 202: Accepted;

— 203: Non-Authoritative Information.

e 3xx (redirection): the request needs more actions to be performed in order to

be successful;

— 300: Multiple Choices;
— 302: Found;

— 307: Temporary Redirect.

e 4xx (client error): request has a bad syntax or cannot be fulfilled;

400: Bad Request;
— 401: Unauthorized;
— 403: Forbidden;

404: Not Found.
e 5xx (server error): the server failed to fulfill an apparently valid request.

— 500: Internal Server Error;

58 CHAPTER 4. SOFTWARE CONCEPTS

— 501: Not Implemented;
— 503: Service Unavailable;

— 505: HTTP Version Not Supported.

4.3.5 HTTPS Protocol

HTTPS stands for Hypertext Transfer Protocol Secure and it is used to guarantee
a secure connection between the two parties. That layer of security is accomplished
by using the HTTP protocol together with an SSL/TLS connection. Doing that
guarantees that data exchanged using this protocol is safe and secure, and only the

recipient will understand the content of that data, RFC2818 (2000).

HTTPS provides three main characteristics:

e Confidentiality — ensuring that the data sent is received without any stranger

watching it;

e Integrity — making sure that no one adulterates a message sent over the

internet;

e Authentication — guaranteeing that the website or service in use is what it
claims to be. In other words, ensures that a website that says it is ezample.com

is actually exzample.com.

How the Security is Accomplished

Considering the above mentioned OSI Model, the HTTP protocol belongs to the
layer 7 which is the application layer. This layer is the last of this model and is
responsible to promote the interaction between the user and the machine, where the

resources for the communication also belong.

In order to secure the data transmitted with the HTTP protocol over the internet,

is is needed the usage of a protocol of the layer 4 (Transport layer) in the OST model

4.4. DATA FORMATS 59

— the TLS. TLS is now on its version 1.3 and replaces the SSL protocol used in the

first versions of this technique.

In resume, HTTPS security level is achieved using the HTTP protocol over an SSL/TLS
(Secure Sockets Layer/Transport Layer Security) connection, meaning that the

structure of an HTTPS message is the same as an HT'TP message, Shbair et al.
(2017).

4.4 Data formats

Data needs to be exchanged between the messaging platform servers and the chatbot
application. We have already seen that the messages are transmitted using an HT'TP

secure connection, which means that its content should be safe and secure.

Now that we know how the data is transmitted, we have to know how it is formatted
in order to understand that data in question. Only by understanding the data we
will be able to manipulate it and analyze it to properly answer each message that

the chatbot receives.

4.4.1 XML vs JSON

Services can transmit data using a variety of different formats. Considering that,
the most used data formats on the web are JSON and XML. Although they share
the same purpose, they have a different composition and structure, and that can
lead one of them to be preferred over the other. Next sections detail both XML and
JSON formats.

XML

XML (eXtended Markup Language) purpose was to quickly and simply exchange
documents through the world wide web. Although HTML is very used, it is oriented

60 CHAPTER 4. SOFTWARE CONCEPTS

to the presentation and not to documents’ structure. Given that, XML inherited
some base concepts from the SGML (Standard Generalized Markup Language), a
more complex meta-language to define document annotations languages, Martins

(2002). An example of this type of data format is explicit in Listing 9.

<note>

<from>Jani</from>

<to>Tove</to>

<message>Remember me this weekend</message>
</note>

Listing 9: Example of a XML formatted file, from W3schools (2020).

Some of the XML advantages are:

e Makes documents transportable across systems and applications.;
e XML separates the data from HTML;

e XML simplifies platform change process.

And, its disadvantages:

e XML requires a processing application;

e The XML syntax is very similar to other alternatives 'text-based’ data trans-

mission formats which is sometimes confusing;
e No intrinsic data type support;
e The XML syntax is redundant;

e Does not allow the user to create tags.

4.4. DATA FORMATS 61

JSON

JSON (JavaScript Object Notation) is a data-interchange format derived from the
object literal of the ECMAScript programming language standard. JSON is lightweight,
text-based, and language-independent, but, more important than that, it is easy for
humans to read and write, making it an excellent choice for a data structure. Its
objects are analyzed as string arrays, making it easy for machines to parse and

generate. Listing 10 is an example of a JSON formatted object.

{
"Image": {
"Width": 800,
"Height": 600,
"Title": "View from 15th Floor",
"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": 100
I
"Animated" : false,
"IDs": [116, 943, 234, 38793]
+
}

Listing 10: Example of a JSON formatted file, from RFC7159 (2014)

JSON implementation brings some advantages when compared to the XML anno-
tation:

e Provide support for all browsers;

e Fasy to read and write;

e Straightforward syntax;

62 CHAPTER 4. SOFTWARE CONCEPTS

Easy to create and manipulate;

Supported by most back-end technologies;

It allows you to transmit and serialize structured data using a network con-

nection;

JSON is text which can be converted to any object of Java into JSON and
send this JSON to the server.

Nothing is perfect, and JSON also has some disadvantages:

e No namespace support, hence poor extensibility;

e Limited development tools support;

e [t offers support for formal grammar definition.

Comparing XML and JSON

Table 4.1 shows the main differences between these two formats.

4.5. JSON WEB TOKEN (JWT)

63

JSON

XML

JSON object has a type

XML data is typeless

JSON support multiple types: string,
number, array and Boolean

All XML data should be string

JSON has no display capabilities

XML offers the capability to display

data because it is a markup language

Retrieving value is easy

Retrieving value is difficult

Native support for object

The object has to be express by

conventions

It supports only UTF-8 encoding

It supports various encoding

It does not support comments

It supports comments

to XML

JSON files are easy to read as compared

XML documents are relatively more

difficult to read and interpret

It does not provide namespaces support

It supports namespaces

It is less secured

It is more secure than JSON

Table 4.1 — Comparison between JSON and XML formats.

4.5 JSON Web Token (JWT)

JSON Web Token are an open industry standard method for representing claims to

be transferred between two parties. Also, it is compact and URL-safe making it a

good choice for internet communication, REC7519 (2015).

This token-based authentication format is widely adopted in many different services

and purposes due to the flexibility of the JSON data that it carries, Alkhulaifi and

El-Alfy (2020).

JSON Web Token is composed of three fields that, in its encoded simplified way,

look like the example in Listing 11.

XXXXX.VYVYY.Z2777

Listing 11: Example of an encoded JWT, from Mozilla (2020b).

64 CHAPTER 4. SOFTWARE CONCEPTS

After it is decoded, the JWT has a more pleasant and readable format. It consists

on the following three parts, Hackal and Eliyani (2016):

e Header — is typically divided in two parts:

— Type — represents the type of the token. In this case is JWT ;

— Hashing algorithm used - for example, HMAC (Hash-based Message
Authentication Code), SHA256 (Secure Hash Algorithm 256) or RSA
(Rivest-Shamir-Adleman).

e Payload — which contains the claims. Claims are statements that can be
related to the user to whom the token belongs to, and it can also supply

supplementary metadata;

e Signature — this is what secures the data transmitted and what guarantees
that is trustworthy. A signature is created by concatenating the header and
the payload and then converting it to BASE64, adding a secret key and, last
but not least, sign it with a cryptographic algorithm. It is then used to verify
the message was not changed along the way and it also allows to verify if the

sender of the JWT is who it says it is.

After all the three parameters are set, the JSON is Base64Url encoded and each one
is concatenated with a dot separating each parameter to form the encoded JW'T.
The encoded JWT is easily passed in HTML and HTTP environments and is more
compact than the XML-based formats, Autho0.

Figure 4.7 shows and example of a JSON Web Token accessible via an official de-

bugger online.

4.5. JSON WEB TOKEN (JWT) 65

eoe M > 0 jwt.io @ ¢ HH M +

Debugger Libraries Introduction ~ Ask Geta T-shirt! Crafted by § 9 AuthO

Encoded Decoded

HEADER:

eyJhbGci0iJIUzITNiIsInR5cCI6IkpXVCJ9. ey
JzdWIiOiIxMjMONTY30DkwIiwibmFtZSI6Ikpva {

G4gRGI1IiwiaWFOIjoxNTE2MjMSMDIYFQ. ookl
}
PAYLOAD:
{
"sub '1234567890",
"name": "John Doe",
"iat": 1516239022

}

VERIFY SIGNATURE

Figure 4.7 — JSON Web Token online debugger screenshot from AuthO.

This concept is very important to understand how to communicate with some of the

messaging platforms used while building the Framework.

Framework Design and

Implementation

This projects’ goal is to create a universal solution for the development of chat-
bots for multiple messaging platforms, so that one chatbot application can work
with more than one messaging platform at the same time. This chapter explains
all the steps taken during the development process of the Framework. The next
sections of this chapter also detail the components and technologies in use during

the development process.

As we become more and more dependent on technology and in being connected with
each other, the use of messaging applications and services related with communica-
tions has increased, MindSea (2020). Knowing that most of the time a regular user
spends on its smartphone is talking with friends and family inside a chat APP, com-
panies started to wonder if using those messaging APPs could make their business
more profitable, Lin (2020). With that mindset, chatbots popularity has been grow-
ing over time, and the interest to invest in this solution has started to grow among
companies. Its applications are limitless, EQUITY (2019). Nevertheless, one big
problem still insists not to disappear: the multiple applications and services people
use worldwide to communicate with each other. Companies want to reach the most
significant amount of people, but spend less money possible. That is how business

work, and if there are multiple paths to reach the same destination, the best will be

67

68 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

the one that saves more time and, consequently, money. This Framework aims to
help those interested in producing a chatbot for multiple messaging platforms using

Java technology.

That is possible by presenting a solution to create and maintain a chatbot to estab-
lish communication with multiple messaging services simultaneously. One code for

multiple platforms is the goal that every chatbot developer wants to work with.

For that matter, this dissertation’s primary focus is developing a framework that
can provide the developer the necessary tools to build and maintain a chatbot for
multiple messaging services and applications without having to code individual so-
lutions for each one. Also, it should provide the tools needed to add support for

messaging platforms, other than those implemented as a case study.

5.1 Used Technologies

During the process of development of the Framework, different technologies were
chosen for its implementation. This section makes a brief resume and presentation

of the various technologies applied to the framework.

5.1.1 Development Platform

As a case of study, the Framework development is based on the Java Enterprise
Edition and Java Standard Edition. Java was introduced in 1995 by Sun Microsys-
tems and has been evolving since then. It has been an enormous success and has
become one of the most used programming languages in the entire world, TIOBE
(2021). TIts technology is a combination of the Java programming language and a

Java platform. Java programming language consists on four platforms:

e Java Platform, Standard Edition (Java SE);

e Java Platform, Enterprise Edition (Java EE);

5.1. USED TECHNOLOGIES 69

e Java Platform, Micro Edition (Java ME);

o JavaFX.

All Java platforms consist of two main components that make its applications run
on any compatible system and being platform-independent, stable, easy to develop
and secure Oracle (2012):

e a Java Virtual Machine (JVM): a program for a particular hardware and soft-

ware that runs Java technology applications;

e an Application Programming Interface (API): a collection of software compo-

nents that can be used to create other software components or applications.

Let us take a closer look on Java Standard Edition and Java Enterprise Edition,

giving that are the both used in the development of the Framework.

Java Standard Edition

This platform is the base of all the other Java platforms, and the technology itself.
The core of the Java programming language lays on the Java SE API, once it defines
everything this languages provides, from basic types and objects, to high-level classes

that allow networking, security, database access and more.

More than that, Java SE has the most common tools and class libraries used in Java

applications.

Java Enterprise Edition

Java Enterprise Edition is widely adopted and is developed with the contributions of

individuals, industry experts, commercials and even open source organizations, Or-
acle (2021).

70 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

This platform is built on top of the Java EE platform and provides an API and
runtime environment for developing and running large-scale, multi-tiered, scalable,

reliable and secure network applications.

Giving that it allows to build reliable and secure network applications, it makes it

a perfect base to build our chatbot framework.

Besides that, the platform is constantly evolving trying to meet the industry needs
and requests, making it an easy solution for a variety of different purposes. Also,

allows the use of multiple design patterns that make the code reusable and more

efficient, Liu and Chen (2009).

The last version, Java EE 8, release in 2017, brought huge improvements such as an
updated Java Servlet API with HTTP /2 support, enhanced JSON support including
anew JSON binding API, a new REST Reactive Client API, a new portable Security
API, and a lot more, Oracle (2021).

The Framework core runs all over the Java Servlet API and this piece of the Java
EE platform is one of the most important in this dissertation. The Server is detailed

in the next section, together with the technologies that make it up.

5.1.2 Server

The framework requires an application server to be functional, in order to establish
a connection with the servers of the messaging services implemented. Java supports
various web servers, however the framework uses the Apache Tomcat server which

is an open source implementation of some Java EE APIs.

Giving that it implements the Java EE APIs, it allows the usage of the Java’s servlet
technology.

5.1. USED TECHNOLOGIES 71

Java Servlet Technology

Servlet is a class of the Java EE platform that extends the capabilities of servers
that host applications that implement a request-response protocol, as HT'TP. When
using HTTP protocol, the Java Servlet technology defines specific servlet classes with
methods such as doGet and doPost, in order to handle GET and POST requests,

respectively.

The technology runs on a Java web server or an application server providing services
of request and response on the web. The web server can load servlets automatically
on server startup or when a client performs a request for the first time. The process
is described in Figure 5.1, Ferreira (2008).

Web Server HTTP Request

A

Client

\

Servlet Container HTTP Response

Figure 5.1 — Java Servlet API diagram, adapted from Oracle (2014).

The Framework needs to make use the servlet methods to handle the GET and
POST requests from each messaging platform. From the concept of servlet, we
realise that one servlet has to be unique, which means that each connection to a

messaging platform server requires its unique servlet.

The servlet can be accessed when an HT'TP request is performed to the server. For
that, the messaging platforms need to have defined the callback URL that will allow

the usage of webhook concept.

72 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

Webhooks

A webhook is a transmission method that is used to send real-time events to external
listeners. Webhooks enable external applications to subscribe to events and receive
their updates when they occur. When a change occurs in the subscribed service, an
HTTP request is sent to the specified callback URL, Nafis and Setiawan (2019).

@ Message Processing

P

@ Register Redirecting URL [~
Messengers Servers /ﬁ ® Receive a Message

| ® Receive a Message —K\ Webhook / ® Send a Message *
Client Server

Figure 5.2 — Working process of a webhook.

= @ Send a Message

Figure 5.2 illustrates how an webhook works in a messaging service. First of all, for
the system to work, the server needs to register its URL in the Messengers Server,
from where it wants to receive updates (1). Then, when the client sends a message
it is first sent to the Messengers Server (2). That server will then use a webhook
to redirect the message received to the message processing server (3). In there,
the Server will interpret the content of the message received (4), and send a reply
back to the messaging service server (5) that, in the end, will send it back to the

correspondent client (6).

Our Framework will implement this concept giving that all the messaging service

platforms selected for this project make use of it, Lee et al. (2020).

5.2 Requirements

Following the Waterfall methodology, every software development project’s first
stage should start with a set of requirements. This stage is where all the final

results’ requirements have to be explicitly defined.

5.3. ARCHITECTURE 73

We can divide the requirements into two categories: functional and non-functional
requirements. The functional requirements are related to specific features of the
software, for example, receive text messages, and help define what the software has
to do, whereas the non-functional requirements define how the software will do what
it has to do. An example of a non-functional requirement is the minimum number

of supported chatbots being two.

Applying the concept to the real scenario, we can define the functional requirements

to be:

Receive and send messages to users;

The chatbot actions are programmed by who is implementing the framework;

Have multiple chatbots and multiple services simultaneously;

e Have a way to add new messaging services not yet supported by the framework.

The non-functional requirements are:

e Developed in Java programming language.

5.3 Architecture

The Framework needs to be developed with only one thing in mind: be flexible and
universal, i.e., the developer should be able to choose which platforms the chatbot
should work on, access its messages and process its replies. It is equally important to
be easy to use and implement, so anyone that has the needed software development
skills, and is interested in building chatbots can use it. Therefore, in this section,

the concepts behind the Framework are explained and clarified.

Before getting our hands into the Framework itself, is important to understand

how the messages travel from the client that uses a messaging service to have a

74 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

conversation with the chatbot, to the chatbot application server that will process it
and send a response back. Figure 5.3 shows an Unified Modeling Language diagram

to better understand this process.

Client Platform Chatbot
APP Server Application

set webhook E

reply message

D send message

forward message

i

reply message

forward message __I

Figure 5.3 — Factory Design Pattern UML diagram implementation.

In the above figure, the platform server sends an HTTP request to the chatbot
application to verify the callback URI (1). Then, the chatbot application send a
reply back with a token, in order for the platform to verify its integrity (2). This
first two steps, depending on the messaging platform may be in a different order.
After the callback URL for the webhook events is correctly set, the chatbot is ready

to work. When client using an APP of the messaging service sends a message to

5.3. ARCHITECTURE 75

the chatbot. First, that message is sent to the messaging platform server (3) that
will redirect it to the chatbot application server (4). The application processes the
message and sends a reply back to the platform server (5) that will then redirect it
to the client (6).

Knowing that base concept of how chatbot applications communicate with each

client or user, we can now start building the framework.

Figure 5.4 illustrates the main diagram of the structure of the Framework.

Framework

2
| = RO
APP
A /
(=) < ®

\ Event Manager

Figure 5.4 — General concept of the framework developed

Explaining the concept illustrated in Figure 5.4, when the application starts, it
requests the Factory to create and return a specific service representation (1). The
Factory will then instantiate (2/3) and return the required service object (4) that will
be responsible to manage the connection between the application and the messaging
service platform. After returning the object to the application, the event manager

will use it to know how many messaging services the chatbot will subscribe to

76 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

(5). Last, the event manager is also responsible to notify each chatbot that a new
incoming message arrived. The application will be responsible to analyze and reply

to cach message received.

5.3.1 Framework Components

Giving that the Framework was developed in Java programming language, and its
usage requires a Java application, it is essential to understand how the application
have to be built and also, how it will work together with the Framework in order to
allow the chatbot service to work on multiple platforms. Nevertheless, the Frame-
work will be built in a way that the developer using it will not have to worry about

how the Framework works, but only on how to use it.

With that in mind, the framework will be divided into two modules, and a third one

that consists on the application implementing the framework.

e Factory — as its name implies, this module is responsible for generating a
new chatbot and return it to the developer. A creational design pattern is
used to achieve this result. Inside this subcategory of software design patterns

reside the Factory Design Pattern detailed back in Chapter 4.

e Event Manager — this module will be the brain of the Framework. This
block of the framework has to handle the redirects of the request received. In
other words, every time a chatbot receives an HT'TP request with a message,
the event manager has to notify the chatbot that it has received a message
and forward it to the respective chatbot. Then, the chatbot can process the

message and send a response back to the user.

e Application — is the program built by the developer implementing the
Framework to create a chatbot on multiple platforms. It represents the pro-
gram that the developer will code to build a chatbot using the Framework.
In this dissertation’s case, an application was developed to simulate a real-life

usage of the framework. Also, it was used to test the Framework in Chapter 6.

5.3. ARCHITECTURE 7

5.3.2 Message and User Objects

As seen in Chapter 3, there is no such thing as a standard or universal chatbot
message structure. Every provider applies a different message and payload structure
to its chatbot service. The payload is all the content of interest sent in one HT'TP
message. Inside the payload is the actual message being exchanged between a user
and the chatbot server that can be text, images, audios, etc. Besides the message
itself, there is more information, namely the user name, user 1D, date when the
message was sent, and other parameters of interest. Giving that those values change
from platform to platform, in order to make the Framework compatible with a wide
variety of messaging platforms, the solution found was to create a Message object
that will be common to every chatbot. Table 5.1 has a full representation of all the

parameters that make up the Message object.

Name Type Description

id String Message unique identifier.
chatld String Chat unique identifier.
date String Date the message was sent.
text String Text sent by the user.

messagingType | String Type of message.

isEcho boolean | Flag to mark if a message is an echo of a previous
message. Required for Facebook Messenger.

user Object | User object that represents an actual user. This
(User) object has multiple parameters needed to represent
the user.

Table 5.1 — Definition of a Message object.

Each service connector is responsible for converting the framework Message object

and its platform’s payload.

Exactly as the Message object, a User object has to be created to specify the user

parameters. The User object is represented in Table 5.2.

78 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

Name Type Description

userld String User unique identifier.

firstName | String User first name.

lastName | String User last name.

username | String User unique username.

isBot boolean | Flag that represents if the user sending a message
is a bot or not.

Table 5.2 — Definition of a User object.

5.4 Developed System

The developed system is a combination of the Framework that any developer will be
able to implement, and a Java application that makes use of that same Framework.

This last one was implemented as a case of study to test the Framework.

To better explain how the Framework was built and the pillars that make it up, as
well as to provide a good description on the application that uses the Framework,
the two of them were separated in the next two sections. In the Section 5.4.1 is
described how the Framework was implemented in an high level code design, and in
the Section 5.4.2 is made a detailed explanation on how the Framework can be used

to build a chatbot application.

5.4.1 Framework

As described in Section 5.3, the Framework is build over two main blocks: the
Factory and the Event Manager. The application refereed in the same section is
later detailed in Section 5.4.2 once it is meant only to represent the application that

each developer will build and that will implement the Framework in question.

10

11

12

13

14

15

16

17

5.4. DEVELOPED SYSTEM 79

Creating a Working Server

Knowing that the chatbot communicates via HTTP, we first need to create a web
server to allow our server to receive and send messages to the messaging platforms
servers. To make it easier for the developer implementing the Framework, it already
implements a server that can be managed by the application implementing it. Like
that, the developer is responsible for creating, initializing, and setting the server to

a await state — state where the server is waiting for incoming requests.

Later, when creating the service connector, the server needs to be sent as parameter
to its creator method, in order to create a bridge between the chatbots class and
the servlet that manages the communication with its messaging platform. A simple

implementation of the server usage is presented in Listing 12.

public static void main(Stringl] args) {
// Creating a server

Server server = new Server();

/*
Chatbot definition and initialization goes here

x/

// Initializing the server

try {
server.init () ;

} catch (LifecycleException e) {
e.printStackTrace();

// Setting the server to await state

server.await () ;

Listing 12: Usage example of the Server class.

80 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

After the server is up and running, a servlet is responsible for receiving and sending
messages to those trying to communicate with the chatbot. The communication is
made using HTTPS protocol set by default on port 443. The port for the communi-
cation can be changed by the developer before calling the init method of the server

class.

This design shows a problem: the framework has a servlet inside, accountable for
receiving the user’s answer, and the developer does not have a way to access to that
answer. The solution for this problem will later be solved by implementing the event
manager that will notify every chatbot of new incoming messages. But, before that,

we need a way to connect with each messaging service.

Generating the Services

Since the main purpose of this peice of software is to be as more universal and
flexible as possible, i.e. be compatible with the greatest number of messaging services
possible, the code has to be designed from the beginning with the mindset that the
Framework needs to be compatible with the majority of the messaging platforms
available at the moment. Not only that, but also the Framework should be able to

implement new messaging services to come in the future.

With that in mind, the Framework needs a way to connect to each different platform
of interest. Moreover, a method to insert new messaging services in the framework,
so that, for example, a company could expand its business to another messaging
service that is not yet implemented in the framework and re-utilise the code already

made.

A Factory Design Pattern, detailed in Section 4.2.1, is a creational design pattern
used to create objects in a subclass from a common interface. Those sub-classes
should be able to change the type of objects that are meant to be created, Mu and
Jiang (2011).

5.4. DEVELOPED SYSTEM 81

Back in Section 4.2.1, the Factory Design Pattern was explained with an UML dia-
gram. In that diagram was mentioned the concept of Product and ConcreteProduct.

The same concept will be adopted to the actual case.

Chatbot

+ setWebhook()
+ sendTextMessage()

Extends Extends
ChatbotA ChatbotB
N N\

I i
Use Factory Use
1 1
c---4 ko -_-_ J

1+ createServiceConn()

Figure 5.5 — Factory Design Pattern UML diagram implementation.

Figure 5.5 illustrates how the Factory method can be implemented in the framework.
In there, the Chatbot class represents the Product. That is an abstract class that
defines the overall behaviour of every chatbot, and it can be instantiated when
needed. It also implements the GET and POST requests required to communicate
with the messaging platforms. ChatbotA and ChatbotB represent two different
specific services. Each chatbot has to extend the abstract class Chatbot. Last but
not least, the Factory class is the one responsible to instantiate the chatbots in

question. It will return a specific object of the type Bot.

With that said, using the Factory is easy as creating an object and using a special
method to create a chatbot. The method to create the chatbot connector takes the
following values as input parameters:

e name: The name of the chatbot. Used only to recognize the chatbot;

e id: The ID of the chatbot from the messaging platform;

82 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

e token: The token of the chatbot from the messaging platform;

e webhookUrl: The callback URL to where the chatbot needs to address the

messages.

An example of usage of the Factory class is shown in the Listing 13.

Factory factory = new Factory();

Chatbot example
"gq8jikd7bevjcs3z", "3ASggKoKo3Fpam3WhggONj74shCqde",
"https://dd21e31df7c2.ngrok.io");

factory.createChatbot ("Messenger",

Listing 13: Example of an implementation of the Factory method to create a chatbot
using the framework.

At this stage, there is already a way of generating multiple service connectors, so
we can now implement a way to analyze and reply to messages received from the

messaging platform. To do that, we have to create a class to perform that analysis.

This implementation requires a class to provide to the framework the ability to have
multiple ‘listeners’ for the same chatbot. In other words, it allows to have more

than one chatbot replying for the same messaging service.

But, now there is still a problem to solve: a way to notify each chatbot that a new

incoming message arrived.

Notifying Every Listener

The concept behind this idea is simple: the developer implementing the Framework
has to create a class that will handle and process every message sent to its chatbot,
and that class has to subscribe to a service of notifications. The Framework will

notify that class when a new message arrives and sends the necessary data to it.

5.4. DEVELOPED SYSTEM 83

After that, it is up to the developer to choose what the chatbot will do with that

information.

This pattern is described as the Observer Design Pattern and was detailed in Sec-
tion 4.2.2. Now, Figure 5.6 shows how the Framework can apply the Observer Design

Pattern to the specific use case.

Even though this pattern is more complex than the Factory Design Pattern, a UML
diagram such as the one shown in Figure 5.6 makes it a lot easier to understand

and implement.

&)

EventManager <<interface>>
Listeners

- listeners
+ update(message)

+ subscribe(Bot)

+ unsubscribe(Bot) A
+ notify(message) F-=-m——--=- e N
I |
ChatbotA ChatbotAB
+ update(message) + update(message)

Figure 5.6 — Observer Design Pattern UML implementation.

By observing Figure 5.6, we can see the three main components that make up this
design pattern. The first one, the EventManager, is responsible, as its name says,
to manage every ‘listener’ for a specific chatbot. The subscribe method allows
a listener to subscribe to that chatbot, and the unsubscribe method does the
opposite, removes a listener from the chatbot listeners list. For that matter, both

subscribe and unsubscribe methods take a Bot object as a parameter.

To subscribe to the EventManager, the listener created by the developer has to

implement the Bot interface, represented in the same image. Then, each listener

84 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

has to have an update method. This method will be called when a new message
arrives at the chatbot and is responsible for processing the information and sending

a reply back to user.

Finally, the notify method present in the EventManager is where the magic happens
and will be responsible for notifying every registered listener by calling the update

method.

At this point, we already have a way to generate connectors for multiple services and,
at the same time, a way to notify all chatbot listeners. Now that we all the concepts
of the framework are clarified, we can proceed to an explanation of a general Java

application to implement the Framework.

5.4.2 Application

A simple proof of concept and testing application was built to implement a chatbot
for three distinct messaging platforms — two already supported by the Framework
and a new one not yet supported. Besides that, to prove that the Framework is
functional and working correctly, the only thing that this application needs to do
is echo back the user’s message. By doing that it is proved that the Framework
can establish a communication with the messaging platform server and send /receive

messages.

After showing that the application can communicate with the user, the next thing to
prove is that it can be used to have a conversation with multiple messaging services
and even have numerous chatbots to the same platform. Finally, the application
was able to add to the framework, in run-time, support for a messaging platform

that is not supported by default by the Framework.

The first thing to do in our application is to define the URL of the server where the
application is running in order to allow a communication between each messaging
platform server and our application server. Other parameters required to establish

a connection with each messaging platform server also need to be set.

10

11

12

5.4. DEVELOPED SYSTEM 85

Summarizing, each service needs defined the following parameters:

e ID - defines the chatbot ID for the specific messaging platform;

e Token - defines the token for the communication with the specific messaging

platform;

o URL - identifies a unique service inside the server.

Knowing that, Listing 14 shows an example of the parameters definition in Java

code. All the values are only an example and were randomly generated.

// Server URL
String url = "https://dd21e31df7c2.ngrok.io";

// Facebook Messenger parameters
String messengerId = "gq8jikd7bevjcs3z";
String messengerToken = "3ASggKoKo3Fpam3WhggONj74shCqgde";

String messengerUrl = url+'"/messenger";

// Telegram parameters

String telegramld = "5730906289";

String telegramToken = "NT3RmP2f4FG57tgtZV2MQes2NNQcsD";
String telegramUrl = url+"/telegram";

Listing 14: Defining basic required parameters for the Framework to work.

The process to acquire these two parameters depends on each platform and can
be found in Chapter 3 in a simplified way or inside its documentation for a more

detailed version.

Now that every essential parameter is well defined, the next logical step is to create
a server that will allow the communication with all the platforms. For that, we
created a Server object based on a class provided by the Framework, as seen in

Listing 15.

86 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

1 // Web Server

2 Server server = new Server() ;

Listing 15: Creating a Server object.

We also need a factory an object responsible to establish a connection to the platform
server. In this case, the factory has to make two service connectors: one for Telegram
and another for Facebook Messenger. Later in this section, our Chatbot object will
be created and make use of these two classes. Listing 16 shows an example of how

to create a factory class.

v // Services Factory

» Factory factory = new Factory(server);

Listing 16: Creating a Factory object.

The Factory class has a method defined to return a Chatbot object. It is also
responsible for saving a list of all the connectors created and in use. The code in

Listing 17 is used to create a connector for the two messaging platforms to be used.

1 // Creating a Telegram service connector
2 ChatbotConn telegram = serviceFactory.createConnector("telegram",

3 "Telegram", telegramld, telegramToken, telegramUrl);

s // Creating a Facebook Messenger service connector
s ChatbotConn messenger = serviceFactory.createConnector("messenger",

7 "Messenger", messengerld, messengerToken, messengerUrl) ;

Listing 17: Creating the connector for each service.

At this stage, telegram and messenger objects are capable of establishing a con-
nection with the respective platforms and, consequently, receive messages from the

respective servers. However, they still do not have specified method to reply to

1

10

11

12

16

17

18

5.4. DEVELOPED SYSTEM 87

the messages they receive. For that, we created a class that implements the Bot
interface, subscribes to the event manager and overrides the update method that is

called every time there is a new incoming message.

An example of a chatbot class implementation is seen in Listing 18 where is made
an override of the update method to reply to the messages received with the same

text received.

public class TelegramChatbot implements Bot {

private final Telegram telegram;

// Class constructor
public TelegramChatbot (ChatbotConn telegram) {
this.telegram = (Telegram) telegram;

this.telegram.getEventManager () .subscribe("telegram", this);

// Method to handle the received messages

@0verride

public void update(String service, Message message) {
String response = "{\"chat_id\":\"813501482\",\"text\":\""
+message.getText O+"\"}";

telegram.sendTextMessage (response) ;

Listing 18: Example of a chatbot object implementing the Bot interface.

Now that we already have the class the handles messages received by that chatbot,
we have to subscribe to the event manager in order to be notified by the framework

when a new message arrives in our server.

The Event Manager is what manages all the chatbots and notifies everyone when a

new incoming message arrives. For that reason, an EventManager object has to be

88 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

created and, depending on the chatbot implementation, adding the service connector
to the manager. Following that, the service also has to be added to each chatbot

for the event manager to work.

Listing 19 shows a chatbot that can handle two messaging services at the same time.

// Creating an event manager

EventManager manager = new EventManager() ;

// Adding the services to the event manager
manager .addService (telegram) ;

manager . addService (messenger) ;

// Creating a chatbot that works with two messaging services
MultipleBot multiple = new MultipleBot();
multiple.addChatbot ("telegram", telegram);

multiple.addChatbot ("messenger", messenger) ;

Listing 19: Adding the services to the Event Manager and creating the chatbot
object.

With all the code done, our application implementing the framework is able to run
for the two messaging services (Facebook Messenger and Telegram) and is also able
to expand for new messaging services in the future. To do that, we only need to
create another class that implements the GET and POST requests for the required
messaging service, and a class that actually represents the chatbot, like the class

shown in Listing 18.

Adding an Unsupported Service

The application implementing the Framework also adds support for a messaging
service that is not supported by the Framework, and as been mentioned along this

document, WeChat service was the chosen to be implemented.

10

11

12

13

15

16

17

18

19

20

21

22

23

5.4. DEVELOPED SYSTEM 89

The first thing to code is the class responsible to establish the communication be-
tween the application and the messaging service’s server. This class, has to extend
the Chatbot class from the framework. By extending the Chatbot class, our class
will implement the servlet API from Java Enterprise Edition. Giving that this class

will handle the HTTP GET and POST requests, it has to override the doGet and
the doPost methods from the servlet API. Listing 20 shows the constructor of this

class together with the main required parameters.

public class WeChat extends Chatbot {
private final String token, webhookurl, messageRequestUrl,
appld, name;
private static final String wechatUrlMessages =
"https://api.weixin.qq.com/cgi-bin/message/custom/
send?access_token=\%s";
private String payload = "";
private Message message;

private String appSecret;
public void setAppSecret(String appSecret) {

this.appSecret = appSecret;

public WeChat(String name, String id, String token,
String webhookUrl) {

super () ;
this.appld = id;
this.token = token;

this.name = name;
this.webhookurl = webhookUrl;

Listing 20: WeChat class constructor.

10

11

12

13

14

15

16

17

19

20

21

22

90 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

This class has to override four main methods: doPost, doGet, initialise, and send-
TextMessage. Starting with the doPost method. The platform sends all the mes-
sages in a POST request to the chatbot application, and for that reason, the doPost
method will handle all the messages received from the users. It creates a buffer to
save all the content in the HT'TP payload, and extracts the content of the XML for-
matted payload to a Message object. This is also the method responsible to notify

every listener of this connector, and send it the message received.

@0verride
protected void doPost (HttpServletRequest req,
HttpServletResponse resp) throws ServletException, IOException {

req.setCharacterEncoding ("UTF-8") ;
StringBuffer stringBuffer = new StringBuffer();

String line = null;

try {
BufferedReader reader = req.getReader();
while ((line = reader.readLine()) !'= null) {
stringBuffer.append(line) ;

+
this.payload = stringBuffer.toString() ;

this.message = xmlToMessage(this.payload);

events.notify("wechat",this.message);

} catch (Exception e) {
System.err.println("ERROR: "+e);

Listing 21: Override of the doPost method.

Listing 22 shows a simple implementation the GET request. Based on WeChat API,

5.4. DEVELOPED SYSTEM 91

this method separates the parameters needed to verify the callback URL when it is
submitted in the WeChat platform.

@0verride
protected void doGet (HttpServletRequest req,
HttpServletResponse resp) throws ServletException, IOException {

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

Enumeration<String> headerNames = req.getHeaderNames();
while (headerNames.hasMoreElements()) {

String headerName = headerNames.nextElement () ;

Enumeration<String> params = req.getParameterNames() ;
while (params.hasMoreElements()){

String paramName = params.nextElement () ;

String signature = req.getParameter("signature");
String timestamp = req.getParameter("timestamp");
String nonce = req.getParameter("nonce");

String echostr = req.getParameter("echostr");

String[] parameters = {token,timestamp,nonce};

Arrays.sort (parameters) ;
StringJoiner joiner = new StringJoiner("","","");
for(int i =0; i<parameters.length; i++){

joiner.add(parameters[il) ;

String shalparams = DigestUtils.shallex(String.valueOf (joiner));
resp.setStatus (HttpServletResponse.SC_0K) ;

resp.getWriter () .write(echostr) ;

Listing 22: Override of the doGet method.

92 CHAPTER 5. FRAMEWORK DESIGN AND IMPLEMENTATION

Another method from the Chatbot abstract class that also requires the application
to Override it is the initialise. This method adds the this service connector to the

Framework server and sets itself as a servlet to handle the HTTP requests.

@0verride
public void initialise(Server server) {
this.messageRequestUrl = String.format(wechatUrlMessages,
getAcessToken()) ;
if (!this.getEventManager () .getListenerMap ()
.containsKey("wechat")){
server.addChatbot (name,this,webhookUrl) ;

Listing 23: Adding an unsupported messaging service to the Framework.

The fourth but not less important method, the sendTextMessage, is responsible to
send messages to the server. It uses a method that returns the response from the

server after it receives the messages the application sent.

public void sendTextMessage(String msg){
String response = send(this.messageRequestUrl, msg);

System.out.println(">sendTextMessage: " + response);

Listing 24: Implementation of a simple sendTextMessage method.

Finally, the class that really implements the chatbot itself, responsible to process
the message received from the messaging service and to send a response back. This

class has to implement the Bot interface and override the update method.

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

5.4. DEVELOPED SYSTEM

93

public class WeChatBot implements Bot {

private final WeChat wechat;

public WeChatBot (Chatbot wechat){
this.wechat =(WeChat) wechat;

this.wechat.getEventManager () .subscribe("wechat", this);

@0verride
public void update(Message message) {
String response = "{\n" +

" \"touser\":\"" + message.getUser().getUserId()

+ "\",\n" +

" \"msgtype\":\"" + message.getMessagingType()
+ "\",\n" +

" \"text\":\n" +

! {\n" +

. \"content\":\"" + message.getText()

+ "\"\n" +

! Hao" +

"3

wechat . sendTextMessage (response) ;

Listing 25: Adding an unsupported messaging service to the Framework.

Tests & results

Testing software is a crucial step to guarantee its success. There are always missing
pieces and there are some details that were not properly planed during development.
For that reason, this chapter details all the tests performed on the Framework and
the application aimed at this work. Achieving good test results is a consequence of
multiple tests that can lead to the improvement of the work already done. However,
knowing that, in good practice, tests performed to a software should never be done by
whoever developed that same software, and even thought there are a several software
testing techniques, like Unit tests, Integration tests, etc. the ones performed to the
framework are pretty simple and just prove that it works. With that said, the Java
application created to test the Framework was coded in five different ways in order

to create multiple scenarios:

Only one chatbot working with a single service;

Two chatbots working with a single service;

e Two services working with a chatbot each;

One single chatbot working with two distinct services;

Adding support for a new messaging service not included in the Framework.

95

96 CHAPTER 6. TESTS & RESULTS

Each stage requires testing the Framework to send and receive text messages from
users over the two different messaging services included in the Framework. The last
stage aims to prove that the Framework is future proof and new platforms can be
added to the Framework.

Every chatbot was programmed to echo back the same message received from the
user. This way guarantees that the message is received, processed, and then an

answer is sent back to the user.

The developer coding the chatbot that is implementing the Framework is responsible
for processing the user’s message. The result of that processing stage will then define

the reply message that the user will receive.

6.1 Putting Everything Online

Before starting any test, an essential step is to provide a way to establish a connection
between the application hosting the chatbot and the messaging platform servers.
Like said in previous chapters, the application needs a web server to communicate
with the users, and, consequently, an open connection to the machine running the

application.

In this tests, giving that a personal computer was used to run the application, we
found that a good solution to allow a communication with outside the network was

using an third-party service called ngrok.

6.1.1 Ngrok

Ngrok is a solution that generates public URLs helping to expose our local server to
the world. It is an easy to use tool that can help test our chatbot without spending

unnecessary time configuring a server to be accessed outside the local network Ngrok

(2020).

6.1. PUTTING EVERYTHING ONLINE 97

Using this service is simple and easy. We only need to open the terminal and use
the command shown in Listing 26. The software will then automatically gencrate
and generate both HTTP and HTTPS URLs.

./ngrok http 8080

Listing 26: Command used in terminal to start ngrok service.

The command in Listing 26 specifies the HTTP protocol together with the port
8080. That port can be changed depending on user preferences.

joaovalente — ngrok http 8080

~ — ngrok http 8080
by C e (Ctrl+C to quit)

Version 2.3.38
Region United States (us)

Web Interface http://127.0.0.1:4040
Forwarding http://6830c6443c8d.ngrok.io —=> http://localhost:8086
Forwarding https://6830c6443c8d.ngrok.io —> http://localhost:8080

Connections ttl opn el rtb p50 p90
0 0 0.00 0.00 0.00 0.00

Figure 6.1 — ngrok running on macQOS terminal

Figure 6.1 shows the result of the command shown in Listing 26 written in the
terminal. The URL used to configure the chatbot was the HT'TPS version, not only
because it is more secure and safe, but also because every platform demands that
version of the protocol: https://6830c6443c8d.ngrok.io. Considering that the testing
process took more than one day, this dissertation is likely to have different URLs
because when shutting down the computer and starting the service again, Ngrok

always provides a different URL.

Having the chatbot application accessible outside the personal network where it is

running, we are now ready to go through every framework test.

98 CHAPTER 6. TESTS & RESULTS

6.2 Test Scenarios

The test scenarios’ choice depends on the practical use cases a developer would
encounter when implementing the chatbot development framework. At the begin-
ning of the current chapter were presented the five scenarios to consider during the

development stage.

Before starting detailing the tests and its results, a quick note about the webhook
service and the setting of the callback URLs. The messaging platforms need the
callback URL for the webhook service, in order to send the messages and events to

our chatbot application. All tests scenarios bellow consider the process of setting

the callback URL detailed in Chapter 3.

6.2.1 Scenario 1: Only one chatbot working with a single

service

This experiment represents the Framework’s basic usage when a developer simply
wants to make the chatbot available in only one messaging service. In this case, the
Framework’s use may not make much sense because it can be accomplished without

its implementation. Figure 6.2 shows a diagram with this implementation.

Messaging

aaale) Service A

Figure 6.2 — Example diagram of one single chatbot working with only one service.

We can contradict the idea that the Framework does not make sense in this case sce-
nario if we think about software development. Most companies want their software
to be able to evolve and change in time. In other words, the software should adapt
in the future and follow the technological evolution. For that reason, by implement-

ing the Framework to build a chatbot to work in just one messaging service, it is

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

6.2. TEST SCENARIOS 99

guaranteed that in the future, it can work in more services if the developer decides

to expand the chatbot support.

Listing 27 shows an example code used to perform this test. Although this code
is used to create a chatbot for Facebook Messenger, with a few changes on the

parameters and class names, a similar code can create a chatbot for Telegram.

String messengerId = "eb52f127617624ac692126b0220e86177";
String messengerToken = "EAAB53C6WkbEBABO7GkvmbSRVRL7ZB";
String messengerAccessToken = "EAAB53C6WKkbEBANXZCftda9ZBcbbwS1";
String messengerUrl = "https://6830c6443c8d.ngrok.io/messenger";

//Server, Factory and EventManager init
Server server = new Server();
ServiceFactory serviceFactory = new ServiceFactory(server) ;

EventManager manager = new EventManager () ;

// Creating the connector for Facebook Messenger
Chatbot messenger = serviceFactory.createConnector ("messenger",

"Messenger", messengerld,messengerToken,messengerUrl) ;

// Adding messenger and telegram services to the event manager

manager . addService (messenger) ;

// Server init and setting to awatit state
try {
server.init();
} catch (LifecycleException e) {
e.printStackTrace();

server.await () ;

Listing 27: Command used in terminal to start ngrok service.

100 CHAPTER 6. TESTS & RESULTS

Following the above code, this test was performed individually on Facebook Messen-
ger and Telegram services to prove that it works to more than one alternative. With
that said, sections 6.2.1 and 6.2.1 show the needed steps performed to implement
the chatbot into the Framework.

Facebook Messenger

The first test performed on the Framework used an application implementing a
chatbot to work only with Facebook Messenger messaging service shown back in

Listing 27.

Before starting a conversation, and with the chatbot application already up and
running, Messenger platform requires the developer to access its page and submit
the callback URL and the Verify Token. While Ngrok provided the callback URL,
the Verify Token can be any key that the developer wants to use.

After submitting the callback URL and the respective token in the platform, the

Framework shows a message to the application terminal as shown in Figure 6.3.

>Messenger GET request received!
Everything is correct! Webhook has been set! Enjoy ;)

Figure 6.3 — Text shown on the application debug terminal.

With the webhook set, it was time to send some messages. When sending a message
to the chatbot it is expected that it sends the same message back to the user. For
that reason, we sent two messages to the chatbot using the Facebook Messenger
APP on a smartphone. The first message content was “Testing Facebook Messen-
ger chatbot with the framework application supporting just this service.”, and the
second message was “Testing Facebook Messenger chatbot with the framework ap-
plication supporting just this service a second time”. Figure 6.4 provides screenshots

of the result of the test performed.

6.2. TEST SCENARIOS 101

1149

il @ Jarvis

1Mm149

1 @ Jarvis

Teste 26 outubro

@ Teste 26 outubro

Testing Facebook
Messenger bot.

Testing Facebook
Messenger bot.

Testing Facebook Messenger
bot with a second message.

Testing Facebook Messenger
bot with a second message.

Testing Facebook
Messenger bot.

Testing Facebook
Messenger bot.

Testing Facebook
Messenger bot.

Testing Facebook
Messenger bot.

Testing Facebook Messenger
bot with a second message.

Testing Facebook Messenger
bot with a second message.

Testing Facebook
Messenger bot.

Testing Facebook
Messenger bot.

Testing Facebook Messenger
bot with a second message.

Testing Facebook Messenger
bot with a second message.

Figure 6.4 — Testing Facebook Messenger chatbot.

As seen in the Figure 6.4, the chatbot answers the message sent with the same text

that it receives.

This test proves the framework supports the Facebook Messenger service, and it can

answer its text messages.

Telegram

With Telegram, the webhook callback URL setting is quite different from the process
performed for Facebook Messenger in the previous section. For this service, when
initializing the application, it is only needed to perform a POST request to the URL

shown in Listing 28.

102 CHAPTER 6. TESTS & RESULTS

https://api.telegram.orqg/bot23f283ncb8b34b95bn5345/setebhook

Listing 28: URL to set the webhook on the Telegram platform.

The content of the message sent in the POST request to the URL above must have
a JSON formatted text with the callback URL for the webhook service. In this case,
the POST request is performed as soon as the chatbot application starts running,
so the process for setting the webhook is automatic. If the webhook is already set,

the platform will ignore the request.

If the response to the POST request is a 200 OK status, the message shown in

Figure 6.5 will appear in the application debug terminal.

Telegram servlet initialized
Telegram webhook has been configured! Enjoy ;)

Figure 6.5 — Text shown on the application debug terminal after setting the webhook on
telegram.

Now that we successfully set the webhook, we should correctly exchange messages
between the Telegram APP and the chatbot application. Like the Messenger appli-

cation, this one also answers back with the user’s same text message.

The test performed on the Telegram application was identical to the one performed
on Facebook Messenger. We sent two messages from the Telegram smartphone
APP. The first one with the text “Testing Telegram chatbot with the framework
application supporting just this service.”, and the second message saying “Testing
Telegram chatbot with the framework application supporting just this service for

the second time.”.

Figure 6.6 shows screenshots of the messages successfully exchanged between a user

and the chatbot application. Both messages received the text sent as an answer

6.2. TEST SCENARIOS

103

Jarvis

Testing Telegram

Hoje

Testing Telegram bot for the first time.
151w

Testing Telegram bot for the first time.
Testing Telegram bot with a second
text message. N:61w/

Testing Telegram bot with a second
text message.

Testing Telegram bot for the first time.
1n:52w7

Testing Telegram bot for the first time.
Testing Telegram bot with a second
text message. 62w

Testing Telegram bot with a second
text message.

Testing Telegram bot for the first time.
12:007

Testing Telegram bot for the first time.

A

Jarvis

Testing Telegram bot for the first time.

Testing Telegram bot with a second
text message. 151w

Testing Telegram bot with a second
text message.

Testing Telegram bot for the first time.
11:62w

Testing Telegram bot for the first time.
Testing Telegram bot with a second
text message. 1:52v7

Testing Telegram bot with a second
text message.

Testing Telegram bot for the first time.
12:00

Testing Telegram bot for the first time.

Testing Telegram bot with a second
text message. 12:01v/

Testing Telegram bot with a second
text message.

Figure 6.6 — Testing Telegram chatbot.

from the chatbot application.

Testing two platforms independently prove that the framework can handle different

messaging services with no problems. Now, this could be the starting point of many

developers trying to embrace the world of chatbots. However, as things evolve, the

next logical step could be to improve the service for a single platform by increasing

the number of chatbots to the same messaging service. That is what the section 6.2.2

means to test.

6.2.2 Scenario 2: Two chatbots working with a single ser-

vice

Two chatbots working with a single service is the case where, for example, a de-

veloper wants to provide a better service for the same platform. A good example

104 CHAPTER 6. TESTS & RESULTS

can be to increase the number of chatbots that assist the same messaging service.
In that case, more than one chatbot in the application is receciving the messages
the user is sending. Another useful implementation could be if the developer wants
the chatbot service to support more than one language. By adding two chatbots to
the service, each one could be responsible for a specific language. Figure 6.7 has a

diagram that represents this scenario.

CHATBOT 1

Messaging
Service A

CHATBOT 2

Figure 6.7 — Example diagram of two chatbots working with one service only.

The tests to this scenario are positive, and the user reccived only one answer to
its message, although more than one chatbot is listening to its messages. The

screenshots of this test are visually the same as the previous case scenario.

Now that we already have two chatbots working for the same service, what if we
want to expand support for another messaging service that is already implemented

in the framework? Subsection 6.2.3 tests if this scenario is possible or not.

6.2.3 Scenario 3: Two services working with one chatbot

each

In this scenario, things start to get interesting. We want to see if the Framework
can handle two chatbots, each with its own messaging service. Figure 6.8 shows a

diagram with this implementations.

6.2. TEST SCENARIOS

105

CHATBOT

CHATBOT

Figure 6.8 — Example diagram of two chatbots working with one service each.

. Messaging
Service A
- Messaging
Service B

Using Facebook Messenger and Telegram, we sent a message from each of them

to the correspondent chatbot. The results, shown in Figure 6.9, were as expected,

and the chatbot application implementing the Framework answered back with the

echoed message.

only one chatbot. Second try.

Testing Facebook Messenger
chatbot ® with the framework
application supporting Facebook
Messenger and Telegram with
independent chatbots.

Testing Facebook Messenger
chatbot # with the framework
application supporting Facebook
Messenger and Telegram with
independent chatbots.

Testing Facebook Messenger
chatbot ® with the framework
application supporting Facebook
Messenger and Telegram with
independent chatbots. Second
try.

Testing Facebook Messenger
chatbot ® with the framework
application supporting Facebook
Messenger and Telegram with
independent chatbots. Second
try.

Facebook Messenger

L

Figure 6.9 — Testing Facebook Messenger and Telegram chatbots at the same time.

Jarvis @

ISITYIan Wit ULy VIS Lliauwut.
Hoje

Testing Telegram chatbot ® with the
framework application supporting
Facebook Messenger and Telegram with
only one chatbot. Second try. 10:30w7

Telegram: Testing Telegram chatbot @
with the framework application
supporting Facebook Messenger and
Telegram with only one chatbot. Second
try. "

Testing Telegram chatbot ™ with the
framework application supporting
Facebook Messenger and Telegram with
independent chatbots. 10:46v7

Testing Telegram chatbot 88 with the
framework application supporting
Facebook Messenger and Telegram with
independent chatbots.

Testing Telegram chatbot ™ with the
framework application supporting
Facebook Messenger and Telegram with
independent chatbots. Second try. .46,/ |

Testing Telegram chatbot 8 with the
framework application supporting
Facebook Messenger and Telegram with
independent chatbots. Second try.

Telegram

106 CHAPTER 6. TESTS & RESULTS

With that said, the framework can effectively handle two different messaging ser-
vices, each with its own chatbot. However, what if the chatbot can be the same
for both messaging services? Can the framework provide support for more than one

platform with just one chatbot coded? That is what the 6.2.4 wants to prove.

6.2.4 Scenario 4: One single chatbot working with two dis-
tinct services

The most useful case scenario might be when the developer wants to code only
one chatbot and make it available in many different services. To test that case
scenario, we added support for Facebook Messenger and Telegram and created a
single chatbot that replies to the user’s messages with the same text. The diagram

presented in Figure 6.12 represents the tested scenario.

Messaging
Service A

CHATBOT

Messaging
Service B

Figure 6.10 — Example diagram of one single chatbot working with one distinct services.

Although we are using the same chatbot for the different platforms, it is still possible
to apply different algorithms or replies depending on the messaging service we are
talking. To understand which chatbot is receiving and replying to the messages, we

added the platform’s name at the beginning of the text sent in the replies.

The screenshots in Figure 6.9 show the different messages being exchanged between

the two messaging services.

6.2. TEST SCENARIOS

107

30 v
@ Jarvis

C]

Second try.

Testing Facebook Messenger
chatbot ® with the framework
application supporting Facebook
Messenger and Telegram with
only one chatbot.

Messenger: Testing Facebook
Messenger chatbot # with the
framework application
supporting Facebook
Messenger and Telegram with
only one chatbot.

Testing Facebook Messenger
chatbot ® with the framework
application supporting Facebook
Messenger and Telegram with
only one chatbot. Second try.

Messenger: Testing Facebook
Messenger chatbot 88 with the
framework application
supporting Facebook
Messenger and Telegram with
only one chatbot. Second try.

Facebook Messenger

L

lesting lelegram chatbot ™ with the
framework application supporting three
diferente services with the same chatbot.
Second try. 1567

Telegram: Testing Telegram chatbot #8
with the framework application
supporting three diferente services with
the same chatbot. Second try.

Hoje

Testing Telegram chatbot ® with the

framework application supporting
Facebook Messenger and Telegram with
only one chatbot. 10:30

Telegram: Testing Telegram chatbot #8
with the framework application
supporting Facebook Messenger and
Telegram with only one chatbot.

Testing Telegram chatbot ™ with the
framework application supporting
Facebook Messenger and Telegram with |
_only one chatbot. Second try. 10:30w7 |

Telegram: Testing Telegram chatbot #8
with the framework application
supporting Facebook Messenger and
Telegram with only one chatbot. Second
try.

Telegram

y

Figure 6.11 — Testing Facebook Messenger and Telegram with only one chatbot for both

services.

The results of this test are positive, and the Framework allows one single chatbot for

multiple platforms. In this test, we separated the two replies in order to understand

if that was possible. However, the response can be coded to be the same for every

platform if that is the chatbot’s purpose.

Although we are already covering multiple platforms simultaneously with only one

chatbot, which was this dissertation’s first goal, it is still missing the addition of

messaging services that are not yet implemented in the Framework and that any

developer might want to see added to its chatbots. This last case scenario is tested

in Section 6.2.5.

108 CHAPTER 6. TESTS & RESULTS

6.2.5 Scenario 5: Adding support for a new messaging ser-

vice

Aiming to create a future proof Framework, it has to ensure support for upcoming
messaging platforms. Under those circumstances, the application coded to test the
framework’s viability was used to add support for a new messaging service that is

not already supported by the framework.

Messaging
Service A

Messaging

CHATBOT Service B

Messaging
Service C

Figure 6.12 — Example diagram of one single chatbot working with three distinct services,
being one of them not implemented in the framework.

We chose WeChat to test if the Framework was capable of receiving and support
upcoming messaging services. In order to add this messaging service, we created

two classes:

e WechatBot - implements the Bot interface and is responsible for defining

what to do when the bot receives a new incoming message.

10

11

13

14

15

16

17

18

6.2. TEST SCENARIOS

109

e Wechat - extends the Chatbot class and defines every detail about the com-
munication to the server such as webhook setting and HTTPS GET and POST

requests.

The main methods of these two classes where detailed back in Chapter 5, when the

application implementing the Framework was detailed.

After having the two classes created, they can be added to the rest of the application

with simple lines of codes, shown in Listing 29.

String wechatId = "eb2f127617624ac692126b0220e86177";
String wechatToken = "EAAB53C6WkbEBABO7GkvmbRVRL7ZB";
String wechatUrl = "https://6830c6443c8d.ngrok.io/wechat";
String wechatAppSecret = "3364tv45e42295520d23£3£6973cbd"

Chatbot weChat = new WeChat("WeChat'", wechatID, wechatToken, url,
"/wechat") ;
weChat .setAppSecret (wechatAppSecret) ;

weChat.initialise(server) ;

// Adding messenger and telegram services to the event manager

manager . addService (wechat) ;
new WeChatBot (weChat) ;

// Server init and setting to await state

/.

Listing 29: Command used in terminal to start ngrok service.

Again, with the application running, setting the callback URL is mandatory and

the process to do it was already detailed in Chapter 3. After submitting in the pa-

rameters by the platform, the application’s terminal shows the message represented

in Figure 6.13.

110 CHAPTER 6. TESTS & RESULTS

>WeChat GET request received!

>WeChat webhook has been set!

Figure 6.13 — Text shown on the application debug terminal when setting WeChat's web-

hook.

After setting the webhook, it is time to test the messaging service. This scenario

means to test if it is possible to add new platforms that are not supported by

the Framework. However, the tests were performed with the other two services

working, meaning that, in this test, the application will offer support for three

different messaging services: Facebook Messenger, Telegram, and WeChat.

We sent a simple text message from each APP on a smartphone and successfully

received the same text back from the chatbot.

579
@ Jarvis

where sent and received.

< 0

sandbox account of wxid_965h1... S
e
services with the same chatbot.
Second try.

-- e

WeChat: Testing WeChat
chatbot 8 with the framework
application supporting three
diferente services with the same
chatbot.

WeChat: Testing WeChat
chatbot 8 with the framework
application supporting three
diferente services with the same

chatbot. Second try.

WeChat

A4

.
W
Ola do fb messenger

Testing Facebook Messenger
chatbot ® with the framework
application supporting three
diferente services with the same
chatbot.

Messenger: Testing Facebook
Messenger chatbot @ with the
framework application
supporting three diferente
services with the same chatbot.

Testing Facebook Messenger
chatbot ® with the framework
application supporting three
diferente services with the same
chatbot. Second try.

Messenger: Testing Facebook
Messenger chatbot ® with the
framework application
supporting three diferente
services with the same chatbot.
Second try.

Facebook Messenger

Figure 6.14 proves the messages

11:56 7
< Pesquisa

NELYS

Segundo bom dia do telegram

Hoje

Testing Telegram chatbot ™ with the
framework application supporting three

diferente services with the same chatbot.
11:56 w7

Telegram: Testing Telegram chatbot o
with the framework application
supporting three diferente services with
the same chatbot.

Telegram: Testing Telegram chatbot #8
with the framework application
supporting three diferente services with
the same chatbot. Second try.

Telegram

Figure 6.14 — Results of the tests performed with three messaging platforms being one of

them not included in the Framework.

6.2. TEST SCENARIOS 111

Giving that this test is similar to the one shown in Section 6.2.4, the chatbots
were also coded in order to reply with its respective messaging service name in the

beginning of each reply.

With this last fifth test working as expected, the Framework is in reality ready to a

real-world implementation and is, in fact, future proof.

Conclusions and Future work

This chapter considers all the systems developed during this dissertation and the
technologies used during this process. The framework has a lot to grow, and some
future work can improve the framework making it more reliable and stable. Sec-

tion 7.2 details some of that future work.

7.1 Conclusions

This dissertation focused on developing a framework capable of creating a chatbot
for multiple platforms intuitively and simply. Although there are many solutions
in chatbot development, most of them are complex and focus on questions like
natural language and AI, which might not be a point of interest for some developers.
Moreover, with the current popularity of languages like PHP and Node.js, most
existing solutions forgot that Java servers are still a significant percentage of the

market, same with the Java language itself.

Chatbots have been growing over time and, every day, we see more businesses invest-
ing in this technology as a solution to their problems. However, chatbot’s limitations

are endless, and people can use them for various means.

113

114 CHAPTER 7. CONCLUSION

Considering that developing a framework for creating and developing chatbots in a
Java environment was this dissertation’s primary goal, the final result is satisfactory.
The framework can create a chatbot that can establish communication with multiple
messaging services simultaneously and do all this while being standalone and not

requiring the developer to implement other third-party software.

Each chatbot’s particular implementation of every messaging platform complicated
the development process to achieve a universal chatbot development framework.
Nevertheless, in the end, the structure of the framework makes it a universal solution
and future proof by adding a possibility of implementing future messaging services

that may emerge in the market.

7.2 Future Work

After finishing the work that led to the development of this dissertation and analyz-
ing the final result, it is possible to conclude that there are still some improvement

points in the developed system. Some of those improvements are:

e Perform specific software tests to the Framework, like Unit tests, in order to

guarantee its success.

e Implement the support for other message formats rather than text, such as
attachments and quick replies. It is important because it is available on most

platforms and is a point of interest for many chatbots developers.

e Study the interest in integrating an Al service to help new developers build a
chatbot more capable without the need for third-party software. Its addition

could increment the popularity of the framework.

e Study the possibility of different ways to communicate with a messaging service
platform rather than webhooks. A very known solution adopted, for example,

by Telegram, is long pooling.

e Add support for other messaging platforms like Signal and QQ), for example.

References

E—
ABCOM (2019). HTTP/1.1 vs HTTP/2: What’s the differ-
ence?
. [Online, consulted on January
7, 2021]. 55

Adenowo, A. and Adenowo, B. (2020). Software engineering methodologies: A
review of the waterfall model and object- oriented approach. International Journal
of Scientific and Engineering Research, 4:427-434. 48

AdEspresso (2020). The most inspiring facebook messenger chat-
bots how to build your own.
. [Online, consulted on January
25, 2021]. 14

Alkhulaifi, A. and El-Alfy, E. M. (2020). Exploring lattice-based post-quantum
signature for jwt authentication: Review and case study. In 2020 IEEE 91st
Vehicular Technology Conference (VTC2020-Spring), pages 1-5. 63

Amondarain, M. F. (2018). Indubot. Master’s thesis, School of Industrial Engineer-

ing of Barcelona. 8

115

116 REFERENCES

Anna, A. and Weiflensteiner, A. (2018). Chatbots as an approach for a faster enquiry

handling process in the service industry. PhD thesis, Modul University Vienna. 6

Arnaud Gellens, S. G. (2019). JAQ : A Chatbot for Foreign Students. PhD thesis,
Ecole polytechnique de Louvain. 5, 12

Arsenijevic, U. and Jovie, M. (2019). Artificial intelligence marketing: Chatbots.
pages 19-193. 9

Auth0. Jwt. . [Online, consulted on November 19, 2020]. 64, 65
Bhagwat, V. A. (2018). Deep Learning for ChatBots. PhD thesis. 6

Botpress (2019a). Botpress Documentation.
. [Online, consulted on December 5, 2020]. 19

Botpress (2019b). Channels available for enterprise chatbot platform - Botpress.
[Online, consulted

on December 12, 2020]. 19

Bucher, B. (2020). WhatsApp, WeChat and Facebook Messenger Apps —
Global useage of Messaging Apps, Penetration and Statistics.
[Online, con-

sulted on January 9, 2021]. 24, 25

Chatterbot (2019). Chatterbot Documentation.
. [Online, consulted on December 5, 2020]. 20

Chen, Z. (2019). Co-designing a Chatbot for and with Refugees and Migrants. PhD
thesis, Aalto University. 5

Chung, M., Ko, E., Joung, H., and Kim, S. J. (2020). Chatbot e-service and customer
satisfaction regarding luxury brands. Journal of Business Research, 117:587 — 595.
3

Cleverbot (2006). Cleverbot. . [Online, consulted on
November 9, 2020]. 11

REFERENCES 117

Developers, M. (2019). Microsoft Bot Framework. https://dev.botframework.
com/. [Online, consulted on December 5, 2020]. 17

Dictionary, C. (2020). Meaning of chatbot in english. https://dictionary.

cambridge.org/dictionary/english/chatbot. [Online, consulted on October
15, 2020]. 5

Dooley, J. F. (2017). Software Development, Design and Coding. Apress. 48

Eason, O. K. (2016). Information Systems Development Methodologies Transitions:
An Analysis of Waterfall to Agile Methodology. University of New Hampshire,
pages 1-23. 49

EQUITY, B. B. C. F. (2019). Chatbot report 2019: Global
trends and analysis. https://chatbotsmagazine.com/
chatbot-report-2019-global-trends-and-analysis-a487afec05b. [On-

line, consulted on November 27, 2020]. 67

Facebook, f. D. (2021). Messenger platform. https://developers.facebook.com/
docs/messenger-platform/. [Online, consulted on January 10, 2021]. 26, 28,
29, 30, 31, 33, 34

Ferreira, J. A. O. (2008). Interface Homem-Mdaquina para Domdtica baseado em
tecnologias Web. PhD thesis, Faculdade de Engenharia da Universidade do Porto.
71

Filipova, O. and Vilao, R. (2018). Software Development From A to Z: Deep Dive
into all the Roles Involved in the Creation of Software. Apress. 48

Gallagher, A., Dunleavy, J., and Reeves, P. (2019). The Water-
fall Model: Advantages, disadvantages, and when you should use
it. https://developer.ibm.com/technologies/devops/articles/
waterfall-model-advantages-disadvantages/. [Online, consulted on

November 27, 2020]. 49

Google (2019). Dialogflow. https://cloud.google.com/dialogflow/docs. [On-
line, consulted on December 5, 2020]. 18

118 REFERENCES

Haekal, M. and Eliyani (2016). Token-based authentication using json web token on
sikasir restful web service. In 2016 International Conference on Informatics and

Computing (ICIC), pages 175-179. 64

Instalocate (2019). Instalocate. . [Online, consulted
on January 5, 2021]. 12

Jackson, A. (2018). Siri vs google assistant vs bixby.
[Online, con-

sulted on February 5, 2021]. 15

Kemp, S. (2020). Digital 2020: Global Digital Overview.
. [Online, consulted on

January 9, 2021]. 23, 24

Keszocze, O. and Harris, 1. G. (2019). Chatbot-based assertion generation from
natural language specifications. In 2019 Forum for Specification and Design Lan-
guages (FDL), pages 1-6. 18

Kongaut, C. and Bohlin, E. (2016). Investigating mobile broadband adoption and
usage: A case of smartphones in sweden. Telematics and Informatics, 33(3):742
- 752. 2

Lee, S., Lee, J., Lee, W., Lee, S., Kim, S., and Kim, E. T. (2020). Design of inte-
grated messenger anti-virus system using chatbot service. In 2020 International

Conference on Information and Communication Technology Convergence (ICTC),

pages 1613-1615. 72

Lin, Y. (2020). 10 mobile usage statistics you should know in 2020 [infographic].
. [Online, consulted
on November 27, 2020]. 67

Lindvall, N. and Ljungstrém, R. (2018). Chatbot for configuration. Master’s thesis,
Lund University. Student Paper. 2

REFERENCES 119

Liu, S. and Chen, P. (2009). Developing java ee applications based on utilizing design
patterns. In 2009 WASE International Conference on Information Engineering,
volume 2, pages 398-401. 70

Ma, J., Che, C., and Zhang, Q. (2018). Medical answer selection based on two
attention mechanisms with birnn. MATEC Web of Conferences, 176:01024. 13

Maia, R. F. (2012). Desenvolvimento de uma Aplicagao Web para Apoio de Cdlculo
de Estruturas Metdlicas. PhD thesis, Faculdade de Engenharia da Universidade
do Porto.

Martins, A. M. P. (2002). Especificacio XML de aplica¢oes para WWW. PhD thesis,
Faculdade de Engenharia da Universidade do Porto. 60

Merisalo, S. (2018). Developing a Chatbot for Customer Service to Metropolia UAS
Student Affairs Office. PhD thesis. 7

MindSea (2020). 28 Mobile App Statistics To Know In 2020.
. [Online, consulted on January 7, 2021]. 23, 67

Mozilla (2020a). Evolution of http.
[Online, consulted on
November 14, 2020]. 56

Mozilla (2020b). Http messages.
. [Online, consulted on November 14, 2020]. 56, 63

Mu, H. and Jiang, S. (2011). Design patterns in software development. In 2011 IEEE
2nd International Conference on Software Engineering and Service Science, pages
322-325. 80

Muhammad, A. F., Susanto, D., Alimudin, A., Adila, F., Assidiqi, M. H., and
Nabhan, S. (2020). Developing english conversation chatbot using dialogflow. In
2020 International Electronics Symposium (IES), pages 468-475. 18

Nafis, R. M. and Setiawan, E. B. (2019). Application for Booking Handyman Ser-
vices Using Webhook and Google Event Calendar Technology. 72

120 REFERENCES

Nahar, N. and Sakib, K. (2016). Acdpr: A recommendation system for the creational
design patterns using anti-patterns. In 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), volume 4, pages
4-7. 49

Ngrok (2020). What is ngrok? . [Online, consulted
on November 23, 2020]. 96

Nuruzzaman, M. and Hussain, O. K. (2018). A survey on chatbot implementation

in customer service industry through deep neural networks. pages 54-61. 11

Ojapuska, E. (2018). The impact of chatbots in customer engagement. Vaasa
University of Applied Sciences, pages 1 —40. 8

Oracle (2012). Differences between java ee and java se.
. [Online, consulted on January 22, 2021].
69

Oracle (2014). Java ee 7 apis.
. [Online, consulted on January 23, 2021]. 71

Oracle (2021). Java ce at a glance.
. [Online, consulted on January 7, 2021]. 69, 70

Orin, T. D. (2017). Implementation of a Bangla Chatbot. SpringerBriefs in Applied
Sciences and Technology, (April):49-61. 11, 12

Pandorabots (2019). Pandorabots.
[Online, consulted on December 5, 2020]. 19

Patil, A., Karuppiah, M., A, N.; and Niranchana, R. (2017). Comparative study
of cloud platforms to develop a chatbot. International Journal of Engineering €
Technology, 6:57. 17

Petersen, K., Wohlin, C., and Baca, D. (2009). The waterfall model in large-scale
development. In The Waterfall Model in Large-Scale Development. 49

REFERENCES 121

Radziwill, N. and Benton, M. (2017). Evaluating quality of chatbots and intelligent

conversational agents. 3

Redstone, J. D. B. (2019). Turing Tests as Reflexive Experimental Apparatus. PhD
thesis, Carleton Univertisty. 6

RFC2616 (1999). Hypertext transfer protocol-HTTP/1.1.
. [Online, consulted on November 19, 2020]. 53, 54

RFC2818 (2000). HTTP Over TLS.
[Online, consulted on November 19, 2020]. 58

RFC3986 (1999). Uniform Resource Identifier (URI): Generic Syntax.
. [Online, consulted on November 19, 2020]. 55

RFC7159 (2014). The JavaScript Object Notation (JSON) Data Interchange For-
mat. . [Online, consulted on January
19, 2021]. 61

RFC7231 (2014). Hypertext Transfer Protocol (HTTP/1.1): Semantics and Con-
tent. . [Online, consulted on
January 19, 2021]. 57

RFC7519 (2015). JSON Web Token (JWT).
. [Online, consulted on January 19, 2021]. 63

Robeznikes, A. (2016). Healthtap integrates research summary provider
docphin after quiet acquisition.

. [Online, consulted on February 5, 2021]. 13

Salvadori, I. (2015). Desenvolvimento de Web APIs RESTful Semanticas Baseadas
em JSON. PhD thesis, Universidade Federal de Santa Catarina. 57

Sannikova, S. (2018). Chatbot implementation with Microsoft Bot Framework. PhD
thesis, Metropolia University of Applied Sciences. 6

Shbair, W., Cholez, T., and Chrisment, 1. (2017). Service-Level Monitoring of
HTTPS Traffic. PhD thesis, University of Lorraine. 59

122 REFERENCES

Shvets, A. (2019). Dive Into Design Patterns. 16, 50, 51, 52

Siegert, 1., Sinha, Y., Jokisch, O., and Wendemuth, A. (2020). Recognition Per-
formance of Selected Speech Recognition APIs — A Longitudinal Study. Springer.
17

Spectrm (2020). Messaging Apps Have Taken Over — Us-
age & Growth Statistics. https://spectrm.io/insights/blog/
messaging-app-statistics-most-popular-communication-method-2020/.

[Online, consulted on December 3, 2020]. 2

Stanivuk, 1., Bjeli¢, V., Samardzi¢, T., and Simi¢, (2017). Expanding lua interface
to support http/https protocol. In 2017 13th International Conference on Ad-
vanced Technologies, Systems and Services in Telecommunications (TELSIKS),
pages 407-410. 53

Suite, L. (2019). Entendendo os conceitos entre os mode-
los tep/ip e osi. https://www.iperiusbackup.net/pt-br/
entendendo-os-conceitos-entre-os-modelos-tcpip-e-osi/. [Online,

consulted on November 14, 2020]. 54

Telegram (2020). Telegram bot api. https://core.telegram.org/bots/api. [On-
line, consulted on March 10, 2020]. 35, 36, 37

Tiha, A. (2018a). Intelligent Chatbot using Deep Learning. PhD thesis. 10
Tiha, A. (2018b). Intelligent chatbot using deep learning. Master’s thesis.

TIOBE (2021). Python is tiobe’s programming language of 2020! https://www.
tiobe.com/tiobe-index/. [Online, consulted on January 7, 2021]. 68

W3schools (2020). XML on the Server. https://www.w3schools.com/xml/xml_

server.asp. [Online, consulted on January 19, 2021]. 60

Wang, X., Xu, B., and Gu, R. (2013). The application of code reuse technology
based on the mvc framework. In 2013 International Conference on Computer

Sciences and Applications, pages 534-537. 16

REFERENCES 123

Watson, 1. (2019a). About Watson. https://www.ibm.com/watson/about. [Online,
consulted on December 5, 2020]. 18

Watson, [. (2019b). IBM Documentation. https://cloud.ibm.com/docs/
assistant?topic=assistant-index. [Online, consulted on December 12, 2020].
18

WeChat (2020). Oficial accounts. https://developers.weixin.qq.com/doc/
offiaccount/en/Basic_Information/Access_0Overview.html. [Online, con-

sulted on September 17, 2020]. 40, 41, 42, 44

Wei, C., Yu, Z., and Fong, S. (2018). How to build a chatbot: Chatbot framework
and its capabilities. In Proceedings of the 2018 10th International Conference on
Machine Learning and Computing, ICMLC 2018, page 369-373, New York, NY,
USA. Association for Computing Machinery. 15

