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Abstract - Nowadays, there is an increasing number of people living with mental illnesses. 

Some of the most prevalent are the anxiety disorders, being estimated that, in 2017, around 284 

million people were living with these disorders. This dissertation raises awareness for this 

mental illness and addresses the challenge of stress/anxiety detection using a supervised  

machine learning system for classification. Itôs given a special focus on the respiratory system 

and its parameters that correlate with stress/anxiety. The developed work establishes the 

framework for an anxiety monitoring system using multiple physiological parameters. Five of 

the most common algorithms were used for the task and the one achieving the best results was 

the Random Forest classifier with 92% ñaccuracyò and great values for ñprecisionò, ñrecallò, 

ñf1-scoreò and ñcohen kappa scoreò. Ultimately, this technology can be applied to self and 

autonomous stress/anxiety detection purposes partnering it with specialists who deal with these 

problems daily, like psychologists or psychiatrists. 

 

Keywords: Mental health disorders; Stress; Anxiety; Respiratory system; Machine learning; 

Random Forest; Anxiety monitoring system. 

 

 

 

 

 



VI 
 

 

Breathing and Sound Monitoring 

Diogo Pinto Luís 

Submetido na Universidade de Trás-os-Montes e Alto Douro para o preenchimento dos requisitos 

parciais para obtenção do grau de Mestre em Engenharia Biomédica 

 

 

Resumo - Atualmente, há um número crescente de pessoas a viver com doenças mentais. 

Algumas das mais prevalentes são os distúrbios de ansiedade, estimando-se, em 2017, que cerca 

de 284 milhões de pessoas viviam algum tipo destes distúrbios. Esta dissertação sensibiliza para 

o tema desta doença de saúde mental e aborda o desafio da deteção de stress/ansiedade através 

de um sistema de classificação de ansiedade utilizando o método de machine learning 

supervisionado. É dado um especial foco ao sistema respiratório e aos seus parâmetros que se 

correlacionam com o stress/ansiedade. O trabalho desenvolvido estabelece uma framework para 

o desenvolvimento de um sistema de monitorização de ansiedade usando múltiplos parâmetros 

fisiológicos. Cinco dos algoritmos mais comuns para este tipo de trabalhos foram usados para 

a tarefa de classificação e aquele que alcançou os melhores resultados foi o algoritmo Random 

Forest com 92% acurácia e ótimos valores de precisão, ñrecallò, ñf1-scoreò e ñcohen kappa 

scoreò. Em última análise, esta tecnologia pode ser aplicada para fins de deteção de 

stresse/ansiedade de maneira autónoma e em parceria com especialistas que lidam com estes 

problemas diariamente, como psicólogos ou psiquiatras. 

 

Palavras-chave: Doenças de saúde mental; Stress; Ansiedade; Sistema respiratório; Machine 

Learning; Random Forest; Sistema de monitoramento de ansiedade. 
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1 Mental Disorders Overview 
 

The American Psychiatric Association [APA, 2018] defined metal health illness as ña 

health condition involving changes in emotion, thinking or behavior (or a combination of 

these)ò. This subject involves an exhaustive list of disorders, like depression, anxiety, bipolar, 

eating disorders, schizophrenia, among others. As described in Table 1, [Dattani et al., 2021] 

estimated that, in 2017, about 792 million people were living with some type of mental health 

disorder, representing around 1 in 10 people, or 10.7% of the World population. Regarding 

anxiety disorders, an estimated 284 million people suffer from anxiety, and 264 million suffer 

f rom depression. It was also noticed that these disorders affect more the female gender, in 

percentage. 

 

Disorder 

Share of the global 

population with the 

disorder (2017) 

[difference across 

countries] 

Number of people 

with the disorder 

(2017) 

Share of males-

females with the 

disorder (2017) 

Any mental health 

disorder 
10.7% 792 million 

9.3% males 

11.9% females 

Depression 
3.4% 

[2-6%] 
264 million 

2.7% males 

4.1% females 

Anxiety disorders 
3.8% 

[2.5-7%] 
284 million 

2.8% males 

4.7% females 

Bipolar disorder 
0.6% 

[0.3-1.2%] 
46 million 

0.55% males 

0.65% females 

Eating disorders 

(clinical anorexia & 

bulimia) 

0.2% 

[0.1-1%] 
16 million 

0.13% males 

0.29% females 

Schizophrenia 
0.3% 

[0.2-0.4%] 
20 million 

0.26% males 

0.25% females 

Any mental or 

substance use 

disorder 

13% 

[11-18%] 
970 million 

12.6% males 

13.3% females 

Alcohol use disorder 
1.4% 

[0.5-5%] 
107 million 

2% males 

0.8% females 

Drug use disorder 

(excluding alcohol) 

0.9% 

[0.4-3.5%] 
71 million 

1.3% males 

0.6% females 

Table 1 ï Disorders and their respective distributions. Extracted from [Dattani et al., 2021]. 

 

In 2015, the [World Health Organization, 2017] estimated that 264 million people were 

living with anxiety disorders, an increase of 14.9% since 2005. According to [Dattani et al., 

2022], in 2017 these numbers increased to 284 million people (as referred to in table 1). It is 
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quite regular that individuals who suffer from anxiety are also in a state of depression and vice 

versa [DeRubeis & Strunk, 2017], data relating to anxiety disorder and anxiety simultaneously 

with depression in low and middle-income countries (LMIC) has been quite worrying, due to 

the steady increase in the numbers of individuals with these disorders. [Friedrich, 2017].  

In 2014, the Direção-Geral da Saúde (DGS) indicated that Portugal is the second country in 

Europe with the highest prevalence of psychiatric illnesses, with more than a fifth of the 

Portuguese (22.9%) suffering from some type of psychiatric disorder and only behind Northern 

Ireland with 23.1% and the United States of America with 26.4%. Furthermore, in Portugal, 

2014, anxiety disorders represent 16.5% of the total burden of the prevalence of psychiatric 

disorders, followed by depressive disorders, impulsivity disorders, and alcohol disorders with 

7.9%, 3.5%, and 1.6%, respectively. Additionally, mental and behavioral disorders represent 

11.8% of the global percentage of diseases in Portugal, more than oncological diseases with 

10.4% and ultra-passed by cerebrovascular diseases with 13.7%. Figure 1 details the 

information above. [Direção-Geral da Saúde, 2014]. 

 

 

Figure 1 ï Annual prevalence of psychiatric disorders over 5 countries. Extracted from [DGS, 2014]. 
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1.1 Anxiety and Human System Correlation 
 

Anxiety is seen as an emotional state that interferes with the humanôs mental and physical 

condition, wielding pressure on multiple body systems and exerting influence over our 

behaviors. Although it is something normal and inevitable in our lives, it can have very negative 

consequences when too much or not handled in the best way. In the fifth edition of the 

Diagnostic and Statistical Manual of Mental Disorders [APA, 2013] explains how anxiety 

disorders can be expressed in the form of panic disorder (PD), generalized anxiety disorder 

(GAD), social anxiety disorder, specific phobia, agoraphobia, separation anxiety disorder, 

selective mutism, substance/medication-induced anxiety disorder, and anxiety disorder due to 

another medical condition. All anxiety forms have various symptoms that can be shared, as 

described in table 2. On an emotional domain, it is common to sense uneasiness, fear, and 

distress; on a cognitive domain, some typical symptoms are negative and worry thoughts; on a 

behavioral domain, there is a tendency for avoidance and undue attachment; On the physical 

domain, it is usual to feel tachycardia, muscle tension, and dizziness [Mallorquí-Bagué et al., 

2016]. 

 

 

Table 2 ï Typical symptoms of anxiety per domain. Extracted from [Mallorquí-Bagué et al., 2016]. 

It is known that anxiety messes with various systems in our body. Several authors put in 

good efforts trying to explain how the mind and the body are dynamically connected and how 

they interact. For instance, [Clark, 1996; Clark et al., 1995] built the first influential cognitive-

perceptual models of anxiety, which describe the correlation between some psychological 

processes and an individualôs bodily state and environment. [Damasio, 1996] proposed a 

somatic marker hypothesis and, in his work, explains its influence on the mind-body interaction 

models. 

[Culpepper, 2009] explained that various factors like genetics and environment have an 

impact on the development of GAD and, posteriorly, more serious medical illness conditions. 

Domain Symptoms 

Emotional Uneasiness, fear, and distress 

Cognitive Negative and worry thoughts 

Behavioral Avoidance and undue attachment 

Physical Tachycardia, muscle tension, and dizziness 
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Whenever an anxiety stimulus affects our thalamus, this structure contacts other brain structures 

to start defensive functions and react to it. The amygdala plays an important role here, as it 

mediates arousal and fear and activates the hypothalamic-pituitary-adrenal axis (HPA) [Kent & 

Rauch, 2004]. When the threat is confirmed by our body, the hypothalamus initiates 

neuroendocrinal and autonomic responses, which unlock hormonal pathways that have serious 

correlations with different systems. [Habib et al., 2001; Sternberg & Gold, 1997]. Giving some 

examples of this, as reported by [Aguirre, 2015], anxiety and depression can cause 

cardiovascular problems, such as hypertension, or myocardial infarction by being responsible 

for an increase in the levels of adrenocorticotropic hormone (ACTH), cortisol, and 

catecholamines on the HPA axis, which leads to vasoconstriction and increased circulating 

volume. Plus, at the level of the immune and autonomic systems, it is verified a pro-

inflammatory profile with the action of cytokines family interleukin-1 (IL -1), interleukin-6 (IL -

6), and the tumor necrosis factor (TNF), and, also, an increase in sympathetic tone and a 

decrease in vagal tone. The gastrointestinal system can, as well, be affected by GAD, as shown 

by [Goodwin & Stein, 2002], which revealed in a population of adults in the United States that 

individuals with GAD are 4 times more likely to report peptic ulcer disease than individuals 

without GAD. Another very important system affected by anxiety and the one which will have 

the major focus in this dissertation is the respiratory system. Studies have revealed that anxiety 

disorder patients have a higher tendency to develop asthma [Goodwin, 2003; Katon et al., 

2004], and chronic obstructive pulmonary disease (COPD) [Muller et al., 2005]. 

Can such a qualitive problematic like the mental health disorders, such as stress and anxiety, 

be classified, quantified or measured using correlated physiological parameters?  

 

1.2 Motivations and Deliveries 
 

The topic of mental health issues has always been present in my life, not only because I am 

a very anxious person, but also because I come from a family of psychologists. So, this is a 

recurrent theme at home. Knowing that this is an ongoing and increasing problem in todayôs 

world it gives me a feeling of concretization being a part of something that contributes to this 

problem. 
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In this dissertation, the major focus goes to one of the most affected systems in an anxiety 

crisis: the respiratory system. Correlations between several parameters from the respiratory and 

other systems and stress/anxiety are established, always having the literature as the foundation 

for all the scientifical knowledge and reviewing depicted in the present work. We also deliver 

a functional anxiety monitoring system model capable of classifying a humanôs mental health 

state as relaxed or stressed, based on a set of parameters taken from a suitable dataset, which is 

now also validated for being of good quality to train and test the developed model. Much more 

information on relevant areas related to the developed work is also given, filling all the gaps 

necessary to write a complete and coherent dissertation.  

 

1.3 Objectives Established 
 

For the present work, it  was established 3 major objectives. First, define what is known about 

the respiratory system and its parameters that correlate to stress/anxiety and that can be, 

potentially, used to classify, quantify, or measure the anxiety state. Secondly, describe some 

mechanisms and equipment required to measure these parameters, in case of real-time data 

acquisition is needed. Finally, delineate a functional pipeline for the development of an anxiety 

monitoring system and build a supervised machine learning classification model for 

stress/anxiety detection.  

In between these tasks, it was necessary to review other parameters, from other physiological 

systems, which were relevant to the development of the work. Also, give a brief explanatory 

introduction to the machine learning topic and write a literature review on the subject and 

relevant related studies already done and published in renowned scientific journals. 

 

1.4 Master Thesis Structure 
 

This section aims to describe the structure of this dissertation, that is, the sequence of the 

next chapters, in order to facilitate the reader to navigate through the document. Thus, in 

addition to this introductory chapter, the dissertation is organized into 5 more chapters. 

In chapter 2, the focus is on the knowledge background needed for the development of more 

coherent and complete work, which is presented in the following chapters. 
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In chapter 3, a literature review of other relevant similar studies is given. These studies are 

relatively recent and published in renowned scientific journals. Furthermore, an anxiety 

monitoring system is presented, supported by a pipeline that performs a supervised machine 

learning classification for stress/anxiety monitoring using multiple physiological parameters. 

In chapter 4, we analyze the results obtained by the work developed in the previous chapters 

and discuss their quality.  

In chapter 5, we give our final remarks and conclusions on the overall work developed.  

In chapter 6, we propose some future work that is yet to be theorized, conducted, and 

validated, in order to improve the proposed work. 
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2 Knowledge Background 
 

To better understand the complexity and implications of stress and anxiety in the respiratory 

system a further explanation of the physiology of this structure and the ventilation process is a 

must.  

 

2.1 Respiratory System and Ventilation Process 
 

The human body has, essentially, five groups of muscles helping in the respiratory activity. 

The diaphragm muscle (inspiratory mechanics), the external intercostals muscles (inspiratory 

mechanics), the rectus, oblique, and transverse muscles (auxiliary expiratory mechanics), the 

internal intercostals muscles (auxiliary expiratory mechanics), and the sternocleidomastoid and 

scalenes muscles (auxiliary inspiratory mechanics). A schematic representation is found in 

figure 2. During inspiration, these muscles have the objective of enlarging the rib cage, so the 

lungs can expand and increase their volume and, as a result, it forms a pressure gradient. Air 

flows from higher pressure zones to lower pressure zones and the volume growth reduces intra-

alveolar pressure creating a pressure lower than atmospheric pressure. As an effect, during 

inspiration, air comes into the lungs. During expiration, the opposite mechanism occurs, so that 

the air leaves the lungs. 

Located between the 6th and 10th ribs, the diaphragm sits between the thorax and the 

abdominal cavity transition. This big muscle represents about 75% to 80% of the total 

ventilation and in normal conditions allows 1 person to ventilate practically without any help 

from other muscles. In a first phase, when it receives an electrical stimulus from the brain, the 

diaphragm contracts and, as a consequence, it moves inferiorly towards the abdominal cavity. 

This movement can be bigger or smaller, depending on variables such as voluntary breathing 

depth, the body's demand for air intake to improve gas exchange, and/or the muscle's strength. 

This movement induces the rib cage to increase in vertical diameter. In a second phase, when 

the diaphragm contracts our floating ribs (the last 2 pairs of ribs in the rib cage) will perform a 

lateral opening movement and the result is an increase in the cross-section of the chest. These 

2 mechanisms contribute to the expansion of the rib cage and lung volume increase.  
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External intercostals muscles are also an important part of the inspiratory process. They are 

located in between the ribs and induce an elevation of these is similar to that of a bucket handle. 

They are responsible for an increase in the transverse and anteroposterior diameter of the lungs, 

thus contributing to the expansion of the rib cage and lung volume increment. They are used 

often for more profound respirations.  

There are 2 sets of muscles in use for expiratory mechanics: the rectus, oblique, and 

transverse muscles and the internal intercostals muscles. They are not used in normal and 

healthy situations. They are only used for forceful expirations, for example, when a patient has 

some disease or a specific pathology where the ventilation capacity is affected. They can also 

be used in cases of physiological stress like exercising. 

Lastly, the sternocleidomastoid is located between the upper part of the sternum and the 

collarbone, up to the mastoid and the scalenes are situated from the first and second rib, up to 

the cervical spinal nerves. Their function is to help in the inspiration process by pulling the 

ribcage up and expanding the ribcage. Normally, only individuals with respiratory diseases use 

these muscles.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2 ï Used Muscles in Respiratory Activity. Extracted from [Welch et al., 2019].  
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2.2 Implications of stress and anxiety in respiratory bio-

physiological parameters  

 

From observation, it is suggested that humans who show stress, anxiety, and panic attack 

problems present symptoms characterized by atypical respiratory activity, alterations in the 

breathing process, and/or changes in breathing control. Thus, it can be inferred that breathing 

is a very crucial and affected factor during these psychiatric crises. Breathing is an imperative 

process controlled by the autonomic nervous system (ANS) and various studies have been 

conducted correlating both the ANS activity and respiration activity in response to emotions in 

general, but more specifically, to stress and anxiety [Kop et al., 2011; Kreibig, 2010]. Inducing 

real-life emotions and anxiety in a laboratory is a really hard task. For that reason, there are not 

many papers showing viable and strong results on day-to-day emotions and anxiety and their 

effects on our respiratory system and respiration patterns [Boiten, 1998]. However, one way to 

try to assess and manage our stress/anxiety levels is by analyzing and controlling our breathing 

patterns and respiratory features, as reviewed in the remainder of this section.  

To match the body's metabolism needs, our respiratory system regulates the arterial levels 

of carbon dioxide (CO2) between 35 and 45 mmHg and oxygen (O2) in between 80 and 100 

mmHg at sea level [Eng, 2021; Holland, 2017]. The assessment of our arterial blood gases can 

give us valuable information on the efficiency of oxygenation and ventilation. Other parameters 

such as dead space/tidal, volume ratio, and alveolar-arterial O2 pressure difference determine 

gas exchange proficiency [Yamanaka & Sue, 1987]. Tidal volume is the amount of air that 

moves in or out of the lungs with each respiratory cycle and should be around 500ml for a 

healthy adult male and 400ml for a healthy adult female, while end-tidal CO2 corresponds to 

the peak concentration of CO2 in a single breath of exhaled air and this estimate is usually used 

to measure the arterial CO2 pressure (PCO2) and an individualôs ventilatory status.  

According to Leyôs hyperventilation theory, hyperventilation may be the source of high 

anxiety levels and panic attacks. This event is a breathing condition that exceeds the bodyôs 

metabolism requirement for O2 and, consequently, causes a low concentration of CO2 in 

exhaled air. This causes respiratory alkalosis (blood pH above 7,45), which results in a chain 

of physiological and neurological reactions [Ley, 1985; Schleifer et al., 2002]. High levels of 

anxiety in individuals suffering from hyperventilation syndrome (HVS) were also reported, 
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which aligns and corroborates with the theory that hyperventilation might play a bigger role in 

the anxiety problem [Folgering, 1999]. 

[Masaoka & Homma, 2001] studied the patterns of respiration in individuals with induced 

stress to provoke anticipatory anxiety. There were essentially 2 groups: one with a low trait 

anxiety background and another with a high trait anxiety background. Subjectsô anxiety was 

measured using Spielbergerôs State-Trait Anxiety Inventory. A correlation was established 

among all variables calculated between anxiety trait scores and respiratory frequency, anxiety 

trait scores and tidal volume and anxiety trait scores, and end-tidal PCO2, as can be seen in 

figures 3a, 3b, and 3c respectively. For the subjects with a high trait anxiety background, the 

bigger the anxiety trait score is, the higher respiratory frequency becomes, also the study 

showed no real increment in tidal volume, however, the higher the anxiety trait went up, the 

lower end-tidal turns. The fact that anxiety lowers end-tidal PCO2 values means that tidal 

volume doesnôt get low enough to maintain normal alveolar ventilation, which also explains 

why its value didnôt present any positive nor negative correlation just as seen in figure 3b. 

Another important relation taken from the study is that low and high trait anxiety background 

subjects reported a decrease in expiratory time.  

 

Figure 3 ï a) Correlation between anxiety trait scores and respiratory frequency; b) anxiety trait scores and tidal 

volume; c) anxiety trait scores and end-tidal PCO2. Extracted from [Masaoka & Homma, 2001].  

 

 

[Tolin et al., 2017] explored the effectiveness of capnometry guided respiratory intervention 

(CGRI) on 69 participants diagnosed with PD. The study aimed to understand if respiratory 

parameters feedback on PD patients is useful in combating the disorder. The relation between 

PD and anxiety with hyperventilation was implied and, for that reason, parameters such as 
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respiration rate (RR) and end-tidal PCO2 were measured during this study, besides other 

psychometric rates using a variety of scales. Participants were given 4 weeks of CGRI, this 

included a sensor to measure the previously mentioned parameters and a tablet with clear 

instructions for the different breathing exercises they had to perform daily throughout that time, 

as well as, for displaying the measured data. At the end of these 4 weeks, participants returned 

the borrowed material, so no more CGRI was to be done. Follow-up baseline measures were 

taken 2, 6, and 12 months after the treatment. The results of the study are in favor of the usage 

of respiratory parameters feedback for the treatment of PD patients. At pre-treatment 

measurements, participants presented typical values for anxiety and PD individuals. After the 

4 weeks of treatment, participants showed a relevant increase in PCO2, decreased RR, 

decreased panic attacks last week, and improved psychometric rates. At the follow-up 

evaluations, these values were revealed to be able to maintain themselves at the improved 

measures. The lack of a control group in this study is worth noting, so the only values we can 

compare all measures to are those from previous similar studies and the ones considered normal 

values for healthy individuals.  

[Wollburg et al., 2011] studied the effects of 2 opposite anxiety treatment techniques based 

on breathing training, with 45 PD patients, 39 Episodic Anxiety patients, and 20 non-anxious 

control patients. Patients were assigned randomly into learning one of the breathing techniques. 

One technique lines up with Leyôs hyperventilation theory, which implies that anxiety levels 

are raised by hyperventilation, which leads to lower levels of end-tidal PCO2. For this reason, 

a group of patients was instructed to perform hypercapnic breathing, meant to raise PCO2 

values. On the other hand, another group of patients was instructed to perform a hypocapnic 

breathing intended to lower PCO2 values, to line up with Kleinôs suffocation false alarm theory 

[Klein, 1993]. In Kleinôs work, CO2 is suggested to work as a suffocation alarm for the nervous 

system and a PCO2 raise may indicate, erroneously, suffocation. Hyperventilation is only an 

adaptive, compensatory mechanism rather than a cause of the problem. After this breathing 

training, patients were subjected to voluntary hyper and hypo exercises. A few different 

parameters (Self-reported measures: Anxiety; Dizziness; Shortness of breath; 

Tingling/Numbness; Physiological Measures: End-tidal PCO2; Tidal volume and Respiration 

rate; Sighs) were measured at a baseline, during breathing exercises, and at recovery time. Also, 

these parameters were measured during pre-training and the follow-up of the exercises. 

According to the results, neither theory was confirmed. In hyperventilation theory, it was 

expected to happen panic attacks, at least in PD patients, in hyperventilation exercises, which 
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did not occur. However, the values of self-reported measurements did increase. In suffocation 

false alarm theory, these panic attacks are supposed to happen in hypoventilation exercises, 

which did not occur also. Yet, this second theory hypothesized that voluntary hyperventilation 

should have decreased self-reported measures, which did not happen, it came about the exact 

opposite. The 2 breathing training did not get any relevant effect, besides at baseline. 

Hypercapnic breathing patients presented higher PCO2 values at baseline after training than at 

pre-training and hypocapnic breathing patients presented lower PCO2 values at baseline after 

training than at pre-training.     

[Yamada et al., 2017] investigated the capacity of 28 PD patients to perform diaphragmatic 

breathing and its effect on vital capacity percentage (%VC), which is the total volume of air 

that can be displaced from the lungs by maximal expiratory effort. Essentially, is an indicator 

of inspiratory and expiratory reserve volume. Vital capacity has a direct impact on alveolar 

ventilation efficiency and blood oxygenation. The participants were divided into 2 groups: A - 

Clearly able to perform diaphragmatic breathing and B - Unable to perform diaphragmatic 

breathing or able to perform it incompletely. The %VC data was measured in 2 periods, on the 

first and last session of breathing training, and this data was also crossed with measurements of 

another 28 healthy control participants. For healthy control participant groups, A and B were 

only made 1 breathing training session and the mean of the values measured were 88,4% and 

83,8%, respectively. For PD patient group A, the mean %VC measures were 81,3% and 91,3% 

on the first and last breathing training sessions. For PD patient group B, the mean %VC 

measures were 62,0% and 86,1% on the first and last breathing training sessions. By these 

results, can be deduced that PD patients, either capable or not to perform diaphragmatic 

breathing, have a %VC lower than healthy individuals, although these values are only slightly 

lower when compared to healthy individuals incapable of doing the breathing. Compared to the 

last session, the results from the first session show us that %VC can be improved significantly 

with breathing training, thus potentially helping individuals suffering from anxiety and PD. 

Some studies, [Carayon et al., 1999; Ritz et al., 2013; Schleifer et al., 2002], might suggest 

a correlation between the anxiety state of an individual and the musculoskeletal system. This 

idea is based on a series of events that start with the hyperventilation caused by stress/anxiety. 

As explained previously, hyperventilation causes an individual to exhale more than it inhales 

and, consequently, the levels of CO2 in the blood will drop, thus dropping the levels of carbonic 

acid in the body. This results in a state of respiratory alkalosis (bloodôs pH above 7.45), which 
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leads to a chain of physiological reactions that can affect the whole body. An increase in pH 

makes the CO2 migrate from intracellular to extracellular fluids and at a neuronal level, this 

dysregulates the neuron cells causing depolarization or excitation. This results in higher muscle 

tension throughout the body with various physiological effects.  

Individuals with breathing disorders, specifically hyperventilation, are often shown to have 

alterations in breathing patterns due to changes in respiratory musculature movements. This 

condition is characterized by a more dominant thoracic breathing, which can be described as an 

effortless uplift of the upper sternum and a lack of lateral costal expansion. This movement is 

also the same used for sighing, which might explain the recurrent sighs observed in individuals 

with high trait anxiety and panic attacks [Courtney et al., 2011; Lum, 1975].  

 

2.3 Bio-Physiological Implications 
 

Although the major focus of the dissertation is on the effects of stress/anxiety on the 

respiratory system there are also other important parameters, that are involved in the practical 

part in chapter 3, which must also be accounted for, due to their importance and research work 

in the literature.  

It is very common the usage of the electrocardiogram (ECG) to detect stress/anxiety through 

the estimation of related parameters like the heart rate (HR), RR intervals (elapsed time between 

2 consecutive heartbeats), heart rate variability (HRV) (time variance between beats of the 

heart), among others. The autonomic nervous system, more specifically, its sympathetic branch 

has a direct impact on the fluctuations of the heart rate and extracting features from ECG signals 

may serve as good indicators for the mental health status of an individual [Chesnut et al., 2021].  

Another parameter used often in the literature for stress/anxiety detection is the 

electrodermal activity of the skin (EDA), or skin conductance. In situations of stress/anxiety, 

special sweat glands get triggered in response to the activation of the sympathetic nervous 

system, and the more stress/anxiety, the more sweat gets secreted. Sweat is essentially salt 

water, which means it will conduct electricity throughout the body. Fundamentally, the more 

sweat exists, the bigger the electrical flow, and, for this reason, the EDA value increases with 

stress/anxiety. This parameter is measured by placing 2 electrodes at skin level, running a small 
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electric charge through the circuit, and, with a sensor measuring the conductivity [Chesnut et 

al., 2021]. 

Temperature is a less-used parameter for stress/anxiety monitoring however, some studies 

try to show some correlation between the two. [Giannakakis et al., 2019] give a detailed 

literature review on this topic and present some contradictions regarding increases and 

decreases of the temperature in different body parts, in presence of stress. 

 

2.4 Wearable Devices and Parameter Measurements 
 

In terms of monitoring systems of parameters related to anxiety, there is a big variety of 

technology for measuring and analyzing the data.  

Wearable health devices (WHDs) are an emerging technology that enables continuous 

ambulatory monitoring of human vital signs during daily life (during work, at home, during 

sports activities, etc.) or in a clinical environment, with the advantage of minimizing discomfort 

and interference with normal human activities [Di Rienzo et al., 2006]. 

Incorporated in the WHDs there is a vast set of methods and sensors that can be employed 

for measuring tasks depending on the variable being measured. [Massaroni et al., 2019] and 

[Massaroni et al. 2020] set up a good contrast between contact-based methods and contactless 

methods for measuring respiratory rate (RR).  

As the name suggests, the contact-based classification requires direct contact between the 

sensor and the subjectôs body, and the first review distinguishes the different techniques within 

this class, as well as, their metrological properties, sensor characteristics, applications, and 

suitability for the 3 main fields of importance for monitoring respiratory rate: Clinical settings, 

occupational settings, and sports and exercise. Techniques based on respiratory airflow focus 

on measuring the volume and/or the velocity of the inhaled and exhaled air during breathing. 

Estimates of the respiratory rate are made according to the tendency of volume or velocity of 

air trading. Some examples are differential flowmeters, turbine flowmeters, hot wire 

anemometers, and f iber-optic sensors. Another type of technique is based on the respiratory 

sounds, through which, its analysis allows to infer the inspiratory and expiratory phases of the 

patient and calculated the respiratory rate. These sounds are produced by the airflow in the 

different airways of the patient and can vary in the noise spectrum depending on the sensorôs 
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location in the body. An example of a sensor used in this technique is a microphone. There are 

some techniques, which use the premise that inhaled and exhaled air differs in some variables. 

By measuring this difference respiratory rate can be estimated. Sensors such as thermistors, 

thermocouples, pyroelectric sensors, and fiber-optic sensors are used in techniques based on air 

temperature. Exhaled air is warmer than inhaled air and by determining the temperature 

difference of the breaths respiratory rate can be estimated. Techniques based on air humidity 

follow the same principle. Inhaled and exhaled air differ in relative humidity and some sensors 

like capacitive sensors, resistive sensors, nanocrystals, nanoparticles sensors, and fiber-optic 

sensors, can estimate the respiratory rate by determining the humidity difference of the breaths. 

There are also techniques based on air components, which detect the presence of CO2 in inhaled 

and exhaled air. CO2 variations are used to measure respiratory rate. As an example, there are 

infrared sensors and fiber-optic sensors. A group of techniques based on the analysis of chest 

wall movement focus on the respiratory muscles and follows mainly 3 methodologies - the 

record of chest wall strain caused by the respiratory activity, the transthoracic impedance 

changes, and the record of thorax tridimensional movements. Various sensors are used for this 

matter, for example, resistive sensors, capacitive sensors, inductive sensors, and fiber-optic 

sensors. At last, techniques based on the modulation of cardiac activity, monitor cardiac features 

that are used to extract the respiratory rate, through an existing correlation. Sensor examples 

that are used to follow this methodology are photoplethysmogram (PPG) and ECG sensors. A 

simpler summary of everything described above is shown in table 3. 
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Contact-based methods 

Methods Sensors 

Flow measurements 

Differential flowmeters, 

Turbine flowmeters, 

Hot wire anemometers, 

Fiber-optic. 

Respiratory sounds Microphone. 

Air temperature 

Thermistors, 

Thermocouples, 

Pyroelectric, 

Fiber-optic. 

Air humidity 

Capacitive, 

Resistive, 

Nanocrystals, 

Nanoparticles, 

Fiber-optic. 

Air components Infrared, 

Fiber-optic. 

Chest wall movements 

Resistive, 

Capacitive, 

Inductive, 

Fiber-optic. 

Modulation cardiac activity PPG, 

ECG. 

Table 3 ï Contact-based methods and sensors for respiratory rate measurements. Extracted from [Massaroni et al., 

2019]. 

 

[Massaroni et al., 2020] provide us with good research on the state of contactless methods 

for measuring respiratory rate. This class of methods is less invasive than the previous and is 

of special interest in cases where unobtrusiveness is needed or desirable, or in cases where the 

patient is confined in a limited space. This review sets good detail on the different techniques 

within this class, types of sensors, and their characteristics for the 3 main fields of importance 

for monitoring respiratory rate: Clinical settings, occupational settings, and sports and exercise. 

One type of sensors is for techniques based on environmental respiratory sounds. Contactless 

environmental microphones are an example of this, capturing the inhaling and exhaling sound, 

meanwhile, the main challenge is to process the data and distinguish the 2 mechanisms through 

an algorithm. A new method for techniques based on air temperature uses thermal imaging to 

measure, remotely, the respiratory rate. This contactless method used facial recognition 

algorithms to track a personôs face, continuously, and detect the air temperature, which is used 

to estimate the respiratory rate. Another type of method is based on chest wall movements. 

Similar to the contact-based ones, this method uses contactless sensors to analyze the 
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respiratory muscles and their effect on the chest volume, which expands during inspiration and 

returns to its normal size during expiration. The change in volume is used for respiratory rate 

measurements. An example of sensors used for this scope is marker-based  

stereophotogrammetric systems, depth sensors, laser vibrometry, radiofrequency sensors, RGB 

cameras, and visible light sensors. Finally, there are techniques based on cardiac activity 

modulation, measuring cardiac features such as the ECG, PPG, ballistocardiogram (BCG), 

seismocardiogram (SCG), and arterial pressure. Through existing correlations with these 

features, respiratory rate can be measured. Table 4 depicts all these conctactless methods 

described.  

 

Contactless methods 

Methods Sensors 

Environmental respiratory sounds Microphones. 

Air temperature Thermal cameras. 

Chest wall movements 

Marker-based stereophotogrammetric, 

Depth, 

Laser vibrometry, 

Radiofrequency, 

RGB cameras and visible light. 

Cardiac activity modulation RGB Cameras. 

Table 4 ï Contactless methods and sensors for respiratory rate measurements. Extracted from [Massaroni et al., 

2020]. 

 

All these methods and sensor examples are well depicted in the mentioned paper reviews 

with the finality of estimating the respiratory rate, however, they have the potential to be used 

for measuring other respiratory features with correlation to anxiety. For instance, sensors used 

in methods based on air components, which detect the presence of CO2, can be applied in 

determining end-tidal CO2 pressure, a good parameter to diagnose hyperventilation, which is 

found to be correlated with stress and anxiety. Also, sensors used in methods based on chest 

wall movements, which analyses respiratory muscles and chest volume, might be capable of 

monitoring the usage and the intensity of the different muscles employed by the respiratory 

activity.  
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2.5 Machine Learning: A Brief Introduction  
 

Besides the advances in sensor technology and the capability of estimating a big variety of 

respiratory features, there are also improvements in machine learning and the algorithms used 

for data processing. Machine learning is the key to handling data more efficiently and, with the 

constant increase of datasets available, the need for algorithms that are able to extract 

information from the data is also rising.   

Machine learning is a vast multi-disciplinary field with applications in computer vision, 

prediction, semantic analysis, natural language processing, and information retrieval, among 

othersé (Figure 2). It consists of a sub-field of artificial intelligence that uses statistical 

methods to learn and improve. In data science, machine learning has various problems it can be 

used on. Classification problems are the ones in which some conclusions need to be taken from 

observed values and the outcome result is 1 out of different fixed known classes like ñYesò or 

ñNoò; ñTrueò or ñFalseò; ñRedò, ñGreenò or ñBlueò. These problems can be binary or multi-

class depending on the number of output classes. Regression problems are in play when the 

output variable is a numeric and continuous value. These algorithms allow making predictions 

by establishing a correlation between a dependent variable, which is the target, and an 

independent variable, which is the predictor. Anomaly detection is a type of problem where 

patterns are analyzed, and changes are detected. Basically, these algorithms try to identify data 

points where the dataset deviates from its normal behavior, or, in other words, search for 

outliers. Clustering problems aim to organize the data into groups by similarity in some pre-

established criteria. Ultimately, reinforcement problems use algorithms that learn from past 

experiences, adapting the behavior in an environment with trial and error like interaction. 

[Alzubi et al., 2018; Shinde & Shah, 2018]. 

The generic machine learning model is composed of 6 elements (it might vary depending 

on the author). The first step is the collection and preparation of the data. For any machine 

learning algorithm, the input data is mandatory. Usually, the more data, the better, however, 

lots of datasets contain irrelevant and redundant data, which makes it necessary to be cleaned 

and pre-processed. The second step is the feature selection. This is what the algorithm is going 

to search for in order to classify the data and get started with the learning process. The third 

step is algorithm choice. Nowadays, there is a big variety of algorithms, each one with its 

characteristics, and depending on the problem at hand, some might be more suitable than others, 
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for this reason, selecting a good machine learning algorithm is critical in getting good results. 

The fourth step is the selection of models and parameters. Machine learning algorithms may 

require some adjustments in initial values to set the most appropriate ones in all parameters 

used. The fifth step is the training of the model. It uses a portion of the data to help the model 

learn and produce better results. The sixth step is the performance evaluation. The portion of 

the data not used for the training is now applied to evaluate the performance of the model using 

evaluation metrics like precision, accuracy, recall, etc [Alzubi et al., 2018].  

Machine learning can be divided into 4 categories each one with its own algorithms 

associated. Supervised machine learning occurs when the output labels of the data are already 

well established, so, the model learns with the already existing labeled training data and via 

examples. The most typical tasks for these kinds of algorithms are classification and regression 

tasks. On the other hand, there is also unsupervised machine learning. This category of models 

doesnôt have pre-established references for the learning process. These algorithms focus on 

identifying unknown patterns from the data and since the training data is not labeled, the 

algorithm must learn on its own. Unsupervised machine learning tasks are usually clustering, 

density estimation, feature learning, dimensionality reduction, finding association rules, 

anomaly detection, etc. Another category is the semi-supervised machine learning. This one is 

a hybridization of the supervised and the unsupervised machine learning. These cases might 

appear when there is a parcel of the data labeled and another parcel unlabeled, due to high 

labeling cost or lack of human expertise in the subject. These algorithms try to provide better 

outcome results using supervised and unsupervised learning, than if the model were to be 

trained using the labeled data alone. The most usual applications for these algorithms are 

machine translation, fraud detection, labeling data, and text classification. The last category is 

reinforcement learning. These machine learning algorithms use the trial-and-error approach and 

learn with experience. Some actions have better rewards and fewer risks than others and 

reaching the most optimal scenario by exploring all the various possibilities is the ultimate goal 

of this type of algorithm [Alzubi et al., 2018; Sarker, 2021]. Figure 4 shows a brief summary 

of this topic. 
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Figure 4 ï Machine learning categories and tasks associated. Extracted from [Sarker, 2021]. 

 

 

 

2.6 Most Common Machine Learning Algorithms  
 

In the present section, we describe some of the most known and common machine learning 

algorithms of all categories explained above, with applicability in different types of problems 

such as classification, regression, clustering, and reinforcement.  

 

2.6.1 Linear, Polynomial, and Logistical Regression 
 

Linear, polynomial, and logistical regression analysis are machine learning approaches used 

in supervised learning for regression problems. These algorithms allow making predictions by 

establishing a correlation between a dependent variable, which is the target, and an independent 

variable, which is the predictor.  

One of the most known and used forms of regression is linear regression. This is a very 

simple method, in which, a linear relation between a continuous dependent variable and a 

continuous or discrete independent variable is formed. The regression line created is linear and 

corresponds to the line of best fit of the data. This method is very straightforward, can be used 

on small and large datasets, and with regularization, overfitting can be reduced. Nonetheless, is 

very sensitive to outliers and does not handle complex patterns appropriately. Most real-world  

problems are not as simple and linear as this algorithm oversimplifies [Ray, 2019; Sarker, 

2021]. 
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Polynomial regression is another method similar to the previous one, however, the 

relationship formed between the dependent and the independent variables is not linear, but 

instead, a polynomial of nth degree. So, the regression line formed is curved. Although this 

method is very useful for non-linear problems, it still shows problems handling outliers, and 

choosing the right polynomial degree might be a challenge [Sarker, 2021]. 

Logistic regression uses a classification methodology to deal with discrete dependent 

variables. The dependent variable can be binomial or multinomial. According to the input data 

values, this type of algorithm gives a probability of some feature or event occurring or not and 

categorizes it. It is relatively simple to implement, easy to interpret and it shows good efficiency 

for training. Very accurate on small datasets but can also show good results on larger ones. Can 

be regularized to handle overfit data. This method has the big disadvantage of not being able to 

solve non-linear problems [Ray, 2019]. 

 

2.6.2 Decision Tree 
 

In the supervised machine learning field, there is the decision tree technique used for both 

classification and regression tasks. Its schematic representation is shown in figure 5. In this 

technique, instances are going to be classified by a sorting process that occurs based on 

decisions. Nodes of the tree represent decisions or, in other words, variables of a certain 

instance, and each branch corresponds to a potential value for that variable. If the problem is of 

classification type, the variable is a categorical one. If the problem is a regression, the variable 

is a continuous one. It all starts in the root node with the first decision, based on the value of 

the variable that the node represents, the tree follows down a specific branch reaching up to 

either another decision node, which will lead to the same process and more ramifications of the 

tree, or to a leaf node, which means a classification was reached or a final decision and ends 

the process. Many algorithms are used to implement decision trees, however, the most popular 

are ñClassification and Regression Treeò (CART), ñIterative Dichotomiser 3ò (ID3), 

ñAutomatic Interaction Detectionò (CHAID), and ñC4.5ò. Decision tree algorithms are simple 

to interpret and easy to handle values, showing also high performances. Missing values in the 

data can be filled with the most probable value for that variable and interfere with the process 

of building the decision tree. Nevertheless, these algorithms are unstable, their size may be hard 
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to control, they present more complexity than other algorithms, and they give local optimal 

solutions and not global optimal solutions [Ray, 2019; Sarker, 2021]. 

 

 

 

 

 

 

 

 

Figure 5 ï Schematic representation of the decision tree algorithm. Extracted from [Sarker, 2021]. 

 

 

2.6.3 Random Forest 
 

Random forest algorithms can be used for both classification and regression tasks and it 

consists of an ensemble of decision trees. With the input data multiple decision trees are created 

and the output results in the mode of the classes, in case of a classification problem, or the mean 

prediction, in case of a regression problem. These algorithms are simple to interpret, can handle 

large datasets efficiently, and have more accuracy than the decision tree ones. However, more 

computation power and time are needed. Figure 6 shows a schematic representation of the 

random forest algorithm [Alzubi et al., 2018; Boateng et al., 2020]. 
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Figure 6 ï Schematic representation of the random forest algorithm. Extracted from [Boateng et al., 2020]. 

 

 

2.6.4 Support Vector Machine 
 

Support vector machine is one common technique used for classification and regression 

tasks in the supervised machine learning algorithm group. This technique simulates an n-

dimensional space, where ñnò represents the number of features in a certain dataset. The 

coordinates of each feature are given by their value. The support vector machine defines 

hyperplanes, which are the boundaries that separate the different classes of objects within the 

n-dimensional space. The goal is to find the most optimal hyperplane, that is the one with the 

biggest distance from the nearest data points in the dataset and the hyperplane itself. The greater 

this margin is, the lower chance to give classification errors. In some cases, the objects may be 

linearly separated, which simplifies the hyperplane defining process. But there are situations 

where that does not happen, in which case, complex mathematical functions, known as kernels, 

are used to separate the objects from different classes. Figure 7 shows a schematic 

representation of the support vector machine algorithm. Some advantages are that the algorithm 

works really well in high-dimensional spaces. It also shows good performance in cases where 

the number of features is greater than the number of objects. It does not get trapped in optimal 

local solutions. And it also has memory usage efficiency. The disadvantages are that it doesnôt 

perform well for large datasets due to the increase in training time. Classes that overlap too 

much might become a problem. It might be hard to find the optimal kernel function to use. The 
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algorithm also doesnôt provide a probabilistic estimation for the classes it classifies [Boateng et 

al., 2020; Ray, 2019; Sarker, 2021]. 

 

 

 

 

 

 

 

 

Figure 7 - Schematic representation of the support vector machine algorithm in 2 dimensions. Extracted from 

[Boateng et al., 2020]. 

 

 

2.6.5 K-Nearest Neighbor 
 

K-nearest neighbor is a supervised learning technique for mostly classification tasks that 

uses the idea of similarity to classify the data. It follows the principle that similar things are 

proximate to each other. This algorithm stores the training data and new data is classified based 

on some mathematical similarity measurements performed on the nearest neighbors of the 

object to be classified. Itôs non-parametric because it does not make assumptions on underlying 

data distribution. It is also called a lazy learner algorithm since it does not make use of the 

training data to formulate a model right away but instead memorizes it to use the data on 

classification time only.  It is one of the easiest and cheapest algorithms to build and implement 

and it is very useful for multi-class problems. On the other hand, the k-nearest neighbor loses 

efficiency on big datasets and choosing the most optimal number of neighbors to be considered 

might be difficult [Ray, 2019; Sarker, 2021]. A schematic representation of this algorithm is 

found in figure 8. 
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Figure 8 ï Schematic representation of the k-nearest neighbor algorithm. Extracted from [Boateng et al., 2020]. 

 

 

2.6.6 K-Means Clustering 
 

In the unsupervised machine learning field, one of the simplest and most popular techniques 

is the k-means clustering algorithm. K-means creates clusters on the dataset, or in other words, 

it creates imaginary points where the data is aggregated by certain similarities. It defines a ñkò 

number of centroids in the dataset, each centroid represents the center of a cluster. Then, every 

data point allocates to the nearest cluster, so similar data points get grouped together and 

patterns emerge. K-means clustering is fast, robust, and easy to implement and interpret the 

results. The disadvantages of this technique are that choosing the most optimal value of ñkò 

might be hard, plus, clustering data with different sizes and density clusters might affect the 

algorithm performance, and also it is sensitive to outliers [Ray, 2019; Sarker, 2021]. Figure 9 

shows the representation of the k-means clustering algorithm. 

 

 

 

 

 

 

Figure 9 ï Schematic representation of the k-means clustering algorithm. Extracted from [Jeffares, 2019]. 
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2.6.7 Reinforcement Learning 
 

As already addressed in some topics above, the reinforcement learning technique includes 

a wide range of algorithms that use the trial-and-error approach to learn from past experiences, 

interacting in this way with the environment and reaching solutions to the problems. A system 

of penalties and rewards guides the actions of the algorithms. Some basic terms that are 

involved in reinforcement learning problems are the environment, which represents the world 

where the agent operates, the reward, which is the feedback given from the environment to the 

agentôs actions, the policy, which is what defines the agentôs action, and the value, which is the 

information on how good or bad certain actions are in a given state and the penalty or reward 

that should be given. Some of the most known algorithms for reinforcement learning are ñQ-

learningò, ñMonte Carlo methodsò, and ñStateïActionïRewardïStateïAction (SARSA)ò 

[Akanksha et al., 2021; Sarker, 2021]. 

 

 

2.6.8 Deep Learning  
 

Deep learning is a sub-field within machine learning that uses an architecture similar to 

artificial neural networks, that try to imitate the process of the human brain on how it thinks 

and learns. It uses several processing layers like the input layer, output layer, and one or more 

hidden layers. Deep learning has some advantages over other machine learning techniques. Is 

considered a universal learning approach since it can be applied to almost all applications. Itôs 

robust and the same deep learning technique can handle a lot of different data types and 

applications. Lack of data is also not a problem, and it shows better performances on larger 

datasets. There are different types of deep learning techniques. The most used are the 

convolutional neural network (CNN), the recurrent neural networks (RNNs), and the long short-

term memory networks (LSTMs), with the first one having the biggest emphasis [Alzubaidi et 

al., 2021; Sarker, 2021]. 

 The CNN is the most employed algorithm in the deep learning field. Its main advantage 

over other algorithms in this line of work is that it identifies important features in the data 

without any manual human intervention. It also makes full use of 2D input data, so it is applied 

in various fields like video and face recognition, speech processing, image processing and 
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classification, and medical image analysis, among others. The CNN is composed of a different 

number of layers, which have different functions, this includes convolution layers, pooling 

layers, activation functions, fully connected layers, and loss functions [Alzubaidi et al., 2021; 

Sarker, 2021]. 
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3 Stress/Anxiety Monitoring System  
 

A literature review was performed to support our work. To make this review, we analyzed 

and detailed recent papers related to our work and published in scientific journals such as the 

Journal of Biomedical Informatics, the Institute of Electrical and Electronics Engineers (IEEE), 

and the Procedia Computer Science journal. 

 

3.1 Related Work Review  
 

[Gjoreski et al., 2017] proposed the development of a method to monitor psychological 

stress in real life, detecting it accurately, continuously, and in an unobtrusively way. First, it 

was studied the problem of signal processing and machine learning for stress detection in a 

laboratory environment, only then, the acquired knowledge was applied to real-life scenarios. 

The laboratory's pipeline for stress detector development goes as shown in figure 10. Stress-

inducing tasks were given to the participants, and also, previously to this, baseline data was 

measured in a relaxed state to record no-stress data. The participants filled out 4 STAI-Y anxiety 

questionnaires that were used for subject-specific labeling of the data (no-stress, low stress, and 

high stress). 

 

 

 

 

 

Figure 10 ï Pipeline for laboratory stress detector development. Extracted from [Gjoreski et al., 2017]. 

 

The raw data was taken using a wrist device. The features utilized for this work were blood 

volume pulse, heart rate, inter-beat interval, electrodermal activity, and skin temperature. The 

authors used a feature selection algorithm to remove correlated and non-informative features. 
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Since several of these features are gathered from the same source, the existence of false 

correlations between them is normal. For the model training step, several algorithms were tested 

- Majority classifier, J48, Naïve Bayes, KNN, SVM, Bagging, Boosting, Random Forest, and 

Ensemble Selection. The evaluation was done using 4 metrics: accuracy, precision, recall, and 

f1 score. For real-life scenarios, the method consists of 3 machine learning components: the 

laboratory stress detector, an activity-recognition classifier, and a context-based stress detector. 

The first component is the process explained above. The second part consists of distinguishing 

physical activities from psychological stress since the psychological arousal provoked by the 2 

is similar. The third component intends to distinguish psychological stress from other activities 

which produce similar psychological arousal, like eating, exercising, weather, etc.  

[Cho et al., 2017] proposed a deep learning model for evaluating psychological stress levels 

from breathing patterns, denominated ñDeepBreathò. Using thermal imaging and a thermal 

gradient flow algorithm, it is possible to detect the temperature difference in an individualôs 

nostrils and, subsequently, track that individualôs breathing pattern. A collection of respiration 

variability spectrogram sequences was constructed based on the data taken from the thermal 

cameras and inputted into a CNN. Due to the small size of the dataset, it had to be subjected to 

a process of data augmentation, which increases the amount of data by creating and 

transforming copies of the already existing data. The proposed CNN architecture of this work 

consists of 2 convolutional layers, 2 pooling layers, and one fully connected layer, just as shown 

in figure 11. The participants were given 2 types of cognitive tasks with different difficulty 

levels, to induce stress. Stress classification was made in a binary classification (no-stress, 

stress) and a multi-class classification (none, low and high-level). The results were then crossed 

with a normalized self-report from the participants, for comparison. The CNN achieved 84.59% 

accuracy with binary classification and 56.52% accuracy with multi-class classification.  

Figure 11 ï CNN architecture consisting of 2 convolutional layers, 2 pooling layers, and one fully connected layer. 

Extracted from [Cho et al., 2019]. 
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[Subhani et al., 2017] proposed a machine learning framework for stress analysis using 

electroencephalogram (EEG) signals. Participants were given an arithmetic task to induce stress 

based on the paradigm of the Montreal imaging stress task, chosen specifically due to its 

reliability to induce stress on the hypothalamic pituitary adrenal axis. The format of the study 

consisted of participants doing the task under mental stress conditions such as time and negative 

comments pressure and under control conditions to simulate non-stress. Furthermore, the task 

conditions presented 4 different difficulty levels, causing there to be 4 different stress levels 

and 4 levels of control. The EEG signals were measured using electrodes and a device. After 

some steps of signal pre-processing, feature extraction, and normalization 3 classifiers were 

used for the training and model testing - logistic regression, support vector machine, and naive 

Bayes classifiers. The stress identification was accomplished in 3 different cases. By detecting 

any of the 4 levels of stress in comparison with only 1 control level (binary classification). By 

detecting any of the 4 levels of stress in comparison to the correspondent level of the control 

(binary classification). And, finally, by detecting every level of stress in comparison to the other 

stress levels (multiclass classification). The metrics used to evaluate the performance were 

accuracy, sensitivity, and specificity. The results proved to be promising with some results 

above 90% accuracy and outperforming other preceding studies.  

[Priya et al., 2020] applied 5 machine learning algorithms to identify and differentiate 5 

different severity levels of anxiety, stress, and depression. Data for this study was collected via 

standard questionnaires used to evaluate the common symptoms of these mental health 

problems. The 5 classifiers used were decision tree, random forest, naive Bayes, support vector 

machine, and k-nearest neighbor. The authors concluded that naive Bayes achieved the best 

accuracy results, but producing imbalance classes, so the best model was considered to be the 

random forest, having in count the remaining metrics of precision, recall, specificity, and f1 

score.  

[Sundaravadivel et al., 2020] proposed a monitoring system for anxiety disorders by 

analyzing physiological signals of emotional features. The system denominated ñi-RISEò 

assesses biosignal features like eye-event, activity-related parameters, heart rate, and ambient 

features like temperature and humidity parameters. The validation of this system was done with 

participantsô video input data and the stress state was detected with a Bayesian network. The 

results showed an accuracy of 90.23% for this system. 
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 These are just a few of many other studies available in the literature, which explore this 

recurrent problem of stress/anxiety identification. Note that these studies can vary on the type 

of collected data, measured physiological parameters, sensors and equipment used, and 

machine learning framework. 

 

3.2 Overall Proposed Pipeline 
 

Along this section, we present our proposed anxiety monitoring system, supported by a 

pipeline that performs a supervised machine learning classification for stress/anxiety 

monitoring using multiple physiological parameters. Figure 12 depicts the system with its 

different steps. 

Briefly, as a first step, we have selected a dataset that embraces the requirements for our 

proposal, such as variables and annotations that represents the subjectôs mental states. After the 

data acquisition, it is necessary to normalize the data, or, in other words, it is necessary to 

process and prepare the data into a format that can be used in the machine learning model. The 

following step is to adapt and implement a machine learning model and input the already 

normalized data. The machine learning model will classify this data and output the results of 

the classification, returning it to a visualizer. 

 

Figure 12 ï Anxiety monitoring system pipeline. 

 

3.3 Data Acquisition 
 

This step proposes a stage for data acquisition from two input sources: first, a real-time 

acquisition source, an Anxiety Device System that intends to use equipment with sensors 

attached to a participant/patient and perform measures of physiological parameters. However, 
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this part of our proposal was not implemented, because of financial and time limitations in this 

project, so obtaining this equipment and the sensors needed was not possible. Secondly, an 

offline data source, a dataset with relevant physiological variables to assess the states of 

stress/anxiety of patients that could be used to test/train our classification models.   

We have a drawback related to annotated datasets that could fill our system requirements, 

due to the lack of them, and the existing ones show some limitations. These datasets are an 

important part of a machine learning train/test task to obtain classification models. 

Nevertheless, a dataset was found suitable for our purposes. This dataset was delivered by the 

authors paper [Birjandtalab et al., 2016] and founded in the large and growing online archive 

called ñPhysioBankò, which stores digital recordings of physiological signals and related data 

for biomedical research community purposes [Goldberger et al., 2000]. The dataset contains 

data from twenty healthy subjects collected using non-invasive wrist-worn biosensors at the 

quality of life laboratory at the University of Texas at Dallas. The physiological variables 

measured consisted of: 

¶ Electrodermal Activity; 

¶ Temperature; 

¶ Heart Rate; 

¶ Arterial oxygen level; 

¶ Accelerometer. 

The last variable was not considered in the present work due to its context and some 

controversy in the literature about not being a viable marker for stress/anxiety detection. For 

the data collection, the authors used a step procedure divided into eight stages, described below: 

1. A relaxation moment; 

2. Walking/jogging exercises to simulate physical stress; 

3. A relaxation moment; 

4. A mini-emotional stress phase; 

5. Math exercises to simulate cognitive stress; 

6. A relaxation moment; 

7. Visualization of a clip of a horror movie to simulate emotional stress; 

8. A relaxation moment. 
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In table 5 there is a more detailed view of the volunteers who participated in the data 

collection including information on their respective age, gender, height in centimeters, and 

weight in kilograms. Figure 13 presents an example of the physiological signals measured from 

subject 1. 

 

 

 

Table 5 ï List of volunteers for variables measurements with their respective information on age, gender (M ï 

Male; F ï Female), height (in centimeters), and weight (in kilograms). 

Subject # Age Gender Height/cm Weight/kg 

1 30 M 177 94 

2 28 M 172 68 

3 28 M 177 91 

4 22 M 167 58 

5 30 M 182 82 

6 30 F 167 58 

7 33 F 157 90 

8 27 M 182 64 

9 25 M 177 68 

10 23 M 180 64 

11 26 M 170 71 

12 32 F 162 53 

13 29 F 167 64 

14 19 F 160 50 

15 23 M 165 64 

16 24 M 180 54 

17 23 M 167 57 

18 23 M 177 64 

19 22 M 167 64 

20 24 F 160 44 
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Figure 13 ï Physiological signals measured from subject 1, respectively electrodermal activity, temperature, 

accelerometer, arterial oxygen level, and heart rate. Extracted from [Birjandtalab et al., 2016]. 

 

3.4 Normalization Step 
 

The dataset is composed of a set of digital files that group physiological signals, divided 

into two recordings per subject. One record contains information on the accelerometer, 

temperature, and EDA signals, and the other contains information on the arterial oxygen level 

(SpO2) and heart rate signals. These recordings are provided in waveform-database format 

(WFDB). In addition, one annotation file per subject is given with information on time location 

and labels of stress transition states.  

To develop a machine learning model, first, we performed a conversion of the WFDB data 

files into comma-separated value files (CSV) is needed, which is possible through the 

PhysioBank website. After that, it was necessary to prepare the data. The CSV files were 

transformed into dataframes for better management. Next, for each dataframe (20 with the 

accelerometer, temperature, and EDA signals and another 20 with SpO2, and heart rate signals) 

unwanted variables were removed, in this case, it was only the accelerometer data. After that, 

an annotation column with the stress state of the subjects was added. Then, a compilation of the 

20 dataframes with temperature, and EDA signals was done and the same for the 20 files with 

the SpO2 and heart HR signals. Finally, there was a need to reshape the data since the sample 

intervals for the two file types are different. The temperature and EDA signals dataframe has a 

sample interval of 0.125 seconds, while the SpO2 and heart rate signal dataframe has a sample 

interval of 1 second. Therefore, to concatenate both data frames into another capable of being 

used in the machine learning model, they should have matching row sizes, which was 

accomplished by downsampling the temperature and EDA signal data frame by a factor of 8. 

The final product of all these operations performed on our data culminates in what can be seen 



35 
 

in figure 14. Since the values of each signal may vary slightly from each other, thus showing a 

bad distribution, a standard scaler function was used to resize the distribution so that the mean 

of the values becomes 0, also the entirety of the data was shuffled before moving into the next 

step (section 5.4) helping prevent overfitting and improve the obtained results. 

All these steps were accomplished using the Python Programming Language [Phyton, 2023] 

and the pandas framework, a powerful, open-source, data analysis and manipulation tool very 

useful for this type of work. 

The script is available for download in github.com/DiogoPL99/Anxiety_ 

Monitoring_System-_A_Preliminary_Approach/tree/main and also available in A ï Python 

Code. 

 

 

Figure 14 ï Processed and compiled physiological signals from 20 subjects, respectively electrodermal activity, 

temperature, accelerometer, arterial oxygen level, and heart rate. 
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3.5 Machine Learning Algorithms  
 

As part of our system, a step was introduced for class prediction given a set of data points, 

in our case, the stress and relaxation moments of a certain patient. For this step, we implement 

a classification model that reads the input physiological signals and classify data as stress and 

relax labels. To implement this classifier, we evaluate a set of machine learning algorithms, 

listed below:  

¶ Logistic regression; 

¶ Decision tree; 

¶ Random forest; 

¶ K-nearest neighbor; 

¶ Naive bayes. 

 

These algorithms were trained and tested using the chosen dataset. However, we established 

a procedure, described in figure 15, that consists of the division of the dataset into 2 sets: 70% 

for training, and 30% for testing. The training set has the purpose of generating the classification 

models, one for each machine learning algorithm and the testing set is used to evaluate the 

modelôs performance allied with a few chosen performance metrics. There are several formats 

of procedures that can be used in this type of work, and this was the one that allowed us to 

obtain the best results. 

 

Figure 15 - Procedure to train/test the generated models. 
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3.6 Output Step 
 

This final step is related to the system output, the idea behind this step is to create a simple, 

but powerful, web-based or, application visualizer to present the classifier results over time. 

This way, it is possible to better analyze the data for either self and autonomous stress/anxiety 

monitoring, or resort to a specialist like psychologists or psychiatrists to help them in their 

functions. Figure 16 shows a simplistic line plot visualization of the classification results for 

the random forest classifier of the first 100 entries. The relax and stress states changes in a spike 

pattern is expected, since a shuffling function was introduced to the used dataset mixing up all 

instances. This usage of this shuffling function is to preventing overfitting and help improve 

the results.   

 

 

Figure 16 ï Line plot visualization of the classification results for the random forest classifier of the first 100 

entries 
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4 Results and Discussion 
 

After using 70% of the data as training and running the other 30% for testing the machine 

learning model several results for each algorithm used were obtained and crossed for 

comparison. Figure 17 shows the general schematic of a binary confusion matrix, which is often 

used to assess machine learning algorithm performances, where true positive (TP) represents 

the number of instances that the algorithm correctly classified that indicates the presence of a 

condition or characteristic (presence of stress), true negative (TN) represents the number of 

instances that the algorithm correctly classified that indicates the absence of a condition or 

characteristic (absence of stress, or relaxed state), false positive (FP) represents the number of 

instances that the algorithm classified wrongfully and that indicates the presence of a condition 

or characteristic, and, lastly, False negatives (FN) represent the number of instances that the 

algorithm classified wrongfully and that indicates the absence of a condition or characteristic. 

These values on the confusion matrix are needed for the calculations of several metrics, some 

of them employed in the present work, as seen below. Tables 6 to 10 display the confusion 

matrices results of each algorithm used. 

 

 

 

 

 

 

 

Figure 17 ï Overall schematic of a binary confusion matrix. 
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 Positive (1) Negative (0) 

Positive (1) 4273 1824 

Negative (0) 2208 3423 

Table 6 ï Binary confusion matrix for the logistic regression classifier results. 

 

 Positive (1) Negative (0) 

Positive (1) 5568 529 

Negative (0) 1287 4344 

Table 7 ï Binary confusion matrix for the decision tree classifier results. 

 

 Positive (1) Negative (0) 

Positive (1) 5714 383 

Negative (0) 495 5136 

Table 8 ï Binary confusion matrix for the random forest classifier results. 

 

 Positive (1) Negative (0) 

Positive (1) 5168 929 

Negative (0) 888 4743 

Table 9 ï Binary confusion matrix for the k-nearest neighbor classifier results. 

 

 Positive (1) Negative (0) 

Positive (1) 4459 1638 

Negative (0) 2462 3169 

Table 10 ï Binary confusion matrix for the naive Bayes classifier results. 
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Table 11 synthesizes the results obtained for each algorithm employing different metrics: 

Accuracy, Precision, Recall, F1-Score, Variable Importance, and Cohen Kappa Score. Each 

metric reveals different information:  

¶ Accuracy - gives the percentage of instances predicted correctly by the model;  

¶ Precision - measures how many instances the model classified correctly when predicting 

a specific label (relax or stress);  

¶ Recall - provides information on how many instances out of all instances with a specific 

label, the model classified correctly;  

¶ F1-Score - consists of the harmonic mean between the precision and recall metrics;  

¶ Variable Importance - The score represents the importance of each feature. A higher 

score means that the specific feature will have a larger effect on the model; 

¶ Cohen Kappa Score - is a reliability measure, that evaluates how much better your 

classifier is performing over another one that guesses the class at random, only 

considering the frequency of each class. It establishes a level of agreement between the 

2 classifiers, itôs value is given in percentage and can be interpreted this way: value < 

20% poor agreement, 21 ï 40% indicates fair agreement, 41 ï 60% indicates moderate 

agreement, 61 ï 80% indicates good agreement and value > 80% indicates almost 

perfect agreement (Grandini et al., 2020). 
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Classifier Classification Accuracy Precision Recall 
F1 

Score 

Cohen 

Kappa Score 

Variable 

Importance 

Logistic 

Regression 

Relax 

66 

66 70 68 

31 N/A 
Stress 65 61 63 

Decision 

Tree 

Relax 

85 

81 91 86 

68 

Temp: 34 

EDA: 26 

SpO2: 18 

HR: 22 
Stress 89 77 83 

Random 

Forest 

Relax 

92 

92 94 93 

84 

Temp: 33 

EDA: 26 

SpO2: 16 

HR: 25 
Stress 93 91 92 

K-Nearest 

Neighbor 

Relax 

85 

85 85 85 

69 N/A 

Stress 84 84 84 

 

Naive Bayes 

 

Relax 

65 

64 73 69 
30 N/A 

Stress 66 56 61 

Table 11 ï Metric results for all 5 classifiers used. All values are given in percentage. Notes: Temp ï Temperature; 

EDA - Electrodermal Activity ; SpO2 ï Arterial Oxygen Level; HR ï Heart Rate. 

 

Out of all 5 algorithms used in the present work, the one that showed the best results is the 

random forest with an overall accuracy of 92%, additionally also had the best values for 

precision, recall, and f1 score both on relax and stress classification, and a Cohen kappa score 

of 84% showing good reliability on the results. The decision tree and k-nearest neighbor 

algorithms followed with the best results having 85% both accuracies. Naive Bayes and logistic 

regression algorithms revealed poor results with accuracies under 70% and relatively low 

precision, recall, and f1 score metrics, also Cohen kappa score evaluates these results as having 

poor reliability. In the decision tree and random forest, we can also describe the variable 

importance for the model performance, which shows the temperature with the biggest weight 

of importance followed by the electrodermal activity in second, followed by the heart rate in 

third, and the variable with the least importance showed to be the arterial O2 level. However, it 

is important to note that these values do not have extreme variations. These results demonstrate 

a good efficiency in the task of distinguishing the relaxed state from the stressed state, using 

these 4 specific physiological parameters, in healthy individuals. 
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The standard procedure is to use 70-80% of the data for training and 20-30% as testing. 

After a trial-and-error approach, the 70-30% setup presented the best results with an increase 

of 0.01 accuracy in all five algorithms. In the classifierôs parameters, for the Decision Tree and 

Random Forest algorithms using a max depth (maximum depth of the tree) parameter value of 

10 proved to optimize our results, since setting this value too high might cause over-fitting, and 

setting it too low may increase errors. Also, in the K-Nearest Neighbor algorithm, the k value, 

which represents the number of neighbors, was adjusted to 80, apparently showing the best 

outcome. 

The dataset authors in [Cogan et al., 2014] and [Birjandtalab et al., 2016] proposed a 

classification method using a supervised neural network system and an unsupervised machine 

learning clustering method called gaussian mixture model (GMM), respectively. Unlike the 

present work, the classification task was multi-modal, which means the authors classified the 

data into 4 different categories - relaxation; physical stress; emotional stress, and cognitive 

stress. The neural network employed in the first paper consisted of 1 input layer, a hidden layer 

with 4 neurons, and 4 outputs, one for each class. The clustering method in the second paper 

identifies the mental health states without previous knowledge, or in other words, without a 

training set. The annotation labels are only used for performance evaluation purposes. Table 12 

and 13 describes the results for these algorithms, presenting a confusion matrix and accuracy, 

precision, specification, and sensitivity metrics. Table 14 displays a brief summary of several 

other related studies found on the literature, some of which are already described in the literature 

review section.   

 

 

 

 

 

 

 

 

 

Table 12 ï Neural network confusion matrix and metrics results for multi-modal classification task of neurological 

status. All values are given in percentage. Extracted from [Birjandtalab et al., 2016]. 

 Neural Network 

Class Relaxation Physical Emotional Cognitive 

Relaxation 98.7 0 0.8 0.9 

Physical 0 99.1 0.8 0 

Emotional  1 0.9 98.4 0 

Cognitive 0.3 0 0 99.1 

Accuracy 98.8 

Sensitivity 98.7 99.1 98.4 99.1 

Specificity 98.9 98.7 99 98.7 

Precision 99.5 99.1 96.2 99.1 
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Table 13 ï Gaussian mixture models confusion matrix and metrics results for multi-modal classification task of 

neurological status. All values are given in percentage. Extracted from [Birjandtalab et al.,  2016]. 

 

 

 

Table 14 - Brief summary of several related studies. *Datasetôs authorsô work. 

 

 Gaussian mixture model 

Class Relaxation Physical Emotional Cognitive 

Relaxation 94.2 0.1 5.4 0.3 

Physical 1.8 90.9 3.8 3.5 

Emotional  13.4 5 65.8 15.8 

Cognitive 1 1.4 10.2 87.3 

Accuracy 84.6 

Sensitivity 85.4 93.3 77.2 86.4 

Specificity 93.6 91.1 70.2 86.4 

Precision 94.2 90.8 65.8 87.4 

Type of classification Algorithm Accuracy Reference 
 

Multi-Class 

 

GMM  84.6% * [Birjandtalab et al., 2016]. 

 

Multi-Class 

 

CNN 98.8% * [Birjandtalab et al., 2016]. 

 

Binary 

 

CNN 84.59% [Cho et al., 2019] 

 

Multi-Class 

 

CNN 56.52% [Cho et al., 2019] 

 

Binary 

 

Decision Tree 95% [Gjoreski et al., 2017] 

 

Multi-Class 

 

Naive Bayes 82.2% [Priya et al., 2020] 

 

Binary 

 

Linear discriminant 

analysis 
93.12% [Schmidt et al., 2018] 

 

Multi-Class 

 

Adaptive Boosting 80.34% [Schmidt et al., 2018] 

 

Binary 

 

Bayesian network 90.23% [Sundaravadivel et al., 2020)] 
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From these results, we can infer that the neural network achieved almost perfect results with 

98.8% accuracy and values above 98% on sensitivity, specificity, and precision, while the 

GMM algorithm provided a little poorer result, but still good with accuracy levels of 84.6% and 

decent sensitivity, specificity, and precision values. When comparing our random forest 

classifier, the best classifier out of the 5 algorithms used, with these scores we can assume its 

performance behaved better than GMMôs but was still worse than the neural network system. 

Keeping in mind that our algorithms are doing binary classification (relax and stress) and these 

papers are doing multi-modal classification (Relaxed, Physical stress, emotional stress, and 

cognitive stress). Our 92% also donôt stand back when compared with other binary 

classification results from the literature (presented in table 14).  

In summary, by the results presented the anxiety monitoring system proved to be quite 

effective, at least in this preliminary stage of the project. It was able to correctly distinguish 

with 92% the relaxed state from the stressed state, having also other metrics backing up, 

reinforcing, and giving more credibility to these results. 
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5 Conclusion 
 

Mental health issues are a serious and very impacting matter with direct negative 

consequences on people. It is estimated that 1 in every 10 individuals suffers from some kind 

of mental illness. It is also unanimous in the literature that anxiety disorder is the most common 

type of mental health disorder. Although there is still much space in this field to learn and 

improve, many correlations between our bodyôs system and stress/anxiety are already 

established and well described in the literature.  

The present dissertation focused on the respiratory system and the parameters that are useful 

in the fight for stress/anxiety classification. There were essentially 3 major objectives. Delineate 

what is known about our respiratory system that can correlate with anxiety serving, potentially, 

as markers to classify, quantify, or measure the anxiety state. Describe some mechanisms and 

equipment on how these parameters can be measured to acquire the data. And lastly, delineate 

a functional pipeline for the development of an anxiety monitoring system and build a 

supervised machine learning classification model for stress/anxiety detection. 

As mentioned, there is good evidence of interactions between anxiety and the respiratory 

system more concretely in parameters such as the respiratory frequency, presence of sighing, 

presence of hyperventilation, end-tidal CO2 levels, %VC, and respiratory muscles activity, 

emphasizing the diaphragm and the external intercostal muscles. Furthermore, technology to 

measure all these parameters is increasing and nowadays there are various innovative options 

as table 3 and 4 highlight. The same applies to algorithms for classification tasks as sections 

2.5 and 2.6 sought to explain. In the present work, we decided to utilize 5 of the most common 

algorithms capable of performing the classification task proposed namely, logistic regression, 

decision tree, random forest, k-nearest neighbor, and naive Bayes algorithms. 

Developed using a dataset available in a database called ñPhysionetò, the present work is to 

build a classification model for the detection of stress. Data parameters of electrodermal 

activity, temperature, arterial oxygen levels, and heart rate were taken from 20 subjects and 

used to train and test the supervised machine classifier algorithms with a distribution of 70-

30%, respectively. Out of the 5 classifiers used the one achieving the best results was the 

random forest algorithm with an overall accuracy of 92%, which can be considered a pretty 
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good score. Precision, recall, and f1-score metrics were above 90% for both relax and stress 

classes and a Cohen kappa score of 84%, showing good reliability in these results. Another 

interesting piece of information is the fact that the temperature parameter had the biggest weight 

in the classification, followed by the electrodermal activity, heart rate, and, with the least 

weight, the arterial oxygen level. The model was successfully able to classify stress in 

individuals using these 4 sets of parameters. 

This dissertation reinforces the work carried out by [Birjandtalab et al., 2016] and validates 

the dataset built by the authors for studies related to stress/anxiety detection. 

The anxiety monitoring system project shown above was validated, published, and 

presented at the second edition of the "International Conference on Optimization, Learning 

Algorithms and Applications", under the title, Anxiety Monitoring System: A Preliminary 

Approach , [Luís et al, 2022]. 

In face of all the work presented above, we can determine that all of our objectives 

established were successfully fulfilled  and the work developed shows good promising prospects 

for future work.  

Although much work has already been conducted in this field and in the present work, we 

have a perfect notion that much more has yet to be theorized, conducted, and validated to 

continue working towards a world where mental health issues are no longer a problem.



47 
 

 

6 Future Work 
 

For the future, in order to improve the proposed work, some paths may be taken to overcome 

some limitations and negative observations. One of them is making our own measurements 

instead of using an available dataset, giving us more control and authenticity over the data. 

Also, build a machine learning model using only parameters from the respiratory system that 

are relevant for stress/anxiety detection. Some examples of potential parameters are the 

respiratory frequency, end-tidal CO2 levels, presence of hyperventilation, presence of sighing, 

%VC, rib cage diameter, and electromyography of respiratory muscles of interest such as the 

diaphragm and external intercostal muscles. It would be interesting and enriching to make a 

multi-modal classification, focusing on different types of stress/anxiety, like physical, 

cognitive, and emotional stress, and/or a multi-classification model distinguishing different 

layers of stress intensity. Refining the model, testing different and more complex algorithms, 

and changing its parameters are also always worth considering in order to improve the results. 

Our ultimate applicability in this work is the use of this technology for self and autonomous 

stress/anxiety detection purposes and/or partnering it with specialists that deal with these 

problems on a day-to-day basis like psychologists or psychiatrists.
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A - Python Code 
 

import  pandas  as  pd 

import  numpy as  np 

import  matplotlib.pyplot  as  plt  

import  seaborn  as  sns  

 

from  sklearn.model_selection  import  train_test_split  

from  sklearn.preprocessing  import  StandardScaler   

from  sklearn  import  metrics  

from  sklearn.metrics  import  accuracy_score  

from  sklearn.metrics  import  classification_report  

from  sklearn.metrics  import  confusion_matrix  

from  sklearn.linear_model  import  LogisticRegression  

from  sklearn.tree  import  DecisionTreeClassifier  

from  sklearn.ensemble  import  RandomForestClassifier  

from  sklearn.n eighbors  import  KNeighborsClassifier  

from  sklearn.naive_bayes  import  GaussianNB  

 

from  sklearn.externals  import  joblib  

 

 

 

Subjects data preparation  
 

df1 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 01EDA.csv')  

df1 = df1 . drop(0)  

df1 = df1 . drop("'ax'", 1)  

df1 = df1 . drop("'ay'", 1)  

df1 = df1 . drop("'az'", 1)  

df1 = df1 . apply(pd . to_numeric)  

df1['annotation'] = 0 

df1 . loc[df1["'sample interval'"] <= 2400, ['annotation']] = '0'  

df1 . loc[df1["'sample interval'"] . loc[2403:5027], ['annotation']] = '1'  

df1 . loc[df1["'sample interval'"] . loc[5028:7428], ['annotation']] = '0'  

df1 . loc[df1["'sample interval'"] . loc[7429:7749], ['annotation']] = '1'  

df1 . loc[df1["'sample interval'"] . loc[7750:10662], ['annotation']] = '1'  

df1 . loc[df1["'sample interval'"] . loc[10663:13063], ['annotation']] = '0'  

df1 . loc[df1["'sample interval'"] . loc[13064:15944], ['annotation']] = '1'  

df1 . loc[df1["'sample interval'"] >= 15943, ['annotation']] = '0'  

 

df2 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 02EDA.csv')  

df2 = df2 . drop(0)  

df2 = df2 . drop("'ax'", 1)  

df2 = df2 . drop("'ay'", 1)  

df2 = df2 . drop("'az'", 1)  

df2 = df2 . apply(pd . to_numeric)  

df2['annotation'] = 0 

df2 . loc[df 2["'sample interval'"] <= 2400, ['annotation']] = '0'  

df2 . loc[df2["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  
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df2 . loc[df2["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df2 . loc[df2["'sample interval'"] . loc[7421:7741], ['annotation']] = '1'  

df2 . loc[df2["'sample interval'"] . loc[7742:10582], ['annotation']] = '1'  

df2 . loc[df2["'sample interval'"] . loc[10583:12983], ['annotation']] = '0'  

df2 . loc[df2["'sample interval'"] . loc[12984:15928], ['annotation']] = '1'  

df2 . loc[df2["'sample interval'"] >= 15927, ['annotation']] = '0'  

 

df3 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 03EDA.csv')  

df3 = df3 . drop(0)  

df3 = df3 . drop("'ax'", 1)  

df3 = df3 . drop("'ay'", 1)  

df3 = df3 . drop("'az'", 1)  

df3 = df3 . apply(pd . to_numeric)  

df3['annotation'] = 0 

df3 . loc[df3["'sample interval'"] <= 2400, ['annotation']] = '0'  

df3 . loc[df3["'sample interval'"] . loc[2403:4995], ['annotation']] = '1'  

df3 . loc[df3["'sample interval'"] . loc[4996:7396], ['annotation']] = '0'  

df3 . loc[df3["'sample interval'"] . loc[7397:7717], ['annotation']] = '1'  

df3 . loc[df3["'sample interval'"] . loc[7718:10550], ['annotation']] = '1'  

df3 . loc[df3["'sample interval'"] . loc[10551:12951], ['annotation']] = '0'  

df 3. loc[df3["'sample interval'"] . loc[12952:15856], ['annotation']] = '1'  

df3 . loc[df3["'sample interval'"] >= 15855, ['annotation']] = '0'  

 

df4 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 04EDA.csv')  

df4 = df4 . drop(0)  

df4 = df4 . drop("'ax'", 1)  

df4 = df4 . drop("'ay'", 1)  

df4 = df4 . drop("'az'", 1)  

df4 = df4 . apply(pd . to_numeric)  

df4['annotation'] = 0 

df4 . loc[df4["'sample interval'"] <= 2400, ['annotation']] = '0'  

df4 . loc[df4["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  

df4 . loc[df4["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df4 . loc[df4["'sample interval'"] . loc[7421:7741], ['annotation']] = '1'  

df4 . loc[df4["'sample interval'"] . loc[7742:10582], ['annotation']] = '1'  

df4 . loc[df4["'sample interval'"] . loc[10583:12975], ['annotation']] = '0'  

df4 . loc[df4["'sample interval'"] . loc[12976:15848], ['annotation']] = '1'  

df4 . loc[df4["'sample interval'"] >= 15847, ['annotation']] = '0'  

 

df5 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 05EDA.csv')  

df5 = df5 . drop(0)  

df5 = df5 . drop("'ax'", 1)  

df5 = df5 . drop("'ay'", 1)  

df5 = df5 . drop("'az'", 1)  

df5 = df5 . apply(pd . to_numeric)  

df5['annotation'] = 0 

df5 . loc[df5["'sample interval'"] <= 2400, ['annotation']] = '0'  

df5 . loc[df5["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df5 . loc[df5["'sample interval'"] . loc[5012:7412], ['annotation']] = '0'  

df5 . loc[df5["'sample interval'"] . loc[7413:7733], ['ann otation']] = '1'  

df5 . loc[df5["'sample interval'"] . loc[7734:10566], ['annotation']] = '1'  

df5 . loc[df5["'sample interval'"] . loc[10567:12967], ['annotation']] = '0'  

df5 . loc[df5["'sample interval'"] . loc[12968:15848], ['annotation']] = '1'  
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df5 . loc[df5["'sample interval'"] >= 15847, ['annotation']] = '0'  

 

df6 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 06EDA.csv')  

df6 = df6 . drop(0)  

df6 = df6 . drop("'ax'", 1)  

df6 = df6 . drop("'ay'", 1)  

df6 = df6 . drop("'az'", 1)  

df6 = df6 . apply(pd . to_numeric)  

df6['annotation'] = 0 

df6 . loc[df6["'sample interval'"] <= 2400, ['annotation']] = '0'  

df6 . loc[df6["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df6 . loc[df6["'sample interval'"] . loc[5012:7412], ['a nnotation']] = '0'  

df6 . loc[df6["'sample interval'"] . loc[7413:7733], ['annotation']] = '1'  

df6 . loc[df6["'sample interval'"] . loc[7734:10582], ['annotation']] = '1'  

df6 . loc[df6["'sample interval'"] . loc[10583:12967], ['annotation']] = '0'  

df6 . loc[df6["'sample interval'"] . loc[12968:15840], ['annotation']] = '1'  

df6 . loc[df6["'sample interval'"] >= 15839, ['annotation']] = '0'  

 

df7 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 07EDA.csv')  

df7 = df7 . drop(0)  

df7 = df7 . drop("'ax'", 1)  

df7 = df7 . drop("'ay'", 1)  

df7 = df7 . drop("'az'", 1)  

df7 = df7 . apply(pd . to_numeric)  

df7['annotation'] = 0 

df7 . loc[df7["'sample interval'"] <= 2400, ['annotation']] = '0'  

df7 . loc[df7["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df7 . loc[df7["'sample interval'"] . loc[5012:7412], ['annotation']] = '0'  

df7 . loc[df7["'sample interval'"] . loc[7413:7733], ['annotation']] = '1'  

df7 . loc[df7["'sample interval'"] . loc[7734:10502], ['annotation']] = '1'  

df7 . loc[df7["'sample interval'"] . loc[10503:12903], ['annotation']] = '0'  

df7 . loc[df7["'sample interval'"] . loc[12904:15776], ['annotation']] = '1'  

df7 . loc[df7["'sample interval'"] >= 15775, ['annotation']] = '0'  

 

df8 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 08EDA.csv')  

df8 = df8 . drop(0)  

df8 = df8 . drop("'ax'", 1)  

df8 = df8 . drop("'ay'", 1)  

df8 = df8 . drop("'az'", 1)  

df8 = df8 . apply(pd . to_numeric)  

df8['annotation'] = 0 

df8 . loc[df8["'sample interval'"] <= 2400, ['annotation']] = '0'  

df8 . loc[df8["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  

df8 . loc[df8["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df8 . loc[df8["'sa mple interval'"] . loc[7421:7741], ['annotation']] = '1'  

df8 . loc[df8["'sample interval'"] . loc[7742:10574], ['annotation']] = '1'  

df8 . loc[df8["'sample interval'"] . loc[10575:12975], ['annotation']] = '0'  

df8 . loc[df8["'sample interval'"] . loc[12976:15856], ['annotation']] = '1'  

df8 . loc[df8["'sample interval'"] >= 15855, ['annotation']] = '0'  

 

df9 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 09EDA.csv')  

df9 = df9 . drop(0)  
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df9 = df9 . drop("'ax'", 1)  

df9 = df9 . drop("'ay'", 1)  

df9 = df9 . drop("'az'", 1)  

df9 = df9 . apply(pd . to_numeric)  

df9['annotation'] = 0 

df9 . loc[df9["'sample interval'"] <= 2400, ['annotation']] = '0'  

df9 . loc[df9["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  

df9 . loc[df9["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df9 . loc[df9["'sample interval'"] . loc[7421:7741], ['annotation']] = '1'  

df9 . loc[df9["'sample interval'"] . loc[7742:10574], ['annotation']] = '1'  

df9 . loc[df9["'sample interval'"] . loc[10575:12975], ['annotation']] = '0'  

df9 . loc[df9["'sample interval'"] . loc[12976:15848], ['annotation']] = '1'  

df9 . loc[df9["'sample interval'"] >= 15847, ['annotation']] = '0'  

 

df10 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Tra balho \ Neurological_Status \ 10EDA.csv')  

df10 = df10 . drop(0)  

df10 = df10 . drop("'ax'", 1)  

df10 = df10 . drop("'ay'", 1)  

df10 = df10 . drop("'az'", 1)  

df10 = df10 . apply(pd . to_numeric)  

df10['annotation'] = 0 

df10 . loc[df10["'sample interval'"] <= 2400, ['annotation']] = '0'  

df10 . loc[df10["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df10 . loc[df10["'sample interval'"] . loc[5012:7412], ['annotation']] = '0'  

df10 . loc[df10["'sample interval'"] . loc[7413:7733] , ['annotation']] = '1'  

df10 . loc[df10["'sample interval'"] . loc[7734:10574], ['annotation']] = '1'  

df10 . loc[df10["'sample interval'"] . loc[10575:12975], ['annotation']] = '0'  

df10 . loc[df10["'sample interval'"] . loc[12976:15840], ['annotation']] = '1'  

df10 . loc[df10["'sample interval'"] >= 15839, ['annotation']] = '0'  

 

df11 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 11EDA.csv')  

df11 = df11 . drop(0)  

df11 = df11 . drop("'ax'", 1)  

df11 = df11 . drop("'ay'", 1)  

df11 = df11 . drop("'az'", 1)  

df11 = df11 . apply(pd . to_numeric)  

df11['annotation'] = 0 

df11 . loc[df11["'sample interval'"] <= 2400, ['annotation']] = '0'  

df11 . loc[df11["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  

df11 . loc[df11["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df11 . loc[df11["'sample interval'"] . loc[7421:7741], ['annotation']] = '1'  

df11 . loc[df11["'sample interval'"] . loc[7742:10582], ['annotation']] = '1 '  

df11 . loc[df11["'sample interval'"] . loc[10583:12983], ['annotation']] = '0'  

df11 . loc[df11["'sample interval'"] . loc[12984:17864], ['annotation']] = '1'  

df11 . loc[df11["'sample interval'"] >= 17863, ['annotation']] = '0'  

 

df12 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 12EDA.csv')  

df12 = df12 . drop(0)  

df12 = df12 . drop("'ax'", 1)  

df12 = df12 . drop("'ay'", 1)  

df12 = df12 . drop("'az'", 1)  

df12 = df12 . apply(pd . to_numeric)  

df12['annotation'] = 0 
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df12 . loc[df12["'sample interval'"] <= 2384, ['annotation']] = '0'  

df12 . loc[df12["'sample interval'"] . loc[2387:4995], ['annotation']] = '1'  

df12 . loc[df12["'sample interval'"] . loc[4996:7404], ['annotation']] = '0'  

df12 . loc[df12["'sample interval'"] . loc[7405:7725] , ['annotation']] = '1'  

df12 . loc[df12["'sample interval'"] . loc[7726:10558], ['annotation']] = '1'  

df12 . loc[df12["'sample interval'"] . loc[10559:12959], ['annotation']] = '0'  

df12 . loc[df12["'sample interval'"] . loc[12960:15832], ['annotation']] = '1'  

df12 . loc [df12["'sample interval'"] >= 15831, ['annotation']] = '0'  

 

df13 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 13EDA.csv')  

df13 = df13 . drop(0)  

df13 = df13 . drop("'ax'", 1)  

df13 = df13 . drop("'ay'", 1)  

df13 = df13 . drop("'az'", 1)  

df13 = df13 . apply(pd . to_numeric)  

df13['annotation'] = 0 

df13 . loc[df13["'sample interval'"] <= 2400, ['annotation']] = '0'  

df13 . loc[df13["'sample interval'"] . loc[2403:5019], ['annotation']] = '1'  

df13 . loc[df13["'sample interval'"] . loc[5020:7420], ['annotation']] = '0'  

df13 . loc[df13["'sample interval'"] . loc[7421:7741], ['annotation']] = '1'  

df13 . loc[df13["'sample interval'"] . loc[7742:10574], ['annotation']] = '1'  

df13 . loc[df13["'sample interval'"] . loc[10575:12975], ['annotation']] = '0'  

df13 . loc[df13["'sample interval'"] . loc[12976:15848], ['annotation']] = '1'  

df13 . loc[df13["'sample interval'"] >= 15847, ['annotation']] = '0'  

 

df14 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 14EDA.csv')  

df14 = df14 . drop(0)  

df14 = df14 . drop("'ax'", 1)  

df14 = df14 . drop("'ay'", 1)  

df14 = df14 . drop("'az'", 1)  

df14 = df14 . apply(pd . to_numeric)  

df14['annotation'] = 0 

df14 . loc[df14["'sample interval'"] <= 2400, ['annotation']] = '0'  

df14 . loc[df14["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df14 . loc[df14["'sample interval'"] . loc[5012:7412], ['annotation']] = '0'  

df14 . loc[df14["'sample interval'"] . loc[7413:7733], ['annotation']] = '1'  

df14 . loc[df14["'sample interval'"] . loc[773 4:10566], ['annotation']] = '1'  

df14 . loc[df14["'sample interval'"] . loc[10567:12967], ['annotation']] = '0'  

df14 . loc[df14["'sample interval'"] . loc[12968:15832], ['annotation']] = '1'  

df14 . loc[df14["'sample interval'"] >= 15831, ['annotation']] = '0'  

 

df15 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 15EDA.csv')  

df15 = df15 . drop(0)  

df15 = df15 . drop("'ax'", 1)  

df15 = df15 . drop("'ay'", 1)  

df15 = df15 . drop("'az'", 1)  

df15 = df15 . apply(pd . to_numeric)  

df15['annotation'] = 0 

df15 . loc[df15["'sample interval'"] <= 2400, ['annotation']] = '0'  

df15 . loc[df15["'sample interval'"] . loc[2403:4995], ['annotation']] = '1'  

df15 . loc[df15["'sample interval'"] . loc[4996:7396], ['annotation']] = '0'  

df15 . loc[df15["'sample interval'"] . loc[7397:7717], ['annotation']] = '1'  

df15 . loc[df15["'sample interval'"] . loc[7718:10550], ['annotation']] = '1'  
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df15 . loc[df15["'sample interval'"] . loc[10551:12951], ['annotation']] = '0'  

df15 . loc[df15["'sample interval'"] . loc[12952:15792], ['annotation']] = '1'  

df15 . loc[df15["'sample interval'"] >= 15791, ['annotation']] = '0'  

 

df16 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 16EDA.csv')  

df16 = df16 . drop(0)  

df16 = df16 . drop("'ax'", 1)  

df16 = df16 . drop("'ay'", 1)  

df16 = df16 . drop("'az'", 1)  

df16 = df16 . apply(pd . to_numeric)  

df16['annotation'] = 0 

df16 . loc[df16["'sample interval'"] <= 2400, ['annotation']] = '0'  

df16 . loc[ df16["'sample interval'"] . loc[2403:5011], ['annotation']] = '1'  

df16 . loc[df16["'sample interval'"] . loc[5012:7412], ['annotation']] = '0'  

df16 . loc[df16["'sample interval'"] . loc[7413:7733], ['annotation']] = '1'  

df16 . loc[df16["'sample interval'"] . loc[7734:10 566], ['annotation']] = '1'  

df16 . loc[df16["'sample interval'"] . loc[10567:12967], ['annotation']] = '0'  

df16 . loc[df16["'sample interval'"] . loc[12968:15840], ['annotation']] = '1'  

df16 . loc[df16["'sample interval'"] >= 15839, ['annotation']] = '0'  

 

df17 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 17EDA.csv')  

df17 = df17 . drop(0)  

df17 = df17 . drop("'ax'", 1)  

df17 = df17 . drop("'ay'", 1)  

df17 = df17 . drop("'az'", 1)  

df17 = df17 . apply(pd . to_numeric)  

df17['annotation'] = 0 

df17 . loc[df17["'sample interval'"] <= 2424, ['annotation']] = '0'  

df17 . loc[df17["'sample interval'"] . loc[2427:5035], ['annotation']] = '1'  

df17 . loc[df17["'sample interval'"] . loc[5036:7436], ['annotation']] = '0'  

df17 . loc[df17["'sample interval'"] . loc[7437:7757], ['annotation']] = '1'  

df17 . loc[df17["'sample interval'"] . loc[7758:10606], ['annotation']] = '1'  

df17 . loc[df17["'sample interval'"] . loc[10607:12999], ['annotation']] = '0'  

df17 . loc[ df17["'sample interval'"] . loc[13000:15872], ['annotation']] = '1'  

df17 . loc[df17["'sample interval'"] >= 15871, ['annotation']] = '0'  

 

df18 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 18EDA.csv')  

df18 = df18 . drop(0)  

df18 = df18 . drop("'ax'", 1)  

df18 = df18 . drop("'ay'", 1)  

df18 = df18 . drop("'az'", 1)  

df18 = df18 . apply(pd . to_numeric)  

df18['annotation'] = 0 

df18 . loc[df18["'sample interval'"] <= 2400, ['annotation']] = '0'  

df18 . loc[df18["'sample interval'"] . loc[2403:5027], ['annotation']] = '1'  

df18 . loc[df18["'sample interval'"] . loc[5028:7428], ['annotation']] = '0'  

df18 . loc[df18["'sample interval'"] . loc[7429:7749], ['annotation']] = '1'  

df18 . loc[df18["'sample interval'"] . loc[7750:10582], ['annotation']] = '1'  

df18 . loc[df18["'sample interval'"] . loc[10583:12983], ['annotation']] = '0'  

df18 . loc[df18["'sample interval'"] . loc[12984:15856], ['annotation']] = '1'  

df18 . loc[df18["'sample interval'"] >= 15855, ['annotation']] = '0'  
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df19 = pd . read_csv(r'C: \ Users \ Uti lizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 19EDA.csv')  

df19 = df19 . drop(0)  

df19 = df19 . drop("'ax'", 1)  

df19 = df19 . drop("'ay'", 1)  

df19 = df19 . drop("'az'", 1)  

df19 = df19 . apply(pd . to_numeric)  

df19['annotation'] = 0 

df19 . loc[ df19["'sample interval'"] <= 2400, ['annotation']] = '0'  

df19 . loc[df19["'sample interval'"] . loc[2403:4995], ['annotation']] = '1'  

df19 . loc[df19["'sample interval'"] . loc[4996:7396], ['annotation']] = '0'  

df19 . loc[df19["'sample interval'"] . loc[7397:7717], [' annotation']] = '1'  

df19 . loc[df19["'sample interval'"] . loc[7718:10550], ['annotation']] = '1'  

df19 . loc[df19["'sample interval'"] . loc[10551:12951], ['annotation']] = '0'  

df19 . loc[df19["'sample interval'"] . loc[12952:15824], ['annotation']] = '1'  

df19 . loc[df19["'sample interval'"] >= 15823, ['annotation']] = '0'  

 

df20 = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 20EDA.csv')  

df20 = df20 . drop(0)  

df20 = df20 . drop("'ax'", 1)  

df20 = df20 . drop("'ay'", 1)  

df20 = df20 . drop("'az'", 1)  

df20 = df20 . apply(pd . to_numeric)  

df20['annotation'] = 0 

df20 . loc[df20["'sample interval'"] <= 2384, ['annotation']] = '0'  

df20 . loc[df20["'sample interval'"] . loc[2387:5003], ['annotation']] = '1'  

df20 . loc[df20["'sample interval'"] . loc[5004:7396], ['annotation']] = '0'  

df20 . loc[df20["'sample interval'"] . loc[7397:7717], ['annotation']] = '1'  

df20 . loc[df20["'sample interval'"] . loc[7718:10558], ['annotation']] = '1 '  

df20 . loc[df20["'sample interval'"] . loc[10559:12959], ['annotation']] = '0'  

df20 . loc[df20["'sample interval'"] . loc[12960:17768], ['annotation']] = '1'  

df20 . loc[df20["'sample interval'"] >= 17767, ['annotation']] = '0'  

 

df1a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 01SpO2.csv')  

df1a = df1a . drop(0)  

df1a = df1a . apply(pd . to_numeric)  

df1a['annotation'] = 0 

df1a . loc[df1a["'sample interval'"] <= 299, ['annotation']] = '0'  

df1a . loc[df1a["'sample interval'"] . loc[300:628], ['annotation']] = '1'  

df1a . loc[df1a["'sample interval'"] . loc[629:928], ['annotation']] = '0'  

df1a . loc[df1a["'sample interval'"] . loc[929:968], ['annotation']] = '1'  

df1a . loc[df1a["'sample interval'"] . loc[969:1332], ['annotation']] = '1'  

df1a . loc[df1a["'sample interval'"] . loc[1333:1632], ['annotation']] = '0'  

df1a . loc[df1a["'sample interval'"] . loc[1633:1994], ['annotation']] = '1'  

df1a . loc[df1a["'sample interval'"] >= 1993, ['annotation']] = '0'  

 

df2a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 02SpO2.csv')  

df2a = df2a . drop(0)  

df2a = df2a . apply(pd . to_numeric)  

df2a['annotation'] = 0 

df2a . loc[df2a["'sample interval'"] <= 299, ['annotation']] = '0'  

df2a . loc[df2a["'sample interval'"] . loc[3 00:627], ['annotation']] = '1'  

df2a . loc[df2a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  
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df2a . loc[df2a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df2a . loc[df2a["'sample interval'"] . loc[968:1322], ['annotation']] = '1'  

df2a . loc[df2a["'sample interval'"] . loc[1323:1622], ['annotation']] = '0'  

df2a . loc[df2a["'sample interval'"] . loc[1623:1992], ['annotation']] = '1'  

df2a . loc[df2a["'sample interval'"] >= 1991, ['annotation']] = '0'  

 

df3a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 03SpO2.csv')  

df3a = df3a . drop(0)  

df3a = df3a . apply(pd . to_numeric)  

df3a['annotation'] = 0 

df3a . loc[df3a["'sample interval'"] <= 299, ['annotation']] = '0'  

df3a . loc[df3a["'s ample interval'"] . loc[300:624], ['annotation']] = '1'  

df3a . loc[df3a["'sample interval'"] . loc[625:924], ['annotation']] = '0'  

df3a . loc[df3a["'sample interval'"] . loc[925:964], ['annotation']] = '1'  

df3a . loc[df3a["'sample interval'"] . loc[965:1318], ['annotation']] = '1'  

df3a . loc[df3a["'sample interval'"] . loc[1319:1618], ['annotation']] = '0'  

df3a . loc[df3a["'sample interval'"] . loc[1619:1983], ['annotation']] = '1'  

df3a . loc[df3a["'sample interval'"] >= 1982, ['annotation']] = '0'  

 

df4a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 04SpO2.csv')  

df4a = df4a . drop(0)  

df4a = df4a . apply(pd . to_numeric)  

df4a['annotation'] = 0 

df4a . loc[df4a["'sample interval'"] <= 299, ['annotation']] = '0'  

df4a . loc[df4a["'s ample interval'"] . loc[300:627], ['annotation']] = '1'  

df4a . loc[df4a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  

df4a . loc[df4a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df4a . loc[df4a["'sample interval'"] . loc[968:1322], ['annotation']] = '1'  

df4a . loc[df4a["'sample interval'"] . loc[1323:1621], ['annotation']] = '0'  

df4a . loc[df4a["'sample interval'"] . loc[1622:1982], ['annotation']] = '1'  

df4a . loc[df4a["'sample interval'"] >= 1981, ['annotation']] = '0'  

 

df5a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 05SpO2.csv')  

df5a = df5a . drop(0)  

df5a = df5a . apply(pd . to_numeric)  

df5a['annotation'] = 0 

df5a . loc[df5a["'sample interval'"] <= 299, ['annotation']] = '0'  

df5a . loc[df5a["'s ample interval'"] . loc[300:626], ['annotation']] = '1'  

df5a . loc[df5a["'sample interval'"] . loc[627:926], ['annotation']] = '0'  

df5a . loc[df5a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df5a . loc[df5a["'sample interval'"] . loc[967:1320], ['annotation']] = '1'  

df5a . loc[df5a["'sample interval'"] . loc[1321:1620], ['annotation']] = '0'  

df5a . loc[df5a["'sample interval'"] . loc[1621:1982], ['annotation']] = '1'  

df5a . loc[df5a["'sample interval'"] >= 1981, ['annotation']] = '0'  

 

df6a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 06SpO2.csv')  

df6a = df6a . drop(0)  

df6a = df6a . apply(pd . to_numeric)  

df6a['annotation'] = 0 

df6a . loc[df6a["'sample interval'"] <= 299, ['annotation']] = '0'  

df6a . loc[df6a["'s ample interval'"] . loc[300:626], ['annotation']] = '1'  

df6a . loc[df6a["'sample interval'"] . loc[627:926], ['annotation']] = '0'  
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df6a . loc[df6a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df6a . loc[df6a["'sample interval'"] . loc[967:1322], ['annotation']] = '1'  

df6a . loc[df6a["'sample interval'"] . loc[1323:1620], ['annotation']] = '0'  

df6a . loc[df6a["'sample interval'"] . loc[1621:1981], ['annotation']] = '1'  

df6a . loc[df6a["'sample interval'"] >= 1980, ['annotation']] = '0'  

 

df7a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 07SpO2.csv')  

df7a = df7a . drop(0)  

df7a = df7a . apply(pd . to_numeric)  

df7a['annotation'] = 0 

df7a . loc[df7a["'sample interval'"] <= 299, ['annotation']] = '0'  

df7a . loc[df7a["'s ample interval'"] . loc[300:626], ['annotation']] = '1'  

df7a . loc[df7a["'sample interval'"] . loc[627:926], ['annotation']] = '0'  

df7a . loc[df7a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df7a . loc[df7a["'sample interval'"] . loc[967:1312], ['annotation']] = '1'  

df7a . loc[df7a["'sample interval'"] . loc[1313:1612], ['annotation']] = '0'  

df7a . loc[df7a["'sample interval'"] . loc[1613:1973], ['annotation']] = '1'  

df7a . loc[df7a["'sample interval'"] >= 1972, ['annotation']] = '0'  

 

df8a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 08SpO2.csv')  

df8a = df8a . drop(0)  

df8a = df8a . apply(pd . to_numeric)  

df8a['annotation'] = 0 

df8a . loc[df8a["'sample interval'"] <= 299, ['annotation']] = '0'  

df8a . loc[df8a["'s ample interval'"] . loc[300:627], ['annotation']] = '1'  

df8a . loc[df8a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  

df8a . loc[df8a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df8a . loc[df8a["'sample interval'"] . loc[968:1321], ['annotation']] = '1'  

df8a . loc[df8a["'sample interval'"] . loc[1322:1621], ['annotation']] = '0'  

df8a . loc[df8a["'sample interval'"] . loc[1622:1983], ['annotation']] = '1'  

df8a . loc[df8a["'sample interval'"] >= 1982, ['annotation']] = '0'  

 

df9a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 09SpO2.csv')  

df9a = df9a . drop(0)  

df9a = df9a . apply(pd . to_numeric)  

df9a['annotation'] = 0 

df9a . loc[df9a["'sample interval'"] <= 299, ['annotation']] = '0'  

df9a . loc[ df9a["'sample interval'"] . loc[300:627], ['annotation']] = '1'  

df9a . loc[df9a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  

df9a . loc[df9a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df9a . loc[df9a["'sample interval'"] . loc[968:1321], ['annotation']] = '1'  

df9a . loc[df9a["'sample interval'"] . loc[1322:1621], ['annotation']] = '0'  

df9a . loc[df9a["'sample interval'"] . loc[1622:1982], ['annotation']] = '1'  

df9a . loc[df9a["'sample interval'"] >= 1981, ['annotation']] = '0'  

 

df10a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 10SpO2.csv')  

df10a = df10a . drop(0)  

df10a = df10a . apply(pd . to_numeric)  

df10a['annotation'] = 0 

df10a . loc[df10a["'sample interval'"] <= 299, ['annotation']] = '0'  

df10a . loc[df10a["'sample interval'"] . loc[300:626], ['annotation']] = '1'  

df10a . loc[df10a["'sample interval'"] . loc[627:926], ['annotation']] = '0'  
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df10a . loc[df10a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df10a . loc[df10a["'sample interval'"] . loc[967:1321], ['annotation']] = '1'  

df10a . loc[df10a["'sample interval'"] . loc[1322:1621], ['annotation']] = '0'  

df10a . loc[df10a["'sample interval'"] . loc[1622:1981], ['annotation']] = '1'  

df10a . loc[df10a["'sample interval'"] >= 1980, ['annotation']] = '0'  

 

df11a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 11SpO2.csv')  

df11a = df11a . drop(0)  

df11a = df11a . apply(pd . to_numeric)  

df11a['annotation'] = 0 

df11a . loc[df11a["'sample interval'"] <= 299, ['annotation']] = '0'  

df11a . loc[df11a["'sample interval'"] . loc[300:627], ['annotation']] = '1'  

df11a . loc[df11a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  

df11a . loc[df11a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df11a . loc[df11a["'sample interval'"] . loc[968:1322], ['annotation']] = '1'  

df11a . loc[df11a["'sample interval'"] . loc[1323:1622], ['annotation']] = '0'  

df11a . loc[df11a["'sample interval'"] . loc[1623:2234], ['annotation']] = '1'  

df11a . loc[df11a["'sample interval'"] >= 2233, ['annotation']] = '0'  

 

df12a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 12SpO2.csv')  

df12a = df12a . drop(0)  

df12a = df12a . apply(pd . to_numeric)  

df12a['annotation'] = 0 

df12a . loc[df12a["'sample interval'"] <= 297, ['annotation']] = '0'  

df12a . loc[df12a["'sample interval '"] . loc[298:624], ['annotation']] = '1'  

df12a . loc[df12a["'sample interval'"] . loc[625:925], ['annotation']] = '0'  

df12a . loc[df12a["'sample interval'"] . loc[926:965], ['annotation']] = '1'  

df12a . loc[df12a["'sample interval'"] . loc[966:1319], ['annotation']] = '1'  

df12a . loc[df12a["'sample interval'"] . loc[1320:1619], ['annotation']] = '0'  

df12a . loc[df12a["'sample interval'"] . loc[1620:1980], ['annotation']] = '1'  

df12a . loc[df12a["'sample interval'"] >= 1979, ['annotation']] = '0'  

 

df13a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 13SpO2.csv')  

df13a = df13a . drop(0)  

df13a = df13a . apply(pd . to_numeric)  

df13a['annotation'] = 0 

df13a . loc[df13a["'sample interval'"] <= 299, ['annotation']] = '0'  

df13a . loc[df13a["'sample interval'"] . loc[300:627], ['annotation']] = '1'  

df13a . loc[df13a["'sample interval'"] . loc[628:927], ['annotation']] = '0'  

df13a . loc[df13a["'sample interval'"] . loc[928:967], ['annotation']] = '1'  

df13a . loc[df13a["'sample interval'"] . loc[968:1321], ['annotation']] = '1'  

df13a . loc[df13a["'sample interval'"] . loc[1322:1621], ['annotation']] = '0'  

df13a . loc[df13a["'sample interval'"] . loc[1622:1982], ['annotation']] = '1'  

df13a . loc[df13a["'sample interval'"] >= 1981, ['annotation']] = '0'  

 

df14a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 14SpO2.csv')  

df14a = df14a . drop(0)  

df14a = df14a . apply(pd . to_numeric)  

df14a['annotation'] = 0 

df14a . loc[df14a["'sample interval'"] <= 299, ['annotation']] = '0'  

df14a . loc[df14a["'sample interval'"] . loc[300:626], ['annotation']] = '1'  

df14a . loc[df14a["'sample interval'"] . loc[627:926], ['annotation']] = '0'  
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df14a . loc[df14a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df14a . loc[df14a["'sample interval'"] . loc[967:1320], ['annotation']] = '1'  

df14a . loc[df14a["'sample interval'"] . loc[1321:1620], ['annotation']] = '0'  

df14a . loc[df14a["'sample interval'"] . loc [1621:1980], ['annotation']] = '1'  

df14a . loc[df14a["'sample interval'"] >= 1979, ['annotation']] = '0'  

 

df15a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 15SpO2.csv')  

df15a = df15a . drop(0)  

df15a = df15a . apply(pd . to_numeric)  

df15a['annotation'] = 0 

df15a . loc[df15a["'sample interval'"] <= 299, ['annotation']] = '0'  

df15a . loc[df15a["'sample interval'"] . loc[300:624], ['annotation']] = '1'  

df15a . loc[df15a["'sample interval'"] . loc[625:924], ['annotation']] = '0 '  

df15a . loc[df15a["'sample interval'"] . loc[925:964], ['annotation']] = '1'  

df15a . loc[df15a["'sample interval'"] . loc[965:1318], ['annotation']] = '1'  

df15a . loc[df15a["'sample interval'"] . loc[1319:1618], ['annotation']] = '0'  

df15a . loc[df15a["'sample interval'"] . loc[1619:1975], ['annotation']] = '1'  

df15a . loc[df15a["'sample interval'"] >= 1974, ['annotation']] = '0'  

 

df16a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 16SpO2.csv')  

df16a = df16a . drop(0)  

df16a = df16a . apply(pd . to_numeric)  

df16a['annotation'] = 0 

df16a . loc[df16a["'sample interval'"] <= 299, ['annotation']] = '0'  

df16a . loc[df16a["'sample interval'"] . loc[300:626], ['annotation']] = '1'  

df16a . loc[df16a["'sample interval'"] . loc[6 27:926], ['annotation']] = '0'  

df16a . loc[df16a["'sample interval'"] . loc[927:966], ['annotation']] = '1'  

df16a . loc[df16a["'sample interval'"] . loc[967:1320], ['annotation']] = '1'  

df16a . loc[df16a["'sample interval'"] . loc[1321:1620], ['annotation']] = '0'  

df16a . loc[df16a["'sample interval'"] . loc[1621:1981], ['annotation']] = '1'  

df16a . loc[df16a["'sample interval'"] >= 1980, ['annotation']] = '0'  

 

df17a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 17SpO2.csv')  

df17a = df17a . drop(0)  

df17a = df17a . apply(pd . to_numeric)  

df17a['annotation'] = 0 

df17a . loc[df17a["'sample interval'"] <= 302, ['annotation']] = '0'  

df17a . loc[df17a["'sample interval'"] . loc[303:629], ['annotation']] = '1'  

df17a . loc[df17a["'sample interval'"] . loc[630:929], ['annotation']] = '0'  

df17a . loc[df17a["'sample interval'"] . loc[930:969], ['annotation']] = '1'  

df17a . loc[df17a["'sample interval'"] . loc[970:1325], ['annotation']] = '1'  

df17a . loc[df17a["'sample interval'"] . loc[1326:1624], ['annotation']] = '0'  

df17a . loc[df17a["'sample interval'"] . loc[1625:1985], ['annotation']] = '1'  

df17a . loc[df17a["'sample interval'"] >= 1984, ['annotatio n']] = '0'  

 

df18a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 18SpO2.csv')  

df18a = df18a . drop(0)  

df18a = df18a . apply(pd . to_numeric)  

df18a['annotation'] = 0 

df18a . loc[ df18a["'sample interval'"] <= 299, ['annotation']] = '0'  

df18a . loc[df18a["'sample interval'"] . loc[300:628], ['annotation']] = '1'  

df18a . loc[df18a["'sample interval'"] . loc[629:928], ['annotation']] = '0'  
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df18a . loc[df18a["'sample interval'"] . loc[929:968], ['annotation']] = '1'  

df18a . loc[df18a["'sample interval'"] . loc[969:1322], ['annotation']] = '1'  

df18a . loc[df18a["'sample interval'"] . loc[1323:1622], ['annotation']] = '0'  

df18a . loc[df18a["'sample interval'"] . loc[1623:1983], ['annotation']] = '1'  

df18a . loc[df18a["'sample interval'"] >= 1982, ['annotation']] = '0'  

 

df19a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 19SpO2.csv')  

df19a = df19a . drop(0)  

df19a = df19a . apply(pd . to_numeric)  

df19a['annotation'] = 0 

df19a . loc[df19a["'sample interval'"] <= 299, ['annotation']] = '0'  

df19a . loc[df19a["'sample interval'"] . loc[300:624], ['annotation']] = '1'  

df19a . loc[df19a["'sample interval'"] . loc[625:924], ['annotation']] = '0'  

df19a . loc[df19a["'sample interval'"] . loc[925:964], ['annotation']] = '1'  

df19a . loc[df19a["'sample interval'"] . loc[965:1318], ['annotation']] = '1'  

df19a . loc[df19a["'sample interval'"] . loc[1319:1618], ['annotation']] = '0'  

df19a . loc[df19a["'sample interval'"] . loc [1619:1979], ['annotation']] = '1'  

df19a . loc[df19a["'sample interval'"] >= 1978, ['annotation']] = '0'  

 

df20a = pd . read_csv(r'C: \ Users \ Utilizador \ OneDrive \ Ambiente de 

Trabalho \ Neurological_Status \ 20SpO2.csv')  

df20a = df20a . drop(0)  

df20a = df20a . apply(pd . to_numeric)  

df20a['annotation'] = 0 

df20a . loc[df20a["'sample interval'"] <= 297, ['annotation']] = '0'  

df20a . loc[df20a["'sample interval'"] . loc[298:625], ['annotation']] = '1'  

df20a . loc[df20a["'sample interval'"] . loc[925:964], ['annotation']] = '0 '  

df20a . loc[df20a["'sample interval'"] . loc[965:1319], ['annotation']] = '1'  

df20a . loc[df20a["'sample interval'"] . loc[1320:1619], ['annotation']] = '0'  

df20a . loc[df20a["'sample interval'"] . loc[1620:2222], ['annotation']] = '1'  

df20a . loc[df20a["'sample interval'"] >= 2221, ['annotation']] = '0'  

 

df  = 

pd . concat ([ df1 , df2 , df3 , df4 , df5 , df6 , df7 , df8 , df9 , df10 , df11 , df12 , df13 , df14 , df1

5, df16 , df17 , df18 , df19 , df20 ],  axis  = 0,  join ='inner' ,  ignore_index =True )  

df  = df [:: 8]  

df [ '' ] =range ( 0, 46107 )  

df . set_index ( df [ '' ],  inplace =True )  

df . drop ( '' ,  axis =1,  inplace =True )  

 

dfa  = 

pd . concat ([ df1a , df2a , df3a , df4a , df5a , df6a , df7a , df8a , df9a , df10a , df11a , df12a , d

f13a , df14a , df15a , df16a , df17a , df18a , df19a , df20a ],  axis  = 0,  join ='outer' ,  

ignore_index =True )  

dfa  

 

all_data  = pd . concat ([ df , dfa ],  axis =1)  

all_data . columns  = [ 'sample interval1' ,  'temp' ,  'EDA' ,  'annotation1' ,  

'sample interval2' ,  'SpO2' ,  'HR' ,  'annotation2' ]  

all_data  = all_data . query ( "annotation1 == annotation2" )  

all_data . drop ( 'annotation2' ,  axis =1,  inplace =True )  

all_data . drop ( 'sample interval1' ,  axis =1,  inplace =True )  

all_data . drop ( 'sample interval2' ,  axis =1,  inplace =True )  

all_data  
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fig ,  ( ax1 ,  ax2 ,  ax3 ,  ax4 )  = plt . subplots ( 4, 1,  figsize =( 16, 8))  

all_data . plot ( kind ='line' ,  y='temp' ,  ax =ax2 ,  color  = 'black' )  

all_data . plot ( kind ='line' ,  y='EDA' ,  ax =ax1 ,  color ='red' )  

all_data . plot ( kind ='line' ,  y='SpO2' ,  ax =ax3 )  

all_data . plot ( kind ='line' ,  y='HR' ,  ax =ax4 ,  color  = 'purple' )  

ax1 . axes . xaxis . set_ticklabels ([])  

ax2 . axes . xaxis . set_ticklabels ([])  

ax3 . axes . xaxis . set_ticklabels ([])  

ax4 . axes . xaxis . set_ticklabels ([])  

 

 

 

Training and testing the model  

 
X = all_data . drop ([ 'annotation1' ],  axis =1)  

y  = all_data [ 'annotation1' ]  

 

X_train ,  X_test ,  y_train ,  y_test  = train_test_split ( X,  y ,  test_size =0.30 ,  

random_state =0,  shuffle =True )  

 

scaler  = StandardScaler ()  

scaler . fit ( X_train )  

X_train  = scaler . transform ( X_train )  

X_test  = scaler . transform ( X_test )  

 

 

Logistic Regression 
classifierlr  = LogisticRegression ()  

classifierlr . fit ( X_train ,  y_train )  

y_pred  = classifierlr . predict ( X_test )  

 

print ( "classification report:" )  

print ( classification_report ( y_test ,  y_pred ))  

print ( "Cohen Kappa Score:" )  

print ( metrics . cohen_kappa_score ( y_test ,  y_pred ))  

print ()  

print ( "confusion matrix:" )  

print ( metrics . confusion_matrix ( y_test ,  y_pred ))  

 

Decision Tree 
classifierdt  = DecisionTreeClassifier ( random_state  = 0,  max_depth =10)  

classifierdt . fit ( X_train ,  y_train )  

y_pred  = classifierdt . predict ( X_test )  

 

print ( "classification report:" )  

print ( classification_report ( y_test ,  y_pred ))  

print ( "Cohen Kappa Score:" )  
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print ( metrics . cohen_kappa_score ( y_test ,  y_pred ))  

print ()  

print ( "confusion matrix:" )  

print ( metrics . confusion_matrix ( y_test ,  y_pred ))  

print ()  

print ( "Feature importance:" )  

print ( pd . Series ( classifierdt . feature_importances_ ))  

 

Random Forest 
classifierrf  = RandomForestClassifier ( n_estimators =100 ,  max_depth =10)  

classifierrf . fit ( X_train , y_train )  

 

y_pred  = classifierrf . predict ( X_test )  

 

print ( "classification report:" )  

print ( classification_report ( y_test ,  y_pred ))  

print ( "Cohen Kappa Score:" )  

print ( metrics . cohen_kappa_score ( y_test ,  y_pred ))  

print ()  

print ( "confusion matrix:" )  

print ( metrics . confusion_matrix ( y_test ,  y_pred ))  

print ()  

print ( "Feature importance:" )  

print ( pd . Series ( classifierrf . feature_importances_ ))  

 

y_predrf  = pd . DataFrame ( y_pred )  

y_predrf  = y_predrf . apply ( pd . to_numeric )  

y_predrf . columns  = [ 'Mental State' ]  

 

fig ,  ax  = plt . subplots ( figsize =( 12, 6))  

y_predrf . plot ( color ='r' ,  ax =ax )  

plt . yticks ([ 0.0 , 1.0 ],  [ 'RELAX' ,  'STRESS' ])  

plt . xlim ([ 0,  100 ])  

plt . legend ( loc ='upper right' )  

 

K-Nearest Neighbour 
classifierknn  = KNeighborsClassifier ( n_neighbors  = 80)  

classifierknn . fit ( X_train ,  y_train )   

y_pred  = classifierknn . predict ( X_test )  

 

print ( "classification report:" )  

print ( classification_report ( y_test ,  y_pred ))  

print ( "Cohen Kappa Score:" )  

print ( metrics . cohen_kappa_score ( y_test ,  y_pred ))  

print ()  

print ( "confusion matrix:" )  

print ( metrics . confusion_matrix ( y_test ,  y_pred ))  
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Naive Bayes 
classifiernb  = GaussianNB ()  

classifiernb . fit ( X_train ,  y_train )  

y_pred   =  classifiernb . predict ( X_test )  

 

print ( "classification report:" )  

print ( classification_report ( y_test ,  y_pred ))  

print ( "Cohen Kappa Score:" )  

print ( metrics . cohen_kappa_score ( y_test ,  y_pred ))  

print ()  

print ( "confusion matrix:" )  

print ( metrics . confusion_matrix ( y_test ,  y_pred ))  

 

 

Store and visualize the model  
joblib . dump( classifierrf ,  'MyBestClassifierrf' )  

 

classifierrf  = joblib . load ( ' MyBestClassifierrf' )  

classifierrf . predict ([[ 30,  0.1 ,  96,  89]])  
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