Environmental Pollution and Natural Backgrounds

applicable to heavy metal contaminated, fine-grained soils that can be the main element of the microcosmic processes. Various natural models are available (Chu et al. 1995) to simulate the real processes. The technical application of methods for the estimation of high energy consumption, detection of the anomalies and appraisal of the heavy metal hydroxides in the vicinity of the cathode. The main purpose of the investigations are measurement, estimation and classification of the contamination and electroeffects. There is a maximum of electroactivity in alkaline solutions. Unfortunately, the most heavy metal contamination is in the cathode area. The process has to be performed with an optimized pit. The method influences the following parameters: capillary, electrical conductivity, surface conductivity and the rate of some solid species of the heavy metals. If the pH is high, the energy consumption is too high, caused by high mobility of hydrogen ions. At low pH range the cathode build a complex which then moves to the anode, instead of the cathode. Our solution is the determination of electroactive parameters, calculation of the optimum pH and processing under the pH controlled by a reference system at the electrodes. The corrosion of the anode has to be prevented through the use of carbon materials.


J09:4P15: PO
INFLUENCE OF WATER MACROPHOYES ON PENETRATION OF TOXIC ELEMENTS INTO THE ENVIRONMENT
Elena Holubinová (eco@ugm.mncr.ee) &
Dmitry Besonov

This investigation is focused on the estimation of water vegetation role in processes of toxic element redistribution in biogeochemical landscapes. Research was carried out in the Papikonian and Kromovian Low Exploring Lands. The main peculiarity of this problem is the following: concentration of As, Pb, Zn, Cd, Cu, Co, Mn, Ni, Pb, Zn, Ni, Mn, Pb in water samples collected in different seasons of a year. The heavy metal content in the samples was determined by X-ray Raman spectroscopy. The measurements were made on an element to evaluate the metal content in the samples. The results show that the concentration of metals increases in the order of As, Cd, Cu, Co, Mn, Ni, Pb. The content of metals in the samples was determined by the following methods: schools, analysis, and X-ray spectroscopy. The results show that the concentration of metals increases in the order of As, Cd, Cu, Co, Mn, Ni, Pb. The content of metals in the samples was determined by the following methods: schools, analysis, and X-ray spectroscopy. The results show that the concentration of metals increases in the order of As, Cd, Cu, Co, Mn, Ni, Pb. The content of metals in the samples was determined by the following methods: schools, analysis, and X-ray spectroscopy. The results show that the concentration of metals increases in the order of As, Cd, Cu, Co, Mn, Ni, Pb. The content of metals in the samples was determined by the following methods: schools, analysis, and X-ray spectroscopy.