Modeling of Field Weathering Rates of Plagioclase in Vila Pouca de Aguiar (North of Portugal)

F A.L. PACHECO1 And C. H. VAN DER WEIJDEN2
1Trás-os-Montes and Alto Douro University, Geology
Department, 5000 Vila Real, Portugal; fpacheco@utad.pt
2Utrecht University, Faculty of Geosciences, Department of
Earth Sciences – Geochemistry, 3508 TA Utrecht, The
Netherlands; chvdw@geo.uu.nl

In Vila Pouca de Aguiar (North Portugal), weathering rates of granite plagioclase (W_{fPl}, mol·m$^{-2}$·s$^{-1}$) were estimated in the field on the basis of drilled well water compositions using the formula:

$$W_{fPl} = (d[Pl]/dt) \times (\xi / \alpha_{Pl}) ,$$

where $[Pl]$ is the mole fraction of plagioclase (mol L$^{-1}$), $d[Pl]/dt$ is the rate of change of $[Pl]$ in time (mol·L$^{-1}$·s$^{-1}$), ξ is the fracture surface wetting ($\xi = 8.5 \times 10^{-3}$ L·m$^{-2}$; [2]) and α_{Pl} is the proportion of plagioclase in the granite ($\alpha_{Pl} = 0.35$). The W_{fPl} values were plotted against Gibbs energies of oligoclase An_{20} dissolution (dots in Figure 1). The rates and Gibbs energies determined by [2] were also included in the figure for comparison (circles). Both sets of rates show a reasonable agreement with theoretically-derived and experimentally validated dissolution rates [1] (R_d, dashed lines). A major and important conclusion from this study is that field and laboratory rates may after all be reconciled.

![Figure 1.](image_url)

References