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Abstract Dehghan and Hajarian, [4], investigated the matrix equations AT XB+BT XT A =

C and AT XB + BT XA = C providing inequalities for the determinant of the solutions of

these equations. In the same paper, the authors presented a lower bound for the product of

the eigenvalues of the solutions to these matrix equations. Inspired by their work, we give

some generalizations of Dehghan and Hajarian results. Using the theory of the numerical

ranges, we present an inequality involving the trace of C when A, B, X are normal matrices

satisfying AT B = BAT .

Key words matrix equation; eigenvalue; trace; permutation matrix

2010 MR Subject Classification 15A24; 15A42

1 Introduction

We denote by Mn the set of all n × n real matrices. For A ∈ Mn, we denote by AT ,

Tr (A) and det (A), the transpose, the trace and the determinant of A, respectively. The

spectrum of A ∈ Mn will be represented by ρ(A). For a matrix A ∈ Mn, with spectrum

ρ(A) = {λ1, λ2, · · · , λn}, the determinant of A is the product of all the eigenvalues: λ1λ2 · · ·λn

and the trace of A is the sum of all the eigenvalues: λ1 + · · · + λn. We say that A is a real

stability matrix if Re λi < 0, for i = 1, · · · , n.

An active research is being conducted around the topic of matrix equations, since is widely

used in many different areas such as computational mathematics. The research groups that

work on this topic are interested for instance in obtaining several bounds for the eigenvalues,

the trace and the determinant of the solutions of some matrix equations (e.g. Lyapunov and

Riccati equation) [5, 6]. The labor around this topic can also be seen searching in MathScinet

database for the expression “matrix equation”, which will return over 1600 items.

In this paper, we focus on the study of the following matrix equations

AT XB + BT XT A = C, (1.1)
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and

AT XB + BT XA = C, (1.2)

where A, B, C ∈ Mn are real known matrices and X ∈ Mn is an unknown real matrix. The

paper is organized as follows: in Section 2, we obtain generalizations of Theorem 2.1, Theorem

2.2, Theorem 2.3 and Theorem 2.4 of [4]. In Section 3, considering in (1.1) and (1.2), C a n×n

matrix, we obtain an inequality involving the trace of C and the eigenvalues of the normal

matrices A, B, X satisfying AT B = BAT .

2 Inequalities for the Determinant

In this section, we revisit the results in [4] giving different proofs. First, we present a

theorem due to Ostrowski and Taussky [2] which is an essential tool to prove the main result

of this section.

Theorem 2.1 If A ∈ Mn is such that A+AT

2 is positive definite, then det
(

A+AT

2

)
≤

detA. Equality holds if and only if A is symmetric.

Next, we present a different proof of Theorem 2.1 [4] using the above theorem.

Theorem 2.2 Let A, B, X ∈ Mn and let C be a n × n positive definite matrix. If the

matrix equation (1.1) is consistent, then

det (C) ≤ 2ndet (A) det (X) det (B). (2.1)

The equality holds if and only if C = 2 AT XB.

Proof Equation (1.1) is equivalent to

AT XB + (AT XB)T

2
=

C

2
. (2.2)

Since C is a positive definite matrix, by Theorem 2.1, we have

det

(
AT XB + (AT XB)T

2

)
≤ det (AT XB), (2.3)

which is equivalent to det
(

C
2

)
≤ det (AT XB) by means of (2.2). Using some basic properties

of the determinant we obtain (2.1).

By Theorem 2.1, the equality in (2.3) holds if and only if the matrix AT XB is symmetric,

that is, C = 2 AT XB. �

Remark 2.3 Let A, B, X ∈ Mn and let C be a n × n positive definite matrix. Let

α1, · · · , αn, β1, · · · , βn, γ1, · · · , γn and δ1, · · · , δn be the eigenvalues of A, B, C and X, respec-

tively.

If the matrix equation (1.1) is consistent, then the equality in (2.1) holds if and only if

C = 2 AT XB. For this case, detAdetB 6= 0, since detC > 0, and

n∏
i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

=

n∏

i=1

δi.

Next, we study the case when the inequality in (2.1) is strict.
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Theorem 2.4 Let A, B, X ∈ Mn and let C be a n×n positive definite matrix, such that

C 6= 2 AT XB. If the matrix equation (1.1) is consistent, then

n∏
i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

<
n∏

i=1

δi,

if and only if
n∏

i=1

αi

n∏
i=1

βi > 0, where ρ(A) = {α1, · · · , αn}, ρ(B) = {β1, · · · , βn}, ρ(C) =

{γ1, · · · , γn} and ρ(X) = {δ1, · · · , δn}.

Proof Let C be a n×n positive definite matrix such that C 6= 2 AT XB. Suppose the ma-

trix equation (1.1) is consistent. Applying Theorem 2.2, we obtain det (C) < 2ndet (A) det (X)

det (B).

(⇐) Suppose
n∏

i=1

αi

n∏
i=1

βi > 0. As det (A) =
n∏

i=1

αi and det (B) =
n∏

i=1

βi, we have

detC

2ndetAdet B
< detX,

since detAdet B > 0. As the determinant of a matrix is equal to the product of its eigenvalues

the result follows.

(⇒) Suppose now
n∏

i=1

αi

n∏

i=1

βi ≤ 0, (2.4)

and
n∏

i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

<

n∏

i=1

δi. (2.5)

By hypothesis C is a positive definite matrix, then det (A)det (B) 6= 0. Hence, the equality

in (2.4) can not occur and
detC

2ndetAdet B
> detX, (2.6)

since det AdetB < 0. Equation (2.6) is equivalent to

n∏
i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

>

n∏

i=1

δi. (2.7)

By (2.5) and (2.7), we obtain

n∏

i=1

δi <

n∏
i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

<
n∏

i=1

δi,

a contradiction. So we have proved the theorem. �

The next result was firstly shown by Dehghan and Hajarian in [4] and is a consequence of

Theorem 2.4.
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Corollary 2.5 Let A, B, X ∈ Mn and let C be a n × n positive definite matrix. If the

matrix equation (1.1) is consistent and A and B are stability matrices, then

n∏
i=1

γi

2n
n∏

i=1

αi

n∏
i=1

βi

≤

n∏

i=1

δi. (2.8)

Proof If C = 2 AT XB, then the equality in (2.8) occurs by Remark 2.3. Consider, now,

C 6= 2 AT XB. Since A and B are stability matrices, then detAdetB > 0 and the result easily

follows from Theorem 2.4. �

Remark 2.6 Dehghan and Hajarian, [4], obtained similar results for matrix equation (1.2)

considering X an unknown symmetric matrix. We note that, applying the same techniques as

above we can obtain similar results as Theorem 2.2 and Theorem 2.4 generalizing Theorem 2.2

and Theorem 2.4 in [4].

3 Inequalities Involving the Trace

In the sequel, Mn denotes the algebra of n × n complex matrices and U∗ denotes the

Hermitian adjoint of U ∈ Mn, defined by U∗ = U
T
, where U is the component-wise conjugate

of U . We say U is an unitary matrix if U∗U = In. A matrix A ∈ Mn is normal if A∗A = AA∗.

If A ∈ Mn is a normal matrix with real eigenvalues, then A is a Hermitian matrix.

Given C ∈ Mn, the C-numerical range of A ∈ Mn, is as a connected and compact subset

of C defined by

WC(A) = {Tr (CU∗AU) : U is unitary } . (3.1)

This concept was introduced by Goldberg and Straus in [1] and is an useful concept in studying

properties that are invariant under unitary similarities, since if A = U∗A′U and C = V ∗C′V ,

where U, V are unitary matrices, then WC(A) = WC′(A′).

The following well known set of points on the complex plane is important in our investiga-

tion.

Definition 3.1 Let Sn be the symmetric group of degree n. We define the σ-points of

WC(A) by

zσ =

n∑

i=1

γiασ(i), σ ∈ Sn,

where α1, · · · , αn and γ1, · · · , γn are the eigenvalues of A and C, respectively.

It can be easily seen that all the n! σ-points (not necessarily distinct) belong to WC(A)

and if A and C are normal matrices, then

WC(A) = Co {zσ : σ ∈ Sn} ,

where Co {·} denotes the convex hull of the set {·}.

Lemma 3.2 Let A, B, X, C ∈ Mn. If the matrix equation (1.1) is consistent, then

Tr (AT XB) =
1

2
Tr (C).



No.1 G. Soares: AT
XB + B

T
X

T
A = C AND A

T
XB + B

T
XA = C 279

Proof Let Y = AT XB − BT XT A. Considering the matrix equation (1.1), we can write

AT XB =
1

2
(AT XB + BT XT A) +

1

2
(AT XB − BT XT A)

=
1

2
C +

1

2
Y.

Since Y is skew-symmetric matrix, then Tr (Y ) = 0 and the result follows. �

Next, we present the main result of this section.

Theorem 3.3 Let C ∈ Mn and A, B, X ∈ Mn be normal matrices, such that AT B =

BAT . If the matrix equation (1.1) is consistent, then

min
σ

|zσ| ≤
1

2
|Tr (C)| ≤ max

σ
|zσ|,

where zσ =
n∑

i=1

αiβiδσ(i), σ ∈ Sn, the permutation group of degree n, and ρ(A) = {α1, · · · , αn},

ρ(B) = {β1, · · · , βn}, ρ(C) = {γ1, · · · , γn} and ρ(X) = {δ1, · · · , δn}.

Proof Since commuting normal matrices maybe simultaneously diagonalizable (see [2,

Theorem 2.55]), then there exists an unitary matrix U ∈ Mn, such that

AT = U∗ΛAU and B = U∗ΛBU,

where ΛA and ΛB are diagonal matrices with diagonal entries α1, · · · , αn and β1, · · · , βn, re-

spectively. The trace is invariant under cyclic permutations, hence

Tr (AT XB) = Tr (ΛAΛBUXU∗).

As Tr (AT XB) ∈ WΛAΛB
(X) and X is a normal matrix, then Tr (AT XB) can be written as

Tr (AT XB) =
∑

σ∈Sn

uσzσ with zσ =
n∑

i=1

αiβiδσ(i)

with 0 ≤ uσ ≤ 1 and
∑

σ∈Sn

uσ = 1. It can be easily seen that

min
σ

|zσ| ≤ |Tr (AT XB)| ≤ max
σ

|zσ|

and the result follows by Lemma 3.2. �

Theorem 3.4 Let C ∈ Mn, A, B, X ∈ Mn be Hermitian matrices, such that AT B =

BAT . Let Sn be the permutation group of degree n. If the matrix equation (1.1) is consistent,

then there exists σ ∈ Sn, such that

n∑

i=1

ασ(i)βσ(i)δn−i ≤
1

2

n∑

i=1

γi ≤

n∑

i=1

ασ(i)βσ(i)δi,

where ρ(A) = {α1, · · · , αn}, ρ(B) = {β1, · · · , βn}, ρ(C) = {γ1, · · · , γn} and ρ(X) = {δ1, · · · , δn},

such that ασ(1)βσ(1) ≥ · · · ≥ ασ(n)βσ(n) and δ1 ≥ · · · ≥ δn.

Proof If A ∈ Mn and C ∈ Mn are Hermitian matrices with eigenvalues α1 ≥ · · · ≥ αn

and γ1 ≥ · · · ≥ γn, then the C-numerical range is a line segment with endpoints
n∑

i=1

γiαn−i+1

and
n∑

i=1

γiαi (see [3]). In an analogous way as the proof of Theorem 3.3, we have Tr (AT XB) ∈

WΛAΛB
(X). The matrix ΛAΛB is a diagonal matrix with diagonal entries α1β1, · · · , αnβn.
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Let σ ∈ Sn and let Pσ be a permutation matrix associated with σ, such that PT
σ ΛAΛBPσ

is a diagonal matrix with principal entries ασ(1)βσ(1) ≥ · · · ≥ ασ(n)βσ(n). Due to the unitary

invariance of the C-numerical range, we have WΛAΛB
(X) = WP T

σ ΛAΛBP T
σ

(X). The result follows

now easily. �

Remark 3.5 Considering matrix equation (1.2) for an unknown symmetric matrix X , we

can obtain similar results to Theorem 3.3 and Theorem 3.4 applying the same techniques as

above.

4 Conclusions

Considering the matrix equations (1.1) and (1.2) we obtained inequalities involving the

determinant and the product of the eigenvalues of the solutions of these matrix equations

using a similar approach as the one developed by Dehghan and Hajarian. For the same matrix

equations, inspired by their work, we developed inequalities involving the trace of a n×n matrix

C and the sum of product of the eigenvalues of A, B and X arranged in a given way using the

theory of the numerical ranges. It would be interesting to study this theory for the case when

AT and B are not simultaneously diagonalizable. We leave this as a topic for further research.
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