Acute blood pressure response in hypertensive elderly women immediately after water aerobics exercise: A crossover study

Raphael Martins Cunha, José Vilaça-Alves, Marcelo Vasconcelos Noleto, Juliana Sá Silva, Andressa Moura Costa, Christoffer Novais Farias Silva, Thaís Inácio Rolim Póvoa & Alexandre Machado Lehnen

To cite this article: Raphael Martins Cunha, José Vilaça-Alves, Marcelo Vasconcelos Noleto, Juliana Sá Silva, Andressa Moura Costa, Christoffer Novais Farias Silva, Thaís Inácio Rolim Póvoa & Alexandre Machado Lehnen (2017): Acute blood pressure response in hypertensive elderly women immediately after water aerobics exercise: A crossover study, Clinical and Experimental Hypertension, DOI: 10.1080/10641963.2016.1226891

To link to this article: http://dx.doi.org/10.1080/10641963.2016.1226891

Published online: 03 Jan 2017.
Acute blood pressure response in hypertensive elderly women immediately after water aerobics exercise: A crossover study

Raphael Martins Cunhaa,b, José Vilaça-Alvesc, Marcelo Vasconcelos Noletob, Juliana Sá Silvad, Andressa Moura Costab, Christoffer Novais Farias Silvab, Thaís Inácio Rolim Póvoab, and Alexandre Machado Lehnene

aExperimental Medicine, Institute of Cardiology of Rio Grande do Sul/University Foundation of Cardiology, Porto Alegre, Rio Grande do Sul, Brazil; bExercise Physiology Laboratory, State University of Goiás, Goiás, Goiás, Brazil; cDepartment of Sport Sciences, Trás-os-Montes e Alto Douro University, Exercise and Health, Vila Real, Portugal; dInstitute of Physical Education, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil

\textbf{ABSTRACT}

Water aerobics exercise is widely recommended for elderly people. However, little is known about the acute effects on hemodynamic variables. Thus, we assessed the effects of a water aerobic session on blood pressure in hypertensive elderly women. Fifty hypertensive elderly women aged 67.8 ± 4.1 years, 1.5 ± 0.6 m high and BMI 28.6 ± 3.9 kg/m2, participated in a crossover clinical trial. The experiment consisted of a 45-minute water aerobics session (70%-75% HRmax adjusted for the aquatic environment) (ES) and a control session (no exercise for 45 minutes) (CS). Heart rate was monitored using a heart rate monitor and systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurements were taken using a semi-automatic monitor before and immediately after the sessions, and at 10, 20 and 30 minutes thereafter. It was using a generalized estimating equation (GEE) with Bonferroni’s post-hoc test \((p < 0.05)\). At the end of the experimental session, ES showed a rise in SBP of 17.4 mmHg (14.3%, \(p < 0.001\)) and DBP of 5.4 mmHg (7.8%, \(p < 0.001\)) compared to CS. At 10 minutes after exercise, BP declined in ES by a greater magnitude than in CS (SBP 7.5 mmHg, 6.2%, \(p = 0.005\) and DBP 3.8 mmHg, 5.5%, \(p = 0.013\)). At 20 minutes after exercise and thereafter, SBP and DBP were similar in both ES and CS. In conclusion, BP returned to control levels within 10–20 minutes remaining unchanged until 30 minutes after exercise, and post-exercise hypotension was not observed. Besides, BP changed after exercise was a safe rise of small magnitude for hypertensive people.

\textbf{Introduction}

Systemic arterial hypertension is a continuous linear independent risk factor for several cardiovascular conditions and it is associated with a 40% mortality from stroke and 25% from coronary artery disease (1). Hypertension is more prevalent among the elderly (2) resulting from aging changes that make individuals more likely to developing it (3, 4). In Brazil, the prevalence of hypertension is 68% among the elderly, which is quite similar to that reported in other countries such as the United States (71%) (5), Japan (60%) (6), South Korea (69%) (7), and Portugal (78%) (8). Despite its high prevalence, adherence to recommended hypertension treatments is low. In a cohort study of hypertensive patients, 45% discontinued regular monitoring and only 55% maintained the desired blood pressure (BP) levels (9).

Regular exercise is a well-established intervention for the prevention and treatment of hypertension (10). Individuals may clinically benefit from post-exercise hypotension (PEH) (11, 12) that has longer duration when exercise is performed 2–3 times per week (13, 14). The hypotensive effects of exercise seem to be mainly induced by improved baroreflex sensitivity (15), sympathetic activity suppression (12), improved cardiac output (16), and release of vasodilators (17).

The effects of exercise on land are well documented especially aerobic exercise but evidence of the effects of exercise in water is still scarce. Water aerobics—aerobic exercise in an aquatic environment—has been proposed as a physiologically beneficial exercise modality for the elderly as it can improve cardiorespiratory fitness (18), muscle strength (18), metabolic control, and promote weight reduction (19). Water aerobic exercise is also recommended due to lower risk of injuries as the buoyancy of water reduces body weight by ~90% (20). Most elderly have musculoskeletal conditions and exercise in an aquatic environment can minimize the potential risk of falls (21).

Many studies have investigated exercise and blood pressure response, but almost all studied land exercise (22). Water exercise and land exercise induce different physiological responses. Immersion in water produces changes in hydrostatic pressure that result in redistribution of blood flow especially in the thoracic region and an increase in venous return, stroke volume, and cardiac output (23–25) producing reflex bradycardia (25). Suppression of the renin-angiotensin-aldosterone system (26) is also observed. Few studies have investigated water aerobics (22), and showed inconsistent results including increase (24), decrease (27), and even no change (23) in BP levels after exercise.
Few studies have investigated PEH after water exercise and most of them have examined changes in BP after 30 minutes, 1 hour, and even 24 hours after exercise. A single study was conducted in elderly people. It is thus important to examine potential changes in BP immediately after an aerobic exercise session for hypertensive elderly individuals considering the very properties of water that may affect BP, the effects of physical exertion and a change in the external environment (from in to out of the water). Thus, this study aimed to assess the effects of a water aerobic session on blood pressure in hypertensive elderly women.

Methods

We conducted a randomized clinical trial with a crossover design. This research project was reviewed and approved by the local institutional review board, and it follows the CONSORT Statement (28) and the principles of the Declaration of Helsinki. All participants read and signed an informed consent form before participating in the study.

Study sample

The minimum sample size was determined based on a previous study conducted by this research group (29). We considered SBP as the primary endpoint and calculated for a 5% significance level, power of 80% and a 10-mmHg difference in SBP. Participants were recruited using local media advertisement. Sixty-three women entered the study, but 13 were excluded from the analyses as they did not complete the entire protocol. The final sample consisted of 50 participants ($n = 50$) – Figure 1.

The inclusion criteria were being diagnosed with systemic arterial hypertension according to the guidelines of the American Heart Association Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (1); aged 65–80 years; pre-study SBP ≤ 160 mmHg and DBP ≤ 100 mmHg, measured at the doctor’s office (Table 2); and water aerobic exercise training for at least 6 months. The exclusion criteria were hypereactive individuals (SBP > 220 mmHg and/or increase in DBP > 150 mmHg during testing); fever and/or any infectious diseases; use of insulin or metformin; Class 2 obesity or higher; heart failure; recent cardiovascular event (in last 3 months); chronic renal failure; active smoking; orthopedic impairments; or physical or mental limitations that prevent exercising.

Study procedures

On visit 1 to the study site, we explained the participants all the study procedures and answered their questions. Those who agreed to participate were asked to sign a free informed consent form. During this same visit, their medical history was taken and they underwent a physical assessment.

On visit 2, measurements of body weight, height and body mass index (BMI) were taken. The participants underwent randomization: a randomized code was generated (www.randomization.org) and they were randomly assigned to either the experimental (ES) or the control session (CS) (1:1 allocation ratio) into two groups of 50 ($n = 50$) as each participant functioned as their own control.

All sessions were held at the same time (11 am) with 72 hours between sessions. The Figure 1 shows study design.

![Figure 1. Design of the study. Sixty-three hypertensive women were invited to participate in the study. Thirteen participants refused to participate for personal reasons or did not meet the inclusion/exclusion criteria. Fifty participants were randomized into water exercise or control groups. Seventy-two hours after the first sessions participants took part in the second study session (water exercise or control session).](image)
Experimental and control sessions

The experimental session (ES) lasted 45 minutes and consisted of a dynamic warm-up period (5 minutes), an active exercise period (35 minutes), and a cooldown period (5 minutes). It was a continuous session of water aerobic exercises such as flexion, extension, abduction, and adduction of upper and lower limbs. Heart rate (HR) was used to control the intensity of exercise as all participants wore heart monitors (Polar, RS 800 CX®, USA). The maximum heart rate (HRmax) was calculated according to the formula proposed by Kruehl et al. (30) for exercise in an aquatic environment: HR for exercise = % x (HRmax – ΔHR), where % is the intensity of exercise, HRmax is maximum heart rate (estimated by 220 – age), and ΔHR is the difference between resting HR out of pool and resting HR in the pool. The exercise intensities were 55%–60% HRmax during the warm-up period, 70%–75% HRmax during the active exercise period, and 55%–60% HRmax during the cooldown period (Table 1).

The control session (CS) lasted 45 minutes and was held in environment conditions similar to those of the experimental session. During this session, participants remained seated or standing as desired.

Blood pressure measurements

Blood pressure measurements were taken in a seated position using an internationally validated semi-automatic BP monitor (Omron 705-CP, Matsusaka, Japan) following the techniques as described in the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (1). In all sessions (control and experimental), they were taken at all times out of the water: before the study protocol sessions (pre-session), immediately after the sessions (minute 0), and at 10, 20, and 30 minutes after the session (minute 10, minute 20, and minute 30, respectively).

Statistical analysis

We performed the Shapiro–Wilk test to assess the normality of distribution of numerical data and the Student’s t-test to compare the main characteristics of the participants. To assess the effects of exercise on BP on two parameters (session and time) and session interaction (session*time), we used a generalized estimating equation (GEE) followed by Bonferroni and session interaction (session*time), we used a generalized effects of exercise on BP on two parameters (session and time).

Results

Sixty-three participants entered the study, but 13 were excluded from the analysis as they did not complete the entire protocol, totaling 50 participants (n = 50). Table 2 summarizes the main characteristics of the participants. We can see low variance and narrow confidence intervals suggesting homogeneity of the sample. In addition, resting BP measured during sample selection indicates that participants generally had an adequate BP control.

At the beginning of the protocol sessions heart rate was similar in both sessions (CS: 97.1 ± 8.9 vs. ES: 93.2 ± 10.7 bpm, p = 0.882). The same was seen for SBP (CS: 123.2 ± 2.4 vs. ES: 123.9 ± 2.3 mmHg, p = 0.759) and DBP (CS: 69.9 ± 1.4 vs. ES: 69.4 ± 1.5 mmHg, p = 0.703)—Figure 2.

At the end of the experimental session, there was a rise of 17.4 mmHg (14.3%, p < 0.001) in SBP as compared with CS (effect size 0.96). Similarly, DBP also increased compared to CS but this rise was of smaller magnitude 5.4 mmHg (7.8%, p < 0.001, effect size 0.60). Compared to CS, at 10 minutes after exercise, SBP and DBP declined by 7.5 mmHg (6.2%, p = 0.005, effect size 0.43) and 3.8 mmHg (5.5%, p = 0.013, effect size 0.40), respectively. At 20 minutes after exercise, SBP and DBP values were not statistically different in both sessions (SBP, effect size –0.01 and DBP, effect size 0.27), remaining comparable within 30 minutes after the experimental session (SBP, effect size –0.04 and DBP, effect size 0.25).

When BP values were analyzed within the same session, we found a rise in SBP (12.4%, p < 0.001) and DBP (7.3%, p < 0.001) at minute 0, compared to pre-exercise moment. At 10 minutes after exercise, SBP returned to pre-exercise levels (p = 0.144) and remained stable within 30 minutes after the experimental session. However, DBP remained higher than pre-exercise levels (pre-exercise: 69.2 vs. min 10: 73.1 mmHg, p = 0.011) returning to pre-exercise levels from 10 minutes to the end of the experiment.

Discussion

Our study focused on changes in BP immediately after a water aerobics session in hypertensive elderly women. SBP and DBP increased in response to water aerobic exercise, but it was a safe rise of small magnitude. Furthermore, BP levels returned to baseline (pre-exercise levels and compared to the control session) within 10–20 minutes after the exercise session. These data further support that PEH remains until 30 minutes after exercise and prescribing this modality/duration/intensity

| Table 1. Exercise session in the experimental protocol. |
|---------|--------|------------------|
| Session period | Exercise intensity | Heart rate (bpm) |
| Warm-up (5 min) | 55%–60% | 70.7 ± 2.2–78.3 ± 2.4 |
| Active aerobic exercise (35 min) | 70%–75% | 81.1 ± 3.0–93.5 ± 2.0 |
| Cooldown (5 min) | 55%–60% | 70.7 ± 2.2–78.3 ± 2.4 |

bpm, beats per minute
of exercise is safe for hypertensive elderly individuals (as BP changes were not risky). These findings are consistent with those from other studies conducted by our research group regarding the safety of prescribing for hypertensive elderly women exercise in an aquatic environment (29) and strength exercises (11) and with those from a systematic review by Santos et al. (22). None of these studies reported a marked decline in BP immediately after exercise.

Before the study sessions, BP levels were adequately controlled as recommended in the guidelines (1). BP was controlled with the use of pharmacological anti-hypertensive therapy and physical fitness as non-pharmacological therapy because both contribute to lower BP and reduce cardiovascular risks (1). Physical fitness is associated with chronic effects of exercise and helps control BP. These effects are associated with many forms of exercises (13, 32, 33) including water aerobics (33), as seen in our sample.

Changes in BP associated with water exercises especially water aerobic exercise may occur due to temperature changes (34), as an individual transitions from water to land. These changes are more significant in elderly people because of their slower metabolism resulting from low lean body mass (35). However, it is noteworthy that, though statistically significant, the rise in BP in our study was within the acceptable range for the participants’ age and medical condition (hypertension) (1). It may also be associated with the effects of anti-hypertensive medications taken by the study participants rather than their exercising in water environment. The interaction of anti-hypertensive medication with physical exercise can produce different responses depending on the type of medications used (36–38). Thus, anti-hypertensive medication might have affected BP response immediately after exercise and prevented extremely high BP levels as shown in other studies (39, 40).

Given that BP is physiologically a product of cardiac output and peripheral vascular resistance (41) and that in turn cardiac output is determined by the stroke volume and heart rate (41), any change in one or more of these parameters affects BP. The hydrostatic effect of immersion in water redirects ~700 mL of blood flow from the extremities to the thorax (24), which increases the right intraventricular pressure, stroke volume and cardiac output (23) and decreases heart rate reflexively. Studies have shown a reduction in heart rate during water exercise associated with water depth and temperature. Heithold et al. found heart rate to be 20–29 beats/min lower during water exercise than land exercise (42). Darby et al. found heart rate to be 7–13 beats/min lower in 30°C water (27). Conversely, when an individual gets out of water after body immersion, a portion of the cardiac output is redistributed to the extremities causing an increase in heart rate and peripheral vascular resistance and thermoregulation (because of the difference between water and environment temperatures) resulting in a rise in BP. Moreover, elderly women climbed up a ladder to get out of the pool. It is an additional physical exertion that might also have contributed to a rise in BP in the immediate recovery period (min 0). This may largely explain our finding of a rise in both SBP and DBP at the end of the water aerobic exercise session even after a cooldown period. Indeed, physical exertion during the water aerobic exercise session may by itself explain this rise in BP.

As for environment temperature, CS participants remained fully dressed out of the water and were protected against any potential body heat loss, which does not allow for major comparisons to be made. Heat loss in water occurs through the process of conduction, regulated and controlled by cutaneous vasomotor activity of the vascular network (43). The sympathetic nervous activity increases and promotes vasoconstriction resulting in BP increase (44), which may explain in part BP responses at least during the early recovery period after water exercise. To maintain the elderly women in the CS in water without exercising would be not feasible in our study because they would lose body heat more rapidly (45).

When we examined BP levels at 10 minutes after exercise, SBP remained higher when compared to CS, but not when compared to baseline (pre-exercise) levels within the same session. This finding can be explained by a slight though not statistically significant decline in SBP in CS at 10 minutes (Figure 2). In turn, DBP remained higher when compared to both CS and pre-exercise levels. Our data at 10 minutes after exercise suggest that the regulatory mechanisms affecting SBP compared to DBP are more sensitive to environmental changes as reported in the literature (46). At 20 and 30
minutes after exercise, both SBP and DBP returned to baseline levels. Thus, BP levels seem to return to baseline within 10–15 minutes after a moderate-intensity water aerobic exercise session in hypertensive elderly women considering all physiological adjustments of different environments (in and out of water), as previously reported in other studies of our research group (29).

In contrast, we did not observe PEH during the times studied as reported in other studies (29, 46). The hypotensive effect immediately after an exercise session is a safety concern due to the risk of syncope. The phenomenon may be caused by physiological regulation of the cardiovascular system while an individual transitions to a different environment (in and out of the water), and unlike PEH it occurs 30 minutes after exercise. This is corroborated by other studies (29, 46) that reported this same effect at 30, 60 minutes and 24 hours after exercise.

The results of our study show that water aerobic exercise in well-controlled hypertensive elderly participants was hemodynamically safe and did not bring about an unfavorable rise in BP levels, which is quite significant to this population. However, it should be noted that aerobic exercise training for hypertensive individuals is a first-line non-pharmacological strategy (10, 47–49), followed by concurrent and/or strength training (50–52). Water exercise as a strategy for hypertension treatment is now better understood (46) and our study can provide valuable input on the post-exercise safety of this exercise modality.

Study limitations

The main limitation of this study is the conduction in a non-laboratory setting making it difficult to control some environmental variables. However, it is important to mention that the study was performed under the same conditions as found in regular gyms and aquatic centers attended by this elderly population and in a scenario that is very close to that of the daily work of therapists and physical educators and trainers.

Conclusion

A significant increase in blood pressure was found immediately after a water aerobics session but it was a safe rise of small magnitude. BP returned to baseline within 10–20 minutes and remained stable until 30 minutes after exercise. These data further support the safe prescription of this form of exercise to hypertensive patients in general. Water aerobic exercise for hypertensive elderly people can help improve physical fitness and provide greater independence and autonomy, reduced risk of falls, and other benefits of water exercise.

Acknowledgment

The authors thank Carla Finger for her review of the English language and thank Coordination for the Improvement of Higher Education Personnel (CAPES) by the Raphael M Cunha, process n. BEX 8048/14-2.

Declaration of interest

The authors report no conflicts of interest.

References