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ABSTRACT

Agricultural systems are inherently vulnerable to climate variability and climate change is
expected to increase this vulnerabilityarious studies warn the anthropogedroren global
warming with elevated C{xoncentratiorand altered regional precipitan patternareexpected

to negatively affecktocal crop productivity and thus exacerbate food insecurities in many regions
worldwide,particularly for Mediterranean basiMediterranean basin is one of the most prominent
cli mate c¢hange ndoingpdnd pragectéd clthioges int both dimate means and
variabilities comprising aobust climate change signal af overallwarming and drying trend,
accompanied bynore frequent occurrence afevere drought and extreme high temperatures.
Specifically, heseprojectedchanges arexpected to benore pronounced in southern Eurppe
such as irPortugal, where annual mean temperahasincreased at a rate more than double the
global warming rate in the past decades, along th#tobservedecreaes inpredpitation andits
enhanced inteannual variability.

Therefore, it is urgently needed to carry out the assessment of climate charages iiop
agricultural production and explore suitalbl@aptation strategies, whasthe related studies so

far remainscarce in Portugal. @hadchosen three important cropping systems for Portuguese
agriculturej.e.irrigated maize, rainfed wheat and perenfoehgegrasslandwhile representative
study sites in their current principal growing regions were identdgmbrdingly The overall
methodology follows combined use of climate and crop models, where the sgtiathgcaled
biascorrectedclimate change projectioriom climate modelsvere utilized to drive crop model
simulationsat study sitesyhich were priorcalibrated using local observed weather, soil and
management dat&or employed procedsased crop models, both STICS and AquaCrop were
applied for themrigated maize productiorwhereas the other two cropping systems were only
analyzed using STICS modét was noteworthyime major strength fromuerent studies consisted

in, on top of projected mean climate changes, we had consistently incorporated the effects of
potential changes in climate variability and its associated extweaher events into the
simulatedmpacts (e.g. yield changef®r a more reliable assessment.

Theresults indicatéhreatsand risks of future climatehangeare substantially high for agulture
production in Portugal. Becauaa overall negativelimatechangampactfrom the mid until the

end of 2% centuryis obtained for allthree important cropping systemsprresponding to

moderateto-severeyield losseswith increased inteannual variabilitiesYield losses are greater




in magnitude with higher yedo-year variabiliy, in the second half of the century than in the first
half, and in a high emission pathway than in a low emission scenario. TAfer@i2ation effect

is unlikely to canpensate these yield reductions, where it brings more yield increment for C3
speciegwheat andlefinedgrass mixture) than for C4 (maiz&pecifically, majority of negative
impacts arelerived fromtheshortened growth duration for irrigated maize under a warmer climate,
and from intensified drought and heat stresses during a semstioel (grainfilling) for rainfed
wheat or during an unfavorable summer period for perennial gras$laese aspects correspond

to the vulnerabilities of cropping systems facing climate chamgeinteresting to note though
higher temperature isleaty detrimental to irrigated maize productiah facilitates advanced
phenology of perennial grass shifting towards the favorable cool and wet winter period for
enhanced production or it may also hedmfed wheat crop to mature earlieraeoid excessive
terminal stresses. Yahe magnitude of climate change impacts on agricultural productivity
remains uncertajrvarying with analyzed cropping systerttgations and management practices,
applied climate models (including downscaling approaches) and adelsn(including partial or

full calibration), selected time periods and emission pathways.

Adaptation strategies provide potential to mitigate these negative impadtdevelopment of
appropriate and riskocused adaptation policy should address previadsiytified vulnerabilities

and prioritize available optiorfer an integrated and comprehensive stratégy.annual cereal
crops,increased irrigatioramountat variouslevels hasbeen firstly tested for irrigated maize
cropping systemunder cimate changetaking into accountrop water demand and projected
seasonal rainfalflistribution Though increased irrigation is able to mitigate yield reductions and
maintain curent yield levels, crop WUE considehalileclinesas a result of diminished yield
responsiveness seasonal water input with shorter growth duratiarview ofincreasing risks of
water scarcity and decreasing portiorireEhwater available for agriculte in the Mediterraraan

basin solely ncreased irrigation supply mighbt be a feasible strategy, wherghs adaptive
response for maize should be prioritized to promote w&teing techniques and maximize WUE
for stabilizing yield (marginalreductionsallowed) Combining optimized irrigation stratede.g.
deficit irrigation) and installedfficientfacilities (e.g.drip irrigation systemwith other adaptation
options, includingntroducing longer cycle cultivars and advanced sowing da=sinterbalance

theshortened growing duratipis recommend, bwghould bdurther rigorously examined




For the rainfed wheat cropping system, adaptation priority should address the exacerbated risks of
drought and heat stresses during the sensitittesis andgrainHilling periods. The terminaktress
escaping strategy is proposed by firstly teséady flowering cultivarsglso known ashortcycle
genotypes)where thdradeoff between lower risk of exposure to terminal stress and higher risk
of reduced yield potential tends to be positive, leading to net yield &ilhsthis option needs to

be combined with other adaptation opportunities including early sowingvdagat cultivars with
less or norernalization requirement (e.g. using spring wheat) and supplementary irrigation during
the sensitive stageEarly sowing is expected to achieve the same stress esogpaigby
anticipation of growth cycleBut winter waming during early sowing wirav could potentially
slow vernalization fulfillment, with limited benefits to advance the susildestagesUsingearly
flowering spring wheat cultivar@§he ealinessthreshold musbe carefully definedjhuscan help
advocating early sowingractice that potentiallymake use of more autumnwinter rainfall.
Neverthelessthe proposed stress escaping strategy is found tmin@arativelymore useful to
avoid enhanced terminal heat stress f¥@&over a shorperiod) than prolongegrminaldrought
stress, where the latter can be alleviated ofttimized supplementafrigation.

Adaptation strategfor perennial forage grasslastould take advantage of opportunity and tackle
the challengeboth arising from climate chang&enefiting from advanced phenolotywards
winter and early springvith alleviated cold stress and enriched ambient €C@hcentration
adaptation measwseshould focus on maximizingrowth potential duringhis favorable perid.
These includetimized resource usédlanced earlfertilization strategywith limited N leaching
andusinggrasslegume mixturdor flexible forage utilization antletter exploing the stimulated

CO: responsiveness$n contrastto cope withthe challengeof exacerbated risks gummerheat

and droughtstressesfuture breeding prograsnshould ensure a diversificatiofintra- and
interspecific variationsdf available germplasms in phenolo@y new seasonal climate pattern)
heat tokrance and ehydration tolerancéor principd forage speciesSpecifically, continuous
improvement of drought persistence and summer dormancystnait$éd gain morenportance fo
rainfed Mediterranean grasslamdioreover, these drought survival traits should begrdated into
plant materials with deeper root system to enhance watekeu(gay. more of tall fescue), but it
may raise forage quality issues that remain unasseéBssidles, walso hypothesize it igossible

to adapt to summer drought from a management perspestilieut the neals to improve and

diversify the species and variety mixturdhe findings suggesthat provided minimum soil
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moisture is guaraeed bysupplementalrrigation to ensure adequate droughirvival rateand

standing densitybreeding efforts should baore motivatedowards heat tolerancparticularly

in southern PortugaMeanwhile, his measure isikely to result ina considerablancrease in
irrigation needrenderinga similar waterrestriction issudacingirrigated maize

Cropyield projections and explored adaptation strategies are essential to asseg®itafood
securityprospects and provide crucial information to support planning and implementing suitable
adaptation strategies for farmers and policymakers in Portugal and in Mediterranean basin that is
known to be susceptible to climate change. Despite the uncertamties magnitude of yield
impacts and quantitative effectiveness of adaptations, the proposed and recommended adaptation
strategies can represent promising opportunities to maiotaincrease production in future
climate while minimize environment impactuture research efforts should be directed towards
using multtmodel ensembles (both crop and climate models) to quantify the uncertainties and
make the estimations more robust and reliable, but sustained and extensive international
cooperation is requad. Moreover, stronger link of field experimentation with crop modelling is
essential for a more mechanistic understanding of crop response to climate change, as well as the
integration of crop model into economic modelling for complex flvel assessmenhese shall

all contribute to appropriate manage the clinraties and comprehensively improve the resitie

of cropping system

Keywords: Cropping systems, Crop modelling, Climate change projections, Mediterranean

conditions, Impact and vulnerabyliassessments, Adaptation explorations.
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RESUMO

Os sistemas agricolas sao inerentemente vulnerawasiabilidade climética e espesa que a
mudanca climética aumente essa vulnerabilidade. Véarios estudos glaram facto de que
aguecimento globatle causas antropogénicaselevada concentraQ atmosféricade CQ e
padréegle precipitacao regional alteraddeverdafetar negativamente aqulutividade local das
culturas e, assim, exacerbar insegurancas alimentares em muitas regides do mundo,
particularmente na bacia do Mediterraneo. A baciddditerraneo é um dos mais proeminentes
"hotspots” daslteracdeglimaticas devidoasmudancaglimaticasem curso grojetadastanto

na médiacomona variabilidadecompreendendo um sinal robusto de mudancas clim&tcas

uma tendéncia geral de agumento esecuraacompanhadaela ocorréncia mais freqate de

secd severa ou extrema e temperaturasnuito altas. Especificamente, esp&& que estas
mudancas projetadas sejam mais pronunciadas no sul da Europa, como em Portugal, onde a
temperatura méd anual aumentou a uma tad@maisdo dobro da taxa de aguecimento global

nas Ultimas décadas, juntamente com os decréscimos observados na precipitacdo e maior
variabilidade interanual.

Por conseguinte, € necesséi@liaros impactos das alterac6emticas na producao agricola e
explorar estratégias de adaptacdo adequadas, enquanto osefstuddssité agora permanecem
escassos em Portugal. Escolhemos trés importantes sistemas de cultivo gogieulaura
portuguesa, nomeadamewtailho de re@dio trigo de sequeiro e pastagens forrageiras perenes,
sendoos locais de estudescolhidogepresentativodassuas principais regides de crescimento. A
metodologia geral segue o uso combinado de modelobma e de culturas, onde as projecées
climaticasde elevada resolucéo espacialoerigidasde viés foramutilizadas como forcamentos
dassimula¢gdes de modelos de cultureeydo sido estegreviamente calibrados usando dados
meteoroldgicos, de solo e geticasagricoladocais Para a producéo de millde regadidoram
utilizados osnodelos de culturadindmicosSTICSe AguaCrop, enquanto os outros dois sistemas

de cultivo foram analisad@penas com o modelo STIGSimportantesalientarqueos resultados

do presente estudocorporaamnos impactos simuladas deitos das alteracdes ndo apenas na
meédia, mas também nariabilidade climatica e seus extrem@or exemplo, mudancas de
producad, o que permitemaavaliacdanais rigorosaOs resultados indicagueasameacas es

riscos daslteracbeslimaticas sdelevadogara aproducdo agricola em Portugal, dado gae
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verificaum impacto global negativo para os trés sistemas de cakiwoladoscorrespondendo a
perdas de rendimento moderadas a sevayaselevadavariabilidades inteanuais. As perdas de
rendimento sdo maioresom maior variabilidadeteranuaiha segunda metade do século do que
na primeira metades para unmcenariode emissaelevadado quenum cenario de baixa emisséo.

E improvavelque o efeito da fertilizagdo com €@ompense eas reducdes de rendimentom

um maior rendimento para as espécies C3 (trigoastagemndo que para C4 (milho). Mais
especificamente, a maioria dos impactos negatirestilta do encurtamentdo periodo @
crescimento do milhde regadisob um clima mia quente, e da intensificacéo stoessenidrico

e térmico duanteo periodo sensivel para o trigo de sequeiro ou aaiastagens perenes. Esses
aspeos correspondem as vulnerabilidades dos sistemadtil® ¢aceasalteracdeslimaticas. E
interessante notar que temperaturas mais altas sédo claramente prejudiciais a producaaéee milho
regadig masfacilitandoa antecipagcédo danologiadas pastagenserens, melhorando a producéo
durantepara o perioddavoravel de inverndrescoe humido. Estas novas condicfes também
podam ajudaro trigo de sequeiro a amadurecer mais ¢edldando valoreexcessive destresse.

No entanto, a magnitude dos impactos da mudanca climatica na produtividade agricolaggermane
incerta,dependenddo sistema de cultivo, localpraticasulturais modelos climéticos aplicados
(incluindo abordagens de downscaling) e modelos de culturas (incluindo calibracdo parcial ou
total), periodos de tempo selecionadagmariosde emissao.

As estratégias de adaptacdo fornecem potencial pdargamesses impactos negativas.
desenvolvimento denedidasde adaptacdo apropriada focada no risco devder em contas
vulnerabilidades previamente identificadas e priorizar as opg§iesndveis para uma estratégia
integrada e abrangente. Para as culturas anuais de cereais, o aloserdtumes de regam

varios niveis foi primeiramente testado para o sistema de cultivo deduillegadieem cenarios

de alteracGeslimaticas, tendo enconsideracdas necessidade® agua daulturae a projecao

da distribuicdo sazonal darecipitacdo Embora o aumento d@&gaseja capaz de mitigar as
reducdes de rendimento e manter os nigeiais, a WUE da cultuidecresceonsideravelmente
como resliado damenorrespostao fornecimentale agualevido ao encurtamento da épaea
crescimentoDevido ao risco crescentle escassez de aguareducao da agua disponivel para a
agricultura na bacia do Mediterraneo, o aumentoegarso a regpode ndo & uma estratégia
vidvel, devadoser priorizadaestratégiasle gestdo de dgua e maximizacadMdE com vista a

estabilizacao as rendimentos (redugdes marginais permitidas). Combinar estsatégiegacao
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otimizada (por exemplo, irrigacéo deficita)i@ instalacdes eficientes (por exemplo, sistema de
rega gota a gojacom outras opgdes de adaptacao, incluindo a introducéariéeladesle ciclo

mais longo e datas dementeiranais precoces de fornamcontrabalancas encurtamento do
periodo derescimento é recomendéavera o sistema de cultivo tigo de sequeiro, a prioridade

de adaptacdo deve abordar os riscos exacerbados séres®® e hidricodurante os periodos
sensiveis de antese e enchimento de grdos. A estrpéégiavitao stresse terminal é proposta
testando primeiramenteariedadegsle floracdo precoce (também conhecidas como gendtipos de
ciclo curto), onde o tradeff entre menor risco de exposicéo stoesse terminal e maior risco de
reducdo do potencial produtivo tende a pasitivo, levando a ganhos liquidos de rendimento.
Ainda assim, esta opc¢ao precisa ser combinada com estragegiasle adaptacao, incluindo a

data de semeadura antecipada, cultivares de trigo com menor ou nenhum requisito de vernalizag&o
(por exemplpusando trigo de primavera) e irrigacdo suplementar durgeidario maisensivel.

Uma sementeira mais precoce devera permitir evitar o stresse terminal por antecipacéo do ciclo de
crescimento. No entanto, 0 aquecimento de inverno durante a janetastigesea precoce podera
potencialmente abrandar a vernalizacdo, com beneficios limitados no avanco das fases suscetiveis.
A utilizacadode variedadegle trigo de primavera com floracdo precoce (o limiar de antecipagao
deve ser cuidadosamente definidovogam sementeira precoce, o que perraitatilizacaoda
precipitacdode outoneinverno. No entanto, a estratégia proposta pandar o stresse é
comparatiamente mais Util para evitar o aumentosti@sse térmico terminal (> ¥8por um

periodo curto) do que stresse prolongado por seca, onde este Ultimo pode ser aliviadegam
suplementar otimizadaA estratégia de adaptacdo para pastagens forrageiras perenes deve
aproveitar a oportunidade e enfrentar o desafio, ambos decorrentes da mudanca climéatica.
Beneficiandese de fenologia avancada em relacdo ao inverno e inicio da prignas@aranenor

stresse por frio enaior concentraca@tmosféricade CQ, as medidas de adaptacdo dexsam
concentrar na maximizacdo do potencial de crescimento durante este favindoel. Estes
incluem o uso otimizado de recursos (estratbglancadale fertilizagdo precoce colimitacéo
dalixiviacdo de N) e o uso de mistura de gramineas e legeainpara utilizacao de forragens
flexiveis e melhor exploragdo da resposta egtada de C@ Em contraste, para lidar com o
desafio dos riscos exacerbados de calor no verdtresse hidrico, futuros programas de
melhoramento devem garantir uma diversificacdo (intra e wdaeeta) dos germoplasmas

disponiveis em fenologia (ajusienovo padréo climatico sazonal), tolerancia ao calor e tolerancia
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a desidratacdo para espécies forrageCascretamentea melhoria continua das caracteristicas

de persisténciaseca e de dorméncia de verdo aeganhar mais importancia para as pastag
mediterraneas de sequeiro. Além dissstas caracteristicas de sobrevivé@cgeca devem ser
integrados em materiai®getaiscom sistema radicular mais profundo para aumentar a absorgéo
de agua (por exemplo, festusrisalta), mas isso podeesultar em problemas de qualidade da
forragem queaindapermanecenpor avaliacdo. Além disso, também formulamos a hipotese de
gue é possivel adaptacaa secale verdo a partir de uma perspade gestd@em a necessidade

de melhorar e diversificar a stura de espécies e variedades. Os resultados sugerem que, desde
gue ahumidade minima do solo seja garantida pefmsuplementar para garantir a taxa adequada

de sobrevivéncia a seca e a densidadplal®a os esforcos de melhoramento devem ser mais
mativados para a tolerancia ao calor, particularmente no sul de PoAogalesmo tempoesta
medida provavelmente resultamam aumento consideravel na necessidadegg tornandese

num problema similar de restricdo de agua enfrentado pelo delhegdio.

As projecOes deolheirae as estratégias de adaptacdo exploradas sé@ocess para avaliar as
perspévas regionais de segurancga alimentar e fornecer informagdes cruciais para apoiar o
planeamentoe a implementacdo de estratégias adequadas déagitappara agricultores e
decisoregoliticosem Portugal e na bacia do Mediterraneo. Apesar das incertezas na magnitude
dos impactosa producédo enaeficacia quantitativa das adaptacdes, as estratégias de adaptacéo
propostas e recomendadas podem reptaseportunidades promissoras para manter ou aumentar

a producao no clima futuro, minimizando mesmo tempos impactos ambientais. Esfor¢cos de
investigacaduturos devem ser direcionados para o userdembles dmodelos (tanto modelos
agricolas quantalimaticos) paramelhor quantificar as incertezas e tornar as estimativais
robustas e confiaveis. Ndo obstagtagcessaria uma cooperacgao internaciasibe sustentavel.

Além disso,uma forte ligacdo entre @&xperimentacdo de camgoamodelacaade culturas é
essencial para uma compreensdo mais mecanicista da resposta da caileracasslimaticas,

bem como a integracdo simodels de culturana modelacdo ecomdica. Todos estes devem
contribuir para gerir adequadamente os riscos climaticosiigorar a resiliéncia dsistema de

cultivo.

Palavra Chave Sistemas de cultivo, Modelacao de culturasjeédes de mudancas climaticas,
Condicdes do Mediterraneoyaliacdesde impacto e vulnerabilidade, Estratéglasadaptacao.
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1.1 Contextintroduction and importance of problems

One of the millennium development goals established by Food Agricultural Organization (FAO)
is to eradicate extreme poverty ahdnger asthe number of hungry people still remains
unacceptably high despite recent effortgestrictthis figure below 1 billionUNICEF, 2004.

Even if hunger is primarily a question of insufficient access to food due to poverty, there is a global
consensus thatraop production needs to increasensiderablyy about 60%n the middle of 2%
century to satisfy th&bod demand for agricultural productiue topopulation and consumption
growth, economic development and rapid urbanizat{@&exandratos and Bruinsma, 2012

Godfray et al., 2010 As in the past, crop productioimcreaseswere mainly achieved by

productivity gains with moderatchanges in cropping areas or livestoaknbergGodfray et al.,
2010. For instance, crop yield improvement should accountiae than 80% dbtal crop output
increase in the next decade, according to OECD/FAO agricultural outlooki ZIP%H

(OECD/FAOQ, 2018 However, in the context dbreseen globatlimate changé theupcoming

decades, i.anthropogeniarivengreenhouse gas emissions véatavated atmospheric G@vel,

rising temperature, altered local precipitation pat{#CC, 2013, it is becoming increasingly

difficult to maintain or increaserop yields withoutanychanges in current cropping systems.
A robust and coherent global pattern is discernibldimfate change impacts on crop productivity
that cauld have consequensen two dimensions ofood security, i.e.availability and stability

(Wheeler and von Braun, 2012 comprehensive metanalysisof globalclimate changempacts

indicateda great risk ofmeanyield reductiongor staple cropsnfaize, wheat and rica) tropical
and temperatregions by projectednoderate warmingf2 , being more consistent froa®30s

onwardsup to 25% of aggregated yield losg€ballinor et al., 201Y Besidesdecreasem mean

yields, increasethter-annualyield variabilities associateavith increased climate variabilities and
extreme evenisire expectetb negatively affect future yeao-year stability of food crop supply

amplifying marketing price and fluctuatio(®sseng et al., 201<€hallinoret al., 2013 A notable

example was th2003summer heat wayeharacterizedby an increase in mean temperature and
much larger temperature variabilityhich considerablyreducedcereal production bgbout23
million tons in Europgwith hugeeconomiadmpacts on the food supply chaif&char et al., 2004

Thissituationconcretelydemonstrated hoslimatevariability and associated extreme evemgsy

havesignificant impact®n agricultureproduction
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1.2Vulnerability and research gaps in Portugal

It is likely that climate change and variability have more impactscaypping systes and
exacerbategfood insecurities incurrent vulnerable regionsuch asthe Mediterranean region
(Prosperi e al., 2014. Projections from a wide range of global and regional climate models

confirm a robust climate change signal of an overall warming and drying trenthdor
Mediterranean basin, accompanied by greater frequency and intensity of extremdé@ioegis

and Lionello,200Despite being identifiedspaset @nfeorfclih

change impact¢Giorgi and Lionello, 2008 relatively fewer studieshave been conducted to

evaluateclimate change impacts ithe Mediterranean region compared tioe counterpart
temperataegion Studies are evemorescarcefor Portugal, a southern European countithin
Mediterranean basjwhich currently call$or the strong needs foesearclassessmentsclimate
change impacts anrisks to identify vulnerabilitiesof various agreecosystemsndexploration
of policy guidelines fomplanning efficient, integrated and targelaptatiorstrategiegCarvalho et

al., 2014. Resultantly, the findings obtained are not only relevant in Portugal, but also have

broader implications for regions with similar Mediterranégpe climates.
Scenarios, Impacts and Adaptation measures (SIANp://cciam.fc.ul.pt/pri/sian)/ was a

pioneering project for climate change impact assessments in Portugal ovie2d@g®antos and

Miranda, 20@6). It revealed that future climate changey reduce yields of rainfed wheat and

irrigated maize in Portuguese major producing regions by 25% and 29% respectively, highlighting
the need fordevelopmentand planningof adaptation strategie®.g. early sowing dates and

introducing cultivars with better heat and drought tolera(@a)tos and Miranda, 200@&lowever,

one majoiimitation from the SIAM projectarises from thedctthattheir climate projections are
directly based on the coarserizontal resolutiorf200r 300 km)of Global Climate Mode{GCM)

simulationsthat arenormally notappropriate for direct use in impact models, i.e. crop madels
typically operated at ha scalgYang et al., 2019Yang et al., 2010 Moreover, the trajectories

of future Greenhouse Gas (GHG) emissiare dependerdn demographic changes, technologic
trends, sociaéconomic deelopment and policy influences, thus addingartainty to theclimate
change projectionfAsseng et al., 20)3Climate change scenarios adopted by SIAM are based

on limited ses$ of socialeconomic scenario&Carvalho et al., 20t45antos and Miranda, 20006

such a®\1 andA1B fromtheSpecial Report on Emission Scenarios (SR&Bgrethese scenarios

do not include possible future policy interventions and thus not encompass full ranges of potential
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outcomegNakicenovic et al., 2000Besidesthe crop models are implemented without adequate

calibrations and performanavaluations, as well as lack of appropriately incorporating local

agronomic characteristigSantos and Miranda, 2008Moreover quantitative effectiveness of
adaptation strategiesexplored has not been evaluated in their simulatioosly providing
gualitative suggestionbased on interpretations pfojected yield impacts that are inherently
uncertain(Santos and Minmada, 200%.

1.3Framework of PhD program

In the framework of a novel doctoral programthe field of agriculture sciend@gricultural
Production Chains from fork to farm AgriChaing, my PhD researctvascarried out to extend

and mproveestimations of agricultural impacts of and adaptation responses to climate,change
attempting to address the challenge issues and fill the research gaps in charage risk
assessmerstudies in Portugall heresultingdevelopment of desion support sstems (DSSWill

allow for planning guiding and implementingclimate changeadaptationstrategiesfor the
Portuguese agriculture, takimgo accounpotentialclimate variability and change scenaridbis

approach iglainly justified within the framewt of the AgriChains doctoral prograrn fact, it
corresponds to one of its main topics (cf. a
adaptatiome asur eso. Mor eover , Ilinformationtaarmareadd polioy pr o v i

makersjn order to bridgescientific knowledge to real economy.

1.4 Overall methodologies
We havefirstly identified three crop production systems that are socially, culturally and
economically important in Portugal, namely irrigated maize, perennial grasslarairdad wheat

crops which are chosen dlse subjects irour climate impact studiegrang et al., 201,8Yang et

al., 2019 Yang et al., 201 The correspondingepresentative study sites in the major producing

regions & Portugal havébeen identified The overall methodologidsllow the combined use of
climate models and crop mode@Glimate models generatewide range of phusible projections
of future climate conditionat studysites,atwhich crop responses are simulateddrgces-based
crop modelsresulting inthevariaions and changes ohportant agronomic outputs (e.g. growth
duration,grain yield, aerial biomass) relative to the reference (baseline) p&hede variations

and changes arprimarily interpreted as ingrcts of climate changdor which quantitative

5
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effectiveness of fieldevel adptation strategiesre proposed and testday modifying cultivar
traits or adjusting management inputs thatlkeot available as an integral parft crop models

(Challinor et al., 2014Ruiz-Ramos et al., 2038 Climate models are appropriate tools for

analyzing climate changeyhile crop growth and yield formation processes gimulated by
dynamic crop models thatuantify the impacts of comgx interactions among Genotypgs

Managemenk Environment (Gx M x E) on a dailytime-step(Asseng et al., 2034Challinor et

al., 2014. Moreover,use of crop models allows to isoldte impacts of climatic and neslimatic

factors on crop yieldw/hile keep other factorsonstantwhich ae difficult to determinen field
experiment ofong-term yield trends, e.grendof time-series regionafield statisticss aresult of
numerousnterplayingfactors thus being difficult to isolate their individuabntributionto yield,

such as the case wmperaturer precipitation(Asseng et al., 2011 obell et al., 200h

Over the course of my PhD, | mainly foeason usingthe STICS crop model, whichas been
developed byNRA (French National Institute for Agricultural Researsirjce 199Brisson et
al., 2003 Brisson et al., 20Q9Brisson et al., 1998risson et al., 2002 The model is inially

parameterized for cereal crogsich as maize and whéBtisson et al., 1998risson et al., 2002

butlater being adapted to various other crops, such as perennial gr§Bslgatiet al., 2009The

robustness of modekith its standard set of parameters, has been sufficiently tested and examined,
showing satifactory performance for a wide range of aglimatic conditions, including

situations under Mediterranedype climate(Coucheney et al., 2015AquaCrop, a watedriven

crop model developed by FA@Gteduto et al., 2009which is relevant for studying the relations

between crop yield and water productivity under climate change, is also employed in my thesis

works for one occasiofYang et al.2017).

In Chapter 2, we will provide stateof-the-art literature reviews on modelling climate change
impacts on crop growth and vyield, including detailed information on the smoabmic
importance of these identifiedroduction systems in Portugal, as well as current state of
knowledge concerning climate change projections and muassd evaluatioof impactsand
adaptationoptions (including a brief overview othe STICS crop model)in short projected
climate chang impacts on crogrowth and productivity, based on the combined use of crop and
climate modelsare known to vary witldifferent locations and regions, characteristicsedécted
cropping systems3>HG emission scenarios and future time periods ch@&sseng et al., 2013
Challinor et al., 2014lIslam et al., 2012Rétter et al., 201,8Wang et al., 2018 Therefore,
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assessments of climate change impacts and exploration of adaptation strategies should be carried
out in aspecified local contex Appropriate assimilations of locatop growing conditions into

crop modelsincluding observed climate data, dominant soil types and representative farming
practices(e.g. common cultivars, planting dates, resource investmamizng otherks before

feeding climate projections datare essentidbr a more relevant and reliable analysis

1.5 Objectives and tasks

The overall objectivef my PhDthesisresearchare 1) to explore food security prospects for
farmers andstakeholders by providingrucial information and insighten yield projections of
three main crop production systems in Portugal (i.e. irrigated graine,rainfed winter wheat
andperennial grassland?) to aid indeveloping, planning and enacticlgnate change adaptation
strategiedor Portuguesenajor producing regionsf these cropshased on rigorously examined
various levels of adaptation options in the modelling pras8kto bring added valu® enhance

the resilience of agrfood chainavherekeyinputsare availabléo bio-economir farming system
models for more integrateahd comprehensivesk assessment and manageménto improve

our understandirgyof crop physiological and growth respotselimate change

In line with thesebjectivesthefollowing research tasks have been carried out:

1) Analysisof performance of two dynamic crop models (STICS and AquaCrop) in simulating
irrigated maize yields at regional scale by comparing to statisticimldtee Portuguese major
producng region (RibatejojChapter 3).

2) Analysisof theresponse of several important outputshafirrigated maize system (i.gield,
growth duration, seasonal water upand water use efficiengyo projectclimate changean
Ribatejq based on theprevioustwo crop modelsand propose irrigatichased adaptation
strategiesby analyzing wateyield relations under different climate change sceng@dspter

3).

3) Evaluation of STICS model performance in simulating local grain yields of wintet,wisazgy
5-year published yield data at one representative site within a major wheat growing region in
Portugal (Alentejo)Chapter 4).

4) Assessment of winter wheat yield response to projected climate change using STICS model,

and estimatehe quantitative effectiveness of using gdtbwering cultivars and earlgowing
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dates apotentially suitable regionaldaptation optionfor wheat production in Alentej@&hapter
4).

5) Comparison oforage Dry Matter Yield (DMY) of Mediterranean pargal grasslandimulated
by STICSwith observations, and estimapotential climate changanpacts on DMY under
contrastinggrasslangyrowth duation and irrigation water supp{€hapter 5).

6) Explorations of recommendable adaptive respomgdkle impacts offoreseeableenhanced
extreme weather evenits summer (Juridugust)derivedfrom climate change projectionisy
separating the effects of severe water defamit<DMY from effectsof heat stressising STICS
modelat grasslandaites throughout Rtugal (Chapter 5).

The currentPhD thesis is organized in 7 chaptexith Chapter 6 of General Dscussion and
Chapter 7 of Concluding Remarks and Futudaitlooks A diagramoverviewis providedbelow
in Fig. 1.

Chapter 1: General Introduction
Themematic context, objectives and
tasks

}

Integrated use of calibrated
IChapter 2: State-of-the-art || crop models with fine-
resolution climate models

=
| |
Chapter 3: Chapter 4: Chapter 5:
Irrigated maize Rainfed wheat Perennial grassland
system system system

Impact estimations and adaptation explorations |

reducing climate change related risks on important

An exercise of risk assessment for managing and
\ agricultural crops in Portugal

Chapter 7:
Conclusion remarks,
Future outlooks

Chapter 6:
General
discussions

Figure 1. An overview of present Phibesis structure
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2.1 Crop production and challenge under climatehange

2.1.1 Importance of crop production in Portugal
TheEuropearUnionis one of the world’s largest and most productive supplier for food, standing
for 20% of global cereal productipwith crop productivity 60% higher thahe world average

(Olesen et al., 20)1In Portugalwhere the agricultural area represents about 40% of the whole

territory, with a remarkable economical volume (approximate 4,640 million euros), the inter
annual crop yield variability has played a determinant role on food priceemndity as well as
land use competitions with ndood sectorgCharlier and de Gasperi, 2007

Fodder crop production (including perennial and annual grassland) stands for the largest
proportion of totakrop production in PortugaFi{g. 1). There are around.2 million hectares of
grassland in Portugahccounting for 8% of territory area, withts main distribution in the
northwest, center and south regigdsngen et al., 20)1In the northwest, large areas are devoted

to intensive dairy farms, which contributes to more than 50% of national milk production

(Trindade, 201p Success of these dairy farms are largely dependent esu$fadient forage

supply from nongyrazing permanent grasslaifindade, 2015 In the center region, grassland

utilization generally focuses ontegrated livestock production, e.g.Quinta da Franca covering

around 500 ha, in which irrigated pastureypdesan essential forage sourn@ereira et al., 2004

For the southwhere grassland is the main vegetation cover,-satiralgrassland with higher

Proportion of important crop production in Portugal

Potato (6%)

Rice (2%)

Figure 1 Proportion of various crop production systems in Port(idst, 2015.
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conservation valuéAires et al., 2008 is critical to sustain extensive animal grazibgt being

gradually replaced by sown biodiverse permanent pagileeeira et al., 2001 Given the

important role of forage production, climate condisanaye x ert strong contro
livelihood. For instance, in the dry year of 268305, animal stocking rate in several pasture farms

significantly decreased as a result of drought induced forage defigi€éapieira et al., 2001

Perennial crops ar@herenly vulnerable to climate changeswing to the allaroundtheyear
exposure tdluctuationsin local weatheconditionsthatalsovary from place to place. Evaluations
of climate change impacts and development of adaptation measures for penassiaing are
mostneeded.

It is also evidentrom Fig. 1that maizg§Zea mays 1) is the most important cereal crop in Portugal
grown for grain and silage production. The most important growing area is loc#tedRibatejo
region, having approximately-30,000 ha of maize fields (ca. 35% of the total maize area in

Portugal)(Yang et al., 201y The Ribatejo climate, characterized by very dry summers, does not

naturally provide optimal conditions for a higvaterdemanding crop like maize, with a sprng
summer growing season. Hence, almost all of the maize cultivated area (94%) is currently irrigated
(INE, 20193. Within the regionthe Sorraia Valleyis another example of intensive irrigated maize

growing area, in which irrigated maize cultivation area accountbiout25.6 44.9%of the total

area irrigatedluring 2004 2014(Ramos et al., 20)7In a larger contextheagricultual sector is

by far the largest water consumer, where approximately 80% of water consumption has been
allocated to irrigation in the Mediterranean reg{émnaus, 2003 However, water availability for

agricultual purposes is rapidly declining due to increasing competition fronfawhsectaos, as

well as driven by projected warming and drying tref@sallinor et al., 2014Giorgi and Lionello,
2008 Hamdy et al., 1995Iglesias et al., 2007 Given the fact that irrigation practice plays a

critical role in increasing crop productivity and improving production stability, scarcity of water
resource with poor field management is expected to significantly hinder sustainable development
of maize prduction. Therefore, sustainable methods to increase crop Water Use Efficiency (WUE)
are gaining importance in arid and seamd regions such dhe Mediterranean basifGeerts and

Raes, 200p In recent years, the research focus has shifted to limiting factors of cropping systems

(e.g. water availability) for sustainable intensification, instead of solely maximizing crop
productions. Adaptation strategiessed on optimized water management, such as deficit

irrigation that contribute to maximize WUE on crops grown in droygbnhe area, enable water
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saving practices while hetm to stabilize crop yield¢Geerts and Raes, 20@hang and Oweis,
1999.
Another import cereal crop in Portugal is wheat (mainly winter wheat) thatihugally, socially

and economically important in Portugddut insufficient domestic productions lead the

dependency on imporfser satisfying interal demandAlmeida et al., 2016(Fig. 1). Themain

wheat growing areas are situatedhe Alentejo region in southern Portugal, representing about

80% of total growing areas and account for >75% of natizvheat productioQINE, 2019. In

Alentejo, the prevalece of dryland farming systems leadswbeat cultivation under rainfed

conditions(Valverde et al., 2005 Approximately, 95% of wheajrowing areas in Alentejo are

dewoted to bread wheat producti@@ouveia and Trigo, 2008Thetypical Mediterranean climate

of this region causes a high evaporative demand in late pangprili June) when precipitation
is low, thusconsiderably enhancing the risks of occurrence of sevater deficit during the most
susceptible growth stage winter wheat, i.e., flowering and pestthesisgrain filling period

(Costa et al., 201 3Pascoa et al., 2017t is clearthatclimaterelated risksdr wheat production

are substantially high in this regioA previous analysis revealdtat climatic water deficits in
May and Junen this region largely coinciding with the grain fillingnd ripening stagespay

impose strong limitatio®on wheat yield§Pascoa et al., 20).Over the last decadeswhasfound

thatregional wheat growing areas had declined drastically from an average of 211,104 ha (331,007
t), during 19861995 to of 47,394 ha (84,227,®luring 2006 2015(INE, 2019. The reason for

this increasingly low adoption, in addition to policy modificatiazebe largely explained e

observed climate trendwards a morarid climatein Alentejo, aggravating the existing climatic

constraintswith serious concerns over yieldturns and economic viabiliffPascoa et al., 2017

Valverdeet al., 201% More investments and efforts are required by farmers to tfisaegative

impactsonyield. Therefore, it is important to quantify and understand to what extent the two main
abiotic stresses (drought/heat) hdweited wheat yield, and how adaptation optioren help
overcominghese limitations.

Other importantannud crop specieslike rice and potat@nd dry pulsegFig. 1), alsoplay an
important role in Portuguesgrifood productionwith annualproductionreaching 600,000 ton

in total (INE, 2015. For fruit crop, grapevineontributes to more than 11% of total production

(Fig. 1) (INE, 2015, making Portugathe 11" highest wire producing and exportingpuntryin
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the world. The commercial vineyards were distributed across 12 viticulture regions in mainland
Portugal, representing 227,000 (Raaga et al., 2006

2.1.20bservedsield stagnations in Europe and Portugal
The growing trends of food consumption, due to rapidly increasing populatmmymc growth
and urbanizationare predicted to boost land use and water resource competition, creating marked

impacts on various socioeconomic sect@iexandratos and Bruinsma, 2Q1Godfray et al.,

2010. In suchacontext, naintaining crop productioander changing climateg satisfy increasing
consumption demant$ the greatest challenge we face as a spebesng the last century,
increased crop yields were brought abmainly through Green Revolution, i.breeding for

increased harvest index and disease resistance, lhsasvédby using more irrigation and

agrochemical$Evenson and Gollin, 2003While genetic gains continue, the multiple challenges

of climate change and growing global population demand new approaches to produce nutritious,
high yielding, ¢imate resilient cropd-or instance, it is shown that the continuous genetic progress
on cereal grain yields has been partly counteracted by climate warming since 1990, resulting in

yield stagnations in many European countfgsson et al., 2000 This paticularly holds true

for Portugalwhich displaysthe lowest level of wheat yield with the slowest increasing(FA©,
2003 Porter and Semenov, 200%ig. 2).

10 - ¢« UK
o France
8 1 x  Sweden
A Austria
— 6:- A Ttaly
B + Spain
= 4y o Portugal
—— linear trends
Dl
0 T . . . T :
1950 1960 1970 1980 1990 2000 2010

year

Figure 2 Observed wheat grain yields in selected European cou(fe3, 2003 Porter and Semenov, 2005
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2.1.3 Crop response timate dciangeand variability
The agriculturasector igntrinsically vulnerable to climate changes crops areommonly subject
to several forcing factors, being climate variability among the most important driver on crop yield
variation. Climatic varability plays a major role in producing meteorological conditions that
deviate substantiallfrom mean conditions, known as climate anomala&sompanied by the
occurrences oéxtremeweatherevents A number of modelling studiesentred on the effects o
elevated atmospheric G@vel in conjunction with changes in average climatic conditions (e.g.
annual mean temperature and precipitation) on crop production, were conceptually incomplete,

likely causing an underestimation of climate impagétsseng et al., 201¥Xassie et al., 2015

Tubiello et al., 200D This is because crop is generally subject to a combination of several-growth

limiting factors (eg. waker and nutrients shortage ahdat stress) and respond Aoearly to
changes in growing conditions, exhibiting discontinuous threshold resffdmsger and Semenov,

2005 Semenov and Portel995. Therefore, increased climate variabilion top ofchangesn

mean climate conditions, cassume a greater role as climatic constraints in limiting dedgsy
For example, the natielevel cereal productionacross the globe were reduced by an average of
91 10% during 196#2007, resulting from the impacts of tascal extreme drought and heat

stressegLesk et al., 201% Likewise, the2003Europearsummer heat wayeharacterizethy an

increase in mean temperature and much larger temperature variability, considerably reduced cereal
production by about 23 million tons in Eurgpéth huge economic impacts on the food syppl
chains(Schar et al., 2004

It is repetitively stressed that along with projected mean climate changes (such as annual mean
temperature and precipitation), changes in climate variability and associated frequency and
intensity of extreme weather events, such as severe drought and hesatshekl also be
explicitly included in climate change impact analysissk et al., 201;GVioriondo et al., 201} It

is later confirmed byPCC (2013 that climatesnaybecome more extreme if the variancetad

climate distributionis larger. As an illustrative example from statistic point of viewthe

postulated temperature distribution changese presented biorter and 8menov (2005)n

relation to the effects of increase in mean and variance on the frequency ofraxzoirextreme
temperature events, i.e. heat stress or frost dam@ggs 3). Figure 3 below indicates (i)
increasing mean temperature moves the distribution towaedmer weather(Fig. 3a); (ii)

increasing temperature variance results in the tendency towards more frequent occurrence of
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extreme weather events, such as heat stFggs3b); (iii) increases in both mean and variance of

temperature causearmerand more frequent heat str¢6gy. 3¢).

increase in mean increase in variance
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Figure 3 Postulated temperature distribution changes via increagasritean temperaturé)) temperatureariance
and €) in both mean and variance of tempera{@®erter and Semenov, 2005

2.2 Climate changes and climate model projections

2.2.1 Concepts of climate systems, variabilities and changes
According tothe World Meteorological OrganizatioWMO), climate can be defined as the
statistical description in terms of mean and variability of relevant quantities over a period of time

(typically 30 yearsYWMO, 1983. Therefore, climate is the statcsdl description of weather at

given locationincluding the likelihood for a range of weather phenomena and Gatgsez and

Vose, 201). For this reason, climate sometimes refers to the average weatbatherat

individual locationsis further subject to largescale complex intections between components
within the earth climate system, of which comprising the atmosphere, biosphere, land surface,
hydrosphere and cryosphgf@MO, 1983. The chaotic processes occurring within the climate

system mainly due to the ncetinear interactions between its componenstitutethe internal
climate variability, which is more pronounced at shorter temporal and smaller spatial scales

(FErankcombe et al., 201Hawkinsand Sutton, 2011 Moreover,the climate system might be

forced by external factors beyond internal processes, including inatiedions in solar radiation
and volcanic eruptiag)as well as humamduced alterations to atmospheric composition and land

use, a process known as theeenal climate variability(Frankcombe et al., 20).5Strictly
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speaking, t he t er afersiiocvariatiorns iné¢he meam amyeother statistigl 0 r
properties othe climate stateon all temporal and spatial scales, which is often used to measure
the deviations of climate statistics over a given period of time (e.g. month, season or year) from
the longterm statistics for the same calendar period, namely Climate Anomaly (X0,

1983. In contrast, climatic chge, according to WMO and its usage thg Intergovernmental

Panel on Climate Change (IPCC), is defined as the statistically significant variattbesnaan

state of climate or its variability, persisting for a long period of time (decades or I¢HREQ,

2013. It refers to any changes in climates®m, caused by either internal variability or external
variability. In essence, the conceptual differences between chraasbility and climate change
consist in the fact that the former looks at changes at smaller timeframes (month, season or year),
whereas climate change considers changes for a much larger scale (decades oj\WiviQer)

1983. From a practical viepoint, the difference can also be interpreted as if the anomalous
conditions persists compared before, i.e. rare events occur more frequently. Care should be taken
when attributing individual events to antpogeniedriven climate changéecausasequencef
consecutive anomalous events can even be within the bounds of natural climate vgiisdsbty

et al., 2012 Only a persistent series of unusual evantthe context obroad changes iregional

climate parametergan suggest a potential change in climate has occ(Dreskr et al., 2012
IPCC, 2013.

2.2.2 Observed global warming and associated Greenhouse gas emissions (GHG)
This subsection is based on the Summary for Policymakers chapter that is contained in the
synthesis report of the Fifth Assessment Report (ARB)CC, which synthesizes the contributing
IPCC working group reports and providing an overview of the state of knowledge concerning the

science of climate chandd?CC, 2014. The evidences of human influencetbe earth climate

system have grown sindke IPCC Fourth Assessment RepoAR4), and recent anthropogenic
emissions are thieighest in history: surface temperature of Northern Hemisphere barely changes
in the last 1400 yearexcepioverthe recent 3gear period1983 2012) with widespread impacts

on human and natural ecosystefii®CC, 2013. The observed climate warming is unequivocal,

as the global average combiningean ad surfacetemperatures shows robust multidecadal
warming of 0.85°C [0.651.06°C] over 18802012, accompanied by great decadal and -inter
annual variabity (Fig. 4a). This warming occurs despite nearly 60% of total emissions have
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already been removed frothe atmosphere, either through various natural sinkolved in the

carbon cycle (e.g. uptake by plants and immobilization by soil microorganisms) or via energy

absorptions in the ocedqiPCC, 2013 Ocean warming dominates the energy increases in our
climate system, storing aboB0% of emitted anthropogenic @@nd accounting for more than
90% of total energy uptake between 1971 and Z020C, 2013. This eventually creasecean

acidification, which represents a significant challenge for future sustainable development goals

(HarrouldKolieb and Herr, 203,2IPCC, 2014. The atmosphere and ocean warming have likely

affectedtheglobal hydrological cycle, causing the retreat of glaciarseased surface melting of
arcticice sheet and greatly contributing to the sea level incr€assr. the periodrom 1901 to

2010, global mean sea levebke by 0.19 [0.17 to 0.21] (Rig. 4b). The sea level rising ragince

the mid19th century has been larger than the mean rate during the previous two m{llRGda

2013.

More than half of globally averaged surface temperature increase can be explained by the
anthrgogenic increased GHG emission since the-2if century (IPCC, 2013. The GHG

emissiors havesince driven large increases in the atmospheric corat®ns of CQ, CHs and
N20, of which 78% are derived from G@missiors by fossil fuelburnt cement production and
other industrial process, as well as from forestry and otherclawetr and landise change@-ig.

4c, d). The anthropogenic forced G@mission, mainly driven by population and economic growth,
have produced an approximate 40% increase in the atmospheric concentratienfadr@@bout
280ppmin 1850to nearly 400 ppm in 201(Fig. 4c). To attribute human activities to observed
climate warming, the recent IPCC Speciapirt, as part dhe IPCC AR&n the impacts df.5°C
global warming provides an estimation of 1°C [0B2°C] warming that is caudeby
anthropogenic forcing sindie pre-industrial era. The warming rate is likely to continue until
reaching 1.5°C between 2030 and 2052 C, 2018.

2.2.3 CMIP5 simulation experiments and framework
Climate models are the most usefabls for understandinghe climate systems and climate
changes. A new set global coordinated climate model experimemtas establishedollowing
the endorsements of Worl d CWorking Geup®€supledr ch Pr
Modelling(WGCM), which initiated the fifth phaseof the Coupled Model Inteomparison Project
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Figure 4 Observed global warming and GHG emissions (colors for different datémeAnnually and globally
averaged combined larahdocean surface temperature anomalies relative to the average ové2U@RED)
Annually and globally averaged sksvel change relative to the average of 1986 to 2@p&volution of atmospheric
CO; (green), CH (orange) and bO (red).(d) Global anthropogenic C&missions from forestry and land use as well
as from fossil fuel combustions, cement production, and §dthe corresponding cumulati@O, emission and their
uncertainties are shown as barsl whiskers, respectivelfPCC, 20131PCC, 2014.
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