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ABSTRACT 

The potential of hyperspectral images combined with machine learning algorithms to 

predict anthocyanin concentration, pH index and sugar content in grapes is presented as a 

starting point do develop flexible models with large generalization capacity to estimate 

oenological parameters. 

In this context, in order to evaluate the generalization capacity of the machine learning 

procedures, a comparison with current state of the art approaches and between three different 

methods, Neural Networks (NNs), Decision Trees (DTs) and Support Vector Regression 

(SVR), when combined with hyperspectral images, was performed to predict the anthocyanin 

concentration, pH index and sugar content and support the adequate monitoring of wine quality. 

The models were trained with six whole grape berries for each sample, using different 

approaches of cross-validation and data pre-processing. The oenological parameters were 

estimated using models trained with the spectra of 2012, 2013 and 2014 samples from the 

Touriga Franca variety, and the generalization capacity was tested using 2013 samples of the 

Tinta Barroca and Touriga Nacional varieties. 

The results suggest that combining hyperspectral images with appropriate data analysis 

tools achieve accurate predictions. The machine learning methods were able to predict the 

values of oenological parameters without significant differences, improving the state of the art 

results. 

Good indicators were obtained in the generalization capacity of the models, suggesting 

that a robust model capable of predicting oenological parameters on different varieties and 

harvest years of wine grapes can be obtained without additional training. An environmentally-

friendly, fast and low-cost approach is therefore achievable and should be the subject of future 

testing. 

 

Keywords: Hyperspectral Imaging, Neural Networks, Decision Trees, Support Vector 

Regression, Pre-Processing, Generalization. 
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RESUMO 

O potencial das imagens hiperespectrais combinado com algoritmos de aprendizagem 

máquina para prever a concentração de antocianinas, o índice pH e o teor de açúcar em uvas é 

apresentado, como um ponto de partida para desenvolver modelos de estimação flexíveis e com 

grande capacidade de generalização para estimar parâmetros enológicos. 

Neste contexto, para avaliar a capacidade de generalização dos procedimentos de 

aprendizagem máquina, uma comparação com a literatura atual e entre três diferentes métodos, 

Neural Networks (NNs), Decision Trees (DTs) e Support Vector Regression (SVR), quando 

combinados com imagens hiperespectrais, foi feita para prever a concentração de antocianinas, 

o índice pH e o teor de açúcar e suportar a monitorização adequada da qualidade do vinho. 

Os modelos foram treinados com seis bagos de uva para cada amostra, utilizando 

diferentes abordagens de validação cruzada e de pré-processamento dos dados. Os parâmetros 

enológicos foram estimados utilizando modelos treinados com espectros de amostras de 2012, 

2013 e 2014, da variedade de Touriga Franca, e a capacidade de generalização foi testada com 

recurso a amostras de 2013 das variedades de Tinta Barroca e Touriga Nacional. 

Os resultados obtidos sugerem que combinar imagens hiperespectrais com ferramentas 

de análise de dados apropriadas permite atingir predições precisas, sendo os métodos de 

aprendizagem máquina capazes de prever os valores dos parâmetros enológicos sem diferenças 

significativas, melhorando os resultados da literatura atual.  

Foram obtidos bons indicadores sobre a capacidade de generalização dos modelos, 

sugerindo que um modelo robusto capaz de prever parâmetros enológicos sobre diferentes 

variedades e anos de colheita das uvas pode ser obtido sem treino adicional. Uma abordagem 

amiga do ambiente, rápida e de baixos custos é assim passível de atingir e deverá ser objeto de 

testes futuros. 

 

Palavras-Chave: Imagens Hiperespectrais, Neural Networks, Decision Trees, Support 

Vector Regression, Pré-Processamento, Generalização.
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CHAPTER I – INTRODUCTION 

In an increasingly data-driven agriculture, the systematic evaluation of the quality of 

grapes is of major importance to the competitive market of wine production, representing an 

important surplus value. The Oporto wine sector (and Douro in general) has been following this 

evolution with the introduction of several technologies in different aspects of production, one 

of which is to assess non-intrusively the quality of the grapes, in particular the anthocyanin 

concentration, pH index and sugar content, allowing winemakers to obtain insights about their 

wine grapes more frequently, harvesting them at the optimal point of maturity and selecting 

them according to some quality features. 

In this work, three machine learning models for oenological parameter estimation were 

implemented, namely Neural Networks (NNs), Decision Trees (DTs) and Support Vector 

Regression (SVR), with their efficiency and generalization capacity compared to state of the 

art results obtained with other machine learning algorithms and, more importantly, with purely 

chemometric methods like Partial Least Squares (PLS) regression. Additionally, methods to 

pre-process the data, smooth the spectra, reduce its dimensionality and validate the models’ 

results were also implemented and their effects will be discussed. 

Thus, this work was split into five chapters: the first, which addresses the research 

problem and produces an outline of the main objectives to be completed; the second, that 

provides a complete state of the art review of the methods and results published in the same 

area of research; the third, that gives a theoretical basis on the concept of hyperspectral images 

and the experimental setup used, the data pre-processing step, dimensionality reduction of the 

data, the validation methods used and the machine learning algorithms employed for the 

oenological parameter estimation; the fourth, where a critical analysis and discussion of the 

results obtained with each model is presented; and finally, the fifth, that gives general 

conclusions about the work and discusses possibilities for further research. 

 

1.1. Research Problem 

Viticulture, and the entire wine industry, has undergone recent changes. As this market 

becomes global, competitiveness becomes one of the main challenges faced by producers. In 

recent years, Portugal has been one of the countries to become very competitive in the 

production of wines, with special focus on Port wine, whose quality is undeniable and 
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recognized throughout the world. To maintain prominence in today’s markets, it’s extremely 

important to ensure the high quality of the wines produced and to continue to improve the 

winemaking process.  

The number of wine producers has increased and investment in this market has been 

encouraged, including the use of new technologies and methodologies to access the optimal 

point of maturity for grapes’ harvesting, and it’s essential to measure a number of oenological 

quality parameters in the grapes. In this context the anthocyanin concentration, pH index and 

sugar content parameters are of most importance since they have a direct influence on the 

quality of the wine, being related with the degree of ripening, acidity, percentage of alcohol in 

the wine produced, among others. 

The traditional laboratory chemical analysis of grapes to assess ripening is time-

consuming, costly, prone to errors and invasive (ultimately destroying grapes). With the 

sustained growth of computational power, new methodologies arise to deal with this problem.  

“As a fast and easy-to-operate technique, infrared spectroscopy has gained wide industrial 

acceptance for routine wine analysis […] it is anticipated that in the near future infrared 

spectroscopy will progressively become a routine method for process monitoring and process 

control in different stages of grape and wine production” (Dambergs, Gishen, & Cozzolino, 

2015, p. 261).  

So, hyperspectral image-based systems, coupled with powerful data analysis tools, can 

be used as a viable alternative that serves, in a more consistent and objective way, the purposes 

of inspection, evaluation and measurement, as they are defined as fast, cost-effective and non-

invasive methods. 

Hence, the main problem for this work is: how to evaluate oenological parameters of 

grapes using environmentally-friendly, fast and cheap methods? To find ways to answer this 

question, there are other more specific questions that delimit this research, such as: can the 

machine learning models implemented reliably determine the sugar content, anthocyanin 

concentration and pH index with a precision similar to traditional chemical analysis? 

 

1.2. Motivation 

The present work derived from the opportunity to learn about machine learning, artificial 

intelligence and data processing and apply this knowledge to a real-world problem, with real 

applications. The interest in these emerging research fields arose early in my second year of the 
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licentiate degree when I was enrolled in a class about algorithms taught by my advisor, 

Professor Pedro José de Melo Teixeira Pinto, in which NNs models were one of the final topics, 

and it grew even more when I investigated these topics for my final licentiate project and was 

registered for the Machine Learning Course by Stanford University in the online education 

platform Coursera, taught by Professor Andrew Ng. 

 

1.3. Objectives 

The main objectives of this research were to develop three models to predict anthocyanin 

concentration, pH index and sugar content in grapes, with the pre-processing of the data based 

on available hyperspectral images, and analyse and compare the performance with the current 

state of the art approaches. More specifically, other requirements arose during the elaboration 

of the present work: 

- Explain the different requirements for the proper functioning of the models. 

- Ensure the validation of the predictive models based on performance estimation 

techniques. 

- Compare the performance between machine learning algorithms and chemometric 

methods. 

- Infer the importance of data processing (dimensionality reduction, scaling, 

normalization, among others) from the hyperspectral images to allow the correct 

analysis of the samples by the models implemented. 

- Specify how to collect data from the environment setup in order to capture the 

hyperspectral images. 

- Propose possible research tasks for the future. 
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CHAPTER II – STATE OF THE ART REVIEW 

“Hyperspectral imaging (Gowen, O’Donnell, Cullen, Downey, & Frias, 2007; Hall, 

Lamb, Holzapfel, & Louis, 2002) is a technique that collects information concerning how 

objects reflect and absorb light as a function of their wavelength” (as cited in Fernandes et al., 

2011, p. 216), providing both spatial and spectral information – however, it involves complex 

data that requires powerful analysis tools to extract the necessary information from the 

underlying patterns in the spectra. In this chapter, it’ll be provided a full review of the state-of-

the-art methodologies that combine hyperspectral images and data analysis tools to predict 

anthocyanin concentration, pH index and sugar content on grapes, and a brief review of similar 

methodologies that intend to perform predictions on other chemical compounds on grapes and 

other fruits and vegetables. 

Part of this work has been submitted by the author to a scientific journal. 

 

2.1. Prediction Methodologies in Wine Grape Berries 

“In the process of analysis and evaluation of wine grapes, anthocyanin concentration, pH 

index and sugar content are highly researched parameters because they are correlated with the 

flavour, colour and are good indicators of the grapes’ ripeness” (Silva, Gomes, Faia & Melo-

Pinto, 2016, para. 3). In the last years, the use of such parameters has been proposed, using 

different near-infrared (NIR) spectroscopy techniques: transmittance mode, “where the fruit 

surface viewed by the detector is diametrically opposite to the illuminated surface” (Schaare & 

Fraser, 2000, p. 175); interactance mode, “where the field of view of the detector is separated 

from the illuminated surface by a light seal in contact with the fruit surface” (idem, ibidem); 

and reflectance mode, “where the field of view of the light detector includes parts of the fruit 

surface directly illuminated by the source” (idem, ibidem).  

To ease the comparison between authors, the works reviewed are separated by the 

spectroscopy technique used: 

a) transmittance mode spectroscopy: Fernández-Novales, López, Sánchez, García-

Mesa, and González-Caballero (2009) used a miniature fibre-optic NIR 

spectrometer system on the spectral region of 700-1060nm with a chemometric 

method, PLS regression, to measure sugar content and pH index; Geraudie and 

Ojeda (2010) measured the anthocyanin concentration on wine grape berries using 
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a combination of multiple linear regression for prediction and a Principal 

Component Analysis (PCA) for dimensionality reduction. 

b) interactance mode spectroscopy: Herrera, Guesalaga, and Agosin (2003) developed 

an approach to predict sugar content on wine grape berries, using 146 samples on 

the 800-1050nm NIR region, alongside models with multiple linear regression and 

PLS regression; Larraín, Guesalaga, and Agosin (2008) measured sugar content, pH 

index and anthocyanin concentration, on the NIR region of up to 1100nm, using PLS 

regression; Geraudie et al. (2009) as mentioned previously, built models with 

multiple linear regression and a PCA for dimensionality reduction, in this study to 

measure sugar (and water) content. 

c) reflectance mode spectroscopy: in the present work, it’s more relevant to analyse 

previous results in reflectance mode spectroscopy, since it follows the same 

methodology used in this study. The works in reflectance mode can be further 

divided into: 

a. reflectance mode for a small number of berries in each sample: Arana, Jarén, 

and Arazuri (2005) implemented a model with PLS regression to measure 

the sugar content on the NIR region of 500-800nm; Wu, Huang, and He 

(2008) built a model combining PLS for dimensionality reduction 

(extracting the three best principal factors) and NNs for the prediction of 

sugar content; Cao, Wu, and He (2010) used a genetic algorithm to analyse 

the sugar content and pH index on wine grapes, processing both the whole 

spectra and selected wavelengths; Fernandes et al. (2015, 2011) used 

adaptive boosting NNs to measure anthocyanin concentration on a first 

approach and a classic NNs model to predict anthocyanin concentration, pH 

index and sugar content on the latest, on the NIR region of 380-1028nm; 

Gomes, Fernandes, and Melo-Pinto (2017b); Gomes, Fernandes, Faia, and 

Melo-Pinto (2014a, 2014b) compared the effectiveness of both, NNs and 

PLS regression, for the prediction of sugar content on the NIR region of 380-

1028nm; 

b. reflectance mode for a large number of berries in each sample: Cozzolino et 

al. (2005) used a modified PLS regression to measure the pH index on the 



Chapter II – State of the Art Review 

7 

 

NIR region of 400-2500nm; Janik, Cozzolino, Dambergs, Cynkar, and 

Gishen (2007) compared the performance of NNs using both a PCA and PLS 

for dimensionality reduction on the prediction of anthocyanin concentration; 

Le Moigne et al. (2008) measured the anthocyanin concentration (among 

other parameters) on the NIR region of 250-310nm using PLS regression; 

Ferrer-Gallego, Hernández-Hierro, Rivas-Gonzalo, and Escribano-Bailón 

(2011) developed a modified PLS regression model to estimate the 

anthocyanin concentration on wine grapes; González-Caballero, Pérez-

Marín, López, and Sánchez (2011) built a model with modified PLS 

regression operating on the 380-1700nm NIR region to predict sugar content 

and pH index; Hernández-Hierro, Nogales-Bueno, Rodríguez-Pulido, and 

Heredia (2013) used a modified PLS regression algorithm to measure the 

anthocyanin concentration on the 900-1700nm NIR region; Nogales-Bueno, 

Hernández-Hierro, Rodríguez-Pulido, and Heredia (2014) measured the 

sugar content and the pH index using a modified PLS regression model on 

the 900-1700nm NIR region; Chen et al. (2015) built two different models, 

using PLS regression and SVR, to predict the pH index and anthocyanin 

concentration on the 900-1700nm NIR region; Fadock, Brown, and 

Reynolds (2016) used PLS regression on the 350-850nm NIR region to 

predict sugar content, pH index and anthocyanin concentration.  

It’s important to mention that the use of a larger number of berries represents a simpler 

problem than for a small number of berries, since the variability in berries spectra and reference 

oenological values evaluated attenuate along with the number of berries. 

Table 1 summarizes the most relevant results obtained by each of the aforementioned 

authors using hyperspectral imaging in reflectance mode. 
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Table 1 – Literature results for the prediction of oenological parameters on whole grape berries, with 

hyperspectral imaging performed in reflectance mode 

  External Test Set 

  R2 RMSE 

Anthocyanin 

Concentration 

Chen et al. (2015) c N.P 0.941 N.C. 

Fadock et al. (2016) c 0.650 75.000 mg. L-1 

Fernandes et al. (2011) N.P 0.650 N.C. 

Fernandes et al. (2015) 0.950 14.000 mg. L-1 

Ferrer-Gallego et al. (2011) N.P 0.970 N.C. 

Hernández-Hierro et al. (2013) c N.P 0.860 N.C. 

Janik et al. (2007) b, c 0.900 N.C. 

Le Moigne et al. (2008) c N.P 0.979 N.C. 

pH Values 

Cao et al. (2010) N.P 0.957 0.126 

Cozzolino et al. (2005) c N.P 0.850 0.150 

Fadock et al. (2016) a, c 0.560 0.050 

Fadock et al. (2016) c 0.810 0.050 

Fernandes et al. (2015) 0.730 0.180 

González-Caballero et al. (2011) N.P 0.870 N.P 0.120 

Nogales-Bueno et al. (2014) c N.P 0.940 0.120 

Sugar Content 

Arana et al. (2005)  0.710 1.270 ºBrix 

Cao et al. (2010) N.P 0.820 N.P 0.960 ºBrix 

Fadock et al. (2016) a, c 0.710 0.870 ºBrix 

Fadock et al. (2016) c 0.890 0.650 ºBrix 

Fernandes et al. (2015) 0.920 0.950 ºBrix 

Gomes et al. (2014a) 0.959 1.026 ºBrix 

Gomes et al. (2014b) 0.948 0.939 ºBrix 

Gomes et al. (2017b) a 0.948 1.344 ºBrix 

González-Caballero et al. (2011) c N.P 0.910 N.P 1.000 ºBrix 

Nogales-Bueno et al. (2014) c N.P 0.990 N.P 1.370 ºBrix 

Wu et al. (2008) 0.908 N.C 

a: Different vintage used in the external test set (generalization set). 

b: Different vintage and variety used in the external test set (generalization set). 

c: Large number of berries. 

N.P: Not provided for external test set. 

N.C: Not comparable. 

  

2.2. Other Relevant Methodologies 

Some other works can be found, but to measure different chemical compounds on wine 

grape berries and other fruits (i.e. phenolic compounds, solid sugar compounds or aroma 

compounds). Noguerol-Pato, González-Barreiro, Cancho-Grande, Martínez, et al. (2012); 

Noguerol-Pato, González-Barreiro, Cancho-Grande, Santiago, et al. (2012); Noguerol-Pato, 

González-Barreiro, Simal-Gándara, et al. (2012) built various approaches to study aroma 

compounds on different varieties of wine grape berries, using gas chromatography and mass 

spectrometry to determine the aromatic composition; Tarter and Keuter (2005) research focused 

on the differences in solid sugar compounds between the berries in different positions (top, 

middle and bottom) of a cluster. 
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Additionally, the use and effectiveness of support vector machines combined with 

hyperspectral imaging has already been tested and widely employed on classification problems; 

i.e., Melgani and Bruzzone (2004) addressed the problem of classification of hyperspectral 

remote sensing images comparing the effectiveness of support vector machines in 

hyperdimensional feature spaces with conventional feature-reduction-based approaches (radial 

basis function NNs and k-nearest neighbour classifiers); Mercier and Lennon (2003) presented 

modified kernels that take into consideration the spectral similarity between support vectors, 

applying them to images of an intensive agricultural region in France, selecting 17 bands from 

450-950nm spectral data; Rumpf et al. (2010) used support vector machines for the early 

detection of plant diseases based on hyperspectral images obtained in reflectance mode; but 

approaches for regression are still slightly uncommon.
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CHAPTER III – METHODOLOGY 

In this chapter, a clear description of the samples is given alongside a theoretical basis 

about the experimental setup for hyperspectral images, the data pre-processing, dimensionality 

reduction and model validation methods used and the machine learning algorithms employed, 

as a form of exposing and justifying the entire process that leads to the build-up of the prediction 

models that provide the final results regarding the anthocyanin concentration, pH index and 

sugar content on wine grape berries. 

A One-Way Analysis of Variance (ANOVA) was performed to study whether there are 

any statistically significant differences between the means of the different sets of samples. For 

a complete description and mathematical formulation about the ANOVA method, consult 

Christensen (2011). The prediction models were developed using Matlab software (The 

Mathworks, 2016) and the descriptive statistics, boxplots and one-way ANOVA tests used to 

study samples were obtained with Minitab Software (State College PA, 2010). 

Part of this work has been submitted by the author to a scientific journal. 

 

3.1. Samples 

The main subjects of this study were grape bunches of the Touriga Franca (TF) variety, 

widely recognized as one of the most important varieties for the production of Port wine in the 

Douro region due to its resiliency to plant diseases, fruity flavour and intense colour, harvested 

from the vineyards of Quinta do Bonfim in Pinhão, Portugal, in the years of 2012, 2013 and 

2014, which is property of Symington Family Estates. In order to test the generalization 

capacity of the models (that is, the models’ ability to predict values outside the known grape 

bunches used on the training process), samples from the Tinta Barroca (TB) and Touriga 

Nacional (TN) varieties were also collected on the year of 2013. To obtain the best possible 

training and testing setups, with an adequate range of values that represent grapes in different 

ripening stages, “it’s important to test grapes between the beginning of veraison (transition from 

berry growth to berry ripening) and maturity, and from areas within the same vineyard under 

different conditions (sun exposition, water availability, soil quality, among others)” (Silva et 

al., 2016, para. 5): consequently, 240 samples were collected in the year of 2012 (24 per day), 

84 in the year of 2013 (12 per day) and 120 in the year of 2014 (12 per day) from the TF variety; 

84 samples (12 per day) and 60 samples (12 per day) were collected in the year of 2013 from 
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the TB and TN varieties; all of which from three different regions on the vineyard considering 

vine trees with small, medium and large vigour.  

The hyperspectral image acquisition was performed on fresh grape berries: “each sample 

measured by hyperspectral imaging was composed of six grape berries randomly collected in a 

single bunch. The berries were removed from bunches with their pedicel still attached […] all 

the samples were kept frozen, at -18ºC” (Gomes et al., 2014b, p. 2).  

The chemical analysis was carried out with the six grape berries being defrosted at room 

temperature and then  

“crushed in a buffer solution of tartaric acid (pH 3.2) and ethanol (95%), by macerating, and the 

resulting mixture was kept overnight at 25ºC (Carbonneau & Champagnol, 1993); a 

centrifugation (SIGMA centrifuge 3K18, 20 min, 4ºC, spin at 7155g) was applied and a clear 

extract was collected and mixed with acidified ethanol (0.1% HCL)” (as cited in Gomes et al., 

2014b, p. 2). 

 Riberéau-Gayon and Stonestreet (1965) and Office International de la Vigne et du Vin 

(1990) indicates that: 

 “The total anthocyanin concentration was determined photometrically by SO2 bleaching 

method (Riberéau-Gayon & Stonestreet, 1965). UV/VIS spectrophotometer (Shimadzu) and 1 

cm path length, disposable cells were used for spectral measurements at 520 nm and the pigment 

content, expressed in mg.L-1, was calculated from a calibration curve of malvidin-glucoside. All 

determinations were performed in duplicate and the juice released was analysed for the pH 

contents according to validated standard methods (Office International de la Vigne et du Vin, 

1990, as cited in Gomes et al., 2017a, p. 42)”.  

Tables 2, 3 and 4 provide descriptive statistics regarding the laboratory results of all the 

samples collected, on anthocyanin concentration, pH index and sugar content, respectively. 

Appendices A through I contain additional statistics, boxplots and one-way ANOVA tests of 

these values for a more detailed view of the data behaviour. For the TF variety in the 2014 

vintage, there aren’t any laboratory results available regarding anthocyanin concentration. 

 

Table 2 – Descriptive statistics for the anthocyanin concentration of the laboratory results 

Anthocyanin Concentration (mg.L-1) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2012 240 160.28 (153.05; 167.51) 56.86 (52.19; 62.46) 3.89 173.84 257.82 

TF 2013 82 207.18 (195.06; 219.31) 55.18 (47.84; 65.21) 16.28 221.90 269.75 

TB 2013 84 173.32 (163.66; 182.97) 44.49 (38.63; 52.46) 50.97 185.29 247.76 

TN 2013 60 224.86 (215.25; 234.47) 37.21 (31.54; 45.38) 123.68 236.62 319.90 

 



Chapter III – Methodology 

13 

 

Regarding the anthocyanin concentration values, Table 2 shows that the range of values 

in the different datasets are distinct, with very different means and standard deviation interval 

values in all populations. Appendix A clearly shows that there are outliers (observations that 

lie an abnormal distance from other values in a random sample from a population) in all 

datasets, while Appendix B allows to find differences in the centre, shape and variability among 

all boxplots – conducting an ANOVA test between datasets (Appendix C), it was found that 

there are significant differences among the means between the TF 2012 and TB 2013 samples 

and TF 2013 and TN 2013 samples. 

 

Table 3 – Descriptive statistics for the pH index of the laboratory results 

pH Index 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2012 240 3.55 (3.51; 3.60) 0.35 (0.32; 0.38) 2.85 3.58 4.23 

TF 2013 81 3.72 (3.64; 3.80) 0.35 (0.31; 0.42) 3.05 3.74 4.44 

TF 2014 120 3.49 (3.45; 3.54) 0.26 (0.24; 0.30) 2.93 3.51 3.97 

TB 2013 84 3.59 (3.52; 3.66) 0.32 (0.28; 0.38) 2.90 3.60 4.48 

TN 2013 60 3.59 (3.52; 3.66) 0.29 (0.24; 0.35) 3.00 3.64 4.13 

 

As for the pH index values, Table 3 evidences a small range of values in the different 

datasets, with similar means and standard deviation interval values for all sets.  Appendix D 

shows that outliers couldn’t be found in these samples, while observing Appendix E shows that 

the centre, shape and variability among all boxplots is very uniform – conducting an ANOVA 

test between datasets (Appendix F), it was still found that there are significant differences in 

the means between the TF 2013 samples and the TF 2012 and TF 2014 samples. 

 

Table 4 – Descriptive statistics for the sugar content of the laboratory results 

Sugar Content (ºBrix) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2012 240 16.93 (16.50; 17.35) 3.34 (3.07; 3.67) 9.06 17.06 24.72 

TF 2013 82 19.45 (18.66; 20.23) 3.59 (3.11; 4.24) 8.10 20.03 25.00 

TF 2014 120 13.55 (12.89; 14.21) 3.66 (3.25; 4.20) 7.87 13.00 25.66 

TB 2013 84 22.49 (21.51; 23.47) 4.52 (3.92; 5.32) 11.40 23.44 30.85 

TN 2013 60 23.26 (22.63; 23.89) 2.44 (2.07; 2.97) 17.20 23.84 27.20 

 



Chapter III – Methodology 

14 

 

Finally, studying the sugar content values, it’s possible to conclude from Table 4 that 

all datasets have very unique descriptive statistics, with creased differences in the range of 

values, means and standard deviation interval values. Appendix G shows that outliers can be 

found for the datasets composed of TF 2013 and TF 2014 samples, while Appendix H shows 

very distinct centres, shape and variability among all boxplots – the ANOVA test between 

datasets (Appendix I) found significant differences in the means between TF 2012, TF 2013 

and TF 2014 and all the other datasets, while the TB 2013 and TN 2013 varieties have 

significant differences in the means when compared to all harvest years of the TF variety. 

The ANOVA tests allow an important detail to come into consideration, as the models 

will operate predictions on datasets with statistically different means and it should influence the 

result analysis made in Chapter IV. The outliers found in the different datasets were kept as part 

of future analysis, since it’s very likely that outliers will always be found in further testing with 

new datasets from different varieties and vintages, and the model must be ready to reduce the 

importance of these values when composing a set of predictions. 

 

3.2. Experimental Setup for Hyperspectral Images 

As mentioned in Chapter II, hyperspectral imaging can be performed using different NIR 

spectroscopy techniques: transmittance mode, “where the fruit surface viewed by the detector 

is diametrically opposite to the illuminated surface” (Schaare & Fraser, 2000, p. 175); 

interactance mode, “where the field of view of the detector is separated from the illuminated 

surface by a light seal in contact with the fruit surface” (idem, ibidem); and reflectance mode, 

“where the field of view of the light detector includes parts of the fruit surface directly 

illuminated by the source” (idem, ibidem).  In the present work, reflectance mode was chosen 

over transmittance and interactance mode since, for the same illumination scenario, the 

intensity of light coming from the grape is stronger, which facilitates measurements. 

The experimental setup assembled for the images collected was:  

“a hyperspectral camera, composed of a JAI Pulnix (JAI, Yokohama, Japan) black and white 

camera and a Specim Imspector V10E spectrograph (Specim, Oulu, Finland); lighting, by means 

of a lamp holder with 300x300x175 mms (length x width x height) that held four 20W, 12V 

halogen lamps and two 40W, 220V blue reflector lamps (Spotline, Philips, Eindhoven, 

Netherlands). Both types of lamps were powered by continuous current power supplies to avoid 

light flickering and the reflector lamps were powered at only 110V to reduce lighting and prevent 

camera saturation” (Gomes et al., 2014b, p.3).  
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The resulting hyperspectral images correspond to a single line over the sample and had 

1040 wavelengths (ranging between 380 to 1028 nm, with approximately 0.6 nm of width in 

each channel) x 1392 pixels.  

“The 1392 pixels stand for the spatial dimension over the samples with approximately 110 mm 

of width. The distance between the camera and the sample base was 420 mm. The camera was 

controlled with Coyote software from JAI inside a dark room. All the hyperspectral 

measurements were done at room temperature” (Gomes et al., 2014b, p.3).   

Figure 1 illustrates the experimental setup assembled for the hyperspectral image 

acquisition. 

 

 

Source: Silva et al., 2016: para. 7. 

Figure 1 – Experimental setup for hyperspectral image acquisition 

 

Reflectance is the quotient between the intensity of the light reflected by an object and the 

light that illuminates that object, being a function of the light wavelength – these reflectance 

and absorption patterns across wavelengths can uniquely identify chemical compounds and, 
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unlike transmittance and interactance mode, it’s possible to perform the imaging without 

requiring contact between the spectrometer/camera and the sample. 

For some position 𝑥, and at wavelength , the reflectance 𝑅 can be expressed as: 

 

𝑅(𝑥, 𝜆) =  
𝐺𝐼(𝑥, 𝜆) − 𝐷𝐼(𝑥, 𝜆)

𝑆𝐼(𝑥, 𝜆 ) − 𝐷𝐼(𝑥, 𝜆)
 

Equation 1 – Expressing reflectance as a function of some position and wavelength 

 

Where 𝐺𝐼 is the intensity of light coming from the grape, 𝑆𝐼 is the intensity of light 

coming from the Spectralon and 𝐷𝐼 is the dark current signal, which is electronic noise – this 

value is measured with the hyperspectral camera lens covered and it must be subtracted from 

the grape and the Spectralon signal because it’s independent of the object being imaged and 

would distort the calculated reflectance values. 

In order to achieve a reduction in measurement noise, 32 hyperspectral images were 

captured in each grape berry, from six grape berries and for three berry rotations – to create a 

single reflectance spectrum, all berries’ points were averaged over the spatial dimension and 

rotation. The reflectance measurement was done along the berry “equator” with the pedicel as 

the pole and the final spectrum was normalized to reduce the noise in the measured light 

intensities cause by the grape berry size and curvature: the normalization was performed 

subtracting from each spectrum its minimum values and dividing by the difference between the 

minimum and maximum values (Gomes et al., 2014b). 

Graph 1 shows the final result for the reflectance measurements on the TF 2012 samples. 

Appendix J contains the results of the reflectance measurements for the remaining varieties and 

vintages of wine grape berries. 
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Graph 1 – Reflectance measurements for the TF 2012 samples 

 

3.3. Data Pre-Processing 

Prior to using the reflectance measurements as an input to the prediction models, it’s 

important to study the possible effects of different pre-processing methods that intend to 

transform the data to a form more suited for analysis by the machine learning algorithms. In 

this context, the Standard Normal Variate (SNV) Transformation (Fadock, 2011), Derivatives 

(Arana et al., 2005; Larraín et al., 2008), Multiplicative Scatter Correction (MSC) (Herrera et 

al., 2003) and the Savitzky-Golay Filter (Herrera et al., 2003) arise as possible choices for 

testing, since they are frequently used in spectroscopic measurements for chemical analysis of 

grapes - however, some authors claim that the use of pre-processing methods is actually 

detrimental to the final results, with published results by the aforementioned authors 

questioning the positive effects of Derivatives, MSC or SNV Transformation when applied to 

chemometric data. In this work, the author chose to implement the Savitzky-Golay Filter for 

the purpose of smoothing the data and the SNV Transformation to correct scatter and study its 

effects when compared to a model without any pre-processing methods applied to the 

reflectance measurements. 

As in Savitzky and Golay (1964), the Savitzky-Golay Filter is a technique that attempts 

to “smooth” the data, that is, to increase the signal-to-noise ratio without distorting the signal. 

The authors found that a “least squares calculation, may be carried out in the computer by 

convolution of the data points with properly chosen sets of integers” (idem, p. 1627), without 

additional computational complexity – in the general case of a group of 𝐶 values representing 
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any set of convolutional integers, the mathematical description of the convolution process, with 

an associated normalizing or scaling factor, is: 

 

𝑌𝑗
∗ =  

∑ 𝐶𝑖𝑌𝑗+𝑖
𝑖=𝑚
𝑖= −𝑚

𝑁
 

Equation 2 – Description of the convolution process in a general case 

 

With the index 𝑗 representing the running index of the ordinate data in the original data 

table and 𝑁 the normalizing factor. This calculation follows a common criterion to the best fit 

of least squares, with “the sole function of the computer is to act as a filter to smooth the noise 

fluctuations and hopefully to introduce no distortions into the recorded data” (idem, p. 1629). 

Graph 2 shows the reflectance measurements of the TF 2012 samples and the reflectance 

measurements of the TF 2012 samples after applying a Savitzky-Golay Filter with a frame 

length of 512nm and a third-degreed polynomial order, side-by-side to ease a comparison: 

 

 

Graph 2 – Reflectance measurements for the Touriga Franca 2012 samples; a) Original; b) After applying 

the Savitzky-Golay Filter 

 

The smoothing and noise reduction of the reflectance measurements is easily observable 

in Graph 2, especially in the 0-100 and 700-900nm wavelength regions, meaning that the least 

squares found an apparent good fit to the data. 
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The SNV transformation, as in Barnes, Dhanoa and Lister is a “mathematical 

transformation of the log (
1

𝑅
) spectra by calculation of the standard normal variation at each 

wavelength […] removes slope variation on an individual sample basis by the use of the 

following calculation” (1989, p. 772): 

 

𝑆𝑁𝑉(1−𝑊) =  
(𝑦1−𝑊 −  𝑦̅)

√
∑(𝑦(1−𝑊) −  𝑦̅)2

𝑛 − 1

 

Equation 3 – Calculation of the standard normal variation at each wavelength W 

 

Where 𝑆𝑁𝑉(1−𝑊) are the individual standard normal variations for 𝑊 wavelengths, 𝑦 is 

the 𝑊-wavelength log (
1

𝑅
) values, and 𝑦̅ is the mean of the 𝑊-wavelength log (

1

𝑅
) values. This 

calculation intends to effectively remove the multiplicative interferences of particle size and 

scatter, since there is a high degree of collinearity between data points in the log (
1

𝑅
) spectra, 

which is a function to some extent of scatter and variable path length (idem). Graph 3 shows 

the reflectance measurements of the TF 2012 samples, the reflectance measurements of the TF 

2012 samples after applying the described Savitzky-Golay Filter and the reflectance 

measurements after applying the SNV transformation to the data (applied to the original 

reflectance measurements), side-by-side to ease a comparison. 

 

 

Graph 3 – Reflectance measurements for the TF 2012 samples; a) Original; b) After applying the 

Savitzky-Golay Filter; c) After applying the SNV transformation 
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Observing Graph 3, it’s noticeable that the range of reflectance values is different and 

that some of the graph peeks, either minimum or maximum, have a slightly different 

representation, possibly meaning that some interference due to scatter or particle size was 

removed in those regions. 

Table 5 contains the test set results obtained with a prediction model with the application 

of 10-fold cross-validation, PCA and NNs trained via the Levenberg-Marquardt algorithm and 

random initialization of the weights and bias (methods covered further in this chapter) for the 

estimation of sugar content on TF 2012 samples, to compare the different pre-processing 

methods. 

 

Table 5 – Results obtained for the prediction of sugar content on TF 2012 samples with different pre-

processing methods 

    Test Set 

    R2 RMSE (ºBrix) PC 

NNs Sugar Content TF 2012 

Original 0.914 1.340 17 

SG Filter 0.952 0.820 18 

SNV Transformation 0.946 0.988 15 

PC: Principal Components used. 

SG: Savitzky-Golay. 

SNV: Standard Normal Variate. 

 

These results show that, for this particular test, a pre-processing step with the Savitzky-

Golay filter is the best choice, since it’s the setup with the least Root Mean Squared Error 

(RMSE) and the best Coefficient of Determination (R2).  For effects of this work, the author 

chose to include the Savitzky-Golay Filter in the pre-processing step since it lowers the 

prediction errors seemingly without adding complexity to the model (similar number of 

principal components used in all pre-processing methods – further analysis regarding this topic 

is presented in Chapter IV): however, further investigation should be conducted, since the study 

of different pre-processing methods and its effects aren’t the main objective of this work and 

there’s a wide variety of methods and testing setups that could have been used. 

To finish the data pre-processing step two widely used operations, mean-centering and 

auto-scaling, as in Bro and Smilde were employed to the data matrix. “Centering is performed 

to make interval-scale data behave as ratio-scale data, which is the type of data assumed in most 

multivariate models” (2003, p. 19) and this operation should allow a “reduced rank of the 
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model”, an “increased fit to the data” and the “avoidance of numerical problems” (idem, 

ibidem). The mean-centering operation can be described by the equation below: 

 

𝑀𝐶(𝑦) =  𝑦 −  𝑦̅ 

Equation 4 – Mean-centering operation on a dataset 𝒚 

 

Where 𝑦 represents the original data and 𝑦̅ the vector with the mean of the dataset. As for 

scaling, as in Bro and Smilde, this operation is used to adjust for scale differences and to 

accommodate for heteroscedasticity (sub-populations with different variabilities), which is a 

very common concern in regression and variance analysis – in this work, the auto-scaling 

method was applied to let the variance of each variable be identical initially, so that the 

“subsequent fitting of a model is performed so as to describe as much systematic variation as 

possible […] every variable has the same initial opportunity of entering the model” (2003, p. 

24).  The equation below describes the auto-scaling operation: 

 

𝑋𝑓 =  
𝑋 − 𝑋̅

𝜎(𝑋)
 

Equation 5 – Auto-scaling operation on a dataset 𝑿 

 

Where 𝑋 is the original data, 𝑋̿ the vector with the mean of the dataset and 𝜎(𝑋) the 

vector with the standard deviation of the dataset. 

 

3.4. Dimensionality Reduction 

The major disadvantage of the hyperspectral imaging technique is the dimensionality of 

the reflectance spectra, since the resulting matrix has a dimensionality equal to the number of 

spectral channels measured by the hyperspectral camera (namely, 1040). The difficulties in 

processing such large multivariate datasets are noticeable and, in order to obtain the maximum 

performance of the machine learning algorithms employed, a significant reduction of the size 

of its input is strictly necessary – for this work, a Principal Component Analysis (PCA) was 

implemented. 
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As in Wold, Esbensen and Geladi  

“PCA provides an approximation of a data table, a data matrix, 𝑋, in terms of the product of two 

small matrices 𝑇 and 𝑃′ that captures the essential data patterns of 𝑋, providing the means to 

significantly reduce the size of a dataset without losing variability in the data. Plotting the 

columns of 𝑇 gives a picture of the dominant “object patterns” of 𝑋 and, analogously, plotting 

the rows of 𝑃′ show the complementary «variable patterns»” (1987, p. 37).  

The columns in 𝑇 are called score vectors and the rows in 𝑃′ are called loading vectors, 

while the deviations between projections and the original coordinates are termed the residuals, 

collected in the matrix 𝐸 (idem). The equation below shows the PCA in matrix form as a least 

squares model of: 

 

𝑋 = 1𝑥̅ + 𝑇𝑃′ +  𝐸 

Equation 6 – PCA in matrix form 

  

Here the mean vector 𝑥̅ is explicitly included in the model formulation. 

“A basic assumption in the use of PCA is that the score and loading vectors corresponding to the 

largest eigenvalues contain the most useful information relating to the specific problem, and that 

the remaining ones mainly comprise noise: therefore, these vectors are usually written in order 

of descending eigenvalues” (Wold, Esbensen and Geladi, 1987, p. 42). 

Graph 4 shows a scree plot (plot of the eigenvalues in descending order) of the PCA 

implementation for the TF 2012 reflectance measurements: 

 

 

Graph 4 – Scree plot of the PCA implementation for the TF 2012 reflectance measurements 
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In general cases, the number of factors retained for analysis are those with eigenvalues 

over 1: as seen in the graph, two principal components describe most of the variance in the 

population (roughly 96.7% of all the variance in a cumulative sum), while the other factors, as 

stated above, would mainly comprise noise – however, in this case this assumption might not 

be true due to the highly complex chemical interactions present in the samples that have an 

impact on the reflectance measurements – there isn’t a clear answer to how many factors should 

be retained for analysis (only general rules of thumb, like the scree plot analysis) and in this 

work, every model was tested using between 1 and 50 principal components, saving the best 

result (further analysis is shown in Chapter IV). 

Table 6 contains the test results obtained with a prediction model with the application 

of the Savitzky-Golay Filter, 10-fold cross-validation and NNs trained via the Levenberg-

Marquardt algorithm and random initialization of the weights and bias (k-Fold Cross-Validation 

and NNs will be covered further in this chapter) for the estimation of sugar content on TF 2012 

samples, to compare the use of the PCA before applying a machine learning algorithm on the 

“raw” reflectance measurements. 

 

Table 6 – Results obtained for the prediction of sugar content on TF 2012 samples with and without the 

application of a PCA 

    Test Set 

    R2 RMSE (ºBrix) PC 

NNs Sugar Content TF 2012 
Principal Component Analysis 0.952 0.820 18 

Original * 0.839 1.678 - 

PC: Principal Components used. 

*With Savitzky-Golay Filter. 

 

The results presented show that, for this test setup, the NN model takes great benefit from 

a dimensionality reduction step, specifically with the implementation of a PCA, achieving a 

significantly better R2 and a lowest RMSE – additionally, the computational cost when using 

the PCA before employing the machine learning algorithm is greatly reduced (which is 

expected, since the algorithm works with a significantly smaller set of inputs). For this work, 

the author chose to include the PCA as a dimensionality reduction step for every prediction 

model: however, there is a wide variety of dimensionality reduction methods that can be tested 

and further investigation in this topic should be conducted. 
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3.5. Model Validation 

Model validation (or model selection, model evaluation)  

“can be understood primarily as a way of measuring the predictive performance of a statistical 

model, since high values of R2 don’t necessarily mean a good fit – the model may have 

introduced too many degrees of freedom and inflate this statistics by overfitting the data, which 

means that predictions on new data will usually get worse as higher order terms are added. One 

way to measure the predictive ability of a model is to test it on a set of data not used in the 

estimation, a «validation or test set», instead of the «training set» used for estimation: however, 

there is often not enough data to allow for some of it to be kept back for testing” (Hyndman, 

2010). 

In this context, cross-validation and bootstrapping methods arise as a viable choice to 

improve the models’ generalization capacity without adding more samples to a dataset. In this 

work, the k-Fold Cross-Validation, Monte-Carlo Cross-Validation and Bootstrap methods were 

implemented and their efficiency compared as to choose the most adequate method to compose 

the predictive model; their description is found below, as in Lendasse, Wertz and Verleysen 

(2003). 

The consecutive steps of the Monte-Carlo Cross-Validation are: 

1. One randomly draws without replacement some elements of the dataset 𝑋; these 

elements form a new learning dataset 𝑋𝑙𝑒𝑎𝑟𝑛. The remaining elements of 𝑋 form 

the validation set 𝑋𝑣𝑎𝑙 (see Figure 2). 

 

 

Source: Remesan & Mathew, 2014: 64 

Figure 2 – Data splitting in the random sub-sampling (Monte-Carlo) approach  

 

2. The training of the model 𝑔 is done using 𝑋𝑙𝑒𝑎𝑟𝑛 and the error 𝐸𝑘(𝑔) is calculated 

according to: 
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𝐸𝑘(𝑔) =  
∑ (𝑔(𝑥𝑖

𝑣𝑎𝑙) −  𝑦𝑖
𝑣𝑎𝑙)2𝑁𝑝𝑟𝑜𝑝

𝑖=1

𝑁𝑝𝑟𝑜𝑝
 

Equation 7 – Error of the Monte Carlo Cross-Validation method per repetition 

 

With (𝑥𝑖
𝑣𝑎𝑙 , 𝑦𝑖

𝑣𝑎𝑙) the elements of 𝑋𝑣𝑎𝑙, 𝑁𝑝𝑟𝑜𝑝 the proportion of the training set chosen 

and 𝑔(𝑥𝑖
𝑣𝑎𝑙) the approximation of 𝑦𝑖

𝑣𝑎𝑙 by model 𝑔. 

3. Steps 1 and 2 are repeated 𝐾 times, with 𝐾 as large as possible. The error 𝐸𝑘(𝑔) 

is computed for each repetition 𝑘. The average error is defined by: 

 

𝐸̂𝑔𝑒𝑛(𝑔) =  
∑ 𝐸𝑘(𝑔)𝐾

𝑘=1

𝐾
 

Equation 8 – Average generalization error of the Monte-Carlo Cross-Validation 

  

The k-Fold Cross-Validation method is a variant of the Monte-Carlo Cross-Validation 

method. The consecutive steps of this method are: 

1. One divides the elements of the dataset 𝑋 into 𝐾 sets of roughly equal size. The elements 

of 𝑘𝑡ℎ set form the validation set 𝑋𝑣𝑎𝑙. The other sets form a new learning dataset 𝑋𝑙𝑒𝑎𝑟𝑛 

(check Figure 3). 

 

 

Source: Remesan & Mathew, 2014: 65 

Figure 3 – Data splitting in k-Fold Cross-Validation 
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2. The training of the model 𝑔 is done using 𝑋𝑙𝑒𝑎𝑟𝑛 and the error 𝐸𝑘(𝑔) is calculated 

according to: 

 

𝐸𝑘(𝑔) =  
∑ (𝑔(𝑥𝑖

𝑣𝑎𝑙) −  𝑦𝑖
𝑣𝑎𝑙)2𝑁/𝐾

𝑖=1

𝑁/𝐾
 

Equation 9 – Error of the k-Fold Cross-Validation method per set 

 

With (𝑥𝑖
𝑣𝑎𝑙 , 𝑦𝑖

𝑣𝑎𝑙) the elements of 𝑋𝑣𝑎𝑙 and 𝑔(𝑥𝑖
𝑣𝑎𝑙) the approximation of 𝑦𝑖

𝑣𝑎𝑙 by model 𝑔. 

3. Steps 1 and 2 are repeated for 𝑘 varying from 1 to 𝐾. The average error is computed 

according to Equation 8. 

 

The consecutive steps of the Bootstrap method are: 

1. In the dataset 𝑋, one draws randomly 𝑁 samples with replacement. These new samples 

form a new learning set 𝑋𝑙𝑒𝑎𝑟𝑛 with the same size as the original one. The validation set 

𝑋𝑣𝑎𝑙 is the original learning set 𝑋. This process is called re-sampling. 

2. The training of the model 𝑔 is done using 𝑋𝑙𝑒𝑎𝑟𝑛 and the errors 𝐸𝑘
𝑣𝑎𝑙(𝑔) and 𝐸𝑘

𝑙𝑒𝑎𝑟𝑛(𝑔) 

obtained with this model are calculated according to the following equations: 

 

𝐸𝑘
𝑙𝑒𝑎𝑟𝑛(𝑔) =  

∑ (𝑔(𝑥𝑖
𝑙𝑒𝑎𝑟𝑛) − 𝑦𝑖

𝑙𝑒𝑎𝑟𝑛)2𝑁
𝑖=1

𝑁
 

Equation 10 – Error of the Bootstrap method for the learning set per experiment 

  

With (𝑥𝑖
𝑙𝑒𝑎𝑟𝑛, 𝑦𝑖

𝑙𝑒𝑎𝑟𝑛) the elements of 𝑋𝑙𝑒𝑎𝑟𝑛 and 𝑔(𝑥𝑖
𝑙𝑒𝑎𝑟𝑛) the approximation of 𝑦𝑖

𝑙𝑒𝑎𝑟𝑛 

obtained by model 𝑔; 

 

𝐸𝑘
𝑣𝑎𝑙(𝑔) =  

∑ (𝑔(𝑥𝑖
𝑣𝑎𝑙) −  𝑦𝑖

𝑣𝑎𝑙)2𝑁
𝑖=1

𝑁
 

Equation 11 – Error of the Bootstrap method for the validation set per experiment 
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With (𝑥𝑖
𝑣𝑎𝑙 , 𝑦𝑖

𝑣𝑎𝑙) the elements of 𝑋𝑣𝑎𝑙 and 𝑔(𝑥𝑖
𝑣𝑎𝑙) the approximation of 𝑦𝑖

𝑣𝑎𝑙 obtained 

by model 𝑔. 

3. The optimism 𝐷𝑘(𝑔), a measure of performance degradation (for the same model) 

between a learning set and a validation set is computed by subtracting to the error of the 

validation set, the error of the training set. 

4. Steps 1, 2 and 3 are repeated 𝐾 times, with 𝐾 as large as possible. The average optimism 

is computed by: 

 

𝐷̂(𝑔) =  
∑ 𝐷𝑘(𝑔)𝐾

𝑘=1

𝐾
 

Equation 12 – Average optimism computation in the Bootstrap method 

 

5. Once this average optimism is computed, a new training of the model 𝑔 is done using 

the initial dataset 𝑋; the learning error 𝐸𝑔
𝐼  is calculated according to: 

 

𝐸𝑔
𝐼 =  

∑ (𝑔(𝑥𝑖) −  𝑦𝑖)
2𝑁

𝑖=1

𝑁
 

Equation 13 – Learning error in the Bootstrap method 

 

With (𝑥𝑖 , 𝑦𝑖) the elements of 𝑋 and 𝑔(𝑥𝑖) the approximation of 𝑦𝑖 by model 𝑔. 

6. Step 5 is repeated 𝑀 times, with 𝑀 as large as possible. For each repetition 𝑚 the 

learning error 𝐸𝑔
𝐼  is computed. The apparent error 𝐸̂𝐼 is defined as the average of errors 

𝐸𝑚
𝐼  over the 𝑀 repetitions. In the case of a linear model 𝑔, this repetition is not 

necessary; learning of a linear model gives a unique set of parameters, making all 

learning errors 𝐸𝑚
𝐼  equal. With nonlinear models, this repetition performs a (Monte-

Carlo) estimate of the most probable apparent error obtained after training of 𝑔. 

7. Finally, with the estimate of the apparent error and of the optimism, their sum gives an 

estimate of the generalization error. 

 



Chapter III – Methodology 

28 

 

𝐸̂𝑔𝑒𝑛(𝑔) =  𝐸̂𝐼(𝑔) +  𝐷̂(𝑔) 

Equation 14 – Estimate of the generalization error for the Bootstrap method 

 

Table 7 contains the test results obtained with a prediction model with the application of 

the Savitzky-Golay Filter, PCA and NNs trained via the Levenberg-Marquardt algorithm and 

random initialization of the weights and bias (topic covered further in this chapter) for the 

prediction of sugar content on TF 2012 samples, to compare the use of the different 

aforementioned model validation methods. 

 

Table 7 – Results obtained for the prediction of sugar content on TF 2012 samples with different model 

validation methods 

    Test Set 

    R2 RMSE (ºBrix) PC 

NNs Sugar Content TF 2012 

k-Fold Cross-Validation 0.952 0.820 18 

Monte-Carlo Cross-Validation 0.940 1.084 10 

Bootstrap 0.948 0.886 19 

PC: Principal Components used. 

k-Fold Cross-Validation with k = 10. 

Monte-Carlo Cross-Validation with 20% of the samples for validation and K = 1000. 

Bootstrap with M = 1000. 

 

These results show that, for this test setup, the application of either model validation 

method obtains very similar results, with the k-Fold Cross-Validation method obtaining slightly 

superior values for R2 and RMSE – farther, this method is by some distance the one with the 

smallest computation cost, with the Monte-Carlo Cross-Validation and the Bootstrap methods 

being extremely heavy with the 1000 repetitions chosen (usually a lower limit for the number 

of repetitions). For this work, the author chose the k-Fold Cross-Validation method as the model 

selection algorithm. 

One important topic to cover in the model validation step is the “bias-variance trade-

off” or “bias-variance dilemma”:  

“The variance reflects the sensitivity of the function estimate to a training sample. Less 

sensitivity means that the estimate will be more stable against changes (sampling variations) in 

the data and thus be less variable under repeated sampling” (Friedman, 1997, p. 60). However, 

high variance can cause an algorithm to model the random noise in the data, resulting in 
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«overfitting»; “the bias reflects sensitivity to the target function -  it represents how closely on 

average the estimate is able to approximate the target function” (idem, ibidem). High bias can 

cause an algorithm to miss relevant relations between features, resulting in «underfitting». So, 

“it is desirable to have both low bias and low variance, since both contribute to the squared 

estimation error in equal measure” (idem, ibidem). However,  

“the purpose of training is to gain information concerning the target function from the data: 

therefore, sensitivity to the training data is essential, and generally more sensitivity results in 

lower bias; this in turn increases variance, and so there is a natural «bias-variance trade-off» 

associated with function approximation” (idem, ibidem).  

It’s then worth acknowledging that, for k-Fold Cross-Validation, if the prediction model 

is stable for a given dataset, the variance of the cross-validation estimates will be very similar 

independent of the number of folds. k-Fold Cross-Validation with 𝑘 values between 10-20 

reduces the variance while increasing the bias; as 𝑘 decreases to values between 2-5 and the 

sample sizes get smaller, there is an increased variance due to the instability of the training sets: 

in these situations, repeated runs should be performed (Kohavi, 1995). 

 

3.6. Machine Learning Algorithms 

Machine Learning is a field of computer science focused on the computers’ ability to 

learn from a set of data, with problems ranging from clustering and dimensionality reduction to 

unsupervised, reinforcement and supervised learning. In this work, the focus is a problem of 

supervised learning regression: from a set of inputs, the model should be able to predict outputs 

based on the data features and relations, and these predictions will be compared to ground-truth 

results to further optimize the models’ structure and parameters. 

There’s a wide variety of supervised learning algorithms fit for regression and the author 

chose to study and implement three different algorithms - NNs, DTs and SVR, compare their 

performance between themselves and with a chemometric method, PLS regression. The NNs 

algorithm was chosen since it’s normally used by reference authors (as seen in Chapter II) due 

to its ability to model any function of any degree of accuracy (see 3.6.1.); the DTs algorithm 

(see 3.6.2.), because of its fast predictions, inherent simplified model and its ability to use 

ensemble methods, that allow to construct more than one DT to boost the model’s 

generalization capacity; finally, the SVR algorithm was chosen (see 3.6.3.) because it has a 

regularization parameter, making it easier to avoid overfitting, it maps the input vectors to a 
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high-dimensional feature space so that is possible to build expert knowledge about a problem 

via engineering the kernel function and, most importantly, the algorithm is defined as a convex 

optimization problem, for which there is no local minima (unlike NNs or PLS regression), using 

a subset of training points in the decision function, named support vectors, making the 

computational cost significantly smaller. 

 

3.6.1. Neural Networks 

The term “neural network” has its origins in attempts to find mathematical 

representations of information processing in biological systems (McCulloch & Pitts, 1943; 

Widrow & Hoff, 1960; Rosenblatt, 1962; Rumelhart, Hinton, & Williams, 1986), more 

specifically, trying to mimic what the human brain does. There are a wide number of NNs in 

use today, but in this work, we will only discuss feedforward NNs for supervised learning 

problems, since these are the most used type of networks in literature. A description of 

feedforward network functions is given with wording from Bishop (2006): a complete 

mathematical formulation can be found in the aforementioned book chapter. 

Linear models for regression and classification are based on linear combinations of fixed 

nonlinear basis functions 𝜙𝑗(𝑥) and take the form: 

 

𝑦(𝑥, 𝑤) =  𝑓 (∑ 𝑤𝑗𝜙𝑗(𝑥)

𝑀

𝑗=1

) 

Equation 15 – Linear models for regression and classification 

 

Where 𝑓(∙) is a nonlinear activation function in the case of classification and is the 

identity in the case of regression. The goal is to extend this model by making the basis functions 

𝜙𝑗(𝑥) depend on parameters and then to allow these parameters to be adjusted, along with the 

coefficients {𝑤𝑗}, during training. There are many ways to construct parametric nonlinear basis 

functions. NNs use basis functions that follow the same form as Equation 15, so that each basis 

function is itself a nonlinear function of a linear combination of the inputs, where the 

coefficients in the linear combination are adaptive parameters. 
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This leads to the basic NN model, which can be described as a series of functional 

transformations. First, the construction of 𝑀 linear combinations of the input variables 

𝑥1, … , 𝑥𝐷 in the form: 

 

𝑎𝑗 =  ∑ 𝑤𝑗𝑖
(1)

𝑥𝑖 +  𝑤𝑗0
(1)

𝐷

𝑖=1

 

Equation 16 – Expression of the quantities known as activations in the first layer of the network 

 

Where 𝑗 = 1, … , 𝑀, and the superscript (1) indicates that the corresponding parameters 

are in the first “layer” of the network. The parameters 𝑤𝑗𝑖
(1)

 are referred as weights and the 

parameters 𝑤𝑗0
(1)

 as biases. The quantities 𝑎𝑗 are known as activations.  

Each of them is then transformed using a differentiable, nonlinear activation function 

ℎ(∙) to give: 

 

𝑧𝑗 = ℎ(𝑎𝑗) 

Equation 17 – Expression of the hidden units 

 

These quantities correspond to the outputs of the basis functions in Equation 15 that, in 

the context of NNs, are called hidden units. The nonlinear functions ℎ(∙) are generally chosen 

to be sigmoidal functions such as the logistic sigmoid or the hyperbolic tangent function. 

Following Equation 15, these values are again linearly combined to give output unit activations: 

 

𝑎𝑘 =  ∑ 𝑤𝑘𝑗
(2)

𝑧𝑗 +  𝑤𝑘0
(2)

𝑀

𝑗=1

 

Equation 18 – Expression of the quantities known as activations in the second layer of the network 
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Where 𝑘 = 1, … , 𝐾 and 𝐾 is the total number of outputs. This transformation 

corresponds to the second layer of the network, and again the 𝑤𝑘0
(2)

 are bias parameters. Finally, 

the output unit activations are transformed using an appropriate activation function to give a set 

of network outputs 𝑦𝑘. The choice of activation function is determined by the nature of the data 

and the assumed distribution of target variables.  

Thus, for standard regression problems, the activation function is the identity so that 

𝑦𝑘 =  𝑎𝑘. A combination of these various stages give the overall network function that, for 

sigmoidal output unit activation functions, takes the form: 

 

𝑦𝑘(𝑥, 𝑤) =  𝜎 (∑ 𝑤𝑘𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(1)

𝑥𝑖 +  𝑤𝑗0
(1)

𝐷

𝑖=1

) +  𝑤𝑘0
(2)

𝑀

𝑗=1

) 

Equation 19 – Overall network function for sigmoidal output unit activation functions 

 

Where the set of all weight and bias parameters have been grouped together into a vector 

𝑤. Thus, the NNs model is simply a nonlinear function from a set of input variables {𝑥𝑖} to a 

set of output variables {𝑦𝑘} controlled by a vector 𝑤 of adjustable parameters. 

The bias parameters in Equation 16 can be absorbed into the set of weight parameters 

by defining an additional input variable 𝑥0 whose value is clamped at 𝑥0 = 1, so that Equation 

16 takes the form: 

 

𝑎𝑗 =  ∑ 𝑤𝑗𝑖
(1)

𝑥𝑖∙

𝐷

𝑖=0

 

Equation 20 – Expression of the quantities known as activations after absorbing the bias parameters into 

the set of weight parameters in the first layer of the network 

 

Similarly, the second-layer biases can be absorbed into the second-layer weights, so that 

the overall network function becomes: 
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𝑦𝑘(𝑥, 𝑤) =  𝜎 (∑ 𝑤𝑘𝑗
(2)

ℎ (∑ 𝑤𝑗𝑖
(1)

𝑥𝑖

𝐷

𝑖=0

)

𝑀

𝑗=0

) 

Equation 21 – Overall network function for sigmoidal output unit activation functions after absorbing the 

bias parameters into the set of weight parameters 

 

The NN model comprises two stages of processing, each of which resembles a 

perceptron model and for this reason the NN is also known as the multilayer perceptron. A key 

difference compared to the perceptron, however, is that the NN uses continuous sigmoidal 

nonlinearities in the hidden units, whereas the perceptron uses step-function nonlinearities. This 

means that the NN function is differentiable with respect to the network parameters, and this 

property will play a central role in network training. 

Because there is a direct correspondence between a network diagram and its 

mathematical function, one can develop more general network mappings by considering more 

complex network diagrams. However, these must be restricted to a feed-forward architecture, 

in other words to one having no closed directed cycles, to ensure that the outputs are 

deterministic functions of the inputs. This is illustrated with a single example in Figure 4. Each 

(hidden or output) unit in such a network computes a function given by: 

 

𝑧𝑘 = ℎ (∑ 𝑤𝑘𝑗𝑧𝑗

𝑗

) 

Equation 22 – Hidden or output unit function in a network 
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Source: Bishop, 2006: 228 

Figure 4 – Example of a NN having a feed-forward topology 

 

Where the sum runs over all units that send connections to unit 𝑘 (and a bias parameter 

is included in the summation). For a given set of values applied to the inputs of the network, 

successive application of Equation 22 allows the activations of all units in the network to be 

evaluated including those of the output units. 

The next task is finding a weight vector 𝑤 which minimizes the chosen error function 

𝐸(𝑤). Because the error 𝐸(𝑤) is a smooth continuous function of 𝑤, its smallest value will 

occur at a point in weight space such that the gradient of the error function vanishes, so that: 

 

∇𝐸(𝑤) =  0 

Equation 23 – Condition to find the smallest value of the error function 𝑬(𝒘) 

 

Because there is clearly no hope of finding an analytical solution to Equation 23, one 

should resort to iterative numerical procedures. The optimization of continuous nonlinear 

functions is a widely-studied problem and there exists an extensive literature on how to solve 

it efficiently. Most techniques involve choosing some initial value 𝑤(0) for the weight vector 

and then moving through weight space in a succession of steps of the form: 
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𝑤(𝜏+1) =  𝑤(𝜏) +  ∆𝑤(𝜏) 

Equation 24 – Technique to optimize continuous nonlinear functions 

 

Where 𝜏 labels the iteration step. Different algorithms involve different choices for the 

weight vector update ∆𝑤(𝜏). Many algorithms make use of gradient information and therefore 

require that, after each update, the value of ∇𝐸(𝑤) is evaluated at the new weight vector 𝑤(𝜏+1). 

The simplest approach to using gradient information is to choose the weight update in 

Equation 24 to comprise a small step in the direction of the negative gradient, so that: 

 

𝑤(𝜏 +1) =  𝑤𝜏 −  𝜂∇𝐸(𝑤𝜏) 

Equation 25 – Approach to using gradient information comprising a small step in the direction of the 

negative gradient 

 

Where the parameter 𝜂 > 0 is known as the learning rate. After each such update, the 

gradient is re-evaluated for the new weight vector and the process repeated. Note that the error 

function is defined with respect to a training set, and so each step requires that the entire training 

step be processed in order to evaluate ∇𝐸. Techniques that use the whole data set at once are 

called batch methods. At each step the weight vector is moved in the direction of the greatest 

rate of decrease of the error function, and so this approach is known as gradient descent or 

steepest descent. Although such an approach might intuitively seem reasonable, in fact it turns 

out to be a poor algorithm. There is, however, an on-line version of gradient descent that has 

proved useful in practice for training NNs on large datasets (LeCun et al., 1989). Error functions 

based on maximum likelihood for a set of independent observations comprise a sum of terms, 

one for each data point: 

 

𝐸(𝑤) =  ∑ 𝐸𝑛(𝑤)

𝑁

𝑛=1

 

Equation 26 – Error function based on maximum likelihood for a set of independent observations 
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On-line gradient descent, also known as sequential gradient descent or stochastic 

gradient descent, makes an update to the weight vector based on one data point at a time, so 

that: 

 

𝑤(𝜏+1) =  𝑤(𝜏) −  𝜂∇𝐸𝑛(𝑤(𝜏)) 

Equation 27 – Approach to use gradient information comprising a small step in the direction of the 

negative gradient for an on-line approach 

 

This update is repeated by cycling through the data either in sequence or by selecting 

points at random with replacement. There are of course intermediate scenarios in which the 

updates are based on batches of data points. 

The final goal is to find an efficient technique for evaluating the gradient of an error 

function 𝐸(𝑤) for a feed-forward NN. This can be achieved using a local message passing 

scheme in which information is sent alternately forwards and backwards through the network 

and is known as error backpropagation. This procedure can therefore be summarized as follows: 

1. Apply an input vector 𝑥𝑛 to the network and forward propagate through the network 

using Equation 28 and Equation 29 to find the activations of all the hidden and 

output units. 

 

𝑎𝑗 =  ∑ 𝑤𝑗𝑖𝑧𝑖

𝑖

 

Equation 28 – Weighted sum of the inputs in a general feed-forward NN 

 

𝑧𝑗 =  ℎ(𝑎𝑗) 

Equation 29 – Transformation of the weighted sum of the inputs by a nonlinear activation function 𝒉(∙) 

 

2. Evaluate the 𝛿𝑘 for all the output units using Equation 30. 
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𝛿𝑘 =  𝑦𝑘 − 𝑡𝑘 

Equation 30 – Evaluation of the derivatives for all the output units according to the errors 𝜹  

 

3. Backpropagate the 𝛿’s using Equation 31 to obtain 𝛿𝑗 for each hidden unit in the 

network. 

 

𝛿𝑗 = ℎ′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

 

Equation 31 – Backpropagation formula 

  

(The value of 𝛿 for a particular hidden unit can be obtained by propagating the 𝛿’s 

backwards from units higher up in the network. This is only possible because the NN function 

is differentiable). 

4. Use Equation 32 to evaluate the required derivatives. 

 

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
=  𝛿𝑗𝑧𝑖 

Equation 32 – Evaluation of the derivatives for all the hidden units according to the errors 𝜹 

  

(This Equation tells that the required derivative is obtained simply by multiplying the 

value of 𝛿 for the unit at the output end of the weight by the value of 𝑧 for the unit at the input 

end of the weight). 

For batch methods, the derivative of the total error 𝐸 can then be obtained by repeating 

the above steps for each pattern in the training set and then summing over all patterns: 

 

𝜕𝐸

𝜕𝑤𝑗𝑖
=  ∑

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑛

 

Equation 33 – Evaluation of the derivatives for each pattern in the training set 
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Concluding the description of the feed-forward NN model and its learning process, the 

final step is to choose the NN structure, training algorithm and form of initialization of the 

vector of weights and bias. 

Regarding the NN structure, the activation function chosen for the hidden units was the 

bipolar sigmoidal function (related to tangent hyperbolic), described in Equation 34: 

 

𝜎 =  
2

1 +  𝑒−𝑢
− 1 

Equation 34 – Activation function chosen for the hidden units (bipolar sigmoidal function) 

 

According to Kecman: 

“One of the first decisions to be made is how many hidden layers are needed in order to have a 

good model. First, it should be stated that there is no need to have more than two hidden layers. 

This answer is supported both by the theoretical result and by many simulations in different 

engineering fields […]. The real issue at present is whether one or two hidden layers should be 

used” (2001, p.267).  

Referring to Hayashi, Sakata, and Gallant (1990), one should never try a multilayer 

model for fitting data until it was first tried a single-layer model, and this claim was somehow 

softened by calling it a rule of thumb: it’s true that the simplest model possible should always 

be chosen but in this work, after multiple experiments on both setups, the NNs model will have 

two hidden layers. 

Also, acknowledging Kecman:  

“The number of neurons in a hidden layer is one the most important design parameters with 

respect to the approximation capabilities of a NN. Recall that both the number of input 

components (features) and the number of output neurons is in general determined by the nature 

of the problem […]. In the case of general nonlinear regression […] the main task is to model 

the underlying function between the given inputs and outputs by filtering out the disturbances 

contained in the noisy training data set. By changing the number of hidden layer nodes, two 

extreme solutions should be avoided: filtering out the underlying function (not enough hidden 

layer neurons) and modelling of noise or overfitting the data (too many hidden layer neurons). 

In mathematical statistics, these problems are discussed under the rubric “bias-variance 

dilemma” […]. One of the statistical tools to resolve the trade-off between bias and variance is 

the cross-validation technique […]. In practical applications of NNs, one should build and train 

with cross-validation many differently structured NNs that differ in bias-variance and then pick 

the best one” (2001, p.268-271).  

This is the procedure that the author ran in this work, and the best structure found 

regarding the number of neurons in a hidden layer is two neurons per hidden layer. 
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The training algorithm chosen was the Levenberg-Marquardt Error Backpropagation 

algorithm, described in (Levenberg, 1944) and further optimized in (Marquardt, 1963). The 

error function for stopping the learning function is the Mean Squared Error (MSE), and the 

number of epochs (iterations for weights adjustment) is 25. 

Finally, for the form of initialization of the vector with the weights and bias, Kecman 

mentions that: 

 “Initialization by using random numbers is very important in avoiding the effects of symmetry 

in the network. In other words, all the hidden layer neurons should start with guaranteed different 

weights. If they have similar (or, even worse, the same) weights, they will perform similarly (the 

same) on all data pairs by changing weights in similar (the same) directions. This makes the 

whole learning process unnecessarily long (or learning will be the same for all neurons, and there 

will practically be no learning)” (2001, p.292).  

On a different note, there’s also the Nguyen-Widrow algorithm introduced in Nguyen 

and Widrow (1990), that generates initial weight and bias values for a layer so that the active 

regions of the layer’s neurons are distributed approximately evenly over the input space, and 

it’s said to make the training process faster. The author chose to implement both the random 

initialization and the Nguyen-Widrow methods and compare their efficiency. Table 8 contains 

the test results obtained with a prediction model with the application of the Savitzky-Golay 

Filter, PCA and NNs trained via the Levenberg-Marquardt algorithm for the prediction of 

anthocyanin concentration, pH index and sugar content on TF 2012 samples, to compare the 

use of both initialization approaches: 

 

Table 8 -  Results obtained for the prediction of sugar content, pH index and anthocyanin concentration 

on TF 2012 with different NNs initialization approaches 

    Test Set 

    R2 RMSE PC ET 

NNs TF 2012 

Anthocyanin Concentration 
Random Initialization 0.953 15.967 mg.L-1 16  3 min. 

Nguyen-Widrow 0.962 13.095 mg.L-1 14  90 sec.  

pH Index 
Random Initialization 0.871 0.147 11  3 min. 

Nguyen-Widrow 0.840 0.160 11  90 sec. 

Sugar Content 
Random Initialization 0.952 0.820 ºBrix 18  3 min. 

Nguyen-Widrow 0.917 1.108 ºBrix 11  90 sec. 

PC: Principal Components used. 
ET: Execution Time. 

k-Fold Cross-Validation with 10 folds. 
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As seen in Table 8, for this test setup, the random initialization of the weights and bias 

achieved better results for the prediction of sugar content and pH index, while the Nguyen-

Widrow algorithm had better results for the prediction of anthocyanin concentration – however, 

it can be considered that there isn’t a significant difference between both methods (except on 

the sugar content parameter) and, although the Nguyen-Widrow algorithm reduces the 

execution time to around half, in this work it doesn’t provide significant improvements for the 

computational cost. With this in mind, the author chose to implement a random initialization of 

the weights and bias in all NN models. 

 

3.6.2. Decision Trees 

DTs are predictive modelling algorithms that belong to the tree models class and, in 

machine learning, they’re usually employed in classification problems – a DT can be easily 

identified as a flowchart-like structure with internal nodes, branches and leaf nodes. However, 

these algorithms can also be used for regression tasks, in which the DTs take the name of 

regression trees. According to Rokach and Maimon: 

“Regression trees are DTs that deal with a continuous target. The basic idea is to combine DTs 

and linear regression to forecast numerical target attributes based on a set of input attributes. 

These methods perform induction by means of an efficient recursive partitioning algorithm. The 

choice of the best split at each node of the tree is usually guided by a least squares criterion” 

(2015a, p.85).  

A description of the regression trees algorithm is given with the words from Shalizi 

(2009), based on Hand, Mannila, and Smyth (2001a, 2001b). A complete mathematical 

formulation can be found in Rokach and Maimon (2015b). 

In simple linear regression, a real-valued dependent variable 𝑌 is modelled as a linear 

function of a real-valued independent variable 𝑋 plus noise: 

 

𝑌 =  𝛽0 +  𝛽1𝑋 +  𝜖 

Equation 35 – Linear regression modelling of the dependent variable 𝒀 

 

In multiple regression, there are multiple independent variables 𝑋1, 𝑋2, … , 𝑋𝑝 = 𝑋: 
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𝑌 =  𝛽0 + 𝛽𝑇𝑋 +  𝜖 

Equation 36 – Multiple regression modelling of the dependent variable 𝒀 

 

Linear regression is a global model, where there is a single predictive formula holding 

over the entire data-space. When the data has lots of features which interact in complicated, 

nonlinear ways, assembling a single global model can be very difficult, and hopelessly 

confusing when one succeeds. An alternative approach to nonlinear regression is to sub-divide, 

or partition, the space into smaller regions, where the interactions are more manageable. Then, 

those sub-divisions are partitioned again – this is called recursive partitioning – until finally 

one gets chunks of the space which are so tame that one can fit simple models to them. The 

global model thus has two parts: one is just the recursive partition, the other is a simple model 

for each cell of the partition. 

Prediction trees use the tree to represent the recursive partition. Each of the terminal 

nodes, or leaves, of the tree represents a cell of the partition, and has attached to it a simple 

model which applies in that cell only. A point 𝑥 belongs to a leaf if 𝑥 falls in the corresponding 

cell of the partition. To figure out which cell one is, one starts at the root node of the tree, and 

goes through a sequence of “questions” about the features, since the interior nodes are “labelled 

with questions”, and the edges or branches between them are “labelled by the answers”. Notice 

that this basic idea of the recursive partition is based on discrete or categorical variables 

(classification problems), but in regression the variables will typically be continuous. As for the 

simple local models, for classic regression trees, the model in each cell is just a constant 

estimate of 𝑌. That is, supposing points (𝑥𝑖, 𝑦𝑖), (𝑥2, 𝑦2), … , (𝑥𝑐, 𝑦𝑐) are all the samples 

belonging to the leaf-node 𝑙, the model for 𝑙 is just: 

 

𝑦̂ =  
1

𝑐
∑ 𝑦𝑖

𝑐

𝑖=1

 

Equation 37 – Modelling of a leaf-node 

 

The sample mean of the dependent variable in that cell. This is a piecewise-constant 

model - there are several advantages to this: predictions are fast, since there are no complicated 
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calculations, just looking up constants in the tree; it’s easy to understand what variables are 

important in making the prediction, just look at the tree; the model gives a jagged response, so 

it can work when the true regression surface is not smooth; and there are fast, reliable algorithms 

to learn these trees. Figure 5 shows an example of a regression tree which predicts the price of 

cars, while Figure 6 shows the partition of the data implied by the regression tree from Figure 

5 (note that all the diving lines are parallel to the axes, because each internal node checks 

whether a single variable is above or below a given value. 

 

 

Source: Shalizi, 2009: 3 

Figure 5 – Regression tree for predicting the price of 1993-model cars 

 

 

Source: Shalizi, 2009: 4 

Figure 6 – The partition of the data implied by the regression tree from Figure 5 
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Once the tree is fixed, the local models are completely determined and easy to find (just 

compute the average), so all the effort should go into finding a good tree, which is to say into 

finding a good partitioning of the data. With regression trees, the goal is to maximize 𝐼[𝐶; 𝑌], 

where 𝑌 is the dependent variable and 𝐶 is the variable that keeps the information about the leaf 

position. A direct maximization can’t be applied, so a greedy search is employed: one starts by 

finding the binary question which maximizes the information about 𝑌; this gives the root node 

and two daughter nodes. At each daughter node, the initial procedure is repeated, asking which 

question would maximize the information about 𝑌, given that one is already in the tree – this 

process is repeated recursively. However, one could just end up putting every point in its own 

leaf-node, which would not be very useful. A typical stopping criterion is to stop growing the 

tree when further splits gives less than some minimal amount of extra information, or when 

they would result in nodes containing less that a certain percent of the total data. So, the sum of 

squared errors of a tree 𝑇 is: 

 

𝑆 =  ∑ ∑(𝑦𝑖 −  𝑚𝑐)2

𝑖 ∈𝐶𝑐 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)

 

Equation 38 – Sum of squared errors of a tree 𝑻 

 

Where: 

 

𝑚𝑐 =  
1

𝑛𝑐
∑ 𝑦𝑖

𝑖 ∈𝐶

 

Equation 39 – Prediction for leaf 𝒄 

 

Equation 38 can then be re-written as: 

 

𝑆 =  ∑ 𝑛𝑐𝑉𝑐

𝑐 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠(𝑇)

 

Equation 39 – Sum of squared errors of a tree 𝑻 re-written to include the within-leave variance of a leaf 𝒄  
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Where 𝑉𝑐 is the within-leave variance of leaf 𝑐. So, the tree splits will happen with the 

goal of minimizing 𝑆. 

The regression-tree-growing algorithm can then be expressed as follows: 

1. Start with a single node containing all points. Calculate 𝑚𝑐 and 𝑆. 

2. If all the points in the node have the same value for all the independent variables, 

stop. Otherwise, search over all binary splits of all variables for the one which 

will reduce 𝑆 as much as possible. If the largest decrease in 𝑆 would be less than 

some threshold 𝛿, or one of the resulting nodes would contain less than 𝑞 points, 

stop. Otherwise, take that split, creating two new nodes. 

3. In each node, go back to step 1. 

Trees use only one predictor (independent variable) at each step. If multiple predictors 

are equally good, which one is chosen is basically a matter of chance. One problem with the 

straight-forward algorithm presented is that it can stop too early, for example, there can be 

variables which are not very informative themselves, but that lead to very informative 

subsequent splits. This suggests a problem with stopping when the decrease in 𝑆 becomes less 

than some 𝛿. Similar problems can arise from arbitrarily setting a minimum number of points 

𝑞 per node. 

A more successful approach to finding regression trees uses the idea of cross-validation: 

the data is randomly divided into a training and a validation set, the basic tree-growing 

algorithm is applied to the training data only, with 𝑞 = 1 and 𝛿 = 0 - that is, one grows the 

largest tree possible. This is generally going to be too large and will overfit the data, but then 

the cross-validation procedure is used to prune the tree. At each pair of leaf nodes with a 

common parent, the error is evaluated on the testing data and see whether the sum of squares 

would be smaller by removing those two nodes and making their parent a leaf. This is repeated 

until pruning no longer improves the error on the testing data. In each individual tree, this 

approach was employed. 

However, for this work, an individual DT wasn’t used since, despite all methods, they 

tend to still overfit - instead, a bagging (bootstrap aggregated) algorithm of DTs was 

implemented, based on Breiman (1996), that states that:  
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“Bagging predictors is a method for generating multiple versions of a predictor and using these 

to get an aggregated predictor. The aggregation averages over the versions when predicting a 

numerical outcome and does a plurality vote when predicting a class. The multiple versions are 

formed by making bootstrap replicates of the training set and using these as new training sets” 

(1996, p.123).  

This technique reduces the effects of overfitting and improves generalization (idem). 

So, the DTs model presented in this work is actually a bagging of a number of individual DTs, 

each one implemented with the regression-tree-growing algorithm and cross-validation method 

described. There is no clear way of finding the optimum number of trees to use in the bagging 

algorithm, with a general “rule of thumb” being a number between 64-128 trees. For this work, 

the author chose 100 trees for each DTs model. 

 

3.6.3. Support Vector Regression 

In order to introduce the SVR model, a brief description of the Support Vector (SV) 

algorithm is given below, extracted from Smola and Sch𝑜̈lkopf (2004). A complete 

mathematical formulation can be found in the aforementioned paper and also in Basak, Pal, and 

Patranabis (2007). 

Suppose a given training data {(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙)} ∁ 𝜒 ∈  ℝ, where 𝜒 denotes the space 

of the input patterns – for instance, ℝ𝑑. In 𝜀-SV regression as in (Vapnik, 1995), the goal is to 

find a function 𝑓(𝑥) that has at most 𝜀 deviation from the actually obtained targets 𝑦𝑖 for all the 

training data, and at the same time, is as flat as possible. In other words, one does not care about 

errors as long as they are less than 𝜀, but will not accept any deviation larger than this. 

In the case of linear functions 𝑓 taking the form: 

 

𝑓(𝑥) =  〈𝑤, 𝑥〉 + 𝑏, 𝑤 ∈  𝜒, 𝑏 ∈  ℝ 

Equation 40 - Example of a linear function 𝒇.  

 

Where 〈∙,∙〉 denotes the dot product in 𝜒. Flatness in the case of Equation 40 means that 

one seeks small 𝑤. One way to ensure this is to minimize the Euclidean norm, i.e. ‖𝑤‖2. 

Formally, this problem can be written as a convex optimization problem by requiring: 
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minimize 
1

2
‖𝑤‖2 

subject to {
𝑦𝑖 −  〈𝑤, 𝑥𝑖〉 − 𝑏 ≤  𝜀
〈𝑤, 𝑥𝑖〉 + 𝑏 −  𝑦𝑖  ≤  𝜀

 

Equation 41 - Convex optimization problem of minimizing the Euclidean norm 

 

The tacit assumption in Equation 41 was that such a function 𝑓 actually exists that 

approximates all pairs (𝑥𝑖, 𝑦𝑖) with 𝜀 precision, or in other words, that convex optimization 

problem is feasible. Sometimes, however, this may not be the case, or one may also want to 

allow for some errors. Analogously to the “soft margin” loss function in (Cortes and Vapnik, 

1995), one can introduce slack variables 𝜉𝑖 , 𝜉𝑖
∗ to cope with otherwise infeasible constraints of 

the optimization problem in Equation 41. Hence, one arrives at the formulation stated in 

(Vapnik, 1995): 

 

minimize 
1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑖 +  𝜉𝑖

∗)𝑙
𝑖=1  

subject to {

𝑦𝑖 −  〈𝑤, 𝑥𝑖〉 − 𝑏 ≤  𝜀 +  𝜉𝑖

〈𝑤, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖  ≤  𝜀 +  𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗  ≥ 0

 

Equation 42 – Convex optimization problem of minimizing the Euclidean norm with slack variables to 

cope with otherwise infeasible constraints 

 

The constant 𝐶 > 0 determines the trade-off between the flatness of 𝑓 and the amount up 

to which deviations larger than 𝜀 are tolerated. The formulation above corresponds to dealing 

with a so called 𝜀-insensitive loss function |𝜉|𝜀 described by: 

 

|𝜉|𝜀 ∶=  {
0,                    𝑖𝑓 |𝜉|  ≤  𝜀 
|𝜉| −  𝜀,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Equation 43 – Description of the 𝜺-insensitive loss function 

  

An alternative to Vapnik’s 𝜀-SV Regression was introduced by (Chalimourda, Sch𝑜̈lkopf, 

& Smola, 2004), named 𝜐-SV Regression, where 𝜀 is not defined a priori but is itself a variable, 
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its value traded off against model complexity and slack variables by means of a constant 𝜐 ∈

[0,1]. 

Figure 7 depicts the situation in Vapnik’s algorithm graphically.  

 

 

Source: Smola and Sch𝑜̈lkopf, 2004: 200 

Figure 7 – The soft margin loss setting corresponds for a linear SV machine 

 

Only the points outside the shaded region contribute to the cost insofar, as the deviations 

are penalized in a linear fashion. The optimization problem in Equation 42 can be solved more 

easily in its dual formulation. Moreover, the dual formulation provides the key for extending 

support vector machines to nonlinear functions. 

The key idea is to construct a Lagrange function from both the objective function (it will 

be called the primal objective function from so on) and the corresponding constraints, by 

introducing a dual set of variables. Hence, one proceeds as follows: 

 

𝐿 ∶=  
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 +  𝜉𝑖

∗)

𝑙

𝑖=1

−  ∑ 𝛼𝑖(𝜀 +  𝜉𝑖 − 𝑦𝑖 +  〈𝑤, 𝑥𝑖〉 + 𝑏)

𝑙

𝑖=1

−  ∑ 𝛼𝑖
∗(𝜀 +  𝜉𝑖

∗ + 𝑦𝑖 −  〈𝑤, 𝑥𝑖〉 − 𝑏) − ∑(𝜂𝑖𝜉𝑖 +  𝜂𝑖
∗𝜉𝑖

∗)

𝑙

𝑖=1

𝑙

𝑖=1

 

Equation 44 – Dual formulation via a Lagrange function of the objective function and the corresponding 

constraints 



Chapter III – Methodology 

48 

 

It is understood that the dual variables in Equation 44 have to satisfy positivity constraints, 

i.e. 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗  ≥ 0. It follows from the saddle point condition that the partial derivatives of 

𝐿 with respect to the primal variables (𝑤, 𝑏, 𝜉𝑖, 𝜉𝑖
∗) have to vanish for optimality – substituting 

this into Equation 44 yields the dual optimization problem: 

 

maximize {
−

1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 −  𝛼𝑗
∗)〈𝑥𝑖, 𝑥𝑗〉𝑙

𝑖,𝑗=1

−𝜀 ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑙

𝑖=1 +  ∑ 𝑦𝑖(𝛼𝑖 −  𝛼𝑖
∗)𝑙

𝑖=1

 

subject to {
∑ (𝛼𝑖 −  𝛼𝑖

∗) = 0𝑙
𝑖=1

𝛼𝑖, 𝛼𝑖
∗  ∈ [0, 𝐶]

 

Equation 45 – Dual optimization problem 

 

In deriving Equation 45 one eliminates the dual variables 𝜂𝑖 , 𝜂𝑖
∗ due to the equalization of 

its partial derivatives to 0, as these variables did not appear in the dual objective function 

anymore but were present in the dual feasibility conditions. The so-called Support Vector 

expansion is then obtained following: 

 

𝑤 =  ∑(𝛼𝑖 −  𝛼𝑖
∗)𝑥𝑖

𝑙

𝑖=1

 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑓(𝑥) =  ∑(𝛼𝑖 −  𝛼𝑖
∗)〈𝑥𝑖 , 𝑥〉 + 𝑏

𝑙

𝑖=1

 

Equation 46 – Support Vector expansion 

 

Where 𝑤 can be completely described as a linear combination of the training patterns 𝑥𝑖. 

In a sense, the complexity of a function’s representation by support vectors is independent of 

the dimensionality of the input space 𝜒, and depends only on the number of support vectors. 

Moreover, the complete algorithm can be described in terms of dot products between the data. 

Even when evaluating 𝑓(𝑥) one doesn’t need to compute 𝑤 explicitly (although this may be 

computationally more efficient in the linear setting). These observations will come handy for 

the formulation of a nonlinear extension. 

The next step is to make the support vector algorithm nonlinear. A computationally cheap 

way is to map the input vectors into a high-dimensional feature space through some nonlinear 
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mapping, and then solve the optimization problem in that feature space. With the use of a 

suitable function 𝑘 such as: 

 

[𝜙(𝑥𝑖)  ∙  𝜙(𝑥)] = 𝑘(𝑥𝑖, 𝑥) 

Equation 47 - Mapping the input vectors into a high-dimensional feature space. 

 

Where [𝜙(𝑥𝑖)  ∙  𝜙(𝑥)] is the dot product of the input vectors’ icons in a feature space ℱ, 

one obtains the nonlinear regression functions of the form: 

 

𝑓(𝑥) =  ∑(𝛼𝑖
∗ − 𝛼𝑖)  ∙ 𝑘(𝑥𝑖, 𝑥) + 𝑏

𝑛

𝑖=1

 

Equation 48 – Expressing nonlinear regression functions 

 

With the nonlinear function 𝑘 being called a kernel. According to Smits and Jordaan:  

“[…] there are two main types of kernels, namely Local and Global kernels. In local kernels only 

the data that are close or in the proximity of each other have an influence on the kernel values. 

In contrast, a global kernel allows data points that are far away from each other to have an 

influence on the kernel values as well.” (2002, p.2786). 

In the present work, the author tested different configurations for the SVR model: an 

implementation with Vapnik’s 𝜀–SV Regression and Chalimourda’s 𝜐–SV Regression was 

conducted (different loss functions); and four types of kernels were on trial, namely linear, 

sigmoid, polynomial (global kernels) and gaussian radial basis (local kernel) kernels, described 

by Equation 49, 50, 51 and 52, respectively. 

 

𝑘(𝑥, 𝑦) =  𝑥𝑇𝑦 + 𝑐 

Equation 49 – Linear kernel function 

 

𝑘(𝑥, 𝑦) =  tanh (𝛼𝑥𝑇𝑦 + 𝑐) 

Equation 50 – Sigmoid kernel function 
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𝑘(𝑥, 𝑦) =  (𝛼𝑥𝑇𝑦 + 𝑐)𝑞 

Equation 51 – Polynomial kernel function 

 

𝑘(𝑥, 𝑦) =  exp (−𝛾‖𝑥 − 𝑦‖2) 

Equation 52 – Gaussian radial basis kernel function 

 

 Where 𝑐 is a constant term, 𝛼 is the slope and 𝛾 is the free parameter of the gaussian 

radial basis function that controls the shape of the gaussian distribution.  

 Table 9 shows the results obtained with a prediction model with the application of the 

Savitzky-Golay Filter, PCA and SVR with a gaussian radial basis kernel optimized via random 

search algorithm (this subject will be introduced below) to compare the two different loss 

functions, on the estimation of anthocyanin concentration, pH index and sugar content on TF 

2012 samples. 

 

Table 9 – Results obtained for the prediction of anthocyanin concentration, pH index and sugar content 

on TF 2012 with different SVR loss functions 

    Test Set 

    R2 RMSE PC 

SVR TF 2012 

Anthocyanin Concentration 
Vapnik’s -Regression 0.968 15.683 mg.L-1 8 

Chalimourda’s 𝜐-Regression 0.943 17.153 mg.L-1 17 

pH Index 
Vapnik’s -Regression 0.887 0.142 15 

Chalimourda’s 𝜐-Regression 0.869 0.144 12 

Sugar Content 
Vapnik’s -Regression 0.964 0.943 ºBrix 19 

Chalimourda’s 𝜐-Regression 0.944 0.969 ºBrix 16 

PC: Principal Components used. 

k-Fold Cross-Validation with 10 folds. 

 

Observing Table 9 one can conclude that for this test setup, despite very similar results, 

Vapnik’s 𝜀-SV Regression always gets the best values for R2 and RMSE: consequently, the 

author chose to implement Vapnik’s loss function on every SVR model. 

Table 10 shows the results obtained with a prediction model with the application of the 

Savitzky-Golay Filter, PCA and Vapnik’s 𝜀-SV Regression to compare the use of the 

aforementioned kernels, with their free parameters optimized via random search algorithm 
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(subject introduced below), on the estimation of sugar content, pH index and anthocyanin 

concentration on TF 2012 samples. 

 

Table 10 – Results obtained for the prediction of anthocyanin concentration, pH index and sugar content 

on TF 2012 samples with different kernel functions on the SVR model 

    Test Set 

    R2 RMSE PC 

SVR TF 2012 

Anthocyanin Concentration 

Gaussian Radial Basis  0.968 15.683 mg.L-1 8 

Linear 0.943 16.740 mg.L-1 18 

Sigmoid 0.943 18.100 mg.L-1 6 

Polynomial 0.932 15.721 mg.L-1 14 

pH Index 

Gaussian Radial Basis 0.887 0.142 15 

Linear 0.820 0.164 10 

Sigmoid 0.872 0.116 8 

Polynomial 0.867 0.132 19 

Sugar Content 

Gaussian Radial Basis 0.964 0.943 ºBrix 19 

Linear 0.937 1.176 ºBrix 8 

Sigmoid 0.910 1.131 ºBrix 19 

Polynomial 0.927 1.371 ºBrix 20 

PC: Principal Components used. 

k-Fold Cross-Validation with 10 folds. 

  

As easily seen in Table 10, for this test setup the gaussian radial basis gets the best R2 

and RMSE values on every prediction: for this reason, the author chose to implement the 

gaussian radial basis kernel on every SVR model. 

 To finalize the SVR model there’s still one important subject to consider: the free 

parameters (or hyper parameters, as they’re commonly named) in the kernel function. In the 

case of the gaussian radial basis kernel, parameters 𝐶, 𝜀 (inherent to the SV algorithm) and 𝛾 

(inherent to the kernel function) are of foremost importance to prevent the model from under 

or overfitting, since they control the “bias-variance trade-off” (mentioned in 3.5). 

 According to Cherkassky and Mulier, “the coefficient 𝐶 affects the trade-off between 

complexity and proportion of the non-separable samples and must be selected by the user” 

(1998, p.366) while Alpaydin states that: 

 “It is critical here, as in any regularization scheme, that a prover value is chosen for 𝐶, the 

penalty factor. If it is too large, one has a high penalty for non-separable point and it may store 

too many support vectors and overfit. If it is too small, one may have underfitting” (2004, p.224).  



Chapter III – Methodology 

52 

 

Horváth mentions that: 

 “For a support vector machine the value of 𝜀 in the insensitive loss function should also be 

selected. 𝜀 has an effect on the smoothness of the support vector machine response and it affects 

the number of support vectors, so both the complexity and the generalization capability of the 

network depend on its value” (2003, p.392).  

Referring to kernel parameters, Wang, Xu, Lu, and Zhang (2003) report that for 

regression problems, based on scale space theory, they demonstrate the existence of a certain 

range of 𝜎, within which the generalization performance is stable. Seeing the importance of 

properly optimizing these parameters to maximize the SVR performance, the author chose to 

implement three different optimization methods and compare their performance: a random 

search algorithm based in Rastrigin (1963), a grid-search algorithm based in Zhang, Chen, Qu, 

Zhao, and Guo (2014) and a genetic algorithm based in Huang and Wang (2006). Table 11 

shows the results obtained with a prediction model with the application of the Savitzky-Golay 

Filter, PCA and SVR on the estimation of anthocyanin concentration, pH index and sugar 

content on TF 2012 samples to compare the different optimization methods. 

 

Table 11 – Results obtained for the prediction of anthocyanin concentration, pH index and sugar content 

on TF 2012 samples with different optimization methods for the parameters on the SVR model 

    Test Set 

    R2 RMSE PC 

SVR TF 2012 

Anthocyanin Concentration 

Random Search 0.968 15.683 mg.L-1 8 

Grid Search 0.904 15.546 mg.L-1 14 

Genetic Algorithm 0.935 14.354 mg.L-1 16 

pH Index 

Random Search 0.887 0.142 15 

Grid Search 0.804 0.184 12 

Genetic Algorithm 0.893 0.127 14 

Sugar Content 

Random Search 0.964 0.943 19 

Grid Search 0.933 0.973 14 

Genetic Algorithm 0.945 0.818 12 

PC: Principal Components used. 
k-Fold Cross-Validation with 10 folds. 

 

Observing Table 11, one can see that for this test setup, the random search algorithm and 

the genetic algorithm obtain the best values for R2 and RMSE on all predictions: however, 

considering the computational cost, the grid search and the genetic algorithms are extremely 

expensive, in contrast to the simple random search algorithm which additional computational 
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time introduced to the model is practically irrelevant. Thus, the author chose the random search 

algorithm as the optimization method for the parameters on all SVR models. After several 

experiments, it was defined that 𝜀 = 0.001 and that the range of values for optimization was 

𝐶 ∈ [80; 120] and 𝛾 ∈ [0.00001; 0.001]. 

 

3.7. Final Prediction Models 

To finish Chapter 3, Figure 8 shows a pipeline explaining the complete prediction models 

that will be used to estimate the anthocyanin concentration, pH index and sugar content of the 

different vintages and varieties of wine grape berries. 
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Figure 8 – Pipeline explaining the entire methodology for the models used for prediction 
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Referring to Figure 8, one starts with the data matrix, composed of the ground-truth laboratorial 

results and the reflectance measurements that will be used to train the predictor. Then: 

1. Apply the Savitzky-Golay Filter (as seen in 3.3) to the reflectance measurements.  

2. Divide the samples (includes the ground-truth results and the reflectance measurements 

after processing) into an independent test set and a training set. 

3. k-Fold Cross-Validation is applied (check 3.5) dividing the training samples into 

training and validation folds.  

4. Mean centering, PCA and auto-scaling are applied to the training and validation folds 

to reduce their dimensionality and facilitate the analysis (as seen in 3.3 and 3.4 ) – the 

reason why mean centering is used before the PCA and auto-scaling is used after is 

because “under the assumption that the PCA is obtained from the covariance matrix, the 

resulting principal components will be the same regardless of whether mean centering 

was performed or not as long as the covariance matrix stays the same” (Raschka, 2014, 

p.1), but “in contrast to mean centering, scaling does have an effect on the covariance 

matrix and therefore influences the results of a PCA” (idem, p.2).  

5. The results of the pre-processing in 3 and 4 will serve as input to the machine learning 

algorithms, namely NNs (see 3.6.1), DTs (as in 3.6.2) and SVR (check 3.6.3), that will 

be trained with the data on the training folds and its parameters tuned by the data in the 

validation folds, in all 𝑘 iterations. 

6. Finally, the best parameters found in the training phase will be saved, which is 

commonly named as keeping the fine-tuned model, and this fine-tuned model will be 

applied to generate predictions on the test set, after the same pre-processing operations 

in 4 are applied to the samples. 
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CHAPTER IV – CRITICAL ANALYSIS AND DISCUSSION 

In this chapter, the results of the different prediction models are studied to obtain 

possible insights about the quality of the models’ fits and ways to improve their ability to learn 

from the data, comparing the results with the implemented state of the art approaches to measure 

oenological parameters on wine grape berries. 

The descriptive statistics, regression plots and residuals plots used for regression 

analysis were obtained with Minitab Software (State College PA, 2010) 

Part of this work has been submitted by the author to a scientific journal. 

 

4.1. Experimental Outline 

The experiments conducted were divided into two main test setups:  

a) the test sets (with 10% of the samples left out for the test set), in which each wine 

grape variety and vintage data has its own training, validation and independent test sets with 

the fine tuning of the SVR free parameters occurring for all varieties;  

b) the generalization sets (with 30% of the samples left out for the test set), composed 

of two different experiments – the first, with different vintages of wine grape berries employed 

on the independent test sets; the second, with different vintages and varieties of wine grape 

berries composing the independent test sets; with the fine tuning of the SVR free parameters 

occurring only for the vintage and variety of wine grape berries present on the training and 

validation sets, so that the true generalization capacity of the prediction model can be analysed. 

The generalization capacity of a model is the ability of the learned model to fit unseen 

instances: the ultimate goal of machine learning is to achieve prediction models that can fit 

unseen instances with accuracy. A study of the models’ generalization capacity in this work is 

of major importance, since the prediction of oenological parameters on wine grape berries can 

be considered an extremely complex case of generalization – for instance, in Portugal alone the 

number of different autochthonous wine grape varieties is close to 300, which highlights the 

importance of achieving models with a robust generalization capacity. 

It is noteworthy to mention that: the NNs and DTs share the same topology (or structure) 

for all datasets, since optimizing it for every experiment could be understood as an intermediate 

step that doesn’t allow for a true assessment of the models’ generalization capacity (comparing 

this case with the SVR model, the range of values for the 𝐶 and 𝛾 optimization also remains the 
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same for all experiments, or else it could also be considered an intermediate step); for each 

oenological parameter, the lowest and the highest value obtained by laboratorial analysis is 

always present on the independent test sets, with the remaining samples for the training, 

validation and test sets chosen at random – this decision arose to attempt to have an independent 

test set that is an accurate representation of the population in study, or else it would be possible 

to have a skewed model obtaining good fits (that is, it would be possible for a model that 

couldn’t actually learn from the data to have an apparently good generalization capacity because 

the samples chosen at random benefited the model’s skewed predictions). 

Table 12 provides detailed information about the experiences conducted and described in 

the two main test setups. 

 

Table 12 – Outline of the different experiments performed in the sections below 

 Anthocyanin Concentration pH Index Sugar Content 

 Train. / Val. Set Test Set Train. / Val. Set Test Set Train. / Val Set Test Set 

Test Sets 

TF 2012 TF 2012 TF 2012 TF 2012 TF 2012 TF 2012 

TF 2013 TF 2013 TF 2013 TF 2013 TF 2013 TF 2013 

M.L.R. M.L.R. TF 2014 TF 2014 TF 2014 TF 2014 

TB 2013 TB 2013 TB 2013 TB 2013 TB 2013 TB 2013 

TN 2013 TN 2013 TN 2013 TN 2013 TN 2013 TN 2013 

Generalization Sets 

TF 2012 TF 2013 TF 2012 TF 2013 TF 2012 TF 2013 

M.L.R. M.L.R. TF 2012 & 2013 TF 2014 TF 2012 & TF 2013 TF 2014 

TF 2012 & 2013 TB 2013 TF 2012, 2013 & 2014 TB 2013 TF 2012, 2013 & 2014 TB 2013 

TF 2012 & 2013 TN 2013 TF 2012, 2013 & 2014 TN 2013 TF 2012, 2013 & 2014 TN 2013 

M.L.R: Missing Laboratorial Results. 

 

A descriptive statistical analysis has been performed to study the laboratorial results of 

the samples chosen to compose the generalization sets, so that a comparison can be made with 

respect to their similarity to the entire set of the same vintage and variety (check Appendices K 

through M). 

In order to proceed to the regression analysis and a comparison between the present 

results and state of the art publications, two different indicators for the test setups and an extra 

indicator for the generalization sets were chosen: the quality of the fit, given by the R2 (see 

Equation 53); the errors, expressed by the RMSE (see Equation 54); and, on the generalization 

sets, the residuals, with visual interpretation from the residuals vs fit values plots with the goal 
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of finding possible ways to improve the prediction models and their generalization capacity. 

For more information about how to interpret residuals plots, please see Rawlings, Pantula and 

Dickey (1998). 

 

𝑅2 =  (
𝜎𝑦𝑦̂

𝜎𝑦𝜎𝑦̂
)

2

 

Equation 53 – Calculation of R2 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦̂𝑖 −  𝑦𝑖)2𝑁

𝑖=1

𝑁 − 1
 

Equation 54 – Calculation of RMSE 

  

Where 𝑦𝑖 is the reference value, 𝑦̂𝑖 is the model estimate, 𝜎𝑦𝑦̂ is the covariance between 

𝑦 and 𝑦̂ and 𝜎𝑦, 𝜎𝑦̂ are the respective standard deviations. 

As mentioned in 3.4, the number of principal components used as input for each model 

was chosen experimentally to yield maximum performance, with tests being performed using 

between 1 and 50 principal components. The number of folds, 𝑘, in the k-Fold Cross-Validation 

procedure takes the value of 5 (for the test setups with least samples, namely on the test sets 

experiments with the TF 2013, TF 2014, TB 2013 and TN 2013 samples) and 10 (for the 

remaining test setups, specifically the test experiments with the TF 2012 samples and all the 

generalization sets experiments): in the cases with only 5 folds, repeated runs where executed 

due to the increase in variance (as mentioned in 3.5). 

 

4.2. Neural Networks 

4.2.1. Test Sets 

The validation and test set results obtained by the NNs model (one for each variety and 

vintage) for the prediction of anthocyanin concentration are presented in Table 13. As 

mentioned in 3.1, the TF variety on the vintage year of 2014 doesn’t have any laboratory results 

available, preventing the development of a model for that particular set of samples. 



Chapter IV – Critical Analysis and Discussion 

62 

 

 

Table 13 – Results for the determination of anthocyanin concentration on the test sets using NNs 

  Validation Set Test Set  

  R2 RMSE(mg.L-1) R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration 

TF 2012 0.832 22.734 0.953 15.967 16 

TF 2013 0.802 23.306 0.968 15.463 8 

TB 2013 0.592 26.911 0.965 21.560 7 

TN 2013 0.759 16.927 0.821 27.471 4 

PC: Principal Components used. 

 

Observing the results, some remarks can be made: the NNs model shows accurate 

predictions with a small error rate for the test sets, but the R2 and RMSE values on the validation 

sets might indicate that it suffers from a certain degree of underfitting for the case of the TB 

2013 set of samples, since it has somewhat poor results on the training/validation step, but it 

has good results with a small error rate on the test set; the model accentuates the difficulties in 

having a quality training step and predictions for the datasets with the least standard deviations 

and the smallest range of values in their populations, namely the TB 2013 and TN 2013 datasets 

(Table 2): this might show that the model has some problems in capturing the patterns in the 

spectra when the prediction intervals are smaller and the standard deviations have low values; 

for the case of the TN 2013 dataset, the slight decrease in the model’s performance can also be 

explained by the small number of samples (only 60 samples, the smallest dataset used); 

regarding the number of principal components used, it’s observable that for the set of 

predictions that acquire the worst results (TB 2013 and TN 2013 datasets) the numbers used are 

the lowest, which indicates that the difficulties in learning can’t be overcome by adding more 

principal components as input (probably because they mainly comprise noise). 

 Comparing the results with similar works from the literature that train and predict on 

the same varieties and vintages of wine grape berries, Fernandes et al. (2015) had the best 

results while using a machine learning algorithm (also NNs), obtaining a R2 of 0.950 and a 

RMSE of 14.000 mg.L-1: for three out of the four test sets used in the present work, superior 

results for the R2 were obtained (R2 of 0.953, 0.968 and 0.965 for the TF 2012, TF 2013 and 

TB 2013 test sets, respectively), while for the RMSE the values obtained are similar but slightly 

inferior for two out of the four test sets (TF 2012 and TF 2013, with RMSE of 15.967 and 

15.463 mg.L-1, respectively), but reasonably higher for the remainder; as for the authors using 

chemometric methods, Le Moigne et al. (2008) achieved the best results with his PLS 
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regression model, with a R2 of 0.979 (the errors are not comparable) for the training step, but 

no results were available for test sets – the best results available for direct comparison (test set 

results) are those obtained by Fadock et al. (2016), also with a PLS regression model, with a R2 

of 0.650 and a RMSE of 75.000 mg.L-1: in this work, superior results were obtained for both 

the R2 and the RMSE on all the test sets. 

 The validation and test set results achieved with the NNs model (again, one for each 

variety and vintage) for the determination of pH index are shown in Table 14.  

 

Table 14 – Results for the determination of pH index on the test sets using NNs 

  Validation Set Test Set  

  R2 RMSE R2 RMSE PC 

pH Index 

TF 2012 0.757 0.168 0.871 0.147 11 

TF 2013 0.515 0.241 0.834 0.175 5 

TF 2014 0.651 0.156 0.709 0.163 2 

TB 2013 0.419 0.235 0.746 0.253 2 

TN 2013 0.572 0.176 0.752 0.212 19 

PC: Principal Components used. 

  

 Analysing the results, it’s noticeable that the model underperforms when predicting the 

pH index (in comparison to the anthocyanin concentration): as mentioned when studying the 

anthocyanin concentration, this could be due to the fact that the datasets have very small values 

for the standard deviations (close to 0) and a small range of values for the prediction intervals 

(Table 3); another possible explanation is that the greatest variation in the pH patterns is 

reflected on the model’s training step, which has difficulties to capture such relationships in the 

data without a greater number of samples for all datasets. Besides that, there’s an additional 

challenge in measuring the pH on wine grape berries, since the acidity is sensible to small 

changes in the condition of the sample (water content, temperature, etc.); other indicators seen 

in the anthocyanin concentration results can be recognized, namely the model underfitting on 

some of the vintages and varieties (for the pH index results, this is more noticeable on the TF 

2013, TB 2013 and TN 2013 datasets) and the fact that the datasets in which the results obtained 

were the lowest, also have the smallest values of principal components used (for the pH index 

results the TN 2013 dataset is an exception, but this could be a consequence of choosing the 

test set samples at random). 
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 Comparing the results with those published in literature for training and prediction on 

the same varieties and vintages of wine grape berries, Cao et al. (2010) had the best results 

using a non-chemometric method (genetic algorithm) with a R2 of 0.957 and a RMSE of 0.126 

for the training step, but no results can be found for the test sets – the highest values obtained 

that allow a direct comparison (test set values) are those obtained by Fernandes et al. (2015) 

with his NNs model, with a R2 of 0.730 and a RMSE of 0.180: for four out of the five test sets 

used in this work, superior results for the R2 were achieved (R2 of 0.871, 0.834, 0.746 and 0.752 

for the TF 2012, TF 2013, TB 2013 and TN 2013 test sets, respectively), while for the RMSE 

the values obtained are better for three out of the five test sets (TF 2012, TF 2013 and TF 2014, 

with RMSE of 0.147, 0.175 and 0.163, respectively), but higher for the remainder; as for the 

authors using chemometric methods, Nogales-Bueno et al. (2010) had the best results with his 

modified PLS regression model, with a R2 of 0.940 and a RMSE of 0.120 for the training step, 

but there aren’t results available for the test sets – the best results available for direct comparison 

(test set results) are those obtained by Fadock et al. (2016), with a PLS regression model, with 

a R2 of 0.810 and a RMSE of 0.050: in this investigation, superior results were obtained for the 

R2 of two out of the five test sets (TF 2012 and TF 2013, with R2 of 0.871 and 0.834, 

respectively) but the RMSE values are slightly inferior for all experiments: therefore, it’s 

implied that the difficulties in building a prediction model for the pH index are transversal to 

the other works published in literature.  

 The validation and test set results obtained with the NNs model (one for each variety 

and vintage) for the estimation of sugar content are presented in Table 15. 

 

Table 15 – Results for the determination of sugar content on the test sets using NNs 

  Validation Set Test Set  

  R2 RMSE(ºBrix) R2 RMSE (ºBrix) PC 

Sugar Content 

TF 2012 0.912 0.972 0.952 0.820 18 

TF 2013 0.849 1.338 0.963 1.314 20 

TF 2014 0.746 1.883 0.915 1.216 20 

TB 2013 0.700 2.447 0.907 1.879 19 

TN 2013 0.656 1.302 0.852 1.552 9 

PC: Principal Components used. 

 

 Examining Table 15 one can see that the results obtained are precise, with good values 

for the R2 and RMSE on all test sets: nevertheless, as it was stated on the anthocyanin 
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concentration and pH index results analysis, the model suffers from a certain degree of 

underfitting on some of the vintages and varieties (in this case, it’s more noticeable on the TB 

2013 and TN 2013 datasets) and the datasets in which the results obtained were the less 

satisfactory, the number of principal components is also the lowest (for the sugar content the 

TB 2013 dataset is an exception but, as mentioned previously, this could be due to the fact that 

the test set samples are chosen at random); for the case of the TN 2013 dataset, the decrease on 

the model’s accuracy can also be explained by the fact that this dataset has a very small number 

of samples (at 60, is the dataset with the smallest number) with small standard deviation 

between samples and a small range of values for the prediction interval; it should also be 

highlighted the model’s capacity to achieve accurate predictions for all datasets with the same 

NN topology when the ANOVA tests showed that there are significant differences in the means 

between almost every set of samples (as seen in Appendix I). 

 Hence, comparing the results with the ones published in literature for training and 

prediction on the same varieties and vintages of wine grape berries, Gomes et al. (2014a) had 

the best results using a machine learning algorithm (also NNs) with a R2 of 0.959 and a RMSE 

of 1.026 ºBrix: for the test set composed of TF 2013 samples superior results for the R2 were 

obtained (R2 of 0.963) but the remainder were somewhat inferior, while for the RMSE the test 

set with TF 2012 samples had a better RMSE value (RMSE of 0.820 ºBrix) but the rest were 

slightly worst; regarding the authors using chemometric methods, Nogales-Bueno et al. (2010) 

had the best results with his modified PLS regression model, with a R2 of 0.990 and a RMSE 

of 1.370 ºBrix for the training step, but the results for the test sets can’t be found – considering 

authors that allow a direct comparison of the results (test set results), Gomes et al. (2014b) with 

a PLS regression model obtained the best values for R2 and RMSE, with 0.948 and 0.939 ºBrix, 

respectively: in this work, superior values for the R2 were achieved on the TF 2012 and TF 

2013 datasets (R2 of 0.963 and 0.952, respectively) but for the remaining datasets the values 

were inferior, while for the RMSE the test set with TF 2012 samples had a better RMSE value 

(RMSE of 0.820 ºBrix) but the TF 2013, TF 2014, TB 2013 and TN 2013 datasets all got worst 

results on this parameter.  

 Overall, the NNs model achieved either superior or comparable results for the prediction 

of all oenological parameters in comparison to the state of the art approaches. Despite suffering 

from underfitting for some of the vintages and varieties (mostly the ones with a small number 

of samples for analysis), changes to the NN topology will only be considered after analysis of 
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the generalization results, since the main goal is to obtain a model that can give accurate 

predictions for different vintages and varieties without fine tuning the NN structure for all 

datasets available.  

 

4.2.2. Model Generalization 

As mentioned previously, in order to study the models’ generalization capacity two 

different experiments were used: the first, that applies a different vintage of the same varieties 

that compose the training and validation sets to the test sets (since the only variety that contains 

different vintage years is the TF, train and validation will occur on one or more vintages of TF 

and the test set will be composed of samples from the next vintage year); the second, that 

employs a different vintage and variety on the test set (in this case, all the TF vintage years will 

be used on the training and validation sets, while the test sets will be composed by the TB or 

TN samples). 

In these experiments only the test set results are presented since it’s not of major 

importance to understand how good the models’ fit is early in the training process: it will have 

to generalize to distinct samples on the test set.  

 

4.2.2.1. Different Vintages 

The test set results obtained by the NNs model for the prediction of anthocyanin 

concentration on different vintages are presented in Table 16. As mentioned previously, since 

the TF variety on the vintage year of 2014 doesn’t have any laboratory results available, a model 

composed of TF 2012 and 2013 samples to predict TF 2014 values on the test set couldn’t be 

built. 

 

Table 16 – Results for the prediction of anthocyanin concentration on different vintages with NNs 

  Test Set  

  R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration TF 2012 - TF 2013 0.922 20.504 10 

PC: Principal Components used. 

   

 Observing the results presented, good indicators for a robust model with capacity to 

learn from wine grapes of different vintages are shown: there is a high correlation between the 
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predictions and ground-truth results, as stated in the R2 parameter, with only a small decrease 

of performance when compared to the single variety and vintage models and despite an increase 

in the RMSE, the value obtained is still similar to the single variety and vintage models that 

have a smaller number of samples (namely the TB 2013 and TN 2013 datasets); the number of 

principal components used as input also continues to be in the range of those used on the single 

test sets, indicating that there still isn’t a necessity to increase the percentage of variance 

explained by the PCA to capture the relationships between the data; the descriptive statistics of 

the independent test set (see Appendix K) show that the mean and standard deviation values fit 

the initial 95% confidence intervals determined for the TF 2013 samples (on Table 2), which 

means that the independent test set is a good representation of the overall population. Graph 5 

shows the residuals vs fit values plot for the prediction of anthocyanin concentration on the TF 

2013 samples by the NNs model. 

 

 

Graph 5 – Residuals vs fit values plot for the prediction of anthocyanin concentration on the TF 2013 

samples by the NNs model. 

 

Analysing Graph 5, despite some high valued residuals these are pretty evenly 

symmetrically distributed between the lower and higher digits of the y-axis and in general, no 

clear patterns can be found: however, some outliers are easily detected – assuming the outlying 

data points are legitimate, one could assess the impact of that data point on the regression, 

filtering it out and evaluating possible changes on the models’ fit after that – but as mentioned 
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in 3.1, the outliers will be kept part of the model since it’s very likely that outliers will always 

be found in further testing with new datasets (e.g. samples are collected from the same area of 

a vineyard, all exposed to pretty similar conditions, but one of the branches has a significantly 

lower amount of sun exposition time due to a specific slope on the terrain: the values obtained 

on laboratorial analysis will probably compose an outlier) and the model must be ready to 

reduce the importance of these values when composing a set of predictions. 

 Analysing the results published in literature it was found that there isn’t any work 

attempting to predict different vintages of wine grape berries on training and testing for the 

anthocyanin concentration; Janik et al. (2007) used not only different vintages but also different 

varieties on the test set, so a more adequate comparison will be made further in this chapter; 

comparing the results with the single vintage models, Chen et al. (2015), Ferrer-Gallego et al. 

(2011) and Le Moigne et al. (2008) had superior R2 values (R2 of 0.941, 0.970 and 0.979, 

respectively) with their PLS (and variants) regression models on the training step, but no results 

were published for the test set: Fernandes et al. (2015) is the only work with test set results 

published in which the R2 and RMSE values are superior than those presented, with a R2 of 

0.950 (the R2 shown is 0.922) and a RMSE of 14.000 mg.L-1 (the RMSE shown is 20.504 mg.L-

1), applying a NNs model – however, considering that the results presented in Table 16 have 

different vintages applied on the testing phase, the small decrease in performance can be 

considered acceptable, as well as the values obtained can be considered very satisfactory, since 

they are still comparable with the remaining state of the art approaches. 

 The test set results obtained by the NNs model for the prediction of pH index on different 

vintages are presented in Table 17. 

  

Table 17 – Results for the prediction of pH index on different vintages with NNs 

  Test Set  

  R2 RMSE PC 

pH Index 
TF 2012 - TF 2013 0.773 0.204 15 

TF 2012 & 2013 - TF 2014 0.831 0.217 36 

PC: Principal Components used. 

  

 Examining Table 17, once again it’s noticeable that the model underperforms when 

compared to the results obtained for the anthocyanin concentration (highly expected, since 

despite adding more samples these are from different populations and the difficulties in 

estimating the pH index will still be the same); however, two important details arise that are of 
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foremost importance: the model actually obtains better results when predicting for the TF 2014 

dataset than for the TF 2013 set of samples, with very similar error measures, which can indicate 

that the initial diagnosis was correct – the model has difficulties in capturing the relationships 

between the patterns in the spectra for the pH index but, by adding a greater number of samples 

(even if these are from different populations) it will be able to achieve better results; and also, 

the model took a significantly greater number of principal components as input to operate on 

the TF 2014 test set, which may indicate that when the number of samples starts to grow, the 

number of factors on the PCA will not mainly comprise noise after the eigenvalues are over 1 

but instead contain important information that can ease the model’s learning step. The 

descriptive statistics of the independent test sets (see Appendix K) show that the mean and 

standard deviation values fit the initial 95% confidence intervals determined for both the TF 

2013 and TF 2014 samples (on Table 3), meaning that the independent test sets are a good 

representation of the overall populations; additionally, the ANOVA tests (in Appendix F) 

previously shown that the TF 2013 dataset has a significant difference in the mean when 

compared to the TF 2012 and TF 2014 sets, which in a way praises the model’s generalization 

capacity since it was able to predict for the TF 2014 set while learning from the TF 2012 and 

TF 2013 set of samples; analysing the residuals vs fit values plots (Appendix N and Appendix 

O), one can see that for the TF 2013 test set there are a slightly greater number of outliers when 

compared to the TF 2014 test set but overall, both plots have the residuals evenly symmetrically 

distributed and clustering towards the middle of the plot and towards the lower single digits of 

the y-axis, with no clear patterns identifiable, which aids the assumption that the NNs 

predictions for these setups are not skewed in any way or in need of adding/transforming some 

input variables. 

 Comparing these results with the ones published in literature for different vintages of 

wine grape berries employed on the training and testing phases, Fadock et al. (2016) is the only 

work published that meets this particular experimental outline, obtaining a R2 of 0.560 and a 

RMSE of 0.050 with his PLS regression model: for both test sets in this work the R2 values are 

superior (R2 of 0.773 and 0.831 for the TF 2013 and TF 2014 test sets, respectively) but the 

RMSE on both setups is inferior (RMSE of 0.204 and 0.217 for the same test sets, respectively): 

however, regarding Fadock et al. (2016) results, it’s rather questionable that a model that 

obtained such a low R2 score has simultaneously such a low error measure, especially since it 

shares the same value than that obtained for the test set with only one vintage and variety 

employed on the training and testing phases (as seen in Table 1). Comparing the results with 
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the ones presented for the single models in 4.1, a small decrease on the performance is 

noticeable when measured against the results obtained for the TF 2012 and TF 2013 datasets, 

but they’re superior when compared to the remaining single vintage and variety models and the 

result obtained for the test set of TF 2014 samples after training on the TF 2012 and TF 2013 

datasets (R2 of 0.831 and RMSE of 0.217) is still superior when compared to the best test set 

results for single vintage and variety models previously published in literature [Fadock et al. 

(2016), with a PLS regression model obtaining a R2 of 0.807 and RMSE of 0.050], which 

indicates that the NNs model has a very reasonable generalization capacity. 

 Table 18 presents the results for the prediction of sugar content on different vintages 

obtained by the NNs model. 

  

Table 18 – Results for the prediction of sugar content on different vintages with NNs 

  Test Set  

  R2 RMSE (ºBrix) PC 

Sugar Content 
TF 2012 - TF 2013 0.913 2.383 23 

TF 2012 & 2013 - TF 2014 0.863 3.968 50 

PC: Principal Components used. 

   

 Interpreting the results in Table 18, positive indicators for a model with capacity to 

generalize from a set of training examples to a testing set with different vintages of wine grape 

berries are shown: high correlation between the predictions and ground-truth results is achieved, 

as stated by the R2 parameter, but there’s a rather significant increase on the error measures for 

both setups, especially for the generalization set with the most different vintages employed on 

the training set – this might be explained by the results of the ANOVA tests mentioned in 3.1 

(see Appendix I), since pretty much all datasets have significant differences in the means in 

comparison to the remaining vintages and varieties, indicating that these are populations with 

rather different patterns in the spectra to capture in the learning process, which in turn makes 

the generalization step harder to carry without an increase on the uncertainty of the predictions 

(despite the increase in the number of samples up for analysis) – nevertheless, the model shows 

accurate predictions; similarly to the analysis made for the pH index results, it’s observable that 

the number of principal components increases with the variability of the data used (that is, the 

larger the number of samples, the more principal components are chosen) and that increase may 

be crucial to the model’s adaptability to the differences in the variance of the datasets allowing 

for more stable predictions; the descriptive statistics of the independent test sets (see Appendix 
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K) show that, similarly to the other oenological parameters, the mean and standard deviation 

values fit the initial 95% confidence intervals determined for the TF 2013 and TF 2014 samples 

(on Table 4), which means that the independent test set is a good representation of the overall 

populations; analysing the residuals vs fit values plots (Appendix N and Appendix O), despite 

some outliers, both plots have the residuals evenly symmetrically distributed and clustering 

towards the middle of the plot and towards the lower single digits of the y-axis, with no clear 

patterns identifiable, which aids validating the model’s predictions. 

 Regarding the comparison with similar results in literature, Gomes et al. (2017b) had 

the best results for predictions on different vintages of wine grape berries with both, a machine 

learning algorithm (also NNs) and a chemometric method (PLS regression), with a R2 of 0.917 

and 0.948 and a RMSE of 1.355 ºBrix and 1.344º Brix, respectively for the mentioned models: 

in this work, a similar R2 value (R2 of 0.913) was obtained for the test set composed of TF 2013 

samples when in comparison to the NN model, with a rather significant increase on the error 

measure; however, for both test setups, the results are worse than those published when obtained 

by the PLS model, making this the first case of analysis in this work where a chemometric 

method obtained fairly superior results to a machine learning algorithm. 

 Overall, the NNs model achieved superior results for the prediction of anthocyanin 

concentration and pH index in comparison to the state of the art approaches, but inferior results 

for the prediction of sugar content when compared to a chemometric method (PLS regression). 

In spite of increasing the number of principal components used as input and a small detriment 

on performance, the model was still able to capture most of the relations between the data and 

achieve accurate predictions for different vintages, evidencing a good generalization capacity 

– consequently, changes to the NN topology (as discussed in 4.2.1) might not be necessary, but 

in the future some experiments should be performed with different topologies for the prediction 

of sugar content, to assess if the model can obtain similar or superior results when compared to 

the PLS regression results published in literature. 

 

4.2.2.2. Different Vintages and Varieties 

Graph 6 shows the results obtained by the NNs model for the prediction of anthocyanin 

concentration on different varieties and vintages of wine grape berries. Since there aren’t any 

laboratorial results for the TF 2014 dataset, only the TF 2012 and TF 2013 set of samples 
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compose the training and validation sets. The number of principal components used was 5 and 

19 for the TB 2013 and TN 2013 generalization sets, respectively.  

 

 

Graph 6 – Results for the estimation of anthocyanin concentration on different vintages and varieties with 

NNs; a) TB 2013 generalization set; b) TN 2013 generalization set 

  

 Observing Graph 6, the decrease in the accuracy of the NNs predictions is clear: the 

error measure suffers from a large increase (from RMSE on average between 15-25 mg.L-1 it 

goes as high as 55.051 and 32.887 mg.L-1 for the TB 2013 and TN 2013 datasets, respectively) 

and the R2 values, naturally, decay as well (from R2 usually above 0.90, the model obtained 

0.834 and 0.721 for the TB 2013 and TN 2013 set of samples, respectively) - a decrease on the 

model’s performance was expected, but what is important is to assess if the prediction algorithm 

can handle the variations in the grapes’ oenological patterns that are known to occur between 

years and varieties, or the models will become more complex since it will be required a new 

model to be used in every different year or for every different variety (and that is exactly what 

needs to be avoided) – analysing exclusively the R2 and RMSE parameters and acknowledging 

that a decrease in performance is always expected for a test setup of this nature, one can consider 

that the NNs achieved a rather accurate set of predictions, but the uncertainty of the predictions 

might be too high for these to be considered good indicators of the NNs generalization capacity; 

however, the results of the ANOVA tests mentioned in 3.1 (see Appendix C) pointed out that 

there are significant differences in the means between the TF 2012 and TB 2013 samples and 

the TF 2013 and TN 2013 datasets, which aids providing an explanation to the increase on the 
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error measures: the populations in the training set have rather different patterns in the spectra 

to capture in the learning process than those on the test set, making the generalization step 

harder to carry without an increase on the uncertainty of the predictions; additionally, and 

contrary to the indicators on the generalization sets with different vintages, for these sets the 

number of principal components used was significantly smaller which means that the NNs 

couldn’t find important information about the data on the remaining factors determined by the 

PCA; the descriptive statistics of the independent test sets (see Appendix K) show that the mean 

and standard deviation values of the TB 2013 dataset fit the initial 95% confidence intervals 

determined for the overall population (on Table 2): for the TN 2013 set of samples, the mean 

fits the initial 95% confidence interval but the standard deviation is over the higher limit, which 

might indicate that the test set with TN 2013 samples is not a good representation of the overall 

population; analysing the residuals vs fit value plots (Appendix P and Appendix Q), the TB 

2013 plot exhibits slight indicators of heteroscedasticity, meaning that the residuals get larger 

as the predictions move from small to large - heteroscedasticity usually indicates that either an 

input variable is missing (that is, the model needs more information to be able to identify the 

patterns in the training set) or, in the most frequent cases, that a transformation to one of the 

input variables is necessary (because regression models usually work better with variables that 

have a symmetrical or bell-shaped distribution, it’s common to find input variables with an 

asymmetrical distribution and apply, e.g., a 𝑙𝑜𝑔 transform). As for the TN 2013 plot, despite 

some outliers and a small indicator that the y-axis is unbalanced, one can consider that the 

residuals are symmetrically distributed and that they don’t follow any specific pattern. 

 Comparing these results with those published in literature for predicting anthocyanin 

concentration on different vintages and varieties of wine grape berries, Janik et al. (2007) has 

the best (and only) results with a R2 of 0.900 for his NNs model with PLS scores as input, with 

a non-comparable error measure: these results are rather superior to the ones obtained in this 

work (R2 of 0.834 and 0.721 for the TB 2013 and TN 2013 datasets, respectively) but it’s 

important to mention that this author used a much higher number of samples for the training 

and validation sets (3134 samples obtained from 4 different vintages and 9 different varieties, 

while in this work there are 332 samples from 2 different vintages) and the test sets (250 

samples from 1 vintage and 9 different varieties, while in this work there are 27 and 19 samples 

from 1 vintage and 1 variety for the TB 2013 and TN 2013 datasets, respectively) – additionally, 

for Janik et al. (2007) all the different varieties of wine grape berries on the test sets are also a 

part of the training and validation sets (contrary to this work, in which the TB and TN varieties 
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are only present on the test sets), so it can be considered that the model only generalizes for 

different vintages since the training and validation sets are composed by samples from 1999 to 

2003 of 9 varieties and the test set has the same 9 varieties but only for the vintage year of 2004 

– if a comparison is made with the results presented in this work for generalization on different 

vintages (see 4.2.2.1), one can see that the results shown are superior with significantly fewer 

samples from fewer harvest years. 

 Graph 7 presents the results for the prediction of pH index on different vintages and 

varieties of wine grape berries by the NNs model. The number of principal components used 

was 7 and 32 for the TB 2013 and TN 2013 datasets, respectively.  

  

 

Graph 7 – Results for the estimation of pH index on different vintages and varieties with NNs; a) TB 2013 

generalization set; b) TN 2013 generalization set 

  

 Inspecting Graph 7 it’s clear that the NNs model obtained very satisfactory results: the 

error measures are comparable to the ones obtained for the single variety and vintage models 

and the R2 values are even superior to some of those obtained in 4.2.1. There wasn’t a significant 

decrease on the model’s performance when comparing these results with those obtained for the 

single variety and vintage models, which gives positive indicators of the model’s generalization 

capacity; the results of the ANOVA tests mentioned in 3.1 (see Appendix F) noted significant 

differences in the means between the TF 2014 dataset and the TF 2012 and TF 2013 samples, 

which means that the populations in the training set had rather different patterns in the spectra 

to be captured in the learning process, but the model was able to overcome this difficulty 
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without adding significantly to the uncertainty of the predictions; as seen previously, the 

number of principal components used grew to allow for more information to be gathered and 

to achieve more stable predictions, but only for the TN 2013 dataset – for the TB 2013 samples 

the number of principal components used was rather small, but it might be a consequence of 

choosing the independent test set samples randomly; however, the descriptive statistics of the 

independent test sets (see Appendix K) show that the standard deviation value of the TB 2013 

dataset doesn’t fit the initial 95% confidence interval (on Table 3), which might indicate that 

this test set is not a good representation of the overall population; analysing the residuals vs fit 

values plots (Appendix P and Appendix Q), despite some outliers, both plots seem to have the 

residuals following an evenly symmetrical distribution clustering towards the middle of the plot 

and towards the lower single digits of the y-axis, with no clear patterns identifiable. 

 Regarding the comparison with the current literature, there aren’t any works published 

that predict pH index on different varieties and vintages of wine grape berries: comparing the 

results with authors that employed only different vintages on the test sets (as seen in 4.2.2.1), 

Fadock et al. (2016) obtained a R2 of 0.560 and a RMSE of 0.050 with his PLS regression 

model – despite the fact that the test sets compose not only different vintages but also different 

varieties of wine grape berries, the results published in this work (R2 of 0.817 and 0.844, RMSE 

of 0.301 and 0.248 for the TB 2013 and TN 2013 datasets, respectively) can be considered 

significantly better. 

 Graph 8 shows the results for the estimation of sugar content on different vintages and 

varieties of wine grape berries by the NNs model. The number of principal components used 

was 45 and 15 for the TB 2013 and TN 2013 datasets, respectively. 
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Graph 8 – Results for the estimation of sugar content on different vintages and varieties with NNs; a) TB 

2013 generalization set; b) TN 2013 generalization set 

  

 Examining Graph 8, similarly to the pH index analysis, it’s clear that the NNs model 

achieves very positive indicators regarding its generalization capacity: the error measures had 

a rather significant increase when compared to the single variety and vintage models, but the 

R2 values obtained are even superior to some of those present in 4.2.1. Comparing these results 

with those obtained for training, validation and testing exclusively on the TB 2013 and TN 2013 

varieties one can see that this model actually had a more adequate fit with training and 

validation on different varieties and vintages of wine grape berries, which praises the model’s 

generalization ability; the results of the ANOVA tests mentioned in 3.1 (see Appendix I) noted 

significant differences in the means between almost every single variety and vintage, providing 

somewhat of an explanation to the increase on the degree of uncertainty, but the model was 

able to overcome this difficulty providing an accurate set of predictions; similarly to the 

previous analysis, the number of principal components used grew, but only for the TB 2013 

dataset – for the TN 2013 samples the number of principal components used was small, but 

once again, it might be a consequence of choosing the independent test samples randomly; 

however, the descriptive statistics of the independent test sets (see Appendix K) show that the 

standard deviations values for both datasets don’t fit the initial 95% confidence intervals (on 

Table 4), which might indicate that these test sets are not a good representation of the overall 

population; analysing the residuals vs fit values plots (Appendix P and Appendix Q), despite 

some outliers, both plots seem to have the residuals following an evenly symmetrical 
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distribution clustering towards the middle of the plot and towards the lower digits of the y-axis, 

with no clear patterns identifiable. 

 As for the comparison with current literature, similarly to the pH index analysis, there 

aren’t any works published that predict sugar content on different varieties and vintages of wine 

grape berries, not allowing for a direct comparison to be made: considering the results for 

authors that employed only different vintages on the test sets (as seen in 4.2.2.1), Gomes et al. 

(2017b) had the best results with both, a machine learning algorithm (also NNs) and a 

chemometric method (PLS regression), with a R2 of 0.917 and 0.948 and a RMSE of 1.355 

ºBrix and 1.344º Brix, respectively for the mentioned models - in this work, despite having test 

sets composed not only of different vintages but also of different varieties of wine grape berries, 

for the TB 2013 dataset a superior fit (R2 of 0.925) was found when compared to the author’s 

NNs model but (naturally) with inferior error measures. 

 Overall, despite a slight drop on the models’ performance on the generalization sets and 

a higher error rate in the predictions (which can be considered as a reasonable outcome due to 

the fact that these varieties and vintages can’t be found on the training steps, increasing the 

uncertainty), these results are very good indicators in respect to the NNs generalization 

capacity, since they indicate it might not be necessary to build models who require a yearly 

update of samples, or new samples for each variety: however, further tests with different 

topologies can be made for the prediction of anthocyanin concentration, where the drop on the 

quality of the fits and increase on the error measures was actually rather significant. 

  

4.3. Decision Trees 

4.3.1. Test Sets 

The validation and test set results obtained by the DTs model (one for each variety and 

vintage) for the prediction of anthocyanin concentration are presented in Table 19. As 

mentioned in 3.1, the TF variety on the vintage year of 2014 doesn’t have any laboratory results 

available, preventing the development of a model for that particular set of samples. 
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Table 19 – Results for the determination of anthocyanin concentration on the test sets using DTs 

  Validation Set Test Set  

  R2 RMSE(mg.L-1) R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration 

TF 2012 0.811 25.667 0.942 20.964 9 

TF 2013 0.701 33.393 0.921 44.788 1 

TB 2013 0.623 28.556 0.916 31.811 14 

TN 2013 0.605 21.748 0.872 32.054 4 

PC: Principal Components used. 

  

 Observing the results one can conclude that the DTs model shows good fits but with a 

big error rate for the test sets when compared to the NNs models presented in 4.2.1. The R2 and 

RMSE values on the validation sets might indicate that it suffers from a certain degree of 

underfitting for the TF 2013, TB 2013 and TN 2013 set of samples, since it has poor results on 

the training/validation step, but accurate predictions on the test set (despite the high degree of 

uncertainty); similarly to the analysis made for the NNs model, the model accentuates the 

difficulties in having a quality training step and predictions for the datasets with the least 

standard deviations and the smallest range of values in their populations, namely the TB 2013 

and TN 2013 datasets (Table 2); for the case of the TN 2013 dataset, the decrease in the model’s 

performance can also be explained by the small number of samples (only 60 samples, the 

smallest dataset used); as for the number of principal components used, it’s observable that a 

rather small number was chosen for all datasets (except for the TB 2013 set of samples, but that 

might be due to the fact that the samples for the independent test set are chosen at random) 

which indicates that the difficulties in learning can’t be overcome by adding more principal 

components as input (probably because they mainly comprise noise). 

 Comparing the results with similar works from the literature that train and predict on 

the same varieties and vintages of wine grape berries, Fernandes et al. (2015) had the best 

results while using a machine learning algorithm (NNs), obtaining a R2 of 0.950 and a RMSE 

of 14.000 mg.L-1: for the DTs model, despite having a test set with a similar quality of fit with 

a higher error measure (R2 of 0.942 and RMSE of 20.964 mg.L-1 for the TF 2012 dataset), 

overall all test sets obtain worse results when compared not only with this author, but also with 

the results presented for NNs model in 4.1; as for the authors using chemometric methods, Le 

Moigne et al. (2008) achieved the best results with his PLS regression model, with a R2 of 0.979 

(the errors are not comparable) for the training step, but no results were available for test sets – 

the best results available for direct comparison (test set results) are those obtained by Fadock 
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et al. (2016), also with a PLS regression model, with a R2 of 0.650 and a RMSE of 75.000 

mg.L-1: in this work, the DTs model had superior results for the both the R2 and the RMSE on 

all the test sets. 

 The validation and test set results achieved with the DTs model (again, one for each 

variety and vintage) for the determination of pH index are shown in Table 20. 

  

Table 20 – Results for the determination of pH index on the test sets using DTs 

  Validation Set Test Set  

  R2 RMSE R2 RMSE PC 

pH Index 

TF 2012 0.735 0.179 0.838 0.181 13 

TF 2013 0.524 0.248 0.839 0.252 17 

TF 2014 0.619 0.172 0.869 0.159 14 

TB 2013 0.558 0.206 0.721 0.344 14 

TN 2013 0.699 0.186 0.888 0.202 17 

PC: Principal Components used. 

  

 Analysing the results, and similarly to the analysis in 4.1, the model slightly 

underperforms when predicting the pH index (in comparison to the anthocyanin concentration) 

but the decrease in performance is not so clear as it was in the NNs models (perfectly normal, 

since the anthocyanin concentration results for the DTs were worse than the ones obtained by 

the NNs): as mentioned previously, this could be due to the fact that the datasets have very 

small values for the standard deviations (close to 0) and a small range of values for the 

prediction intervals (Table 3); another possible explanation (that was addressed and scrutinized 

in the NNs model analysis) is that the greatest variation in the pH patterns is reflected on the 

model’s training step, which has difficulties to capture such relationships in the data without a 

greater number of samples for all datasets. Besides that, there’s an additional challenge in 

measuring the pH on wine grape berries, since the acidity is sensible to small changes in the 

condition of the sample; another indicator seen in the anthocyanin concentration results (and in 

the pH index results for the NNs models) can be recognized, namely the model underfitting on 

some of the vintages and varieties (for the pH index results, this is more noticeable on the TF 

2013, TF 2014 and TB 2013 datasets); regarding the number of principal components used, a 

difference can be spotted – contrary to the NNs models, which only used a bigger number of 

principal components as input when different vintages composed the training and validation 

sets and the number of samples grew, the DTs models started using a bigger number of principal 
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components as input on average for the prediction of pH index in single vintage models – this 

might indicate that the DTs model needs more information from its inputs to ease the learning 

process and that the number of factors on the PCA may not necessarily be composed by noise 

after the eigenvalues are over 1, but instead contain important information to capture the 

patterns in the spectra. 

 Comparing the results with those published in literature for training and prediction on 

the same varieties and vintages of wine grape berries, Cao et al. (2010) had the best results 

using a non-chemometric method (genetic algorithm) with a R2 of 0.957 and a RMSE of 0.126 

for the training step, but no results can be found for the test sets – the highest values obtained 

that allow a direct comparison (test set values) are those obtained by Fernandes et al. (2015) 

with his NNs model, with a R2 of 0.730 and a RMSE of 0.180: for four out of the five test sets 

used in this work for the DTs model, superior results for the R2 were achieved (R2 of 0.838, 

0.839, 0.869 and 0.888 for the TF 2012, TF 2013, TF 2014 and TN 2013 test sets respectively), 

while for the RMSE the values obtained are better for only one of the five test sets (TF 2014, 

with RMSE of 0.159) and higher for the remainder; as for the authors using chemometric 

methods, Nogales-Bueno et al. (2010) had the best results with his modified PLS regression 

model, with a R2 of 0.940 and a RMSE of 0.120 for the training step, but there aren’t results 

available for the test sets – the best results available for direct comparison (test set results) are 

those obtained by Fadock et al. (2016), with a PLS regression model, with a R2 of 0.810 and a 

RMSE of 0.050: in this investigation, superior results for the DTs model were obtained for the 

R2 of four out of the five test sets (TF 2012, TF 2013, TF 2014 and TN 2013, with a R2 of 0.838, 

0.839, 0.869 and 0.888, respectively) but the RMSE values are inferior for all experiments: 

therefore, as mentioned in 4.1, it’s implied that the difficulties in building a prediction model 

for the pH index are transversal to the other works published in literature. Performing a 

comparison with the results presented in this work with the NNs models, it’s noticeable that the 

DTs models achieve a slightly better quality of fit for the predictions, but with higher error 

measures – both models achieve very similar results. 

 The validation and test set results obtained with the DTs model (one for each variety 

and vintage) for the estimation of sugar content are presented in Table 21. 
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Table 21 – Results for the determination of sugar content on the test sets using DTs 

  Validation Set Test Set  

  R2 RMSE(ºBrix) R2 RMSE (ºBrix) PC 

Sugar Content 

TF 2012 0.857 1.315 0.928 1.488 16 

TF 2013 0.775 1.980 0.930 2.870 14 

TF 2014 0.608 2.419 0.893 2.432 16 

TB 2013 0.680 2.692 0.904 3.478 20 

TN 2013 0.711 1.333 0.870 1.979 18 

PC: Principal Components used. 

  

 Examining Table 21 one can see that the set of predictions are accurate, with good values 

for the R2 on all test sets, but when compared to the results obtained in 4.1 with the NNs models, 

an increase on the RMSE is noted: as it was stated primarily on the anthocyanin concentration 

results analysis, the model suffers from a certain degree of underfitting on some of the vintages 

and varieties (in this case, it’s more noticeable on the TF 2014, TB 2013 and TN 2013 datasets); 

regarding the principal components, and similarly to what was seen on the pH index results 

analysis, the DTs models use a higher number of principal components as input aiding the 

assumption that the models need more information from its inputs to ease the learning process; 

for the case of the TN 2013 dataset, the decrease on the model’s accuracy can also be explained 

by the fact that this dataset has a very small number of samples (at 60, is the dataset with the 

smallest number) with small standard deviation between samples and a small range of values 

for the prediction interval; despite obtaining inferior results when compared to the ones 

obtained by the NNs models, the model’s capacity to achieve accurate predictions for all 

datasets with the same structure should be highlighted, since the ANOVA tests (as seen in 

Appendix I) showed that there are significant differences in the means between almost every 

set of samples. 

 Hence, comparing the results with the ones published in literature for training and 

prediction on the same varieties and vintages of wine grape berries, Gomes et al. (2014a) had 

the best results using a machine learning algorithm (NNs) with a R2 of 0.959 and a RMSE of 

1.026 ºBrix: in this work, for the DTs models, the results obtained for all test sets are somewhat 

inferior; regarding the authors using chemometric methods, Nogales-Bueno et al. (2010) had 

the best results with his modified PLS regression model, with a R2 of 0.990 and a RMSE of 

1.370 ºBrix for the training step, but the results for the test sets can’t be found – considering 

authors that allow a direct comparison of the results (test set results), Gomes et al. (2014b) with 
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a PLS regression model obtained the best values for R2 and RMSE, with 0.948 and 0.939 ºBrix, 

respectively: in this work, the values obtained for the R2 and RMSE are slightly inferior for all 

datasets. 

 Overall, the DTs models achieved similar results for the prediction of all oenological 

parameters in comparison to the state of the art approaches: the pH index results are rather 

superior than those published by other authors, but for the anthocyanin concentration and sugar 

content the results obtained are somewhat inferior. When compared to the results obtained by 

the NNs models in 4.1, the DTs models had comparable results for the prediction of the pH 

index, but the performance was also worse when operating on the anthocyanin concentration 

and sugar content. As in the analysis made in 4.1, despite suffering from underfitting for some 

of the vintages and varieties, changes to the DTs structure will only be considered after analysis 

of the generalization results, since the main goal is to obtain a model that can give accurate 

predictions for different vintages and varieties without fine tuning the DTs structure for all 

datasets available. 

 

4.3.2. Model Generalization 

As mentioned in 4.2.2, in order to study the models’ generalization capacity two 

different experiments were used: the first, that applies a different vintage of the same varieties 

that compose the training and validation sets to the test sets (since the only variety that contains 

different vintage years is the TF, train and validation will occur on one or more vintages of TF 

and the test set will be composed of samples from the next vintage year); the second, that 

employs a different variety and vintage on the test set (in this case, all the TF vintage years will 

be used on the training and validation sets, while the test sets will be composed by the TB or 

TN samples). 

In these experiments only the test set results are presented since it’s not of major 

importance to understand how good the models’ fit is early in the training process: it will have 

to generalize to distinct samples on the test set). 

 

4.3.2.1. Different Vintages 

 The test set results obtained by the DTs model for the prediction of anthocyanin 

concentration on different vintages are presented in Table 22. As mentioned previously, since 
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the TF variety on the vintage year of 2014 doesn’t have any laboratory results available, a model 

composed of TF 2012 and 2013 samples to predict TF 2014 values on the test set couldn’t be 

built. 

   

Table 22 – Results for the prediction of anthocyanin concentration on different vintages with DTs 

  Test Set  

  R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration TF 2012 - TF 2013 0.916 45.034 20 

PC: Principal Components used. 

  

 Observing the results presented, positive indicators for a model with capacity to learn 

from wine grapes of different vintages are shown: there is a high correlation between the 

predictions and ground-truth results, as stated in the R2 parameter, with only a small decrease 

of performance when compared to the single variety and vintage models, and the error measure 

is quite similar to the one obtained in the single variety and vintage model. However, the degree 

of uncertainty for the predictions is still rather high when compared to the values obtained for 

the NNs model in 4.2.2.1; the number of principal components used as input is higher when 

compared to the number used for the single variety and vintage models, indicating that there is 

a necessity of increasing the percentage of variance explained by the PCA to obtain a more 

stable set of predictions; the descriptive statistics of the independent test set (see Appendix L) 

show that the mean value fits the initial 95% confidence interval determined for the TF 2013 

samples (on Table 2) but the standard deviation value is over the higher limit of the confidence 

interval, which might indicate that the independent test set isn’t a good representation of the 

overall population; analysing the residuals vs fit values plot (Appendix R), one can find some 

high valued residuals, outliers and slight indicators of heteroscedasticity, meaning that (as seen 

previously) the residuals get larger as the predictions move from small to large – 

heteroscedasticity usually indicates that either an input variable is missing (that is, the model 

needs more information to be able to identify the patterns in the training set) or, in the most 

frequent cases, that a transformation to one of the input variables is necessary (because 

regression models usually work better with variables that have a symmetrical or bell-shaped 

distribution, it’s common to find input variables with an asymmetrical distribution and apply, 

e.g., a 𝑙𝑜𝑔 transform).  
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Analysing the results published in literature it was found that there isn’t any work 

attempting to predict different vintages of wine grape berries on training and testing for the 

anthocyanin concentration; Janik et al. (2007) used not only different vintages but also different 

varieties on the test set, so a more adequate comparison will be made further in this chapter; 

comparing the results with the single vintage models, Chen et al. (2015), Ferrer-Gallego et al. 

(2011) and Le Moigne et al. (2008) had superior R2 values (R2 of 0.941, 0.970 and 0.979, 

respectively) with their PLS (and variants) regression models on the training step, but no results 

were published for the test set: Fernandes et al. (2015) is the only work with test set results 

published in which the R2 and RMSE values are superior than those presented, with a R2 of 

0.950 (the R2 shown is 0.916) and a RMSE of 14.000 mg.L-1 (the RMSE shown is 45.034 mg.L-

1), applying a NNs model – however, considering that the results presented in Table 22 have 

different vintages applied on the testing phase, the small decrease on the quality of the fit can 

be considered acceptable, but the error measure deserves attention, since it is a significantly 

high increase when compared to the author’s values. As it was already mentioned, when 

comparing these results with the ones obtained by the NNs model in 4.2.2.1, the quality of the 

fit is very similar but the RMSE obtained is much worse (it doubles the value), and if these 

increases in the degrees of uncertainty remain for the other oenological parameters, a change in 

the DTs structure should be considered. 

 The test set results obtained by the DTs model for the prediction of pH index on different 

vintages are presented in Table 23. 

 

Table 23 – Results for the prediction of pH index on different vintages with DTs 

  Test Set  

  R2 RMSE PC 

pH Index 
TF 2012 - TF 2013 0.831 0.226 12 

TF 2012 & 2013 - TF 2014 0.682 0.194 29 

PC: Principal Components used. 

  

 Examining Table 23, it’s noticeable that the model underperforms when compared to 

the results obtained for the anthocyanin concentration and one detail arises that is of foremost 

importance: contrary to what happened for the NNs models in 4.2.2.1, despite obtaining similar 

results for the prediction of the TF 2013 dataset values, the results obtained for the prediction 

on the TF 2014 samples suffer from a massive drop in the quality of the fit and not even a 

significant increase on the number of principal components used as input helped ease the 
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learning process, which reinforces the idea that changes to the DTs structure must be made 

since the generalization capacity is being highly affected. The descriptive statistics of the 

independent test sets (see Appendix L) show that the mean and standard deviation values fit the 

initial 95% confidence intervals determined for both the TF 2013 and TF 2014 samples (on 

Table 3), meaning that the independent test sets are a good representation of the overall 

populations; analysing the residuals vs fit values plots (Appendix R and Appendix S), one can 

see that despite finding some outliers and a slightly unbalanced y-axis, both plots have the 

residuals symmetrically distributed and clustering towards the middle of the plot and towards 

the lower single digits of the y-axis, with no clear patterns identifiable. 

 Comparing these results with the ones published in literature for different vintages of 

wine grape berries employed on the training and testing phases, Fadock et al. (2016) is the only 

work published that meets this particular experimental outline, obtaining a R2 of 0.560 and a 

RMSE of 0.050 with his PLS regression model: for both test sets in this work, and despite a 

huge drop on the performance when predicting for the TF 2014 dataset, the R2 values are 

superior (R2 of 0.831 and 0.682 for the TF 2013 and TF 2014 test sets, respectively) but the 

RMSE on both setups is inferior (RMSE of 0.226 and 0.194 for the same test sets, respectively): 

however, as stated in 4.2.2.1, regarding Fadock et al. (2016) results, it’s rather questionable that 

a model that obtained such a low R2 score has simultaneously such a low error measure, 

especially since it shares the same value than that obtained for the test set with only one vintage 

and variety employed on the training and testing phases (as seen in Table 1). As it was already 

mentioned, comparing the results with the ones presented for the single models in 4.2, there is 

a significant decrease on the performance when measured against the results obtained for the 

TF 2014 dataset, but the result obtained for the test set of TF 2013 samples after training on the 

TF 2012 dataset (R2 of 0.831and RMSE of 0.226) is still superior when compared to the best 

test set results for single vintage and variety models previously published in literature [Fadock 

et al (2016), with a PLS regression model obtaining a R2 of 0.807 and RMSE of 0.050]; 

comparing these results with the ones obtained by the NNs models in 4.2.2.1 show that the DTs 

don’t have the same generalization capacity, and changes to the DTs structure should be studied. 

 Table 24 presents the results for the prediction of sugar content on different vintages 

obtained by the DTs model. 
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Table 24 – Results for the prediction of sugar content on different vintages with DTs 

  Test Set  

  R2 RMSE (ºBrix) PC 

Sugar Content 
TF 2012 - TF 2013 0.879 2.304 8 

TF 2012 & 2013 - TF 2014 0.625 4.307 44 

PC: Principal Components used. 

  

 Interpreting the results in Table 18, some negative indicators regarding the model’s 

capacity to generalize from a set of training examples to a testing set with different vintages of 

wine grape berries are shown: the correlation between the predictions and ground-truth results 

suffers a rather significant drop for the TF 2014 samples, with an important increase on the 

error measure – this drop can be eased by the results of the ANOVA tests mentioned in 3.1 (see 

Appendix I), since pretty much all datasets have significant differences in the means in 

comparison to the remaining vintages and varieties, indicating that these are populations with 

rather different patterns in the spectra to capture in the learning process, which in turn makes 

the generalization step harder to carry without an increase on the uncertainty of the predictions 

(despite the increase in the number of samples up for analysis) – nevertheless, the model shows 

significantly worse results in the generalization set composed of TF 2014 samples, despite using 

a much higher number of principal components as input, meaning that this increase couldn’t 

help the model adapt to the differences in the variance of the datasets; the descriptive statistics 

of the independent test sets (see Appendix L) show that the mean and standard deviation values 

for the TF 2013 samples and the standard deviation value for the TF 2014 datasets don’t fit the 

initial 95% confidence intervals, which means that both independent test sets might not be a 

good representation of the overall populations; analysing the residuals vs fit values plots 

(Appendix R and Appendix S), despite some outliers (for the case of the TF 2014 datasets, it’s 

quite a higher number), both plots have the residuals pretty evenly symmetrically distributed 

and clustering towards the middle of the plot and towards the lower single digits of the y-axis, 

with no clear patterns identifiable. 

 Regarding the comparison with similar results in literature, Gomes et al. (2017b) had 

the best results for predictions on different vintages of wine grape berries with both, a machine 

learning algorithm (NNs) and a chemometric method (PLS regression), with a R2 of 0.917 and 

0.948 and a RMSE of 1.355 ºBrix and 1.344 ºBrix, respectively for the mentioned models: in 

this work, the R2 and RMSE values obtained by the DTs models are significantly inferior, not 



Chapter IV – Critical Analysis and Discussion 

87 

 

only comparing with the aforementioned author, but also with the results presented in 4.2.2.1 

for the NNs models. 

 Overall, the DTs models achieved comparable results for the prediction of anthocyanin 

concentration and pH index in comparison to the state of the art approaches, but inferior results 

for the prediction of sugar content. When comparing the DTs models with the NNs models in 

4.2.2.1, it’s noticeable that the generalization capacity of the DTs is significantly worse, with 

high degrees of uncertainty for the prediction of most of the oenological parameters, indicating 

that changes to the DTs structure (as discussed in 4.3.1) might be necessary since the model is 

underfitting when extending his predictions for different vintages. Further discussion on the 

DTs structure will be made after analysing the results in 4.3.2.2. 

 

4.3.2.2. Different Vintages and Varieties 

 Graph 9 shows the results obtained by the DTs model for the prediction of anthocyanin 

concentration on different varieties and vintages of wine grape berries. Since there aren’t any 

laboratorial results for the TF 2014 dataset, only the TF 2012 and TF 2013 set of samples 

compose the training and validation sets. The number of principal components used was 13 and 

41 for the TB 2013 and TN 2013 generalization sets, respectively. 

 

 

Graph 9 – Results for the estimation of anthocyanin concentration on different vintages and varieties with 

DTs; a) TB 2013 generalization set; b) TN 2013 generalization set  
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Observing Graph 9, the decrease in the accuracy of the DTs predictions isn’t as clear as 

it was for the NNs models, since despite having high values for the RMSE, there isn’t a 

significant increase when comparing the results with the single variety and vintage models, 

because the error measure was already high; the R2 values show a slight decrease (from R2 

usually above 0.90, the model obtained 0.839 and 0.803 for the TB 2013 and TN 2013 set of 

samples, respectively) – analysing exclusively the R2 and RMSE parameters and 

acknowledging that a decrease in performance is always expected for a test setup of this nature, 

one can consider that the DTs achieved a rather accurate set of predictions (contradicting the 

indicators in 4.3.2.1), but the uncertainty of the predictions might be too high for these to be 

considered good indicators of the DTs generalization capacity; contrary to what happened in 

the NNs models in 4.2.2.2, the number of principal components used in these generalization 

sets was significantly bigger when compared to the generalization sets with different vintages, 

meaning that the DTs found important information about the data on the remaining factors 

determined by the PCA (except for the TB 2013 dataset, but that might be due to the random 

choosing of the samples to compose the independent test sets); the descriptive statistics of the 

independent test sets (see Appendix L) show that the mean and standard deviation values of the 

TB 2013 dataset fit the initial 95% confidence interval determined for the overall population 

(on Table 2): for the TN 2013 set of samples, the mean fits the initial 95% confidence interval 

but the standard deviation is over the higher limit, which might indicate that the test set with 

TN 2013 samples is not a good representation of the overall population; analysing the residuals 

vs fit value plots (Appendix T and Appendix U), both plots exhibit indicators of the residuals 

being unbalanced on the y-axis: the solution to this problem is most of the times transforming 

the data, typically the response variable (e.g., applying a 𝑙𝑜𝑔 transform). 

 Comparing these results with those published in literature for predicting anthocyanin 

concentration on different vintages and varieties of wine grape berries, Janik et al. (2007) has 

the best (and only) results with a R2 of 0.900 for his NNs model with PLS scores as input, with 

a non-comparable error measure: these results are rather superior to the ones obtained in this 

work (R2 of 0.839 and 0.803 for the TB 2013 and TN 2013 datasets, respectively) but it’s 

important to note that, as mentioned previously (in 4.2.2.2) that this author used a much higher 

number of samples for the training and validation sets (3134 samples obtained from 4 different 

vintages and 9 different varieties, while in this work there are 332 samples from 2 different 

vintages) and the test sets (250 samples from 1 vintage and 9 different varieties, while in this 

work there are 27 and 19 samples from 1 vintage and 1 variety for the TB 2013 and TN 2013 
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datasets, respectively) – additionally, for Janik et al. (2007) all the different varieties of wine 

grape berries on the test sets are also a part of the training and validation sets (contrary to this 

work, in which the TB and TN varieties are only present on the test sets), so it can be considered 

that the model only generalizes for different vintages since the training and validation sets are 

composed by samples from 1999 to 2003 of 9 varieties and the test set has the same 9 varieties 

but only for the vintage year of 2004 – if a comparison is made with the results presented in 

this work for generalization on different vintages (see 4.3.2.1), one can see that the results 

shown are superior with significantly fewer samples from fewer harvest years. Regarding a 

comparison with the generalization set results obtained by the NNs model in 4.2.2.2, the DTs 

models actually obtained superior results, contradicting the prior belief in 4.3.2.1 that the 

model’s generalization capacity was inferior to the one achieved by the NNs: howsoever, 

changes to the DTs structure should still be considered since these results might constitute a 

statistical anomaly. 

 Graph 10 presents the results for the prediction of pH index on different vintages and 

varieties of wine grape berries by the DTs model. The number of principal components used 

was 39 and 22 for the TB 2013 and TN 2013 datasets, respectively. 

 

 

Graph 10 – Results for the estimation of pH index on different vintages and varieties with DTs; a) TB 

2013 generalization set; b) TN 2013 generalization set 

  

 Inspecting Graph 10 it’s clear that the DTs model obtained very satisfactory results for 

the TN 2013 generalization set: both the error measure and R2 values are comparable to the 
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ones obtained for the single variety and vintage models in 4.3.1, giving a positive indicator of 

the model’s generalization capacity; however, for the TB 2013 dataset there was a slight 

decrease in performance. The results of the ANOVA tests mentioned in 3.1 (see Appendix F) 

noted significant differences in the means between the TF 2014 dataset and the TF 2012 and 

TF 2013 samples, which means that the populations in the training set had rather different 

patterns in the spectra to be captured in the learning process, but the model was able to 

overcome this difficulty without adding significantly to the uncertainty of the predictions; as 

seen previously, the number of principal components used grew to allow for more information 

to be gathered and to achieve more stable predictions; the descriptive statistics of the 

independent test sets (see Appendix L) show that the standard deviation value of the TB 2013 

dataset doesn’t fit the initial 95% confidence interval (on Table 3), which might indicate that 

this test set is not a good representation of the overall population; analysing the residuals vs fit 

values plots (Appendix T and Appendix U), both plots seem to have the residuals following an 

evenly symmetrical distribution clustering towards the lower single digits of the y-axis, with no 

clear patterns identifiable. 

 Regarding the comparison with the current literature, there aren’t any works published 

that predict pH index on different varieties and vintages of wine grape berries: comparing the 

results with authors that employed only different vintages on the test sets (as seen in 4.3.2.1), 

Fadock et al. (2016) obtained a R2 of 0.560 and a RMSE of 0.050 with his PLS regression 

model – despite the fact that the test sets compose not only different vintages but also different 

varieties of wine grape berries, the results published in this work (R2 of 0.716 and 0.830, RMSE 

of 0.282 and 0.141 for the TB 2013 and TN 2013 datasets, respectively) can be considered 

significantly better. Comparing these results with the ones obtained by the NNs models in 

4.2.2.2, for the TN 2013 generalization set the values are very similar, but the NNs perform 

better for the TB 2013 dataset than the DTs model. 

 Graph 11 shows the results for the estimation of sugar content on different vintages and 

varieties of wine grape berries by the DTs model. The number of principal components used 

was 2 and 3 for the TB 2013 and TN 2013 datasets, respectively. 
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Graph 11 – Results for the estimation of sugar content on different vintages and varieties with DTs; a) TB 

2013 generalization set; b) TN 2013 generalization set 

  

 Examining Graph 11, contrary to the pH index analysis, it’s clear that the DTs model 

didn’t achieve positive indicators regarding its generalization capacity: the error measurements 

had a significant increase when compared to the single variety and vintage models (especially 

for the TB 2013 generalization set) and the R2 values are very low. The results of the ANOVA 

tests mentioned in 3.1 (see Appendix I) noted significant differences in the means between 

almost every single variety and vintage, providing somewhat of an explanation to the increase 

on the degree of uncertainty, but the model still obtained very poor results; contrary to the 

previous analysis, the number of principal components used was significantly smaller, 

indicating that adding more principal components didn’t aid the model in achieving better fits 

and capturing the patterns in the spectra; the descriptive statistics of the independent test sets 

(see Appendix L) show that the mean and standard deviation values for both datasets fit the 

initial 95% confidence intervals (on Table 4), indicating that these test sets are a good 

representation of the overall population; analysing the residuals vs fit values plots (Appendix T 

and Appendix U), despite some outliers and having a slightly unbalanced y-axis (especially for 

the TB 2013 generalization set), both plots seem to have the residuals following a symmetrical 

distribution clustering towards the lower digits of the y-axis, with no clear patterns identifiable. 

 As for the comparison with current literature, similarly to the pH index analysis, there 

aren’t any works published that predict sugar content on different varieties and vintages of wine 

grape berries, not allowing for a direct comparison to be made: considering the results for 



Chapter IV – Critical Analysis and Discussion 

92 

 

authors that employed only different vintages on the test sets (as seen in 4.3.2.1), Gomes et al. 

(2017b) had the best results with both, a machine learning algorithm (NNs) and a chemometric 

method (PLS regression), with a R2 of 0.917 and 0.948 and a RMSE of 1.355 ºBrix and 1.344º 

Brix, respectively for the mentioned models – in this work, the results for both test sets are 

significantly inferior (but it’s important to note that the test sets are composed not only of 

different vintages but also of different varieties of wine grape berries). 

 Overall, despite showing good indicators regarding the models’ generalization capacity 

for the prediction of anthocyanin concentration and pH index (the results are comparable with 

the ones achieved by the NNs models in 4.2.2.2), the DTs models are not fully convincing 

concerning the lack of necessity to build models who require a yearly update of samples, or 

new samples for each variety: the models show a serious degree of underfitting when attempting 

to generalize for different vintages, and the degree of uncertainty of the predictions is always 

extremely high – possible solutions might be  adding more individual DTs to the ensemble or 

even removing the k-Fold Cross-Validation step for the prediction models with DTs: since 

when using the bagging algorithm, bootstrap replicates of the training set are formed and used 

as new training sets, the model validation step might be redundant or even detrimental to the 

outcome, because as seen in 3.5, k-Fold Cross-Validation with 𝑘 values between 10-20 reduce 

the variance while increasing the bias, and having a model validation step with k-Fold Cross-

Validation and a Bootstrap on the machine learning algorithm might highly increase the bias 

and result in underfitting. 

 

4.4. Support Vector Regression 

4.4.1. Test Sets 

The validation and test set results obtained by the SVR model (one for each variety and 

vintage) for the prediction of anthocyanin concentration are presented in Table 25. As 

mentioned in 3.1 (and in 4.2.1 and 4.3.1), the TF variety on the vintage year of 2014 doesn’t 

have any laboratory results available, preventing the development of a model for that particular 

set of samples. 
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Table 25 – Results for the determination of anthocyanin concentration on the test sets using SVR 

  Validation Set Test Set  

  R2 RMSE(mg.L-1) R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration 

TF 2012 0.840 21.397 0.968 15.683 8 

TF 2013 0.817 22.466 0.979 11.887 10 

TB 2013 0.662 24.315 0.933 22.471 4 

TN 2013 0.649 17.401 0.929 36.860 11 

PC: Principal Components used. 

  

 Observing the results, it’s clear that the SVR model shows extremely accurate 

predictions with a relatively small error rate for the test sets, but (as it was seen in the NNs and 

DTs models) the R2 and RMSE values on the validation sets might indicate that it suffers from 

a certain degree of underfitting for the case of the TB 2013 and TN 2013 set of samples, since 

it has somewhat poor results on the training/validation step, but it has good results with a small 

error rate on the test set; the model accentuates the difficulties in having a quality training step 

and predictions for the datasets with the least standard deviations and the smallest range of 

values in their populations, namely the TB 2013 and TN 2013 datasets (Table 2): this might 

show that the model has some problems in capturing the patterns in the spectra when the 

prediction intervals are smaller and the standard deviations have low values; for the case of the 

TN 2013 dataset, the slight decrease in the model’s performance can also be explained by the 

small number of samples (only 60 samples, the smallest dataset used); regarding the number of 

principal components used as input to the model, it’s visible that the number is rather small, 

indicating that the SVR algorithm can capture the patterns in the spectra without an increase of 

variance in the inputs when compared to the NNs and DTs models. 

 Comparing the results with similar works from the literature that train and predict on 

the same varieties and vintages of wine grape berries, Fernandes et al. (2015) had the best 

results while using a machine learning algorithm (NNs), obtaining a R2 of 0.950 and a RMSE 

of 14.000 mg.L-1: for two out of the four test sets used in the present work, superior results for 

the R2 were obtained (R2 of 0.968 and 0.979 for the TF 2012 and TF 2013 datasets, 

respectively), while for the RMSE  the values obtained are inferior in one out of the four test 

sets (TF 2013, with a RMSE of 11.887 mg.L-1), but higher for the remainder; as for the authors 

using chemometric methods, Le Moigne et al. (2008) achieved the best results with his PLS 

regression model, with a R2 of 0.979 (the errors are not comparable) for the training step, but 

no results were available for test sets – the best results available for direct comparison (test set 
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results) are those obtained by Fadock et al. (2016), also with a PLS regression model, with a R2 

of 0.650 and a RMSE of 75.000 mg.L-1: in this work, superior results were obtained for both 

the R2 and RMSE on all the test sets; comparing these results with the ones obtained by the 

NNs and DTs in 4.2.1 and 4.3.1, it’s noticeable that the SVR model has better results than the 

DTs model and similar or superior results to the NNs model in all test sets, indicating that the 

learning process in the SVR model worked extremely well. 

 The validation and test set results achieved with the SVR model (again, one for each 

variety and vintage) for the determination of pH index are shown in Table 14. 

 

Table 26 – Results for the determination of pH index on the test sets using SVR 

  Validation Set Test Set  

  R2 RMSE R2 RMSE PC 

pH Index 

TF 2012 0.730 0.1771 0.887 0.142 15 

TF 2013 0.561 0.225 0.863 0.165 12 

TF 2014 0.703 0.139 0.889 0.123 20 

TB 2013 0.574 0.196 0.864 0.216 5 

TN 2013 0.727 0.141 0.902 0.117 17 

PC: Principal Components used. 

  

 Analysing the results, similarly to what happened for the NNs and DTs models, the 

model underperforms when predicting the pH index in comparison to the anthocyanin 

concentration: this could be due to the fact that the datasets have very small values for the 

standard deviations (close to 0) and small range of values for the prediction intervals (Table 3); 

another possible explanation is that the greatest variation in the pH patterns is reflected on the 

model’s training step, which has difficulties to capture such relationships in the data without a 

greater number of samples for all datasets. Besides that, there’s an additional challenge in 

measuring the pH on wine grape berries, since the acidity is sensible to small changes in the 

condition of the sample; other indicators seen in the anthocyanin concentration results can be 

recognized, namely the model underfitting on some of the vintages and varieties (for the pH 

index results, this is more noticeable on the TF 2013 and TB 2013 datasets); regarding the 

number of principal components used as input to the model, when in comparison to the other 

models presented in this work it’s noticeable that the SVR model has more similarities with the 

DTs model, using a high number of principal components in this single variety and vintage 

model. 
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Comparing the results with those published in literature for training and prediction on 

the same varieties and vintages of wine grape berries, Cao et al. (2010) had the best results 

using a non-chemometric method (genetic algorithm) with a R2 of 0.957 and a RMSE of 0.126 

for the training step, but no results can be found for the test sets – the highest values obtained 

that allow a direct comparison (test set values) are those obtained by Fernandes et al. (2015) 

with his NNs model, with a R2 of 0.730 and a RMSE of 0.180: 

for all five test sets used in this work superior results for the R2 were achieved, while for the 

RMSE the values obtained were only inferior for one test set (RMSE of 0.216 for the TB 2013 

dataset); as for the authors using chemometric methods, Nogales-Bueno et al. (2010) had the 

best results with his modified PLS regression model, with a R2 of 0.940 and a RMSE of 0.120 

for the training step, but there aren’t results available for the test sets – the best results available 

for direct comparison (test set results) are those obtained by Fadock et al. (2016), with a PLS 

regression model, with a R2 of 0.810 and a RMSE of 0.050: in this investigation, superior results 

were obtained for the R2 of all the five test sets but the RMSE values are slightly inferior for all 

experiments: therefore, it’s implied that the difficulties in building a prediction model for the 

pH index are transversal to the other works published in literature; comparing these results with 

the ones obtained by the NNs and DTs model in this work, similarly to what happened in the 

anthocyanin concentration, the SVR model has superior results for pretty much all the test sets. 

 The validation and test set results obtained with the SVR model (one for each variety 

and vintage) for the estimation of sugar content are presented in Table 27. 

  

Table 27 – Results for the determination of sugar content on the test sets using SVR 

  Validation Set Test Set  

  R2 RMSE(ºBrix) R2 RMSE (ºBrix) PC 

Sugar Content 

TF 2012 0.905 1.009 0.964 0.943 19 

TF 2013 0.850 1.321 0.979 1.760 16 

TF 2014 0.786 1.647 0.926 1.653 17 

TB 2013 0.817 1.853 0.962 1.368 18 

TN 2013 0.669 1.255 0.966 1.925 10 

PC: Principal Components used. 

  

 Examining Table 27 one can see that the results obtained are extremely robust, with 

good values for the R2 and RMSE on all test sets: nevertheless, as it was stated on the 

anthocyanin concentration and pH index results analysis, the model suffers from a certain 
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degree of underfitting on some of the vintages and varieties (in this case, it’s more noticeable 

on the TF 2014 and TB 2013 datasets); the number of principal components used was again 

reasonably high, indicating that the SVR model extracts important information to identify the 

patterns in the spectra in the remaining factors of the PCA after they cross the eigenvalue of 1, 

suggesting that they don’t essentially comprise noise; the model’s capacity to achieve accurate 

predictions for all datasets should be highlighted, since the ANOVA tests showed that there are 

significant differences in the means between almost every set of samples (as seen in Appendix 

I). 

 Hence, comparing the results with the ones published in literature for training and 

prediction on the same varieties and vintages of wine grape berries, Gomes et al. (2014a) had 

the best results using a machine learning algorithm (NNs) with a R2 of 0.959 and a RMSE of 

1.026 ºBrix: for four out of the five test sets the SVR model had better R2 values (R2 of 0.964, 

0.979, 0.962, 0.966 for the TF 2012, TF 2013, TB 2013 and TN 2013 datasets, respectively), 

while for the RMSE the test set with TF 2012 samples had a better value (RMSE of 0.943 ºBrix) 

but the rest were slightly worst; regarding the authors using chemometric methods, Nogales-

Bueno et al. (2010) had the best results with his modified PLS regression model, with a R2 of 

0.990 and a RMSE of 1.370 ºBrix for the training step, but the results for test sets can’t be found 

– considering authors that allow a direct comparison of the results (test set results), Gomes et 

al. (2014b) with a PLS regression model obtained the best values for R2 and RMSE, with 0.948 

and 0.939 ºBrix, respectively: in this work, the SVR model once again had superior R2 values 

for four out of five test sets and a better RMSE value for the TF 2012 dataset, but the remaining 

obtained worse error measures; comparing these results with ones obtained by the NNs and 

DTs models in this work, the SVR repeated the best overall performance, similarly to what 

happened in the anthocyanin concentration and pH index results. 

 Overall, the SVR model achieved superior or comparable results for the prediction of 

all oenological parameters in comparison to the state of the art approaches and the remaining 

models presented in this work. Despite suffering from underfitting for some of the vintages and 

varieties (mostly the ones with a small number of samples for analysis), the results presented 

are very satisfactory and are very positive indicators ahead for the tests on the generalization 

capacity.  

 



Chapter IV – Critical Analysis and Discussion 

97 

 

4.4.2. Model Generalization 

In order to study the models’ generalization capacity, two different experiments were 

used (as seen in 4.2.2 and 4.3.2): the first, that applies a different vintage of the same varieties 

that compose the training and validation sets to the test sets (since the only variety that contains 

different vintage years is the TF, train and validation will occur on one or more vintages of TF 

and the test set will be composed of samples for the next vintage year); the second, that employs 

a different vintage and variety on the test set (in this case, all the TF vintage years will be used 

on the training and validation sets, while the test sets will be composed by the TB or TN 

samples). 

 In these experiments only the test set results are presented since it’s not of major 

importance to understand how good the models’ fit is early in the training process: it will have 

to generalize to distinct samples on the test set. 

 

4.4.2.1. Different Vintages 

 The test set results obtained by the SVR model for the prediction of anthocyanin 

concentration on different vintages are presented in Table 28. As mentioned previously, since 

the TF variety on the vintage year of 2014 doesn’t have any laboratory results available, a model 

composed of TF 2012 and 2013 samples to predict TF 2014 values on the test set couldn’t be 

built. 

   

Table 28 – Results for the prediction of anthocyanin concentration on different vintages with SVR 

  Test Set  

  R2 RMSE (mg.L-1) PC 

Anthocyanin Concentration TF 2012 - TF 2013 0.938 28.349 30 

PC: Principal Components used. 

  

 Observing the results presented, strong indicators for a robust model with capacity to 

learn from wine grapes of different vintages are shown: there is a high correlation between the 

predictions and ground-truth results, as stated in the R2 parameter, with only a small decrease 

of performance when compared to the single variety and vintage models and despite an increase 

in the RMSE, the value obtained is still similar to the single variety and vintage models that 

have a smaller number of samples (specifically, the TB 2013 and TN 2013 datasets); the number 
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of principal components used as input grew even more, indicating that there is a necessity to 

increase the percentage of variance explained by the PCA to achieve stable predictions; the 

descriptive statistics of the independent test set (see Appendix M) show that the mean fits the 

initial 95% confidence interval determined for the TF 2013 samples (on Table 2) but the 

standard deviation value is over the higher limit, which might indicate that the independent test 

set isn’t a good representation of the overall population; analysing the residuals vs fit values 

plot (Appendix V), despite some high value residuals and slight indicators of heteroscedasticity, 

the residuals are rather evenly distributed between the lower and higher digits of the y-axis and 

in general, no clear patterns can be found. 

 Analysing the results published in literature it was found that there isn’t any work 

attempting to predict different vintages of wine grape berries on training and testing for the 

anthocyanin concentration; Janik et al. (2007) used not only different vintages but also different 

varieties on the test set, so a more adequate comparison will be made further in this chapter; 

comparing the results with the single vintage models, Chen et al. (2015), Ferrer-Gallego et al. 

(2011) and Le Moigne et al. (2008) had superior R2 values (R2 of 0.941, 0.970 and 0.979, 

respectively) with their PLS (and variants) regression models on the training step, but no results 

were published for the test set: Fernandes et al. (2015) is the only work with test set results 

published in which the R2 and RMSE values are superior than those presented, with a R2 of 

0.950 (the R2 shown is 0.938) and a RMSE of 14.000 mg.L-1 (the RMSE shown is 28.349 mg.L-

1), applying a NNs model – however, considering that in the results presented in Table 28 have 

different vintages applied on the testing phase, the small decrease in performance can be 

considered acceptable, as well as the values obtained can be considered very satisfactory, since 

they are still comparable with the remaining state of the art approaches; comparing these results 

with the ones obtained by the NNs and DTs models in this work, it’s observable that the SVR 

had a better value for the R2 but the error measure is rather inferior – overall, the results are 

quite similar. 

 The test set results obtained by the SVR model for the prediction of pH index on 

different vintages are presented in Table 29. 
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Table 29 – Results for the prediction of pH index on different vintages with SVR 

  Test Set  

  R2 RMSE PC 

pH Index 
TF 2012 - TF 2013 0.833 0.236 10 

TF 2012 & 2013 - TF 2014 0.873 0.275 18 

PC: Principal Components used. 

  

 Examining Table 29, once again it’s noticeable that the model underperforms when 

compared to the results obtained for the anthocyanin concentration; however, two important 

details are noteworthy: the model actually obtains better results when predicting for the TF 

2014 dataset than for the TF 2013 set of samples, with very similar error measures, which might 

indicate that the model has difficulties in capturing the relationships between the patterns in the 

spectra for the pH index but, by adding a greater number of samples (even if these are from 

different populations) it will be able to achieve better results; and also, the model took a greater 

number of principal components as input to operate on the TF 2014 test set, which may indicate 

that when the number of samples starts to grow, the number of factors on the PCA will not 

mainly comprise noise after the eigenvalues are over 1 but instead contain important 

information that can ease the model’s learning step. The descriptive statistics of the independent 

test sets (see Appendix M) show that the mean and standard deviation values for the TF 2013 

samples fit the initial 95% confidence intervals (on Table 3), but for the TF 2014 dataset the 

standard deviation value is over the higher limit, which might indicate that this isn’t a good 

representation of the overall population; additionally, the ANOVA tests (in Appendix F) 

previously shown that the TF 2013 dataset has a significant difference in the means when 

compared to the TF 2012 and TF 2014 sets, which in a way praises the model’s generalization 

capacity since it was able to predict for the TF 2014 set while learning from the TF 2012 and 

TF 2013 set of samples; analysing the residuals vs fit values plots (Appendix V and Appendix 

W), one can see that both plots have the residuals evenly symmetrically distributed and 

clustering towards the middle of the plot and towards the lower single digits of the y-axis, with 

no clear patterns identifiable, which aids the assumption that the SVR predictions for these 

setups are not skewed in any way or in need of adding/transforming some input variables. 

 Comparing these results with ones published in literature for different vintages of wine 

grape berries employed on the training and testing phases, Fadock et al. (2016) is the only work 

published that meets this particular experimental outline, obtaining a R2 of 0.560 and a RMSE 

of 0.050 with his PLS regression model: for both test sets in this work the SVR model obtains 
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superior R2 values (R2 of 0.833 and 0.873 for the TF 2013 and TF 2014 test sets, respectively) 

but the RMSE on both setups is inferior (RMSE of 0.236 and 0.275 for the same test sets, 

respectively): however, as mentioned in the critical analysis of the NNs and DTs results, the 

error measure is quite questionable for a model that obtained such a low R2 score 

simultaneously; comparing the results with ones presented for the single models in 4.4.1, a 

small decrease on the performance is noticeable when measured against the results obtained, 

e.g., for the TN 2013 dataset, but they’re superior when compared to the best test set results for 

single vintage and variety models previously published in literature [Fadock et al. (2016), with 

a PLS regression model obtaining a R2 of 0.807 and a RMSE of 0.050], which indicates that 

the SVR model has a very powerful generalization capacity; comparing the results with the 

ones obtained by the NNs and DTs models in this work, once again the SVR model shows 

superior results (but with slightly inferior error measures). 

 Table 30 presents the results for the prediction of sugar content on different vintages 

obtained by the SVR model.  

  

Table 30 – Results for the prediction of sugar content on different vintages with SVR 

  Test Set  

  R2 RMSE (ºBrix) PC 

Sugar Content 
TF 2012 - TF 2013 0.953 0.977 41 

TF 2012 & 2013 - TF 2014 0.829 4.464 49 

PC: Principal Components used. 

  

 Interpreting the results in Table 30, some mixed indicators for a model with capacity to 

generalize from a set of training examples to a testing set with different vintages of wine grape 

berries are shown: there is a high correlation between the predictions and ground-truth results 

and a low error measure for the TF 2013 dataset but the results for the TF 2014 suffer from 

quite a degradation, as stated by the R2 and RMSE parameters – this might be explained by the 

results of the ANOVA tests mentioned in 3.1 (see Appendix I), since pretty much all datasets 

have significant differences in the means in comparison to the remaining vintages and varieties, 

indicating that these are populations with rather different patterns in the spectra to capture in 

the learning process, which in turn makes the generalization step harder to carry without an 

increase on the uncertainty of the predictions (despite the increase in the number of samples up 

for analysis) – nevertheless, the model shows accurate predictions; the number of principal 

components used as input increases with the variability of the data used (that is, the larger the 
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number of samples, the more principal components are chosen) and that increase may be crucial 

to the model’s adaptability to the differences in the variance of the datasets allowing for more 

stable predictions; the descriptive statistics of the independent test sets (see Appendix M) show 

that the mean and standard deviation values fit the initial 95% confidence intervals determined 

for the TF 2013 and TF 2014 samples (on Table 4), which means that the independent test sets 

are a good representation of the overall populations; analysing the residuals vs fit values plots 

(Appendix V and Appendix W), despite some outliers and some residuals unbalanced on the y-

axis, both plots have evenly symmetrically distributed residuals, clustering towards the middle 

of the plot and towards the lower single digits of the y-axis, with no clear patterns identifiable, 

which aids validating the model’s predictions. 

 Regarding the comparison with similar results in literature, Gomes et al. (2017b) had 

the best results for predictions on different vintages of wine grape berries with both, a machine 

learning algorithm (NNs) and a chemometric method (PLS regression), with a R2 of 0.917 and 

0.948 and a RMSE of 1.355 ºBrix and 1.344 ºBrix, respectively for the mentioned models: in 

this work, superior results were obtained for the R2 and RMSE values (0.953 and 0.977 ºBrix, 

respectively) on the test set composed by TF 2013 samples, but for the TF 2014 test set the 

results are rather inferior; comparing these results with the ones obtained by the NNs and DTs 

models in this work, the SVR model achieves rather superior results in the TF 2013 dataset but 

slightly inferior results for the TF 2014 test set when compared to the NNs model. 

 Overall, the SVR model achieved superior results for the prediction of all oenological 

parameters in comparison to the state of the art approaches and the results published by the 

other models in this work. In spite of increasing the number of principal components used as 

input and a small detriment on performance, the model was still able to capture most of the 

relations between the data and achieve very accurate predictions for different vintages, 

evidencing the best generalization capacity seen so far – consequently, no changes seem to be 

necessary to the prediction models using the SVR algorithm. 

  

4.4.2.2. Different Vintages and Varieties 

 Graph 12 shows the results obtained by the SVR model for the prediction of anthocyanin 

concentration on different varieties and vintages of wine grape berries. Since there aren’t any 

laboratorial results for the TF 2014 dataset, only the TF 2012 and TF 2013 set of samples 
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compose the training and validation set. The number of principal components used was 1 and 

7 for the TB 2013 and TN 2013 generalization sets, respectively. 

  

 

Graph 12 – Results for the estimation of anthocyanin concentration on different vintages and varieties 

with SVR; a) TB 2013 generalization set; b) TN 2013 generalization set 

  

 Observing Graph 12, the decrease in the accuracy of the SVR predictions is clear: the 

error measure suffers from a large increase (from RMSE on average between 15-30 mg.L-1 it 

goes as high as 49.010 and 40.396 mg.L-1 for the TB 2013 and TN 2013 datasets, respectively) 

and the R2 values, naturally, decay as well (from R2 usually above 0.90, the model obtained 

0.846 and 0.783 for the TB 2013 and TN 2013 set of samples, respectively) – analysing 

exclusively the R2 and RMSE parameters and acknowledging that a decrease on the model’s 

performance is expected for a test setup of this nature, one can consider that the SVR achieved 

a rather accurate set of predictions, but the uncertainty of the predictions might be too high and 

should be considered a negative indicator for the model’s generalization capacity; however, the 

results of the ANOVA tests mentioned in 3.1 (see Appendix C) pointed out that there are 

significant differences in the means between the TF 2012 and TB 2013 samples and the TF 

2013 and TN 2013 datasets, which aids providing an explanation to the increase on the error 

measures: the populations in the training set have rather different patterns in the spectra to 

capture in the learning process than those on the test set, making the generalization step harder 

to carry without an increase on the uncertainty of the predictions; additionally, and contrary to 

the indicators on the generalization sets with different vintages, for these sets the number of 
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principal components used was significantly smaller which means that the SVR model couldn’t 

find important information about the data on the remaining factors determined by the PCA; the 

descriptive statistics of the independent test sets (see Appendix M) show that the mean values 

fit the initial 95% confidence intervals (on Table 2) but the standard deviation values for both 

datasets are over the higher limit, which might indicate that the independent test sets aren’t a 

good representation of the overall populations; analysing the residuals vs fit value plots 

(Appendix X and Appendix Y), both plots have the residuals symmetrically distributed with no 

clear patterns identifiable. 

 Comparing these results with those published in literature for predicting anthocyanin 

concentration on different vintages and varieties of wine grape berries, Janik et al. (2007) has 

the best (and only) results with a R2 of 0.900 for his NNs model with PLS scores as input, with 

a non-comparable error measure: but, as seen in 4.2.2.2 and 4.3.2.2, it can be considered that 

the model only generalizes for different vintages since the training and validation sets are 

composed by samples from 1999 to 2003 of 9 varieties and the test set has the same 9 varieties 

but only for the vintage year of 2004 – if a comparison is made with the results presented in 

this work for generalization on different vintages for the SVR model (see 4.4.2.1), one can see 

that the results shown are superior with significantly fewer samples from fewer harvest years; 

comparing the results with the ones obtained by the NNs and DTs models in this work, the SVR 

model shows (once again) the best results, indicating that it might be the model with the best 

generalization capacity. 

 Graph 13 presents the results for the prediction of pH index on different vintages and 

varieties of wine grape berries by the SVR model. The number of principal components used 

was 22 and 11 for the TB 2013 and TN 2013 datasets, respectively. 
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Graph 13 – Results for the estimation of pH index on different vintages and varieties with SVR; a) TB 

2013 generalization set; b) TN 2013 generalization set 

  

 Inspecting Graph 13 it’s clear that the SVR model suffered from a decrease in R2 values 

when compared to the single variety and vintage models, with similar error measures: however, 

these can still be considered positive indicators of the model’s generalization capacity, since 

the NNs and DTs results presented previously in this work only didn’t show a decrease in 

performance because their results for the single variety and vintage models were far inferior 

when compared to the SVR results; the results of the ANOVA tests mentioned in 3.1 (see 

Appendix F) noted significant differences in the means between the TF 2014 dataset and the 

TF 2012 and TF 2013 samples, which means that the populations in the training set had rather 

different patterns in the spectra to be captured in the learning process, which aids providing an 

explanation for the decrease in the quality of the fits; the number of principal components used 

grew for the TN 2013 dataset but for the TB 2013 samples the number chosen was similar to 

the ones used in the single variety and vintage models – it might be a consequence of choosing 

the independent test sets randomly; the descriptive statistics of the independent test sets (see 

Appendix M) show that the standard deviation value for the TB 2013 set of samples doesn’t fit 

the initial 95% confidence interval (on Table 3), which might indicate that this test set is not a 

good representation of the overall population; analysing the residuals vs fit values plots 

(Appendix X and Appendix Y), despite some outliers (especially for the TN 2013 test set), both 

plots seem to have the residuals following a rather evenly symmetrical distribution clustering 
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towards the middle of the plot and towards the lower single digits of the y-axis, with no clear 

patterns identifiable. 

 Regarding the comparison with the current literature, there aren’t any works published 

that predict pH index on different varieties and vintages of wine grape berries: comparing the 

results with authors that employed only different vintages on the test sets (as seen in 4.4.2.1), 

Fadock et al. (2016) obtained a R2 of 0.560 and a RMSE of 0.050 with his PLS regression 

model – despite the fact the test sets compose not only different vintages but also different 

varieties of wine grape berries, the results published in this work for the SVR model (R2 of 

0.808 and 0.836, RMSE of 0.199 and 0.244 for the TB 2013 and TN 2013 datasets, respectively) 

can be considered significantly better; comparing the results with the ones presented for the 

NNs and DTs models, some perform better on one of the test sets than in the other but, overall, 

all models achieved pretty similar results. 

 Graph 14 shows the results for the estimation of sugar content on different vintages and 

varieties of wine grape berries by the NNs model. The number of principal components used 

was 45 and 35 for the TB 2013 and TN 2013 datasets, respectively. 

  

 

Graph 14 – Results for the estimation of sugar content on different vintages and varieties with SVR; a) TB 

2013 generalization set; b) TN 2013 generalization set 

  

 Examining Graph 14, it’s clear the SVR model achieved very positive indicators 

regarding its generalization capacity: the error measures had a slight increase when compared 

to the single variety and vintage models, but the R2 values continue showing a high correlation 
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between the predictions and the ground-truth results; the results of the ANOVA tests mentioned 

in 3.1 (see Appendix I) noted significant differences in the means between almost every single 

variety and vintage, providing somewhat of an explanation to the increase on the degree of 

uncertainty; the number of principal components used grew to allow the model to achieve a 

more stable set of predictions; the descriptive statistics of the independent test sets (see 

Appendix M) show that the mean of the TB 2013 dataset and the standard deviation of the TN 

2013 set of samples don’t fit the initial 95% confidences intervals (on Table 4), which might 

indicate that these test sets are not a good representation of the overall populations; analysing 

the residuals vs fit values plots (Appendix X and Appendix Y), both plots seem to have the 

residuals following an evenly symmetrical distribution clustering towards the middle of the plot 

and towards the lower digits of the y-axis, with no clear patterns identifiable. 

  As for the comparison with current literature, similarly to the pH index analysis, there 

aren’t any works published that predict sugar content on different varieties and vintages of wine 

grape berries, not allowing for a direct comparison to be made: considering the results for 

authors that employed only different vintages on the test sets (as seen in 4.4.2.1), Gomes et al. 

(2017b) had the best results with both, a machine learning algorithm (NNs) and a chemometric 

method (PLS regression), with a R2 of 0.917 and 0.948 and a RMSE of 1.355 ºBrix and 1.344 

ºBrix, respectively for the mentioned models – in this work, despite having test sets composed 

not only of different vintages but also of different varieties of wine grape berries, both test sets 

had a superior fit (R2 of 0.930 and 0.926 for the TB 2013 and TN 2013 samples, respectively) 

when compared to the author’s NNs model but (naturally) with inferior error measures; 

comparing the results with the ones presented for the NNs and DTs models in this work, the 

SVR achieved (once again) superior results. 

 Overall, despite a slight drop on the models’ performance on the generalization sets and 

a higher error rate in the predictions (which can be considered as a reasonable outcome due to 

the fact that these varieties and vintages can’t be found on the training steps, increasing the 

uncertainty), these results are very strong indicators in respect to the SVR generalization 

capacity, that obtained the overall best results of all the models implemented: this might indicate 

that, as mentioned previously, it won’t be necessary to build models who require a yearly update 

of samples, or new samples for each variety. 
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4.5. Results’ Overview 

Table 31 summarizes the best results obtained by each of the models presented for the prediction of anthocyanin concentration, pH index 

and sugar content on: 

a) Single variety and vintage test sets. 

b) Different vintage test sets (generalization sets). 

c) Different variety and vintage test Sets (generalization sets). 

 

Table 31 – Summary of the best results obtained by each of the models presented for the prediction of the oenological parameters in wine grape berries 

 DTs NNs SVR 

 a) b) c) a) b) c) a) b) c) 

 R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Anthocyanin Concentration 0.942 20.964 0.916 45.034 0.839 37.981 0.968 15.463 0.922 20.504 0.834 32.887 0.979 11.887 0.938 28.349 0.846 49.010 

pH Index 0.888 0.202 0.831 0.226 0.830 0.141 0.871 0.147 0.831 0.217 0.844 0.248 0.902 0.117 0.873 0.275 0.836 0.244 

Sugar Content 0.930 2.870 0.879 2.304 0.781 4.636 0.963 1.314 0.913 2.383 0.925 3.329 0.979 1.760 0.953 0.977 0.930 2.643 

Anthocyanin Concentration in mg.L-1 

Sugar Content in ºBrix 

 

Analysing Table 31 it’s clear that all the models share similar results for the predictions of all the oenological parameters for the single 

variety and vintage test sets, with exception of the DTs model that achieves poor results for the sugar content prediction. However, for the 

generalization sets a difference in the capacity of the models to achieve accurate predictions arises, with the SVR model taking a prominent 

position with the best overall results while, on the other hand, the DTs model reveals the worst outcome indicating that (as mentioned previously) 

a fine tuning of model’s structure should occur for future works. 
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CHAPTER V – CONCLUSIONS AND FUTURE WORK 

 Hyperspectral imaging in reflectance mode was combined with several machine 

learning algorithms (Neural Networks, Decision Trees and Support Vector Regression) to 

compose a framework capable of predicting oenological parameters on different varieties and 

vintages of wine grape berries. This work brings forwards different means to achieve a fast, 

inexpensive and non-destructive type of analysis that provides an alternative to traditional 

methods when studying wine grape berries during ripening. 

 The results obtained represent progress in comparison to current state of the art 

publications in the prediction of anthocyanin concentration, pH index and sugar content for the 

majority of the models tested, maintaining a high performance through different varieties and 

vintages of wine grapes: this represents improvements in terms of the study of the generalization 

capacity, vital to achieve a model capable of predicting for a wide variety of wine grapes 

without the need to fine tune the model with new samples every vintage year, or for every 

different variety. Moreover, the hyperspectral imaging was conducted with a small number of 

whole berries, which is a setup rarely found in literature. 

 Conducting the methodology in an incremental manner, it was possible to find that the 

machine learning algorithms implemented benefit from data pre-processing, dimensionality 

reduction and model validation steps, easing the learning process and allowing for more 

complex relations in the patterns of the spectra to be found - for the intermediate test setups 

performed, the models response found that applying a Savitzky-Golay filter would improve the 

quality of the fits and reduce the error measures; it found that applying a Principal Component 

Analysis for dimensionality reduction would improve the models’ performance and decrease 

the computational cost; and finally, it compared typical model validation algorithms (k-Fold 

Cross-Validation, Monte-Carlo Cross-Validation and Bootstrap) and concluded that the first 

obtained similar results while greatly reducing the execution time of the models. 

 While studying the machine learning algorithms in depth it was possible to understand 

their learning process and list some of the variations that can be found in the structure of the 

Neural Networks (different methods to initialize the weights and bias of the network, different 

activation functions, different training algorithms and different number of neurons and hidden 

layers to compose the final structure), Decision Trees (choosing the number of individual 

Decision Trees to compose the bagging algorithm) and Support Vector Regression (different 

loss functions, kernel functions and optimizing methods for the hyper parameters). 
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Summarizing the performance of each model individually, the Neural Networks had 

either similar or superior results to all the machine learning approaches found in literature, 

revealing a strong generalization capacity for the prediction of all oenological parameters, but 

presented a slightly high error measure for the anthocyanin concentration and showed inferior 

results for the prediction of sugar content in different vintages of wine grape berries when 

compared to a chemometric method (Partial Least Squares regression); the Decision Trees had 

comparable results in respect to the state of the art approaches and the Neural Networks for the 

single vintage and variety models, but revealed a poor generalization capacity for different 

vintages of wine grape berries when compared to the remaining models; the Support Vector 

Regression model presented superior results to all the machine learning and chemometric 

approaches found in literature, with the best overall generalization capacity of all the models 

implemented. 

Further works might include the in-depth study of different pre-processing and 

dimensionality reduction methods, since there is a wide variety of methods and test setups that 

weren’t implemented (it would be relevant to study the effect of different pre-processing and 

dimensionality reduction methods on the generalization capacity of each model, instead of only 

testing the effects on single variety and vintage models) that might represent an improvement 

on the models’ capacity to capture the different patterns in the spectra, especially for the 

estimation of the pH index that represented a decrease in performance for every model; the 

tuning of the Neural Networks topology and the Decision Trees structure, especially the latter, 

since despite having inferior results for the generalization capacity is natural for a model of 

reduced complexity, the underfitting might result from having a double model validation step 

that increased the bias; test the models accuracy with a higher number of samples of different 

varieties and vintages, since the results obtained were always referring to a relatively short 

number of samples when comparing with reference authors; and finally, an effort into 

introducing a Deep Learning framework would be extremely interesting, since it represents an 

emerging area of investigation with very good results in a wide variety of areas of application, 

and these algorithms have a higher capacity to extract complex patterns in the data, which would 

represent a strong tool for the analysis of the pH index and to improve the generalization 

capacity of the models. 
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APPENDICES 

APPENDIX A – Data distribution for the anthocyanin concentration values of the laboratory results 
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APPENDIX B – Boxplots for the anthocyanin concentration values of the laboratory results 
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APPENDIX C – Summary report of the One-Way ANOVA tests for anthocyanin values in laboratory 

results 
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APPENDIX D – Data distribution for the pH index values of the laboratory results 
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APPENDIX E – Boxplots for the pH index values of the laboratory results 
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APPENDIX F – Summary report of the One-Way ANOVA tests for pH index values in laboratory results 
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APPENDIX G – Data distribution for the sugar content values of the laboratory results 
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APPENDIX H – Boxplots for the sugar content values of the laboratory results 
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APPENDIX I – Summary report of the One-Way ANOVA tests for sugar content values in laboratory 

results 
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APPENDIX J – Reflectance measurements for the TF 2013, TF 2014, TB 2013 and TN 2013 samples, 

respectively. 

 

Reflectance measurements for the TF 2013 samples 

 

 

 

Reflectance measurements for the TF 2014 samples 
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Reflectance measurements for the TB 2013 samples 

 

 

 

Reflectance measurements for the TN 2013 samples 
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APPENDIX K – Descriptive statistics of the laboratory results of the samples used on the generalization 

sets for the NN model 

 

Anthocyanin Concentration (mg.L-1) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 216.34 (191.12; 241.56) 62.44 (48.97; 86.19) 16.28 232.62 269.75 

TB 2013 27 178.77 (160.29; 197.25) 46.72 (36.80; 64.03) 50.97 190.31 247.76 

TN 2013 19 231.50 (208.95; 254.05) 46.79 (35.35; 69.19) 123.68 248.28 319.90 

 

pH Index 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 3.70 (3.55; 3.86) 0.39 (0.31; 0.54) 3.05 3.74 4.44 

TF 2014 37 3.49 (3.39; 3.59) 0.29 (0.24; 0.38) 2.93 3.49 3.97 

TB 2013 27 3.57 (3.42; 3.73) 0.39 (0.31; 0.53) 2.90 3.58 4.48 

TN 2013 19 3.48 (3.32; 3.65) 0.34 (0.25; 0.50) 3.00 3.53 4.13 

 

Sugar Content (ºBrix) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 19.78 (18.29; 21.27) 3.68 (2.89; 5.09) 8.10 20.74 25.00 

TF 2014 37 13.09 (11.90; 14.28) 3.57 (2.90; 4.64) 7.87 12.73 25.66 

TB 2013 27 21.65 (19.45; 23.86) 5.57 (4.39; 7.63) 11.40 22.14 30.85 

TN 2013 19 23.43 (21.88; 24.97) 3.32 (2.43; 4.75) 17.20 24.67 27.2 
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APPENDIX L – Descriptive statistics of the laboratory results of the samples used on the generalization 

sets for the DT model 

 

Anthocyanin Concentration (mg.L-1) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 197.50 (167.69; 227.30) 73.78 (57.86; 101.85) 16.28 230.17 269.75 

TB 2013 27 171.73 (150.74; 192.71) 53.06 (41.78; 72.71) 50.97 188.56 247.76 

TN 2013 19 231.49 (189.07; 237.92) 50.68 (38.29; 74.94) 123.68 216.91 319.90 

 

pH Index 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 3.76 (3.59; 3.93) 0.42 (0.33; 0.58) 3.05 3.81 4.44 

TF 2014 37 3.46 (3.37; 3.55) 0.27 (0.22; 0.35) 2.93 3.47 3.97 

TB 2013 27 3.50 (3.35; 3.66) 0.39 (0.31; 0.53) 2.90 3.45 4.48 

TN 2013 19 3.59 (3.43; 3.74) 0.33 (0.25; 0.49) 3.00 3.64 4.13 

 

Sugar Content (ºBrix) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 18.59 (16.83; 20.35) 4.37 (3.42; 6.03) 8.10 19.50 25.00 

TF 2014 37 13.93 (12.45; 15.41) 4.45 (3.62; 5.78) 7.87 12.87 25.66 

TB 2013 27 22.65 (20.65; 24.64) 5.04 (3.97; 6.90) 11.40 23.51 30.85 

TN 2013 19 23.34 (22.12; 24.57) 2.54 (1.92; 3.76) 17.20 23.92 27.20 
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APPENDIX M – Descriptive statistics of the laboratory results of the samples used on the generalization 

sets for the SVR model 

 

Anthocyanin Concentration (mg.L-1) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 192.80 (160.80; 224.81) 79.25 (62.15; 109.39) 16.28 221.38 269.75 

TB 2013 27 179.74 (158.71; 200.76) 53.14 (41.85; 72.83) 50.97 193.73 247.76 

TN 2013 19 219.71 (196.52; 242.90) 48.11 (36.35; 71.15) 123.68 237.21 319.90 

 

pH Index 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 3.66 (3.49; 3.84) 0.43 (0.34; 0.59) 3.05 3.69 4.44 

TF 2014 37 3.51 (3.41; 3.61) 0.30 (0.24; 0.39) 2.93 3.52 3.97 

TB 2013 27 3.57 (3.42; 3.73) 0.39 (0.30; 0.53) 2.90 3.60 4.48 

TN 2013 19 3.59 (3.43; 3.75) 0.33 (0.25; 0.49) 3.00 3.64 4.13 

 

Sugar Content (ºBrix) 

Variety N Mean 95% CI St. Dev. 95% CI Min Median Max 

TF 2013 26 19.51 (17.88; 21.13) 4.02 (3.15; 5.55) 8.10 20.81 25.00 

TF 2014 37 14.30 (12.63; 15.97) 5.01 (4.07; 6.51) 7.87 13.14 25.66 

TB 2013 27 21.07 (19.01; 23.13) 5.21 (4.10; 7.13) 11.40 20.60 30.85 

TN 2013 19 22.88 (21.32; 24.44) 3.24 (2.45; 4.80) 17.20 23.80 27.20 
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APPENDIX N – Residuals vs fit values plots for the prediction of pH index and sugar content, 

respectively, on the TF 2013 generalization set by the NN model 

 

Residuals vs fit values plot for the prediction of pH index on the TF 2013 generalization set by the NN model 

 

 

 

Residuals vs fit values plot for the prediction of sugar content on the TF 2013 generalization set by the NN 

model 
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APPENDIX O – Residuals vs fit values plot for the prediction of pH index and sugar content, respectively, 

on the TF 2014 generalization set by the NN model 

 

Residuals vs fit values plot for the prediction of pH index on the TF 2014 generalization set by the NN model 

 

 

 

Residuals vs fit values plot for the prediction of sugar content on the TF 2014 generalization set by the NN 

model 
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APPENDIX P – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TB 2013 generalization set by the NN model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TB 2013 generalization set by 

the NN model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TB 2013 generalization set by the NN model 
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Residuals vs fit values plot for the prediction of sugar content on the TB 2013 generalization set by the NN 

model 
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APPENDIX Q – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TN 2013 generalization set by the NN model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TN 2013 generalization set by 

the NN model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TN 2013 generalization set by the NN model 
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Residuals vs fit values plot for the prediction of sugar content on the TN 2013 generalization set by the NN 

model 
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APPENDIX R – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TF 2013 generalization set by the DT model 

 

Residual vs fit values plot for the prediction of anthocyanin concentration on the TF 2013 generalization set by 

the DT model 

 

 

 

Residual vs fit values plot for the prediction of pH index on the TF 2013 generalization set by the DT model 

 

 

 

 

Residual vs fit values plot for the prediction of sugar content on the TF 2013 generalization set by the DT model 
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APPENDIX S – Residuals vs fit values plot for the prediction of pH index and sugar content, respectively, 

on the TF 2014 generalization set by the DT model 

 

Residuals vs fit values plot for the prediction of pH index on the TF 2014 generalization set by the DT model 

 

 

 

Residuals vs fit values plot for the prediction of sugar content on the TF 2014 generalization set by the DT 

model 
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APPENDIX T – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TB 2013 generalization set by the DT model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TB 2013 generalization set by 

the DT model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TB 2013 generalization set by the DT model 
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Residuals vs fit values plot for the prediction of sugar content on the TB 2013 generalization set by the DT 

model 
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APPENDIX U – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TN 2013 generalization set by the DT model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TN 2013 generalization set by 

the DT model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TN 2013 generalization set by the DT model 
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Residuals vs fit values plot for the prediction of sugar content on the TN 2013 generalization set by the DT 

model 
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APPENDIX V – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TF 2013 generalization set by the SVR model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TF 2013 generalization set by 

the SVR model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TF 2013 generalization set by the SVR model 
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Residuals vs fit values plot for the prediction of sugar content on the TF 2013 generalization set by the SVR 

model 
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APPENDIX W – Residuals vs fit values plot for the prediction of pH index and sugar content, 

respectively, on the TF 2014 generalization set by the SVR model 

 

Residuals vs fit values plot for the prediction of pH index on the TF 2014 generalization set by the SVR model 

 

 

 

Residuals vs fit values plot for the prediction of sugar content on the TF 2014 generalization set by the SVR 

model 
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APPENDIX X – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TB 2013 generalization set by the SVR model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TB 2013 generalization set by 

the SVR model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TB 2013 generalization set by the SVR model 
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Residuals vs fit values plot for the prediction of sugar content on the TB 2013 generalization set by the SVR 

model 
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APPENDIX Y – Residuals vs fit values plot for the prediction of anthocyanin concentration, pH index and 

sugar content, respectively, on the TN 2013 generalization set by the SVR model 

 

Residuals vs fit values plot for the prediction of anthocyanin concentration on the TN 2013 generalization set by 

the SVR model 

 

 

 

Residuals vs fit values plot for the prediction of pH index on the TN 2013 generalization set by the SVR model 
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Residuals vs fit values plot for the prediction of sugar content on the TN 2013 generalization set by the SVR 

model 

 

 

 


