
 ii

Ana Teresa d’Oliveira Campaniço

Programação Genética em Aplicações Gráficas
para Jogos:

Simulação e Visualização de Plantas utilizando

Flash Actionscript

Orientadores: José Benjamim R. da Fonseca

 José Paulo B. de Moura Oliveira

Dissertação apresentada com vista à
obtenção do grau de mestre em
Informática na área, nos termos do
Decreto-lei 74/2006 de 24 de Março e no
Regulamento de Estudos Pós-Graduados
da UTAD (Deliberação n.º 2391/2007).

UNIVERSIDADE DE TRÁS-OS-MONTES E ALTO DOURO

VILA REAL, 2008

 iii

Special thanks to,

My family,

For their never ending support.

 iv

Special Thanks

For the incentive and collaboration given by several people and
the institution, to which I present the following thanks:

To the University of Trás-os-Montes e Alto Douro by the education
provided while I was a student of Computer Science.

To my teacher Paulo Oliveira, supervisor of this thesis, for the
source of inspiration he was while I was his pupil and for the huge
support and help he gave me during the Masters.

To professor Benjamim Fonseca, co-supervisor of this thesis, for
the constant help and feedback provided on my code and for
helping me getting over the obstacles that kept getting in my way.

To my teachers Mark Leeney and Simon McCabe, former
supervisors at Letterkenny Institute of Technology in Ireland, for
their help and support in my work during my stay there.

To my family, in particular my parents, for providing me with this
opportunity and being there all the way.

To my online friends, for helping me detecting bugs during the
beta testing and for providing me with feedback, opinions and
suggestions for my work.

 v

Index of Contents

1. Introduction 1
1.1. Simulation and Visualization of Plants 1

1.1.1. Evolution of L-Systems 3

1.2. Genetic Programming 4
1.3. Computer Games and Graphical Applications 5

1.3.1. Developed Applications 8

1.4. Flash Actionscript 9
1.5. The Problem and Objectives 11

1.5.1. Problem 11
1.5.1.1. Sub-problems 12

1.5.2. Objectives 12

1.6. Limitations 12
1.7. Dissertation Structure 13

2. Theoretical Setting 14
2.1. Introduction 14
2.2. L-Systems 14

2.2.1. DOL-Systems 15

2.2.2. Graphical Interpretation 17
2.2.2.1. Tree Structure 17

2.2.2.2. Turtle Representation 18

2.2.3. Parametric L-Systems 19

2.2.4. Context-Sensitive L-Systems 20

2.2.5. Stochastic L-Systems 22

2.3. Genetic Programming 24
2.3.1. Evolutionary Approaches 25

2.3.1.1. Genetic Algorithms 26

2.3.1.2. Evolutionary Programming 27

2.3.1.3. Evolution Strategy 28

2.3.1.4. Learning Classifier System 29

2.3.1.5. Genetic Programming 29

2.3.2. Operators 31

 vi

2.3.2.1. Individuals and Initial Population 31

2.3.2.2. Fitness 34

2.3.2.3. Reproduction 35

2.3.2.4. Mutation 38

2.3.2.5. Termination Criteria 39

3. System Architecture 40
3.1. Conceptual Model 40

3.1.1. The L-System 41
3.1.1.1. Syntax Validation 42

3.1.1.2. Production 43

3.1.1.3. Interpretation 45

3.1.2. Genetic Programming 47
3.1.2.1. Initial Population 47

3.1.2.2. Fitness Function 48

3.1.2.3. Reproduction 48

3.1.2.4. Mutation 50

4. System Implementation 51
4.1. Versions Introduction 52

4.2. Version 1 53
4.2.1. Syntax Validation 53

4.2.2. Production 54

4.2.3. Interpretation 56

4.3. Version 2 62
4.3.1. Syntax Validation 62

4.3.2. Production 65

4.3.3. Interpretation 65

4.4. Version 3 66
4.4.1. Individual 67

4.4.2. Branches 67

4.4.3. Random Pick 69

4.4.4. Drawing Optimization 70

4.5. Version 4 72
4.5.1. Individuals 72

4.5.2. Breeding 74

 vii

4.5.3. Validation 77
4.5.3.1. Parent Plants 77

4.5.3.2. Asexual Reproduction 78

4.5.3.3. Sexual Reproduction 80

4.5.3.4. Bad Offspring 81

4.6. Version 5 82

4.6.1. Individuals 83

4.6.2. Information Presentation 86

4.6.3. Breeding 87

4.7. Version 6 89

4.7.1. Individuals 89

4.7.2. Word Compression 91
4.7.2.1. Array Solution 91

4.7.2.2. String Solution 92

4.7.3. Color and Thickness 94

4.7.4. Information Presentation 96

4.7.5. Validation 98
4.7.5.1. Evaluation System 99

4.7.5.1.1. Qualitative Evaluation 99

4.7.5.1.2. Evaluation Problems 101

4.7.5.2. Convergence 102

5. Conclusions 104
5.1. Achieved Objectives 104
5.2. The Application 105
5.3. Future Improvements 107

6. References 109

 viii

Index of Figures

Fig. 1 L-Studio. Taken from
http://algorithmicbotany.org/lstudio/whatis.html

8

Fig. 2 Game done with aid of SpeedTree. Taken from
http://www.speedtree.com/

9

Fig. 3 Example of DOL system. Adaptation from Prusinkiewicz &
Lindenmayer, 1990

16

Fig. 4 Example of tree representation of the word “A [+ B] [C [D] E] F”.
Adaptation from figure 1 of Grubert (2001)

17

Fig. 5 Example of a turtle representation of a L-System. Adaptation from
figure 2 of Grubert, (2001)

18

Fig. 6 Example of a Parametric L-System. Adaptation from Grubert
(2001)

19

Fig. 7 Example of a Parametric L-System. Adaptation from figure 1.40
from Envall (2007)

20

Fig. 8 Example of a Context-Sensitive L-System. Adaptation from
Prusinkiewicz & Lindenmayer (1990)

21

Fig. 9 Example of Context-Sensitive L-Systems. Adaptation from figure
1.31 from Prusinkiewicz & Lindenmayer (1990)

22

Fig. 10 Example of a Stochastic L-Systems. Adaptation from figure 3 from
Grubert (2001)

23

Fig. 11 Example of a Stochastic L-Systems. Adaptation from figure 1.27
from Prusinkiewicz & Lindenmayer (1990)

23

Fig. 12 Evolutionary Computation Index. Adaptation from figure 1 of
Morais (2003)

25

Fig. 13 Example of a Genetic Algorithm. Adaptation from figure 2 of
Morais (2003)

26

Fig. 14 Example of an Evolutionary Programming algorithm. Adaptation
from figure 3 of Morais (2003)

27

Fig. 15 Example of an Evolution Strategy algorithm. Adaptation from
figure 4 of Morais (2003)

28

Fig. 16 Example of Learning Classifier System rules. Adaptation from
figure 5 of Morais (2003)

29

Fig. 17 Example of a Genetic Program. Adaptation from Algorithm 2.2 fig
of Peterson, 1997

30

Fig. 18 Generating a Random Program. Adaptation from Algorithm 2.3 fig
of Peterson, 1997

32

Fig. 19 Example of an Individual. Adaptation from fig.11 of [18] 33

 ix

Fig. 20 Crossover example. Adaptation from fig.2.6 of Peterson (1997) 37

Fig. 21 Mutation example. Adaptation from fig.2.7 of Peterson (1997) 38

Fig. 22 L-system architecture. Adaptation from fig.1 From Noser et al.,
2001

41

Fig. 23 Example of Validation step 42

Fig. 24 Example of Production step 44

Fig. 25 Example of Interpretation step 45

Fig. 26 Example of a plant that would need to be converted 46

Fig. 27 Corresponding tree structure of a L-system word 47

Fig. 28 Examples of non-plant L-systems 48

Fig. 29 Reproduction step 49

Fig. 30 Examples of bad replacement of the nodes 49

Fig. 31 L-system plant used 53

Fig. 32 Storing the productions into an array 54

Fig. 33 Separating predecessor from successor 55

Fig. 34 Replacing symbols in the word 56

Fig. 35 Changing the properties of the movie clip 57

Fig. 36 Drawing the plant all at once 58

Fig. 37 Drawing the plant character by character 58

Fig. 38 Deletion of the non-drawing symbols in this plant 59

Fig. 39 The available commands and their actions 60

Fig. 40 Drawing function 61

Fig. 41 Cursor function 62

Fig. 42 Different L-system plants used 63

Fig. 43 Resulting plants 64

Fig. 44 Radians function 64

Fig. 45 Production step within the L-System function 65

Fig. 46 The RenderInstruction function using the switch instead of if
statements

66

Fig. 47 Plant and resulting word after Production step 67

Fig. 48 Extraction of the branches within the plant 68

Fig. 49 Collected branches and their positions 68

Fig. 50 Random pick of a branch 69

 x

Fig. 51 Calculation and storage of the coordinates 70

Fig. 52 Drawing the coordinates 71

Fig. 53 Example of the code in a button 73

Fig. 54 Example of an action triggered by clicking on a button 73

Fig. 55 Example of the breed button event 75

Fig. 56 Children function 75

Fig. 57 Replace function 76

Fig. 58 Program interface 77

Fig. 59 Two identical parents 77

Fig. 60 Different parents 78

Fig. 61 Offpring of Plant 1 78

Fig. 62 Offpring of Plant 2 79

Fig. 63 Offpring of Plant 3 79

Fig. 64 Offpring between Plant 1 and 2 80

Fig. 65 Offpring between Plant 1 and 3 80

Fig. 66 Offpring between Plant 3 and 2 80

Fig. 67 Bad offspring between Plant 1 and 2 81

Fig. 68 Bad offspring between Plant 1 and 3 81

Fig. 69 Bad offspring between Plant 3 and 2 82

Fig. 70 Example of the information of each Plant 84

Fig. 71 Program Interface 85

Fig. 72 Example of Information Presentation code 86

Fig. 73 Example of Value Update code 86

Fig. 74 Example of the Roulette Wheel Selection code 88

Fig. 75 Example of the generation of the Plants 90

Fig. 76 Comparison between both Compressions 92

Fig. 77 Example of the Compression function 93

Fig. 78 Example of the Color Setting function 94

Fig. 79 Example of Color and Thickness Levels in Two Different Plants 95

Fig. 80 Program Interface 96

Fig. 81 Example of the Fitness onMouseMove event 97

Fig. 82 Example of some evolved plants 98

 xi

Fig. 83 Example of a Good and Bad Verticality criteria 99

Fig. 84 Example of a Good and Bad Excesive Angles criteria 100

Fig. 85 Example of a Good and Bad Odd Branches criteria 100

Fig. 86 Example of a Good and Bad Density criteria 100

Fig. 87 Example of a possible exception 101

Fig. 88 Example of convergence 102

 xii

Resumo

Tirando vantagem dos poderosos mecanismos existentes na

natureza, o objectivo deste trabalho foi o de criar uma aplicação

capaz de evoluir estruturas de plantas em Flash. Isto foi possível

através da combinação da gramática L-System, que define a

arquitectura da planta, e da Programação Genética, que evolui a

planta produzida e gera uma população de filhos que diferem

bastante dos pais originais em apenas algumas gerações.

O que este programa faz é a Validação da Sintaxe, a Produção e

a Interpretação da planta L-System, pegando no axioma e regras

de produção dadas e fazendo um constante substituição dos

símbolos pelos seus respectivos sucessores durante várias

iterações. De seguida a palavra é lida e cada comando

interpretado para fazer o seu desenho.

Quando as diferentes plantas são atribuídas com um valor de

aptidão pela sua aparência estética, as palavras que compõem a

sua estrutura são enviadas para a Programação Genética a fim de

servirem de indivíduos. Aí os indivíduos são seleccionados e os

seus ramos aleatoriamente trocados entre pares de plantas de

forma a gerar um par de plantas filho, sendo de novo enviadas

para a Interpretação do L- System de forma a serem desenhadas.

Uma vez que as novas gerações de plantas são visualmente

distintas das estruturas dos pais, conseguimos evoluir plantas L-

Systems através da Programação Genética.

 xiii

Abstract

Taking advantage of the powerful mechanisms existing in nature,

the purpose of this work was to create an application capable of

evolving a plant structure in Flash. It does so by combining the L-

System grammar, which defines the architecture of the plant, and

Genetic Programming, which will evolve the produced L-Systems

and generate a population of children quite different from their

original parents in just a few generations.

What this program does is the Syntax Validation, the Production

and the Interpretation of the L-System plant, taking the given

axiom and production rules and doing a constant replacement of

the symbols with their respective successors during several

iterations. Then the word is read and each command interpreted to

draw the plant.

When the different plants are given a fitness value for their

aesthetic appearance, the words that define their structures are

sent to the Genetic Programming to serve as individuals. There

the individuals are selected and their branches randomly switched

between parent plants in order to create a pair of child plants,

being those sent again to the L-System's Interpretation step to be

drawn.

Since the new generations of plants are visually distinct from their

parents’ structures, we can evolve L-System plants through

Genetic Programming.

 1

1 Introduction

The natural world is a place of wonders and miracles, a palette

full of ideas and hidden lessons just waiting to be discovered.

Taking those natural mechanisms to simulate them in a virtual

world is just another way of exploring new concepts and uncover

new possibilities.

This work explores some of the systems inspired by natural

systems. It takes the unlimited power Evolutionary Algorithms

have to offer and attempts to evolve the plants produced by L-

system grammatical structures. The global goal is to create an

application which produces plants and allows the user to choose

and evolve them within a Flash environment.

This chapter will explain how each of the topics was reached and

the context this work is set in, along with the identified problems

and proposed objectives.

1.1 Simulation and Visualization of Plants

How would you represent a plant in a computer?

It might sound like a silly thing to ask, but many people who are

interested in simulating flora have come across some issues in

trying to answer this question. If even a child knows how to draw

a tree, then why can’t the computer do the same?

Through observation of the real thing, a person builds a mental

representation of what a plant should look like, taking the

structure and all of its components through the same way.

However the computer doesn’t think, nor does it understand what

 2

a plant is without being told how it should process the information

it receives.

So how can a computer represent a plant without knowing how it

should look like? Someone has to tell it what the structure of the

plant is. Because computers are mathematical machines, the

answer has to be in a language it can understand. This brings us

back to the original question: how to represent a plant. For

centuries people have been trying to develop a formula that could

explain how plants develop and grow (Grubert, 2001). The golden

ratio was perhaps the first equation to explain how the proportion

of all sections of the plant worked, but still it did not answer how

the structure behaved (Olsen, 2006).

Many systems have been developed in order to solve this

question, especially in recent years when computers came to aid

in complex calculations (Rodkaew et al., 2004; Tan et al., 2007;

Lluch et al., 2003), but no system offers a better solution so far

than that developed by Aristid Lindenmayer in 1968 (Cited in

Prusinkiewicz & Lindenmayer, 1990). The Lindenmayer systems,

or L-systems as they are commonly known, are a formal grammar

(Salomaa, 1973) that not only show how the structure of a plant is

organized but allow us to see how it develops as it grows. Also,

it’s a universal language, as it can be used to explain any given

plant (Lindenmayer & Prusinkiewicz, 1996).

Summarily, the L-system takes in the axiom (Prusinkiewicz &

Lindenmayer, 1990), a word composed by several symbols,

which describe the structure of the plant, and on each iteration, or

step of the growth, replaces the existing symbols by new ones,

according to the production rules, rules which are used to

determine how the growth will exactly happen (Lindenmayer &

Prusinkiewicz, 1996).

 3

This is basically what happens in the biological growth of the

plant, the system that served as inspiration to Lindenmayer in

1968 (Cited in Prusinkiewicz & Lindenmayer, 1990).

1.1.1 Evolution of L-Systems

 “Lindenmayer System is a grammar-like formalism that

allows the generation of plant models. As a result of its

grammatical derivation, there are strings containing the

information used to draw a model of a biological organism;

in the present case, a plant. Therefore, the grammar can

be viewed as the genetic information of a plant. This

information can be manipulated by an evolutionary

algorithm, which is used to investigate the effects of

applying genetic operators to evolve derived L-System

plants“(Bonfim & Castro, 2005).

Despite of all expansion and refinement it suffered at the hands of

other scientists (Grubert, 2001; Samuel, 2007; Chen et al., 2003;

Bisoi et al., 2004; Borovikov, 1995), who wanted to improve this

tool to be able to represent and simulate much more realistic

trees and be able to predict their development under several

circumstances, the L-system still has some limitations (Grubert,

2001; Prusinkiewicz 1986, 1993; Prusinkiewicz et al., 1990, 1994,

1997, 2000). A major one is the fact these plant structures cannot

evolve (Jacobs, 1994, 1995a, 1995b, 1996; Noser et al., 2001;

Ochoa, 1998).

What the L-system does is represent the genetic information of

the plant and rules that determine its growth and development: in

other words, the information contained within the genes

(Lindenmayer & Prusinkiewicz, 1996). However the growth of an

individual isn’t determined just by that information, but also by

outside factors and physical attributes.

 4

A good example is a plant placed next to a window but not

receiving direct sunlight. It will still grow according to the genetic

information characteristic of its species, but this individual in

particular will bend towards the window, in an attempt to receive

as much sunlight as possible.

In order to produce plants that behave in a more realistic manner,

Evolutionary Algorithms (Fogel, 1960; Rechenberg, 1973;

Schwefel, 1975, cited in Coello, 2007), often Genetic Algorithms

(Holland, 1975, cited in Coello, 2007), are used. By simulating the

processes used by the Natural Selection to evolve populations of

individuals (Darwin, 1859, cited in Russell & Norvig, 2003), these

algorithms can optimize and solve the given problem (Golberg,

1989; Russell & Norvig, 2004). In this case, evolve a given

population of plants, as seen further below.

1.2 Genetic Programming

Why Genetic Programming and not other Evolutionary

Algorithms?

When talking about Evolutionary Algorithms (Fogel, 1960;

Rechenberg, 1973; Schwefel, 1975, cited in Coello, 2007),

Genetic Algorithms (Holland, 1975, cited in Russell & Norvig,

2004) usually come to mind. They are the most popular and the

most commonly used, but that doesn’t mean they are often the

best approach.

The main difference between Genetic Algorithms (Holland, 1975,

cited in Coello, 2007) and Genetic Programming (Koza, 1992) is

in how the individuals within the population are represented in

each. In the Genetic Algorithms they are traditionally arrays of bits

of a fixed sized, while in the Genetic Programming they are small

programs organized in a tree structure.

 5

Because each node can take in operations (arithmetic, logic, etc),

atomic values, or even L-system symbols, this makes the Genetic

Programming more suitable to handle the evolution of L-system

plants (Koza, 1992, 1993, 2007; Coello, 2007). Also, the fact tree

structures aren’t limited in size like the arrays in the Genetic

Algorithms, is another advantage, considering the recursive

nature of the L-systems can make the axioms grow greatly (Koza,

1992, 1993, 2007).

However, it’s not mandatory to use Genetic Programming to

evolve L-systems though. For example, in one application it’s

used an array to store the three components that define all L-

systems (Bian et al., 2004), while another simply generates the

axiom before sending it to evolve (Bonfim & Castro, 2005).

The first approach is more suitable to evolve through Genetic

Algorithms, because the size of the individual doesn’t vary during

the evolutionary process, only the information contained within it.

The second one works better with Genetic Programming because

of the similarities the axiom and the tree structure share.

Both techniques are valid. Basically, it all depends on which

approach the programmer thinks is best to solve the problem.

Some even prefer to use systems outside the Evolutionary

Algorithms or the L-systems, like Image Processing (Quang et al.,

2006) or Particle Systems (Rodkaew et al., 2004) to reach the

representation of the plants. Again, this is all up to the

programmer.

1.3 Computer Games and Graphical Applications

So what’s the connection between generating virtual plants and

computer games?

 6

Most people outside the world of computer games usually don’t

realise it, but the graphical content necessary to produce them

and the amount of resources it takes is a big issue within games

(Lecky-Thompson, 2001; Azevedo, 2005; Leutenegger &

Edgington, 2007). This is not a new situation however, but

something that has always been part of them.

Basically, there are two approaches when developing graphics for

games. The first one is Handmade Graphics, very unique looking

images produced by artists (Sims, 1991). Their strength is on the

highest level of quality, but there are some drawbacks. Besides

the amount of money and time they take to produce and the

amount of memory they often take, they limit the flexibility of the

game itself (Azevedo, 2005).

After being created it’s very hard to change the image. If it’s

necessary to use a different one in a later step of production, this

means having to redraw it again, wasting more time and money

again. The same applies to any variations in order to avoid

overpopulation of duplicated items, which only consume even

more memory and other valuable resources.

The second approach is Procedural Content Generation, the use

of code to generate the graphics, and other elements, on the fly

(Gibbs, 2004; Roden & Parberry, 2004, 2005). Compared to the

handmade ones, the procedural graphics take very little space, a

few kilobytes of code to the couple of megabytes for full images.

Back in the beginning of computer games, when memory was a

very limited resource, having algorithms to generate the different

levels was an efficient way to save space (Gibbs, 2004; Roden &

Parberry, 2004, 2005; Prachyabrued et al., 2007), but there are

some drawbacks on this approach as well. Besides the great

amount of time and effort it can take to develop the code,

unpredictable and undesirable results can happen, especially

when dealing with graphical content (Gibbs, 2004; Roden &

 7

Parberry, 2004, 2005; Prachyabrued et al., 2007). A good

example is particle systems. Despite the great graphical quality

computers have today, it’s still not possible to render fire or water

out of pure code without people saying it looks fake.

A way to get around this is using hybrid versions to take a pre-

fabricated work and have the code altering and generating new

objects out of it. This is the approach most games take today

(Prachyabrued et al., 2007; Parish & Müller, 2001; Wonka, 2006).

The connection this has with the artificial evolution of virtual plants

is that L-Systems and Genetic Programming are ways of

generating Procedural Content. Both of them generate the

content on the moment of request, simply taking the rules that

define them to produce the end result. Noise, fractals, particle

systems, pseudo-random generators and many others, are all

forms of Procedural Content Generation.

As for the connection with games, because there has been an

increasingly higher demand for richer, more detailed and longer

gaming experiences, the market of games has grown from a small

handful of people to whole teams of programmers, artists,

designers and such working together to strive in a highly

competitive market (Roden & Parberry, 2005; Azevedo, 2005).

In order to aid this continuous search for diversity and originality,

limited by deadlines and tight budgets, the use of externally

developed resources has become more and more indispensable,

both for programmers and designers, and many of these tools are

based on Procedural Content to generate their elements.

 8

1.3.1 Developed Applications

Though the concept of L-systems has been around for some time,

the idea of developed applications is fairly recent. This is mostly

because of the great boost computers experienced in terms of

memory, graphical and processing capacities in the late years. Up

until then, the machine couldn’t keep up with the requirements of

most heavy computations. In the case of L-systems, their

recursive nature and the exponential amount of processing power

require to process greater number of iterations.

Currently, there are many applications developed, too many to

list. Some are simple experiments or small programs done to

illustrate how the L-systems work, while others are more complex

works that can realistically simulate the different components of

plants and their behaviour under several circumstances. L-Studio

(Prusinkiewicz et al., 2000; Prusinkiewicz & Karwowski, 2004)

and SpeedTree are two good examples of professional

applications. The first one is a more scientific driven program

used to simulate and study plants in their different stages of

development with the possibility to put it under several different

kinds of environment to see how those affect their growth.

Fig.1 – L-Studio. Taken from http://algorithmicbotany.org/lstudio/whatis.html

 9

SpeedTree on the other hand is a middleware specifically

designed to produce realistic trees to populate games. It can

procedurally create real-time, realistic 3D trees, as well as

simulate wind and other effects on them.

Fig.2 – Game done with aid of SpeedTree. Taken from http://www.speedtree.com/

1.4 Flash Actionscript

Why Flash?

Like in the examples presented above, most developed

applications are done in either C++ or Java. They are powerful

and universal languages, but they aren’t very intuitive when in

comes to graphical development. For example, to create a rolling

ball animation in Java, it’s necessary to use several lines of

scaffolding code before one reaches the drawing and animation

part itself. In Flash the same doesn’t happen (Crawford & Boese,

2006).

Flash is a tool meant to deal with graphical content and

animation, especially when it comes to the web. Unlike many

other applications, it offers a great deal of control and freedom to

the user. When doing a web page for example, one doesn’t have

 10

to worry about the code necessary to define the positions of the

elements (Rosenzweig, 2003; Rhodes, 2007; Mook, 2003; Makar,

2003).

Another important aspect about Flash is interaction. It isn’t just

limited to generating movies and other one-way messages, so to

speak, but it can also receive information and process it. The best

known example is likely the amount of flash games found in the

internet. Although most of them are simple, casual 2D games

compared with their bigger cousins produced for consoles and

PCs, they have a great popularity (Crawford & Boese, 2006;

Rosenzweig, 2003; Rhodes, 2007; Mook, 2003; Makar, 2003).

However, all of this would be meaningless if there wasn’t a

programming language underneath to control it all. Actionscript is

similar to Javascript in its structure, though more high-level. This

language can control all the elements populating the movie clip

and the movie clip itself. Also, it’s possible to change their

properties directly through code which is more reliable and more

efficient than trusting the timeline and doing things by hand

(Crawford & Boese, 2006; Rosenzweig, 2003; Rhodes, 2007;

Mook, 2003; Makar, 2003).

Comparatively to other programming languages, like C++ or Java,

Flash has some disadvantages (Rosenzweig, 2003). Some of its

main weaknesses are:

‐ Being timeline based;

‐ Slow when processing heavy environments;

‐ Not really meant for 3D graphics;

‐ Having a limited feature set.

But in terms of strengths, besides what was already mentioned,

Flash has (Rosenzweig, 2003):

 11

‐ A rapid development rate;

‐ The ability to work with many different multimedia;

‐ A good delivery;

‐ And is easy to use and program.

These are the reasons why Flash is considered mostly as a web

tool. It doesn’t possess the requirements to produce major games

or movies. Though with all the distribution the Internet has today,

and its ability to be available immediately and free, Flash has

become quite popular.

1.5 The Problem and Objectives

In recent years research has been done to expand the L-systems

and to include the evolving nature of real plants by combining it

with Evolutionary Algorithms, such as Genetic Programming. The

aim of this work is to develop an application to explore this

relationship between the two in a 2D environment.

Taking into account the topics presented previously and the fact

that there was no Flash application found for the purpose, we are

lead to believe it would be interesting to deepen the following

question.

1.5.1 Problem

Is it possible to develop an application that simulates plants
and uses genetic programming to optimize their graphical

representation?

 12

1.5.1.1 Sub-problems:

• What’s the best structure to simulate 2D plants in a

computer?

• How to optimize a graphical representation through an

Evolutionary Algorithm?

• How to transfer that structure into the Actionscript

language?

• Which are the parameters a user can manipulate to obtain

the best graphical representations?

1.5.2 Objectives

By having the sub-problems defined, it’s easier to settle a strategy

on how to tackle the main problem, and through the sub-problems

it’s possible to define the goals the application must try to fulfil:

1. Identify a method used to build plants in a computer, or

that can be adapted to work in a computer;

2. Determine how to use the Genetic Programming to evolve

those plants;

3. Adapt the developed approach for Actionscript;

4. Allow some level of control to the user to select and adjust

the plants.

1.6 Limitations

There are some things that pose an obstacle to the fulfilment of

the milestones that are the objectives:

‐ The time available for the project;

‐ The knowledge of Actionscript 2.0;

‐ The lack of related code in Actionscript to study.

 13

1.7 Dissertation Structure

After this introduction, Chapter 2 presents in more detail L-

systems and Genetic Programming, as well as the main

components on which the application is based on.

Chapter 3 explains the System Architecture and how the theories

discussed in Chapter 2 where adapted to build the conceptual

model.

Chapter 4 discusses the System Implementation through the

different version of the program and how the conceptual model

was translated into code, as well as the different improvements

and changes each suffered.

Finally Chapter 5 presents the Final Conclusions and Future

Improvements.

 14

2 Theoretical Setting

2.1 Introduction

In this chapter we will take a deeper look on how exactly L-

systems and Genetic Programming work. Both of them have

roughly thirty years of work added since their first appearance in

the scientific community, which makes it very difficult to cover all

the developed work so far.

L-systems have a huge ramification of different varieties, but

basically all of them have roots on four main ones, which will be

addressed in more detail. Because the problem question only

deals with a 2D environment, 3D plants will not be discussed, as

well as timed L-systems because the goal isn’t to visualise a plant

in its several stages of development.

As for the Genetic Programming, the different operators which

dictate the way it works are pretty much the same in all developed

applications. However, because most people are more familiar

with Genetic Algorithms, comparisons are done in all the points to

better illustrate how each section work.

2.2 L-Systems

L-systems are a formal grammar used for plant structure

generation, developed by Aristid Lindenmayer.

Originally, it was meant to reproduce the growth of simple plant

structures, but the system was so well received by the scientific

community, it received contribution from botanists,

mathematicians and computer programmers, expanding and

 15

refining it into a multitude of varieties (Lindenmayer &

Prusinkiewicz, 1990; Grubert, 2001; Prusinkiewicz, 1997).

Because there are too many different types of L-systems, only the

four main ones will be explained, as they cover the deterministic,

parametric, context-free and stochastic varieties. They will be

presented by order of complexity (Grubert, 2001; Fuhrer, 2005).

2.2.1 DOL-Systems

The DOL-System is the simplest of all the different types of L-

Systems. It uses a tuple G = <V, w, P>, which consists of:

• V (the alphabet) the set of variables;

• ω (the axiom or word) is the equation defining the initial

state of the system, formed by symbols of V;

• P is the set of production rules, or productions, defining

how the variables will be replaced by the combinations of

symbols. The productions consist of a predecessor and a

successor.

The process starts by picking the word and replacing the symbols

within it according to the rules defined in the productions. Once all

the productions have been applied, the axiom will become a new

word and the process can repeat itself. Each replacement step is

an iteration which represents a different point in time as the

system grows and develops (Grubert, 2001; Prusinkiewicz &

Lindenmayer, 1990, 1996; Prusinkiewicz et al., 1988; Bonfim &

Castro, 2005; Onishi et al., 2003; Prusinkiewicz, 1997).

 16

Fig.3 – Example of DOL system. Adaptation from Prusinkiewicz & Lindenmayer, 1990

As can be observed in the example shown in Figure 3, the initial

word invokes the first production, but in the second iteration there

has been the replacement of both symbols in a single step. This

illustrates the parallelism feature typical in l-systems, mimicking

nature in the sense of several changes happening in different

places in the same time. (Grubert, 2001; Envall, 2007; Bonfim &

Castro, 2005; Prusinkiewicz et al., 1988).

Unlike the Chomsky grammar, a formal language similar to the l-

systems, terminals (symbols that can’t be replaced) and non-

terminals (symbols that can be replaced) are not used in l-

systems. This is because there isn’t a final goal to be reached.

(Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al.,

1988; Grubert, 2001; Bonfim & Castro, 2005). Also, because all

words produced are valid models, the empty word λ can be used

in a production. As long as all the symbols belong to the alphabet

V, they are valid (Grubert, 2001; Bonfim & Castro, 2005;

Prusinkiewicz et al., 1988).

V: aR, aL, bR, bL

w: aR

P1: aR → aLbR

P2: aL → bLaR

P3: bR → aR

P4: bL → aL

aR

aLbR

bLaRaR

aLaLbRaLbR

…

 17

2.2.2 Graphical Interpretation

2.2.2.1 Tree Structure

One interesting aspect of the l-system word is that it can be

interpreted as a tree structure. Each symbol represents a node

and by reading the word from left to right, with the left-most

symbol being the root, we obtain a structure reminiscent to real

plants (Prusinkiewicz & Lindenmayer, 1990, 1996; Grubert, 2001;

Envall, 2007; Prusinkiewicz et al., 1988). These structures will be

very much like straight lines, unless we use the branching

structure so well known in plants. To achieve that we need to use

two additional symbols, the square brackets to define the

beginning and end of a branch V’ = V ∪ { [,] } (Grubert, 2001;

Envall, 2007; Prusinkiewicz et al., 1988).

When the open bracket ([) occurs the values of the current node

and hidden parameters are stored, as well as the position where it

occurred. The word is drawn normally until another open bracket

or the corresponding closing bracket (]) occurs. When the

bracket closes the stored values for that bracket pair are then

returned and replace the previous ones. The rest of the tree is

drawn from that saved point and the section that was enclosed by

the brackets is a sub-tree that sticks out much like a branch from

the main trunk (Grubert, 2001; Envall, 2007; Fuhrer, 2005).

Fig.4 – Example of tree representation of the word “A [+ B] [C [D] E] F”. Adaptation from

figure 1 of Grubert (2001).

 18

2.2.2.2 Turtle Representation

Although the tree structure helps visualizing the l-system word, it

doesn’t give a clear idea of the appearance of the model. In order

to have a full idea of their appearance the LOGO turtle graphics

are used (Grubert, 2001; Prusinkiewicz & Lindenmayer, 1990,

1996; Prusinkiewicz et al., 1988; Fuhrer, 2005).

The turtle is a cursor that moves and rotates in a Cartesian

coordinate system, depending on the instructions given and the

defined angle. Examples of some of the commands are (Grubert,

2001; Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et

al., 1988; Envall, 2007; Fuhrer, 2005; Onishi et al., 2003):

F : Move forward a unit and draw a line from the last

position to the current one;

f : Move forward a unit, without drawing a line;

+ : Rotate the cursor counter-clockwise by angle α;

- : Rotate the cursor clockwise by angle α.

Fig.5 – Example of a turtle representation of a L-System. Adaptation from figure 2 of

Grubert, (2001)

 19

As it can been seen in the example shown in Figure 5, each

iteration replaces each unit of the previous one with the whole

structure previously generated, creating a model with increasing

detail. This happens as each predecessor (in this case just one)

is replaced by its correspondent successor (Prusinkiewicz &

Lindenmayer, 1990, 1996; Prusinkiewicz et al., 1988; Envall,

2007; Chen et al., 2003; Onishi et al., 2003).

Values like angles and unit length are hidden parameters. They

are set before the iterations take place and do not change as they

go (Envall, 2007; Prusinkiewicz et al., 1988).

2.2.3 Parametric L-Systems

A problem with the DOL system is that when you need to use

different sizes or angles, it’s necessary to find a denominator

common to all and combine several transformation symbols to

achieve a certain rotation or translation (Grubert, 2001;

Prusinkiewicz & Lindenmayer, 1990, 1996).

The Parametric L-System allows adding different parameters to

different symbols. These parameters can be used to store

information about the model from age and size to angle and time

(Grubert, 2001; Envall, 2007; Prusinkiewicz & Lindenmayer,

1990, 1996; Prusinkiewicz & Hanan, 1990; Prusinkiewicz, 1997).

Fig.6 – Example of a Parametric L-System. Adaptation from Grubert (2001)

V: { A }

w: A (2)

P1: A (a): a > 0 → A (a – 1)

Pa: A (a): a <= 0 → λ

A (2) => A (1) => A (0) => λ

 20

As can been seen in the example shown in Figure 6, the symbol

is followed by the parameter. Like in the DOL system, every time

the productions occur the value is replaced accordingly, though

the conditions have to be fulfilled for the value to be altered

(Prusinkiewicz & Lindenmayer, 1990, 1996; Grubert, 2001;

Envall, 2007; Fuhrer, 2005; Prusinkiewicz, 1997).

In the turtle interpretation, in order to draw the model the

operators used are a bit different from the ones used in DOL

systems (Envall, 2007; Bonfim & Castro, 2005; Prusinkiewicz,

1997):

F(a) : Move forward a unit of length a > 0 and draw a line from

the last position to the current one;

F (a) : Move forward a unit of length a > 0, without drawing a line

+(a) : Rotate the cursor by angle a. Counter-clockwise if a is

positive, clockwise if negative.

Fig.7 – Example of a Parametric L-System. Adaptation from figure 1.40 from Envall

(2007)

2.2.4 Context-Sensitive L-Systems

Up until now we’ve only seen context free systems (OL-Systems),

systems that don’t take into consideration the context its

predecessor is in, but any living organism suffers influence from

its surrounding environment which affects its growth.

 21

The Context-Sensitive L-System takes into consideration the

different interactions between the different sections of the word by

verifying what’s happening on the right and left of the said symbol

(Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al.,

1988; Envall, 2007 Bonfim & Castro, 2005; Fuhrer, 2005).

Fig.8 – Example of a Context-Sensitive L-System. Adaptation from Prusinkiewicz &

Lindenmayer (1990)

As you can see in Figure 8, the productions use the < and >

brackets to check what is happening on the left and right context,

respectively. It’s not mandatory to check both sides, as illustrated

in the second production, but in either case the production will

only be applied if the specified context occurs. (Grubert, 2001;

Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al.,

1988; Envall, 2007; Chen et al., 2003).

In the example from Figure 8 the first production checks if there’s

a symbol A on the left and a symbol C on the right of the symbol

B. In case that’s true then the symbol B takes the value n in A and

replaces its own with it. The second production only checks if

there’s a symbol B on the left of C, but the sucessor will only

occur when the condition is true.

In the situation where both context-free and context-sensitive

productions are used and both applied on the same letter, the

context-sensitive has priority over the context-free production.

However, if neither occurs, then the letter is replaced by itself

(Prusinkiewicz & Lindenmayer, 1990, 1996; Envall, 2007).

V: { A, B, C }

w: A(5) B(0) C(0)

P1: A(n) < B > C: true → B(n)

Pa: B(n) < C: n > 2.5 → C(n – 2)

A(5) B(0) C(0) => A(5) B(5) C(0) => A(5) B(5) C(3) => …

 22

The [and] brackets make it harder to keep track of the context,

because the branches they specify don’t preserve the segment

neighborhood. Therefore, it’s often necessary to skip the

information contained within them to verify the context of the other

symbols (Prusinkiewicz & Lindenmayer, 1990).

Below is an example of a word where the predecessor BC < S >

G [H] M is valid to the symbol S, because it skips over the

symbols [DE] to look for the left context and the I [JK] L to

search for the right one.

ABC [DE] [SG [HI [JK] L] MNO]

In the turtle interpretation the + and – symbols are ignored when

verifying the context in the word (Prusinkiewicz & Lindenmayer,

1990, 1996).

Fig.9 – Example of Context-Sensitive L-Systems. Adaptation from figure 1.31 from

Prusinkiewicz & Lindenmayer (1990).

2.2.5 Stochastic L-Systems

All of the L-Systems seen so far are deterministic in nature. No

matter how many times they are run, as long as the word and the

productions stay unchanged, the result is always the same. In

some situations this might not be a good option.

 23

The Stochastic L-Systems introduce a variation from individual to

individual, but does not alter the general information of the

species. This is done by introducing a probability value that will

determine which production will be used (Grubert, 2001;

Prusinkiewicz & Lindenmayer, 1990, 1996; Chen et al., 2003).

Fig.10 – Example of a Stochastic L-Systems. Adaptation from figure 3 from Grubert

(2001).

As can been observed in the example presented in Figure 10, the

probability for each of the productions to occur is written in front of

the arrow, though in some cases it’s written on top, where the

sum of the probabilities is 1 (Grubert, 2001; Envall, 2007). During

the iterations, if more than one production occurs on the same

symbol a random number is generated to select one of them,

based on their assigned probabilities (Grubert, 2001; Envall,

2007).

Fig.11 – Example of a Stochastic L-Systems. Adaptation from figure 1.27 from

Prusinkiewicz & Lindenmayer (1990)

V: { F, +, -, [,] }

w: F

P1: F →0.33 F [+F] F [-F] F

P2: F →0.33 F [+F] F

P3: F →0.34 F [-F]

 24

2.3 Genetic Programming

The theory of evolution proposed by Charles Darwin in 1882

(Cited in Russell & Norvig, 2004; Azevedo et al., 2005), in which

natural selection plays a crucial role in the species evolution, is by

far the best model which can explain the wide variety of life in our

planet (Darwin, 1859, cited in Russell & Norvig, 2003). The theory

has evolved, with the aid of new discoveries, such as genes,

which has filled many of the gaps that Darwin struggled to explain

during his time, but the theory itself is in constant evolution

(Darwin, 1859, cited in Russell & Norvig, 2003).

Natural Selection is a process that favours certain individuals in a

population in order for a species to evolve (Russell & Norvig,

2004; Azevedo et al., 2005; Vega, 2001).

Each individual carries genotype and phenotype information.

Genotype is the type of genes it carries, all the information it

inherited from its parents and the information its offspring will

inherit from it. Phenotype is its physical attributes, like weight for

example, and they determine its survival and reproduction

chances (Peterson, 1997, Azevedo et al., 2005; Vega, 2001).

These traits determine the ability of an individual to survive in its

environment. Those with more favourable traits are more likely to

survive and pass on their heritage than those with less favourable

attributes: this is the survival of the fittest principle. As new

generations keep evolving and continuously adapting to their ever

changing environment, there’s the chance new species may

emerge as they take different ecological niches (Peterson, 1997,

Azevedo et al., 2005; Vega, 2001).

Evolutionary Algorithms, in which Genetic Programming is a

particular branch, take advantage of this highly powerful

mechanism and try to simulate it in a computer. This will be

explained further below.

 25

2.3.1 Evolutionary Approaches

The power of nature has always marvelled humanity, but only in

the last few centuries has mankind truly tried to understand and

harvest its potential. The creation of velcro, the invention of the

airplane, all of these ideas were inspired by models that existed in

nature for ages (Vega, 2001).

The same happens in Evolutionary Computation. This subfield of

Computacional Intelligence takes inspiration from biological

evolution and natural selection to optimize possible solutions and

solve a given problem (Morais, 2003; Coello, 2007; Pappa &

Freitas, 2006; Vega, 2001)

Fig.12 – Evolutionary Computation Index. Adaptation from figure 1 of Morais (2003)

As shown in Fig.12, the Evolutionary Computation branches into

five different subfields: Genetic Algorithms, Evolutionary

Programming, Evolution Strategy, Learning Classifier System and

Genetic Programming. All of them share the same evolutionary

nature but take different approaches when it comes to its

implementation (Morais, 2003; Coello, 2007; Pappa & Freitas,

2006).

 26

2.3.1.1 Genetic Algorithms

The most popular of the Evolutionary Algorithms, Genetic

Algorithms, use the mechanisms of natural evolution, such as

selection, crossover, mutation and fitness evaluation,and apply

them to a population of individuals (Morais, 2003; Coello, 2007;

Vega, 2001).

Each of the individuals (in a canonical GA) has a fixed size and is

usually represented by an array of bits, in analogy to

chromosomes in DNA. One of the advantages of that

representation is the simplicity of the crossover operator, though

it’s possible to use arrays of different sizes, but that increases the

level of complexity (Morais, 2003; Coello, 2007; Vega, 2001).

Fig.13 – Example of a Genetic Algorithm. Adaptation from figure 2 of Morais (2003).

Begin {

 t = 0; // Initialization of time

 initPop P(t); // Initialization of Population

 fitnsEval P(t); // Evaluation of the Initial Population

 While (solution not reached) {

 t ++; // Incrementation of time

 P’ = selctParent P(t); // Select parents of future
generation

 crossover P’(t); // Breed parents

 mutate P’(t); // Add diversity to generation

 evaluate P’(t) ; // Evaluate fitness of
generation

 P = survive P,P’(t); // Replace population

 }

}

 27

2.3.1.2 Evolutionary Programming

Evolutionary Programming shares a lot of similarities to Genetic

Algorithms, but it pays more attention to the behavioural

relationship between parents and offspring, instead of mimicking

the genetic operators found in nature (Morais, 2003; Coello,

2007).

The main difference in the implementation method is not using

the crossover operator but relying on mutation and fitness to

determine the survival. Another difference between evolutionary

programming and Genetic Algorithms is the use of graphs instead

of arrays in the solution representation (Morais, 2003; Coello,

2007).

Fig.14 – Example of an Evolutionary Programming algorithm. Adaptation from figure 3

of Morais (2003).

Begin {

 t = 0; // Initialization of time

 initPop P(t); // Initialization of Population

 fitnsEval P(t); // Evaluation of the Initial Population

 While (solution not reached) {

 P’ = mutate P(t); // Add diversity to Population

 evaluate P’(t) ; // Evaluate fitness of
generation

 P = survive P,P’(t); // Replace population

 t ++; // Incrementation of time

 }

}

 28

2.3.1.3 Evolution Strategy

The Evolution Strategy works with vectors of real numbers to

represent solutions. Its approach is for each parent to produce an

offspring per generation by the use of mutations. It’s more likely

for the evolution to occur in smaller steps until the descendent

shows a better performance than its parent, replacing it (Morais,

2003; Coello, 2007).

Fig.15 – Example of an Evolution Strategy algorithm. Adaptation from figure 4 of Morais

(2003).

Begin {

 t = 0; // Initialization of time

 initPop P(t); // Initialization of Population

 fitnsEval P(t); // Evaluation of the Initial Population

 While (solution not reached) {

 P’’(t) = selectBest (a, P(t)); // Select best parents

 P’(t) = crossover (b, P’’(t)); // Breed parents

 mutate P’(t); // Add diversity to generation

 evaluate P’(t) ; // Evaluate fitness of
generation

 if (usePlusStrategy)

 P (t+1) = P’(t) ∪ P(t); // Child joins Population

else

 P (t+1) = P’(t); // Population remains same

 t ++; // Incrementation of time

 }

}

 29

2.3.1.4 Learning Classifier System

The Classifier System doesn’t use a fitness function to evaluate

the individuals, but a rule based on a reinforcement learning

technique (Morais, 2003; Coello, 2007). This technique works by

setting the program on an environment about which it has no

knowledge and through a set of actions provided, reacts and

classifies the environment as it changes. The Classifier System,

specifically, has a population of binary rules on which a special

genetic algorithm selects the best ones (Morais, 2003; Coello,

2007).

Fig.16 – Example of Learning Classifier System rules. Adaptation from figure 5 of

Morais (2003).

2.3.1.5 Genetic Programming

Genetic Programming is very similar to Genetic Algorithms, to the

point that some authors consider it a subtype (Coello, 2007). The

main difference is that in Genetic Programming individuals are

represented as a tree instead of an array or string. Actually,

they’re not a string of characters, but programs, thanks to the way

of defining information (Morais, 2005; Peterson, 1997; Coello,

2007; Pappa & Freitas, 2006; Vega, 2001).

// Takes decisions by If-then rules

(1) If (ship is left) then send @

(2) If (ship is right) then send %

(3) If (ship is centre) then send $

(4) If (ship is attacking) then send #

(5) If (ship is not attacking) then send
*

(6) If (* and @) then don’t set cannon

(7) If (* and %) then don’t set cannon

(8) If (* and $) then set cannon

(9) If (#) then fire cannon

 30

The array representation has some limitations the tree-based

structure can overcome. Because of their rigid nature, they’re not

suitable to represent arbitrary computational procedures or to

incorporate iterations or recursion within the individual. Also, their

fixed size doesn’t allow much dynamic variability being the string

length given in the initial population (Koza, 1990, 1992, 2001,

2007).

Fig.17 – Example of a Genetic Program. Adaptation from Algorithm 2.2 fig of Peterson,

1997.

t = 0; // Initialization of time

initPop P(t); // Initialization of Population

fitnsEval P(t); // Evaluation of the Initial Population

While (solution not reached) {

 t ++; // Incrementation of time

 if (reproduce) {

 P’ = selctProg P(t); // Select individual programs

 }

 else {

 if (recombine) {

 P’ = selctParent P(t); // Select parents

 crossover P’(t); // Breed parents

 }

 }

 mutate P’(t); // Add diversity to generation

 evaluate P’(t) ; // Evaluate fitness of generation

 P = survive P,P’(t); // Replace population

}

 31

2.3.2 Operators

According to Koza, the creator of Genetic Programming, the

algorithm can be divided into two major operators and five minor

ones (Koza, 1990, 1992, 2001, 2007). The two major operators

are reproduction and crossover, the fundamental forces behind

evolution (Peterson, 1997; Koza, 1990, 1992, 2001, 2007; Vega,

2001).

The five minor ones are mutation, permutation, editing,

encapsulation and decimation. Usually, only mutation is used and

sometimes editing and encapsulation as well, while permutation

and decimation are quite rare (Peterson, 1997; Koza, 1990, 1992,

2001, 2007; Vega, 2001).

Koza defends that the two major operators are enough to have a

working Genetic Program, but the minor ones may be used to

provide extra functionality (Peterson, 1997; Koza, 1990, 1992,

2001, 2007).

2.3.2.1 Individuals and Initial Population

As stated before, individuals in Genetic Programming are

programs organized in a tree structure. Their shape, size and

complexity change dynamically during the evolutionary process,

but because individuals are represented in a tree hierarchy, the

initial population generation is more complex than in Genetic

Algorithms (Peterson, 1997).

Instead of a randomly generated number, a correct tree structure

has to be created. Each tree is created individually with a single

function as the root and has a predefined tree depth maximum

value to balance the weight of the branches (Peterson, 1997;

Koza, 1990, 1992, 2001, 2007; Vega, 2001). This is important

 32

during the crossover in order to prevent unwanted individuals

from being generated.

Fig.18 – Generating a Random Program. Adaptation from Algorithm 2.3 fig of Peterson,

1997.

// F = {f1, f2, …, fn}; set of functions

// T = {t1, t2, …, tn}; set of terminals

Randomly select a function root ∈ F

If (depth = depthmax – 1) {

 Randomly select a terminal ∈ T

}

else {

 if (root is a function) {

 for (argj , j = 1,…, φ(root)) {

 φ(f) = the parity of f

 if (use grow method) {

 Randomly select argj ∈ F ∪ T

 }

 else {

 if (use full method) {

 Randomly select argj ∈ F

 }

 }

 Recursively generate subtree with argj as root

 }

 }

 else {

 root is a terminal

 }

 This branch is complete

}

 33

Figure 18 shows the generation of an individual. Koza defines two

different variations, the Grow and the Full methods. The Grow

generates trees of random size and shape while the Full

produces them with uniform size and shape. However, in order to

ensure diversity, he uses a hybrid version of the two methods,

called Ramped Half and Half method (Koza 1990, 1992, 2001,

2007; Peterson, 1997; Vega, 2001).

The maximum tree depth is ramped according to the size of the

population. In a population of size N, the subpopulation will be of

size N/2 (Peterson, 1997; Vega, 2001).

Fig.19 – Example of an Individual. Adaptation from fig.11 of [18]

Individuals may contain arithmetic operations (e.g. =, -, x, /),

mathematical functions (e.g. sine, exponential, logarithms),

Boolean operations (e.g. AND, OR, NOT), logical operators (if-

then-else, etc), iterative operators (while-do, etc), recursive

functions, among others. It all depends on the problem in cause.

These will be the functions defining the body of the program

(Koza, 1990, 1992, 2001, 2007; Coello, 2007; Pappa & Freitas,

2006; Vega, 2001).

The terminals can be constant atomic arguments (state variables

of a system for example), constant atomic values (0, 1, etc) and

even other atomic entities, like functions with no arguments

(Koza, 1990, 1992, 2001, 2007; Pappa & Freitas, 2006; Vega,

2001).

 34

When defining the set of functions and terminals for a specific

problem, it’s necessary to satisfy the conditions of closure and

sufficiency. Closure requires that any function used can accept

any value and data type returned by any other function or terminal

(Peterson, 1997; Pappa & Freitas, 2006), which guarantees the

validity of the program. In order to do this it might be necessary to

use functions that return default values (for example, if a value is

divided by zero, the function returns a default value instead of an

unidentified situation).

Sufficiency requires that the given problem solution exists within

the search space by using functions and terminals (Peterson,

1997; Pappa & Freitas, 2006).

2.3.2.2 Fitness

The fitness function (objective function) evaluates the aptitude of

survival of the individuals in the population and it is an

indispensable tool for the Genetic Programming to work. The

fitness function analyses how much a potential solution can

satisfy the problem (Peterson, 1997; Koza, 1990, 1992, 2001,

2007; Pappa & Freitas, 2006).

The fitness function varies according to the problem at hand,

since most optimal solutions have to be calculated with different

formula. But all fitness functions try to determine which individuals

of the population of possible solutions is closer to the optimal

result. For example, on a broom balancing problem, the smaller

the time it takes to balance the broom and the longer it stays

balanced, the better the fitness of that individual (Koza, 1990,

1992, 2001, 2007; Vega, 2001).

It’s important that the value the fitness function returns gives

enough information of how fit the individual is. For example, if it

only returns either 0 or 1, the performance of the individual can’t

 35

be evaluated correctly, especially in later cases where the fitness

values are higher and therefore more similar (Koza, 1990, 1992,

2001, 2007).

However, if the problem requires a subjective judgement, like

evaluating the aesthetic quality of an image, then it may be very

difficult to define the fitness. To solve this problem an outside

source, as a user, replaces the fitness function and determines

which members of the population are more suitable for

reproduction. In some cases the selection is done directly, while

others filter part of the population beforehand (Peterson, 1997).

This interactive evolution system is best for small populations.

There are many limitations the human comprehension forces

upon this, such as inability to pick minor variations in the

representation or not being able to deal with many individuals at

the same time (Peterson, 1997). Usually the magnitude of

individuals to be picked is less that 25, which reduces the

diversity of the population greatly. Because of the sall population

size high mutation rates are often used to compensate the lack of

diversity (Peterson, 1997).

2.3.2.3 Reproduction

This genetic operator combines the information contained by

parents to create an offspring. In the natural world the same

happens when a chromosome pair recombines to generate a new

DNA strand (Peterson, 1997; Coello, 2007).

Before the parents information is recombined, they are both

selected based on the same fitness criteria. Depending on the

approach to solve the problem, we can either have an asexual or

sexual reproduction and reselection might or might not be allowed

(Peterson 1997; Koza, 1990, 1992, 2001, 2007).

 36

An asexual reproduction only involves one parent to generate an

offspring. Several individuals of the population are selected based

on their fitness (which evaluates their performance) and the

probability of reproduction (which defines how many can

reproduce) (Peterson, 1997).

The offspring that will form the new population are clones of their

parents. As a result of that, reselection is allowed in this case

(Peterson, 1997; Vega, 2001).

Sexual reproduction, also known as Crossover, recombines the

genetic information of the parents to generate an offspring. The

parents are selected in the same fashion as in the asexual

reproduction, based on their fitness and crossover probability

(Peterson 1997; Koza, 1990, 1992, 2001, 2007; Coello, 2007;

Vega, 2001).

Usually in Genetic Programming the crossover is done by using

the tree nature the individuals possess and numbering the tree

nodes by their reading order (Coello, 2007; Vega, 2001). First, a

point is chosen randomly in both trees. Second, the subtrees

rooted on those points are selected and detached from the parent

trees. Third and finally, the subtrees are switched between the

parents, generating a pair of offspring (Coello, 2007; Peterson

1997; Koza, 1990, 1992, 2001, 2007; Vega, 2001).

Note that the resulting offspring from any crossover points are

always valid programs, because their parts are taken from the

parents, which were also valid expressions (Koza, 1990, 1992,

2001, 2007). The reason for this to happen is because of the

closure and sufficiency requirements imposed when the

population was first created.

 37

Fig.20 – Crossover example. Adaptation from fig.2.6 of Peterson (1997)

It’s also possible for the root of the trees to be selected, either in

one or both parents. If only one root is selected, the entire parent

will be copied onto the second, while the subtree of the second

parent will become the full tree of the first one (Koza, 1990, 1992,

2001, 2007). If the roots of both parents are selected as

crossover points, the children will be copies of their parents, as in

a reproduction and not a crossover (Koza, 1990, 1992, 2001,

2007).

In the case of a terminal and a root being selected as crossover

points, this often increases the size of one of the trees

dramatically (Koza, 1990, 1992, 2001, 2007; Coello, 2007). In

order to prevent memory problems, Genetic Program usually

imposes a limit on the maximum depth of a tree.

Compared to the Crossover operator in Genetic Algorithms, there

are two main differences from the one used in Genetic

Programming. First, in standard Genetic Algorithms offsprings

have the same size as their parents, no matter the number of

generations. In Genetic Programming there’s a big chance of

 38

different sizes and shapes to be formed because of the random

crossover points (Peterson, 1997; Coello, 2007).

Second, if reselection is allowed, and individual with high fitness

may be chosen to act as both parents, incestuous offspring result.

In Genetic Algorithms an incestuous crossover degrades the

quality of the offspring to an asexual reproduction. In Genetic

Programming the two offspring will likely be different, unless the

same crossover points are chosen in both parents (Peterson,

1997; Koza, 1990, 1992, 2001, 2007; Coello, 2007).

2.3.2.4 Mutation

Occasionally a random change will occur during the genes

recombination, resulting on a slight mutation that brings variation

and new possibilities in the process of evolution.

In Genetic Programming, mutation works by randomly picking a

point in the tree and replacing it with a new randomly generated

subtree. A probability based on the tree’s depth can prevent

excessive terminal swapping or encourage bigger or smaller tress

to be produced Peterson, 1997; Coello, 2007; Vega, 2001).

Fig.21 – Mutation example. Adaptation from fig.2.7 of Peterson (1997)

 39

Mutation is very good to add variety and keep the population from

becoming stagnated, but it might damage or render a program

non functional (Peterson, 1997). It’s possible to protect a certain

subtree, known as a good building block, by using encapsulation.

The subtree is replaced by a symbolic name that points to its real

location (Coello, 2007).

Editing is another operator which helps protecting the tree. Like

mutation it replaces certain subtrees with new information, but

instead of using a new random subtree, it cleans up the existing

one by replacing a constant valued subtree with its corresponding

value. For example, (1 (+ 1)) would be replaced by the terminal 2

(Peterson, 1997). This helps avoiding waste of memory and

unnecessary depth of the tree, but this parsimony can be harmful

to the diversity of the population (Peterson, 1997).

2.3.2.5 Termination Criteria

The evolutionary process ends when the population reaches the

solution to the problem, or gets as close to it as possible. There

are many different criteria that can be used to define when the

whole process terminates, including number of generations, lack

of increase of fitness within the population after a certain number

of generations, etc (Koza, 1990, 1992, 2001, 2007).

Once that step is reached, the best individual of the whole

population is considered the optimal solution to the given problem

(Koza, 1990, 1992, 2001, 2007).

There are some cases where outside factors might force the

program to end before the optimal solution is found, such as:

time, resources and funds.

 40

3 System Architecture

This work intends to combine L-Systems with Genetic

Programming to produce new plants which are evolved forms of

their parents. The developed application takes the parents

chosen by the user and draws the given L-System before

receiving order to breed the plants by the user and then draw the

children through the same system.

Though the graphical elements of the interface were drawn in

Flash, the whole computation and plants drawing was solely

produced by the code.

In this chapter the conceptual model is presented, which

describes the decisions taken based on the problem. It also

describes the project goals, the pseudo-code developed for each

of the parts, and the system implementation, which describes how

the program was implemented based on the pseudo-code as well

as the adaptations that had to be made.

3.1 Conceptual Model

As the purpose of this project is to answer the problem identified

in the first chapter, it’s best if we remind ourselves of the

objectives we set out to fulfill:

1. Identify a method used to build plants in the computer,

or that can be adapted to work in a computer;

2. Determine how to use the Genetic Programming to

evolve those plants;

3. Adapt the developed approach for Actionscript;

4. Allow some level of control to the user to select and

adjust the plants.

 41

Knowing these milestones and taking into consideration the

information presented in the second chapter, we can start

defining the solution. This section focuses on answering the first

and second points.

The Actionscript is done later in the implementation because we

first need a solid idea on how the L-system has to be

implemented and what will the Genetic Programming take from it

in order to optimize the plants.

3.1.1 The L-System

Before we can evolve a plant, we need a plant to evolve. That’s

why the first point was to find a method that could represent

plants and be translated into the computer. The L-system was

picked from the different methods because of the reasons stated

in the previous chapters.

From the different types of L-systems, the DOL-system was

selected to describe the process of development of plants in

Actionscript. The reason behind this method selection is because

it allows an easier control of the programming stages and

resulting validation.

Fig.22 – L-system architecture. Adaptation from fig.1 From Noser et al., 2001

 42

Figure 22 illustrates how the common L-system architecture

works. Taking the L-system plant provided by the user, the Parser

prepares it to be interpreted by the computer, resulting in a valid

axiom and productions, syntax wise. With this verification done,

the computer can run them through several iterations, and on

each one send the resulting word to be interpreted by the Turtle

Program. In this drawing stage, both the symbol alphabet of that

plant and the turtle procedures are taken by the Interpreter to

decipher the commands.

Taking this architecture as the model to be followed, we can

divide the process to obtain an L-system into three steps:

‐ Syntax Validation;

‐ Production;

‐ Interpretation.

3.1.1.1 Syntax Validation

The Validation step acts like the Parser described before. It takes

a given plant, defined by the alphabet, axiom, the production rules

and hidden parameters, and validates them. This is done by

eliminating any empty spaces or unwanted symbols so the

computer doesn’t come across with any unexpected characters in

the next steps.

 43

Fig.23 – Example of Validation step

Figure 23 presents an example of a simple validation. The cycle

checks the string, this case the production P, character by

character and removes any symbol that doesn’t belong in the

alphabet of that plant or isn’t a turtle command. More complete

validations can include checking if all the opening brackets have

their closing counterparts or see if there are rotations canceling

each other.

This verification is more of a precaution than a real component of

the L-system method. It only needs to be done once at the

beginning of the program since the next steps don’t generate

invalid symbols or insert blank spaces between the characters,

unless if badly coded.

3.1.1.2 Production

The Production step generates a word on each iteration before

it’s sent to be interpreted by the Turtle Program. This process is

done by taking the axiom and applying the productions to replace

any symbols that match their predecessors with the symbols

V // Alphabet

W = “X” // Axiom

P = “X->F[+X][-X]FX" // Production

While (i < length of P) {

 Read character by character

 If (character == empty space || != from turtle or V
symbol)

 Then remove from P

 i ++

}

 44

contained in their successors, generating the word that will be the

new axiom of the next iteration.

Fig.24 – Example of Production step

As shown in the example in Figure 24, before the replacement

was done, the predecessor and the successor of each production

were separated and stored as separate strings. It’s not mandatory

to perform this separation, but instead of having a function

locating the predecessor and the successor every time we need

to work with the production, we only have to perform this

operation once. So after we have the two strings per production,

on each iteration we check the current axiom and try to find

symbols matching the predecessors in it. When that occurs, we

replace that match with the corresponding successor, creating a

new word in result. A variation to this step is to do all iterations at

once and send the final result to be drawn, instead of doing it on

each iteration. To accomplish this, the drawing function is called

outside of the cycle.

W = X // Axiom

P = X->F[+X][-X]FX // Production

N // Number of Iterations

Split P into two strings where -> occurs

String1 = P’s predecessor

String2 = P’s successor

While (i < N) {

 W= Replace every predecessor with successor in the W

 i ++

}

 45

3.1.1.3 Interpretation

The Interpretation step is the same as the Turtle Program in the

diagram. It takes the produced word, the symbols in the plant’s

alphabet, the turtle commands and the hidden parameters, such

as branch angle and unit length, to send them to the Interpreter

and draw them on screen.

Fig.25 – Example of Interpretation step

As it can be seen in Figure 25, because this is a simulation of the

Turtle Interpretation, it’s important to remove any non-drawing

symbols in the word before it’s sent to be interpreted. Once that’s

done it reads the word character by character and compares it

with the commands available, performing the corresponding task.

Word // Produced word

Alpha // Angle

Length // Unit Length

…

Remove empty symbols

While (i < Word length) {

 Read Word character by character

 Switch (character)

 Case F:

 Draw forward

 Case +:

 Rotate counter-clockwise by Alpha degrees

 Case -:

 Rotate clockwise by Alpha degrees

 Case [:

 Store current coordinates and angle

 Case]:

 Restore coordinates and angle

 i ++

}

 46

Note that this program only deals with 2D L-systems, because of

the Flash limitations, which was mentioned in the first chapter. To

simulate a 3D L-system there would one be a difference in this

last step, which would include the rest of the commands on the

list.

Fig.26 – Example of a plant that would need to be converted

In some cases, like in the one above (Figure 26), it would be

necessary to convert at least one of the symbols into the drawing

command F, either by using a function or doing it before this L-

system was given to the program. This is because if the

Interpreter was to use this word, all we would get would be a

blank screen.

This is an unusual, but not impossible, occurring situation. The

best way to get around it would be including a validation in the

Syntax Validation step, to either warn the missing symbol or ask

to replace another non turtle command one by it.

w: A

P1: A → B[+A]

P2: B→ AA

A

B[+A]

AA[+B[+A]]

…

 47

3.1.2 Genetic Programming

According to the explanation given in the second chapter, the

various applications of Genetic Programming used the same

operators. One of the most important topics is the decisions made

on individuals and the fitness evaluation, since they will affect the

whole process on how the plants result.

3.1.2.1 Initial Population

Because the goal is to optimize the existing plants in order to

generate children, the decision was made to use the produced

word instead of the productions as the individual, reason why

Genetic Programming was chosen over Genetic Algorithms.

Fig.27 – Corresponding tree structure of a L-system word

As you can see from Figure 27, the L-system word easily

translates into a tree representation, with each symbol being a

node. This can also be translated as the individual genotype, the

information contained in the gene, while the hidden parameters

can be considered as the phenotypes, the physical attributes of

the individual. As this type of grammar is counter-intuitive and

hard to predict the outcomes of the different productions, as it can

be seen in Figure 28, it was decided to use pre-developed plants

for the initial population instead of randomly generated ones to

ensure the validity of the individuals.

 48

Fig.28– Examples of non-plant L-systems

3.1.2.2 Fitness Function

We’re not aiming to simulate plants existing in real life, but to

generate structures that look like plants. This is because this work

isn’t a scientific research on a certain species. We want to give

room for creativity and to explore solutions that we likely wouldn’t

come across in real life. Because we’re working with unexpected

results and basing evaluation on the aesthetic appearance of the

plant, the fitness will be decided by the user rather than by the

computer. This evaluation process limits the amount of results we

can present at a time, due to the human component.

3.1.2.3 Reproduction

Sexual reproduction, which involves two parents instead of just

one, is done by randomly picking a point on each parent and

exchanging the resulting subtrees between them. The reason why

two parents are used instead of one, is the bigger diversity it

brings to the end result. Also, the decision of having a user acting

as the fitness function influenced this. If by using two parents the

children are more likely to be different, then it helps having

resulting offspring with bigger differences between themselves,

which is important when working with a small population pool.

 49

Fig.29– Reproduction step

As you can see in Figure 29, the resulting offspring come from the

exchange of subtrees from the two parents. However, because

we’re dealing with the L-system grammar the picking of the nodes

has to be restricted.

Fig.30– Examples of bad replacement of the nodes

The Figure 30 shows what happens when an extra bracket or

rotation occurs. Even if none of these extreme cases happens,

there’s still a good chance of the resulting L-system not resulting

in a plant structure.

So, the selection of nodes is restricted to the branches of each

plant. Besides preventing the occurrences just shown, they are

proven to be stable sections of commands since they work well

on each plant. Of course, bad crossovers can still occur, but the

probability is much smaller.

Plant1 // First parent word

Plant2 // Second parent word

Position1 = Randomly pick a node on Plant1

Position2 = Randomly pick a node on Plant2

Child1 = In Position1 of Plant1 put subtree taken from Position2 of Plant2

Child2 = In Position2 of Plant2 put subtree taken from Position1 of Plant1

 50

3.1.2.4 Mutation

This operator isn’t used in this work, because it relies on

randomly generated trees, the probability to generate bad lines of

commands is too great, as explained in the previous points.

It would be possible to set an array of branches however, taken

from produced plants, but that would involve collecting and testing

their validity beforehand which was too time consuming for this

project.

The inclusion of mutation isn’t mandatory though, as explained in

the second chapter. It would only be used if the crossover

couldn’t provide enough diversity in the population in order for the

user to tell the difference which is not the case.

 51

4 System Implementation

Having the concept of how the L-system and the Genetic

Programming will be implemented, the next goal can be

addressed: implementing these methods in Actionscript.

Although Flash is an excellent tool when it comes to interaction

and graphic development, we have to keep in mind it has some

limitations when it comes to code, since usually most people don’t

use it for its coding language. Besides, it can get very slow when

processing heavy calculations such as large number of iterations

involved in producing the L-system word. There are some slight

differences between Actionscript and other languages like C++ or

Java, which can give very confusing results.

One of them is the variable declaration. A variable once declared

can be used in any part of the code, even if it’s outside the

function where it’s declared. This means sometimes the variable

will “drag” the content it has previously and not have replaced

properly when used in a different section of the code, causing

unexpected results like a word far bigger than it should be. To get

around this it is necessary to “empty” the variable before it is used

or declaring it again, which apparently had the same effect.

These type of mishaps are a fairly common occurrence,

especially when one is learning a new programming language.

Being more of a minor nuisances than a major hindrances, their

occurrence isn’t described in the explanation of the code

implementation.

 52

4.1 Versions Introduction

Instead of producing an ongoing program where each new

section of the conceptual model would be implemented, it was

decided to work on separate versions of the same application.

There were several reasons behind this decision, mainly:

• The constant learning of new Actionscript functions and

techniques as the implementation was taking place;

• The testing of different sections of the conceptual model

separately, to reduce the chance of faulty results;

• To ease the code optimization and performance of the

application.

Since the Genetic Programming needs a population of plants to

evolve, the 1st Version focuses on the implementation of the L-

System and the Draw function.

The 2nd Version focuses on the optimization of the prior L-System

code, correcting some minor mistakes and eliminating useless

lines of code.

The 3rd Version focuses in the Genetic Programming code and

the implementation of its operators, but only using a section of the

L-System code to test the results.

The 4th Version is the first to implement both the L-System and

Genetic Programming codes simultaneously, as well as providing

a basic interface for the user.

The 5th Version uses a larger population of plants and allows the

user to view more than a single generation, as well as attributing

them with a fitness.

The 6th and final version optimizes the code used in the previous

one, by removing unnecessary duplications and compressing the

produced word, and improves the design of the interface.

 53

4.2 Version 1

The first version of the project only focused on getting the L-

system to work and be drawn on the screen. It didn’t have any

interaction and simply used a plant hardcoded into the program

with all the corresponding hidden parameters.

Its purpose was to identify which parameters were exactly

necessary and which changes would have to be added to the

conceptual scheme in order for the program to work.

4.2.1 Syntax Validation

Because the plant was hardcoded, this step was unnecessary.

We were using a plant that had already been validated by

someone else, one of the many examples of successful L-system

plants people use out there on the internet to illustrate how the

grammar works.

No invalid symbols were used, and all blank spaces had been

removed when building the solution, as it can be seen in Figure

31.

Fig.31– L-system plant used

V = { X, F, +, -, [,] } // Alphabet of the plant

W = X // Axiom

P1 = X->F[+X][-X]FX // First Production

P2 = F->FF // Second Production

Angle = 70 // Branch Angle

Steps = 4 // Iterations

Length = 4 // Unit Length

 54

4.2.2 Production

Though this version was more of a test on how to get the L-

system method to work, attempts were made from the beginning

to make the system as universal as possible. Functions were

used instead of a big block of sequence of code with many

unnecessary duplications in the middle.

So taking the L-system grammar, the only element that can have

multiple members is the productions. In order to ensure the L-

System function can receive any type of plant, the productions

were stored in an array before being sent, as seen in Figure 32.

Fig.32– Storing the productions into an array

As seen before, the first part in the Productions step is to

separate the predecessor from the successor in each of the

productions, but because we’re dealing with an array of

productions of unknown size, we can’t define a pair of string

variables for every single case.

Instead we can use two arrays, one for the predecessors and

another for the successors, with the same position in each

corresponding to the same production. This is easier to handle,

and particularly easier to debug, rather than using one array to

store both.

// Productions

var p1 = “X->F[+X][-X]FX”

var p2 = “F->FF”

// Set productions into an array

var p = new Array (p1,p2);

 55

Fig.33– Separating predecessor from successor

As shown in Figure 33, in this cycle that lasts while i is less than

the length of the array p, the program takes each string within it

and where the -> occurs, the string is split into two and stored in

the array stringVect, then stores the predecessor and the

successor in each respective array.

The split is a method in Actionscript that takes a string and

returns an array containing two strings, separated where the

delimiter string occurred. Except in the case of an empty string, it

splits every single character within that string. There’s also an

optional parameter that limits the number of items to be put in the

array, but it’s unnecessary in this case.

With the predecessors and successors ready, we can then start

replacing the occurrences in the word.

var vect1 = new Array(); // Predecessor array

var vect2 = new Array(); // Successor array

while (i < this.p.length) {

 var stringVect = this.p[i].split("->");

 vect1[i] = stringVect[0];
 vect2[i] = stringVect[1];

 ++i;
}

 56

Fig.34– Replacing symbols in the word

As you can see in Figure 34, on each iteration the program goes

through all the different predecessors and checks for any

correspondences by sending them to the function replace shown

above. If that function finds a correspondence to the given string,

it splits the word in two and then joins it back together, inserting

the successor in between those strings before it’s returned and

replaces the old word with the new one.

The join is another Actionscript method, which takes an array and

converts it into a string, inserting the given character or string in

the parameter between the elements of the array, concatenating

them.

4.2. 3 Interpretation

With the L-system word ready to be interpreted and knowing

which symbols were used from the alphabet, all we need are the

parameters necessary to draw the plant. However, this is where

the problem really starts. The information that came with the

String.prototype.replace = function (from, to) {

 return this.split(from).join(to);
};
// --

while (j < steps) {

 var k = 0;

 while (k < vect1.length) {

 var val1 = vect1[k];
 var val2 = vect2[k];

 this.words = this.words.replace (val1, val2);

 ++k;
 }

 ++j;
}

 57

axiom and the productions isn’t enough. More parameters are

necessary in order to reproduce it correctly on screen.

The initial coordinates were the first ones to be added. Because

we want the plant to grow upwards, like normal plants do, we

picked the middle of the stage as the x coordinate and the bottom

of the stage as the y coordinate.

The next ones were the properties of the line to be drawn. In

Flash when drawing figures out of pure code is first necessary to

declare an empty movie clip to draw them in. Only then we can

change the properties of the movie clip, as seen below in Figure

35.

Fig.35–Changing the properties of the movie clip

The first line creates the empty movie clip as a child of the

existing one (the stage), giving it a name and setting its depth on

the screen. The lineStyle allows us to determine the thickness,

color and opacity of the lines drawn within that movie clip,

respectively. And finally the moveTo moves the current drawing

condition to the given coordinates.

The last parameter that had to be added was the angle of the

plant. This was detected afterwards; when drawing the plant, the

line was first moving horizontally before the rotations changed its

angle. To solve this problem it was necessary to rotate the plant

before it was drawn, in this case 90 degrees so it would grow

vertically instead.

There were two different attempts made at reading the word

before sending it to be interpreted by the different list of

commands. The first one was to have the plant drawn all at once,

px = 300; // X coordinate
py = 400; //Y coordinate

this.LS = _root.createEmptyMovieClip ("drawClip", 100);

this.LS.lineStyle (2, 0x33CC00, 100);

this.LS.moveTo (this.px, this.py);

 58

while the second shows the sequence of how the word was read

and how that reflected in the appearance of the plant.

Fig.36–Drawing the plant all at once

 As you can see in Figure 36, this function there’s an infinite cycle

where the word is read character by character and sent to be

rendered. Actually, the cycle isn’t really infinite, because once the

counter exceeds the length of the word, it calls the function return

and automatically jumps out of the cycle, terminating it.

Using a loop that would check the condition would probably be

best. This was just done as an experiment.

Fig.37–Drawing the plant character by character

The reason why this function was used instead of the other in this

version of the program was to check how the plant was built

exactly and to ensure the whole process was occurring properly.

LSystem.prototype.renderSteps = function() {

 var i = 0;
 var obj = this;

 this.LS.onEnterFrame = function() {

 var charVal = obj.words.charAt (i);

 obj.renderInstruction (charVal);

 if (i++ >= obj.words.length-1) {

 delete this.onEnterFrame;
 }

};
};

 59

In order to do that, we used a special function existing in

Actionscript to control the movie clip. OnEnterFrame is an event

handler that is invoked on the beginning of each frame before any

of the other actions are preformed. So as each frame occurs, the

function reads a character of the word and sends it to be

rendered, but when there are no longer more words to be

rendered, this onEnterFrame function is deleted.

The speed of how fast the plant is drawn varies with the amount

of frames per second defined. The default in Flash is 12 fps, but it

can range from 0.01 to 120.This can pose a problem however.

Though it’s quite useful for debugging purposes, it takes some

time to draw the plant, especially large ones, no matter the speed

set. Because the final solution will deal with not one, but several

plants at the same time, we can’t have the user wait for one plant

to be drawn before he or she can visualize the next.

With all the parameters defined and the rendering function

sending the individual characters to be interpreted, all we need to

do is send the characters through the command list and

implement the different actions.

Even so, before the characters can be analyzed, even before they

were sent by the render function, the non-drawing symbols had to

be removed from the produced word. In this case it was done

right after the production of the word. The only reason this point

wasn’t addressed before was because it concerns the drawing

stage.

Fig.38–Deletion of the non-drawing symbols in this plant

To do the deletion it calls the replace function and replaces all the

non-drawing symbols with an empty string (not a blank space), as

it can be seen in Figure 38. Considering we’re working with a

hardcoded plant, we already know which are the empty symbols.

 this.words = this.words.replace ("X", "");

 60

In the case of receiving an unknown plant from the user, then we

would have to ask which were drawing symbols and which

weren’t. Otherwise, we would have to restrict the symbols that

could be used.

Fig.39–The available commands and their actions

As shown in Figure 39, the function receives the character sent

by the rendering function and travels through the several if

statements until either a match is found or it announces it as an

unknown command. This figure only contains the commands

used for this specific plant. With different grammars it is

necessary to introduce more conditions.

LSystem.prototype.renderInstruction = function (instr) {

 if (instr === "F") {
 this.Draw (px, py, angleInit, segmentLength);
 return;
 }
 else {
 if (instr === "-") {
 this.angleInit = this.angleInit + this.angleInc;
 return;
 }
 else {
 if (instr === "+") {
 this.angleInit = this.angleInit - this.angleInc;
 return;
 }
 else {
 if (instr === "[") {
 var flag = new Cursor (this.px, this.py, this.angleInit);
 this.stack.push (flag);
 return;
 }
 else {
 if (instr === "]") {
 flag = this.stack.pop();
 this.px = flag.px;
 this.py = flag.py;
 this.angleInit = flag.angleInit;
 this.LS.moveTo(this.px, this.py);
 return;
 }
 }
 }
 }
 }
 trace("unknown command: "+instr);

};

 61

Like in the Turtle Interpretation, F corresponds to drawing a line

forward. In order to do that, it sends the current coordinates, the

angle of the branches and the current angle of the plant to the

draw function. This will be explained further below.

When a rotation occurs, either clockwise or counter-clockwise,

the current angle of the plant is updated by adding, or subtracting,

the angle of the branch to the previous angle of the plant.

As for the brackets, when the opening bracket occurs it sends the

current coordinates and the angle of the plant to be copied and

then pushed into an array. When the closing bracket occurs, the

last values are popped from the array and replace the current

coordinates and plant angle to restore them to the original

position before entering that branch.

Fig.40–Drawing function

When drawing the plant we have to keep in mind that the

rotations change the direction of the line and that affects the

position of the final coordinates. Because we have to keep the

same length to all units of the plant and Flash can’t calculate

directly the final coordinates just by giving the initial coordinate

pair, unit length and amount of rotation, we have to calculate the

projection of the segment on each of the axis in order to find the

position the line has to move to (Figure 40).

This is done by applying the rules of trigonometry to calculate

exactly how much each unit will measure on each axis,

depending on the rotation applied to them, and added to the

current coordinates to find out where the final ones will be. After

LSystem.prototype.Draw = function (px, py, angleInit, segmentLength) {

 this.px = this.px + this.segmentLength * Math.cos (this.angleInit);
 this.py = this.py + this.segmentLength * Math.sin (this.angleInit);

 this.LS.lineTo (this.px, this.py);
};

 62

that, all we need to do is call the lineTo function which draws a

line from where the drawing cursor last was to the new position.

Fig.41–Cursor function

Data structures in Flash don’t work in the same way they do in

C++ or Java. While in C we would have to declare a structure

outside of the program sequence and define all the parameters

inside, in Flash, it is done as shown in Figure 41 and declared as

a regular function.

The reason why it was used is because it makes it easier to store

all the information concerning one bracket in a single position of

the array instead of pushing and popping three all the time.

4.3 Version 2

The second version of the program still focused exclusively on the

L-systems, this time cleaning up unnecessary code used on the

first version and correcting some minor mistakes that could have

some negative effects when including the Genetic Programming

and producing the new plants.

4.3.1 Syntax Validation

Hardcoded plants were still used, so again, this step was seen as

unnecessary since there had been some preparation prior to their

inclusion in the code. The only difference this time was that two

new plants were included to test the effectiveness of the code and

to later be used as parents in the Genetic Programming.

Cursor = function (px, py, angleInit) {

 this.px = px;
 this.py = py;
 this.angleInit = angleInit;
};

 63

Fig.42–Different L-system plants used

Many of the variables which define the plants were shared, as

seen in Figure 42, while the ones that determine their individual

appearance were defined separately. The reason for this was to

compare how each behaved when having the same number of

iterations and unit length (the other shared values pay little

importance in their appearance).

// Shared Variables

var px = Stage.width / 2; // X coordinate

var py = Stage.height; // Y coordinate

var plantAngle = Radians(-90); // Plant Angle

var steps = 4; // Iterations

var lenght = 3; // Unit Length

var color = 0x33CC00; // Color

//Plant 1

var w1 = "X"; // Axiom

var p1 = "X->F[+X][-X]FX"; // First Production

var p2 = "F->FF"; // Second Production

var productions1 = new Array(p1, p2); // Production Array

var angle1 = Radians(70); // Branch Angle

//Plant 2

var w2 = "F"; // Axiom

var p1 = "F->FF-[-F+F+F]+[+F-F-F]"; // Production

var productions2 = new Array(p1); // Production Array

var angle2 = Radians(20); // Branch Angle

//Plant 3

var w3 = "X"; // Axiom

var p1 = "X->F-[[X]+X]+F[+FX]-X"; // First Production

var p2 = "F->FF"; // Second Production

var productions3 = new Array(p1, p2); // Production Array

var angle3 = Radians(25); // Branch Angle

 64

Fig.43–Resulting plants

As you can see from Figure 43, the same parameters can result

in quite different plants, depending of the axiom and productions

used. The first plant would need more iterations, while the second

would need less. The lengths would also have to be adjusted, if

we want the plants to have roughly the same size.

Fig.44–Radians function

There was one mistake that wasn’t detected on the first version

that caused some issues. When working with angles, Flash uses

radians instead of degrees. The function from Figure 44 takes the

angle we want to use and converts it into radians by applying the

conversion formula:

α × (∏ ÷ 180°)

Radians = function (degrees) {

 return degrees * Math.PI / 180;
}

 65

4.3.2 Production

In the Production stage there was only one minor change done.

This was eliminating unnecessary code in the L-system function,

which deals the separation of the predecessors from the

successors and the constant replacement of the word during the

several iterations (Figure 45).

Fig.45–Production step within the L-System function

4.3.3 Interpretation

The major change done in this section of the code was to replace

the series of if conditions by a switch statement, which is much

more functional (Figure 46). Besides being easier to add new

commands if necessary, it is less prone to mistakes like the large

amount of brackets for example.

while (i < this.productions.length) {

 var stringVect = this.productions[i].split("->");

 vect1[i] = stringVect[0];
 vect2[i] = stringVect[1];
 ++i;
}

while (j < steps) {
 i = 0;

 while (i < vect1.length) {

 this.words = this.words.replace(vect1[i], vect2[i]);
 ++i;
 }
 ++j;
}

 66

Fig.46–The RenderInstruction function using the switch instead of if statements

4.4 Version 3

This version is more of a separate program to prepare and test

the Genetic Programming section of the solution. Using what was

developed before for the L-system, it takes the produced word

and extracts all the branches within it and then selects one

randomly to be exchanged with another plant.

LSystem.prototype.renderInstruction = function(instr) {

 switch (instr){
 case "F":

 this.Draw(px, py, angleInit, unitLength);
 return;
 break;

 case "-":

 this.angleInit = this.angleInit + this.angleRot;
 return;
 break;

 case "+":

 this.angleInit = this.angleInit - this.angleRot;
 return;
 break;

 case "[":

 var flag = new TurtleCursor (this.px, this.py, this.angleInit);
 this.stack.push(flag);
 return;
 break;

 case "]":

 flag = this.stack.pop();
 this.px = flag.px;
 this.py = flag.py;
 this.angleInit = flag.angleInit;
 this.LS.moveTo(this.px, this.py);
 return;
 break;

 default:

 trace("unknown command: "+instr);
 break;
 }
}

 67

4.4.1 Individual

Because this whole version is meant to test the Genetic

Programming reproduction stage, we’re only working with one

individual and not a whole population.

To generate the individual we took a plant used previously in the

other versions and generated the word the same way it was done

in the production step. The resulting word was as shown below in

Figure 47.

Fig.47–Plant and resulting word after Production step

4.4.2 Branches

Once we have the word to work with, we can start taking all the

branches that occur within it and store them in an array, along

with the initial and final positions where they occur, so that when

the exchange takes place we know exactly which section of the

plant will be replaced.

var w1 = "X"; // Axiom

var p1 = "X->F[+X][-X]FX"; // First Production

var p2 = "F->FF"; // Second Production

var productions1 = new Array(p1, p2); // Production Array

var steps = 4; // Iterations

Word: FFFFFFFF[+FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX][-FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX]FFFFFFFFFFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX

 68

Fig.48–Extraction of the branches within the plant

As it can be seen in Figure 48, whenever an opening bracket

occurs, the position is pushed into the position array. When the

closing bracket occurs, the position of the last opening bracket is

taken out. The reason the value is incremented by one is to have

the opening bracket start in the next position, so it doesn’t store

the bracket itself and cause a missing bracket when the

replacement takes place.

After storing the initial and final positions of that branch in the

branch array, all the characters occurring in that interval are

copied into a variable and stored in the array as well, as

exemplified in Figure 49. After that, the string variable is cleared

to prevent the next branch to be added to the previously copied

one and cause an error.

Fig.49–Collected branches and their positions

while (i < words.length){

 if (words.charAt (i) == "["){
 position.push (i);
 }

 if (words.charAt(i) == "]"){
 j = position.pop () + 1;

 branches.push (j);
 branches.push (i);

 while (j < i){
 subtree = subtree + words.charAt (j);
 j ++;
 }
 branches.push (subtree);
 subtree = "";
 }
 i++;
}

Branches: 19,21,+X,23,25,-X,15,29,+FF[+X][-X]FFX,35,37,+X,39,41,-
X,31,45,-FF[+X][-X]FFX,53,55,+X,57,59,-X,9,63,+FFFF[+FF[+X][-X]FFX][-
FF[+X][-X]FFX]FFFFFF[+X][-X]FFX,75,77,+X,79,81,-X,71,85,+FF[+X][-
X]FFX,91,93,+X,95,97,-X,87,101,-FF[+X][-X]FFX,109,111,+X,113,115,-
X,65,119,-FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX,137,139,+X,141,143,-X,133,147,+FF[+X][-X]FFX,153,155,+X,157,159,-
X,149,163,-FF[+X][-X]FFX,171,173,+X,175,177,-X

 69

4.4.3 Random Pick

The next step is to randomly pick a branch of that plant and take

out its initial and final position, as well as the symbols that occur

in that interval.

Flash has two different random methods, random() and

Math.random(). The first one takes a value and generates an

integer number between zero and the given value minus one.

However, currently it’s barely used being the second one

preferred, even recommended by Macromedia Flash itself.

It generates a random number between 0 and 1, but in order to

obtain an integer Math.round(), Math.ceil() or Math.floor() are

used. The first rounds the number up or down to the nearest

whole number. The second always rounds up, while the third

rounds down. In order to get a random number between the

values Min and Max, this function is used, though there are

variations:

randomNumber = Math.floor (Math.random () * (Max – Min + 1)) + Min;

Fig.50–Random pick of a branch

In this case we want to pick a position within the branches array

that ranges from zero to the last branch introduced. Because the

minimum value is zero, there’s no need to add it in the function.

As shown in Figure 50, the length of the branch is divided by 3 to

ensure only the initial positions are picked, so that when we

retrieve the information of the branch we get the right information.

As for ignoring the + 1, arrays are always their length minus one,

so if we were to use the + 1 we would be accessing a position

that doesn’t exist and get an undefined as value, instead of a

branch.

randomBranch = Math.floor(Math.random() * (branches.length / 3));

var initialPos = branches[randomBranch * 3];
var finalPos = branches[randomBranch * 3 + 1];
var branch = branches[randomBranch * 3 + 2];

 70

4.4.4 Drawing Optimization

Outside Genetic Programming, this version also implemented a

drawing optimization for the L-system.

When working with complex plants or too many iterations, this

starts to weigh too much on Flash and takes some time to

process. A way to reduce the size of the plant is eliminating the

empty symbols once the word is produced, but that’s often not

enough. One other thing that consumes too much memory is the

in and out of functions when drawing the plant.

In order to reduce this, it was decided to separate the

interpretation in two parts, the calculation of all coordinate

positions the plant will take and then the drawing of those

coordinates.

Fig.51–Calculation and storage of the coordinates

for(i = 0; i < words.length ; i++){
 var instr = words.charAt(i);
 switch (instr){
 case "F":
 px = px + lenght * Math.cos(plantAngle);
 py = py + lenght * Math.sin(plantAngle);
 coords.push(px, py);
 break;
 case "-":
 plantAngle = plantAngle + branchAngle;
 break;
 case "+":
 plantAngle = plantAngle - branchAngle;
 break;
 case "[":
 var flag = new TurtleCursor(px, py, plantAngle);
 stack.push(flag);
 break;
 case "]":
 flag = stack.pop();
 px = flag.px;
 py = flag.py;
 plantAngle = flag.plantAngle;
 coords.push(words.charAt(i));
 coords.push(px, py);
 break;
 default:
 trace("unknown command: "+ words.charAt(i));
 break;
 }
}

 71

As shown in Figure 51, the calculation of the coordinates is very

much like the renderInstruction used in the previous version,

except that it stores the coordinates in the coords array instead of

drawing them. One other difference is storing the closing bracket

and the coordinates previous to the branch as well.

Fig.52–Drawing the coordinates

In Figure 52 the for loop reads the coords array one value at the

time and not in jumps of two. This is because there are closing

brackets in between, so the array isn’t of an even number length.

When the character isn’t a bracket, then it means it’s a set of

coordinates. When this occurs it draws a line from where the

cursor last was to the new position, incrementing the counter so it

may correspond to the beginning of the next coordinate pair.

for(i = 0; i < coords.length ; i++){

 var instr = coords[i];

 switch (instr){

 case "]":

 c = coords[i+1];
 if(c != "]"){
 i++;
 a = coords[i];
 b = coords[i+1];
 LS.moveTo(a, b);
 i++;
 }
 else{
 i++;
 }
 break;

 default:

 a = coords[i];
 b = coords[i+1];
 LS.lineTo(a, b);

 i++;
 break;
 }
}

 72

Yet whenever a bracket occurs, it checks if the next position of

the array is a bracket as well. If not, it jumps to the next position

and moves the cursor to that coordinate, incrementing the counter

again so when the counter increments at the top of the loop it

corresponds to the beginning of the next coordinate pair. If it’s

another bracket, then it moves to the next position, since it

already knows what’s in that position isn’t a coordinate pair.

4.5 Version 4

This version finally merges the L-system with Genetic

Programming and generates a pair of evolved children. Also in

answer to the last objective, an interface was implemented to

allow the user to pick the parents and generate the offspring once

he or she has satisfied with the choice.

As we intend to exemplify the evolution of L-system plants

through the application of Genetic Algorithms on the words, in this

program we only simulate the reproduction of parents and the

resulting offspring.

4.5.1 Individuals

For each of the parents we allow the user to pick one of the three

plants we used before on the second version. As shown in Figure

53, each button contains the information of the corresponding

plant and when pressed it sends it to the main program. This is

achieved by taking advantage of the event handlers Flash has.

 73

Fig.53–Example of the code in a button

The on is a mouse event that triggers an action, in this case

whenever the mouse presses the button while the pointer is still

over it.

The depth was an extra parameter added to all plants. This will be

explained more accurately below, but this value is what allows

multiple plants to be drawn at the same time.

Fig.54–Example of an action triggered by clicking on a button

On the main code there is another event handler triggered by the

release of a certain button. Each button has an instance name

attached to it, so this event will only be triggered by that specific

button, as exemplified in Figure 54.

When released the event will run the L-System and Draw

functions, the same ones developed in the second and third

version respectively. The only difference, besides reorganization

on(press){
 w = "X"; // axiom

 var p1 = "X->F[+X][-X]FX"; // production 1
 var p2 = "F->FF"; // production 2

 productions[0] = p1;
 productions[1] = p2;

 branchAngle = 70 * Math.PI / 180; //branch angle
 plantAngle = -90 * Math.PI / 180; // plant angle

 steps = 5; // iterations
 lenght = 1; // unit length

 px = 250; //X coordinate
 py = 149; //Y coordinate

 color = 0x33CC00; // color

 depth = 1; // depth of movie clip
}

plant1_a.onRelease = function(){

 word = LSystem(w, productions, steps);
 Draw(word, branchAngle, plantAngle, steps, lenght, px, py, color, depth);

 storage[0] = branchAngle; storage[1] = plantAngle; storage[2] = lenght;
storage[3] = steps;
}

 74

and cleaning of the code, is that the Draw function takes the new

depth parameter.

This parameter is to be used when creating a new empty movie

clip. As long as the depth of each movie clip is different, it’s

possible to have multiple ones on the same stage, but if they are

the same then the latest will replace the other. This is why we

only have two parents and no more on stage. The first three

plants have a depth of 1 while the other three have a depth of 2.

Thus, whenever a button of the same color is clicked, it will

replace the parent it was previously there, and the same applies

to the offspring, though their values are 3 and 4, so they won’t

erase the parents from the screen.

The storage array saves the parents which were picked to be

later sent to be processed by the Genetic Program. We can’t use

push and pop in this situation because the second parent has the

4th, 5th and 6th positions in the array reserved for it.

4.5.2 Breeding

Once both parents are picked, the user can breed the two plants

and generate a pair of offspring. It doesn’t matter if they’re the

same type of plant or not, as long as there are enough branches

in the plant to provide a good pool, the chances are the offspring

will result different from each other.

 75

Fig.55–Example of the breed button event

The if statement ensures no action is performed if the word of any

of the parents wasn’t generated yet, preventing an error when

performing the crossover later on (Figure 55).

The Segments function is the picking and storage of all branches

occurring in that plant. Once all nodes valid for exchange are

collected, the array is sent to the RandomBranches function to

pick one of those branches, returning an array with the initial and

final positions an the corresponding subtree. Both of these

functions are the same as the ones developed in the third version

of the program.

The last part is sending both parents, the picked branches and

the parameters to generate and draw the offspring.

Fig.56–Children function

The function in Figure 56 starts by creating the string that will

receive the word defining the child and empty one instead of an

breed.onRelease = function(){

 if((word != "") && (word2 != "")){

 nodes = Segments(word);
 nodes2 = Segments(word2);

 randomB = RandomBranches (nodes);
 randomB2 = RandomBranches (nodes2);

 Children (word, randomB, randomB2, storage[1],
storage[0], storage[2], storage[3], 250, 394, color, 3);
 Children (word2, randomB2, randomB, storage[5],
storage[4], storage[6], storage[7], 450, 394, color, 4);
 }
}

Children = function (parentWord, random1, random2, plantAngle, branchAngle,
lenght, steps, px, py, color, depth)
{
 var child = "";
 var i;

 child = Replace(parentWord, random1, random2);

 Draw(child, branchAngle, plantAngle, steps, lenght, px, py, color, depth);
}

 76

undefined variable like most ones in Flash because otherwise the

first character will have an error. Afterwards, it calls the function

Replace to do the switching between the two picked branches

and then it sends it to be drawn like a normal L-system.

Fig.57–Replace function

Taking the parent word where the replacement will take place, the

function in Figure 57 keeps copying the characters of the parent

plant into the string, while outside the limit defined the edges of

the branch.

While the counter is inside the interval defined by the initial and

final position of that branch, the loop just keeps running until the

position just before the end of it is reached, adding the string of

commands of the branch from the other parent plant.

The reason why it’s done this way is to prevent constant

duplication of that string in the word, creating an error, and

because the branch from the other plant is likely of different

length, we can’t use the counter to travel through the string like

before.

Replace = function(words, randomBranch1, randomBranch2)
{
 var newWord = "";
 var i;

 for(i = 0; i < words.length; i++){

 if((i < randomBranch1[0]) || (i > randomBranch1[1])){

 newWord = newWord + words.charAt(i);
 }

 else{
 if(i > randomBranch1[1] - 1){

 newWord = newWord + randomBranch2[2];
 }
 }
 }
 return newWord;
}

 77

4.5.3 Validation

In order to verify if the application reaches the goal of taking two

L-system plants and generating two evolved and distinctively

different children, we’re going to illustrate the program by

presenting screenshots of several different results obtained.

4.5.3.1 Parent Plants

Fig.58–Program interface

As seen in Figure 58, the application has three different buttons

for each parent, each containing the information for the respective

plant. They will draw the parents on the top section of the window

while the children will be presented below.

Fig.59–Two identical parents

 78

As said mentioned before, it’s possible to use the same type of

plants as parents, in this case being the first one (Figure 59). The

reproduction will be like an asexual one despite two parents being

used, because they’re both from the same species.

Fig.60–Different parents

In Figure 60 the first parent is the second plant, while the second

is the third one. The resulting offspring will tend to look much

more different from this sexual breeding than the asexual one

showed before.

4.5.3.2 Asexual Reproduction

Fig.61–Offpring of Plant 1

 79

Fig.62–Offpring of Plant 2

Fig.63–Offpring of Plant 3

As you can see in Figures 61, 62 and 63, the children have clear

differences from their parents, even when they’re both of the

same type.

The amount of change they’ll suffer depends of which branches

were selected. Sometimes they might be minor, like a small

branch turned into the opposite direction as shown in the second

child of the figure 61, but generally they’re quite noticeable.

 80

4.5.3.3 Sexual Reproduction

Fig.64–Offpring between Plant 1 and 2

Fig.65–Offpring between Plant 1 and 3

Fig.66–Offpring between Plant 3 and 2

 81

The resultsseen in Figures 64, 65 and 66 might not look too

different from the ones obtained through the asexual

reproduction, but some of the results obtained by the crossing of

two parents from different species wouldn’t occur otherwise.

4.5.3.4 Bad Offspring

Fig.67–Bad offspring between Plant 1 and 2

Fig.68–Bad offspring between Plant 1 and 3

 82

Fig.69–Bad offspring between Plant 3 and 2

Sometimes occasional bad crossings occur, as can be seen in

Figures 67, 68 and 69. What can be considered as a bad child is

quite relative since we’re dealing with a human factor as a fitness

function and therefore with a relative perception of what’s right

and wrong in a plant.

Generally branches that are too long, bending in odd angles or

showing a completely different structure from the rest of the plant

are viewed as wrong by most people.

4.6 Version 5

Having achieved the goal of using Genetic Programming to

evolve L-System plants and proven the resulting offspring are

quite different from the parent plants even though only a single

generation was produced, this version focuses on increasing the

parent population to allow more combinations to take place.

There were some changes in the interface as well. Besides

providing more information on each selected plant, the user was

given the opportunity to manipulate some of the parameters

(branch angle and unit length).

More importantly, the user now needs to determine the fitness

value of each of the selected plants in order to determine their

 83

probability to generate new offspring, instead of just matching

them directly as before.

4.6.1 Individuals

Unlike the previous version, all the code was built in the stage

instead of having each button sending the information of the

corresponding plant back and forth. The reason for this was to

prevent hunting down where the code was located, especially

when the number of iterations, the size and the branch angles

had to be adjusted.

Also more information was added, such as an identification

number, number of the generation and fitness value. The

identification and the generation numbers are to identify which of

the 10 plants and generation is currently being viewed when the

information is presented to the user. As for the fitness, it’s a

necessary value for the Genetic Programming.

 84

Fig.70–Example of the information of each Plant

As you can see in Figure 70, the initial L-System information and

the X and Y coordinates were kept separate from the plant

structure. This is because the L-System is only calculated for the

parent plants. The offspring result only from the branch exchange

between parent plants, not from constant calculation of the axiom

and productions through the several steps.

In other words, the evolved plants aren’t technically L-Systems

but strings of commands. This was detected in the previous

version and is a trait that was kept in the later ones.

This was because the purpose of the program is to produce

evolved plants, not evolved L-systems (the L-System is simply

//Initial plant variables

var w1 = "F"; //axiom

var productions1 = new Array("F->FF-[-F+F+F]+[+F-F-F]"); // productions

var steps1 = 3; // iterations

// Coords

var xx1 = Plant1._x + (Plant1._width / 2); // X coordinate

var yy1 = Plant1._y + Plant1._height - 2; // Y coordinate

// Plant structure

plant1 = {};

plant1.word = "";

plant1.branchAngle = 20 * Math.PI / 180; // branch angle

plant1.plantAngle = -90 * Math.PI / 180; // plant angle

plant1.lenght = 6; // unit length

plant1.color = 0x128729; // color

plant1.px = xx1; // X coordinate

plant1.py = yy1; // Y coordinate

plant1.fitness = 0; // fitness

plant1.generation = 0; // number of generation

plant1.number = 1; // number of plant (id)

plant1.depth = this.getNextHighestDepth(); //depth of movie clip

 85

used to generate the initial string). If it were the other way around,

then the productions and not the final word would be evolved.

4.6.2 Information Presentation

Initially, when the program starts the information from each plant

is taken and drawn on the stage with the L-System and Draw

functions developed in the previous versions.

Fig.71–Program Interface

As seen in Figure 71, each of the squares where a plant is drawn

is a movie clip with a mouse event attached. Each time the

mouse is released while over one of these movie clips, Flash will

search for the corresponding event and perform the code

contained within it.

 86

Fig.72–Example of Information Presentation code

What the code in Figure 72 does is take the information from the

corresponding structure and send it to be written in the left and

bottom text boxes, as well as clear the information in the update

boxes.

Fig.73–Example of Value Update code

Plant1.onRelease = function(){

 // displays parent plant info

 text_generation.text = plant1.generation;

 text_plantNo.text = plant1.number;

 text_branchAngle.text = plant1.branchAngle * (180 / Math.PI);

 text_unitLength.text = plant1.lenght;

 text_fitness.text = plant1.fitness;

 text_word.text = plant1.word;

 // clears the values in the updating windows

 text_newBranchAngle.text = "";

 text_newUnitLength.text = "";

 text_newFitness.text = "";

}

bt_fitnessUpdate.onRelease = function(){

 // checks if value is valid

 if(text_newFitness.text != "" and text_newFitness.text >= 0 and
text_newFitness.text <= 10){

 // updates the corresponding plant

 if(text_plantNo.text == 1){

 plant1.fitness = text_newFitness.text;

 text_fitness.text = plant1.fitness;

 Draw(plant1.word, plant1.branchAngle,
plant1.plantAngle, plant1.lenght, plant1.px, plant1.py, plant1.color, plant1.depth);

 }

 (…)

 }

}

 87

As shown in Figure 73, the unit length, branch angle and fitness

values can be updated by the user. The new values can be

written in the white text boxes and updated by clicking on the

corresponding button on the right, which triggers another mouse

event.

Before the value is updated, the code checks if the value is within

the determined limits. If it is, it takes the value written on the text

box, writes over the old one in the structure and sends the plant

to be drawn again, so the user can decide if he likes the changes

or not.

4.6.3 Breeding

The breeding of plants takes place when the New Generation

button is pressed. The process is the same as in the previous

version, except there’s a roulette to determine the parent pairs.

The Roulette Wheel Selection is an operator often used in

Genetic Algorithms for the parent selection. Taking the total

fitness and the fitness of each individual, it assigns a probability of

selection to each one, according to the Probability Formula:

P = Favorable cases
 Possible cases

The Roulette Wheel Selection can also be compared to a pie

chart, where each slice corresponds to the fitness of a certain

individual. The larger the probability that individual has, the bigger

the chance of being selected.

 88

Fig.74–Example of the Roulette Wheel Selection code

Because the fitness values are given by the user and there’s no

constant total fitness, an array was used to store the identity

number of the plant the same amount of times of its fitness, as

seen in Figure 74.

Roulette = function(){

 var totalFitness;

 var randomNumber;

 var fitnessArray = new Array();

 var parentPairs = new Array();

 var i;

 var j;

 // filling the fitness array

 for(i = 1; i <= 10; i++){

 if(i == 1){

 for(j = 0; j < plant1.fitness; j++){

 fitnessArray.push(i);

 }

 }

 (…)

 }

 // getting the sum of all fitness values

 totalFitness = fitnessArray.length;

 // picks a random number within the total fitness and stores the picked parent in the array

 for(i = 0; i < 10; i++){

 randomNumber = Math.floor (Math.random () * (totalFitness + 1));

 parentPairs.push(fitnessArray[randomNumber]);

 }

 return parentPairs;

}

 89

After going through all the plants, a random number is generated

between 0 and the total fitness and the identity number of the

corresponding plant is taken out and stored in an array to return

all the picked pairs.

Having the pairs determined, the rest follows the same steps as in

the previous version, taking each pair of plants corresponding to

the identification number in the array, generating the offspring and

drawing the results on the stage.

4.7 Version 6

Although the previous version was successful in randomly pairing

parent plants according to the probability determined by their

fitness and generating plants through several generations, the

code itself was inefficient because of unnecessary duplication.

Besides the code cleaning and the fixing of some minor bugs, the

compression of the L-System word was implemented. This was

done to reduce the amount of drawing commands, and

consequently, the amount of time spent on that task.

The interface was rearranged as well, in order to make it more

intuitive for the user. The information displayed is the same, but

the update buttons were replaced by horizontal sliders, and

instead of 10 small plants, thumbnails and a full view were used

to make it easier to tell which plant is selected and how the

changes look.

4.7.1 Individuals

Taking advantage of a piece of code commonly found in Flash

games to generate multiple enemies and bullets, instead of

having 10 different structures declared separately, empty movie

 90

clips were declared in a for loop and the parameters defined

there.

Fig.75–Example of the generation of the Plants

In Flash it’s possible to refer to a symbol either directly by its

instance name or with _root[…] and a string containing the name.

The previous version used the first approach, but that has the

disadvantage of duplicating code when using more than one

// creates movie clips where plants will be drawn and inserts the general information

for(i = 0; i < 10; i++){

 var newName = "Plant" + (i + 1);

 _root.createEmptyMovieClip(newName,_root.getNextHighestDepth());

 // movie clip position and size

 _root[newName]._x = 250 * i;

 _root[newName]._y = 0;

 _root[newName].width = 240;

 _root[newName].height = 400;

 // X and Y coord of plant

 _root[newName].px = _root[newName]._x + (_root[newName].width / 2);

 _root[newName].py = _root[newName]._y + (_root[newName].height / 2);

 _root[newName].word = ""; // word

 _root[newName].color = 0x128729; // color

 _root[newName].plantAngle = -90 * Math.PI / 180; // plant angle

 _root[newName].fitness = 0; // fitness

 _root[newName].generation = 0; // generation number

 _root[newName].number = i + 1; // plant ID number

 _root[newName].depth = _root[newName].getDepth(); // movie clip depth

}

//Initial plant variables

Plant1.w = "F"; //axiom

Plant1.productions = new Array("F->FF-[-F+F+F]+[+F-F-F]"); // productions

Plant1.steps = 3; // iterations

Plant1.branchAngle = 20 * Math.PI / 180; // branch angle

Plant1.lenght = 6; // unit length

 91

movie clip performing the same tasks. Besides reducing the code,

the second approach can be applied to a virtually infinite amount

of symbols (Figure 75).

4.7.2 Word Compression

One of the things noticed in the previous version was a large

quantity of commands repeated in the row when displayed on the

interface. As mentioned before, the Draw function reads and

performs the commands one by one. This means time, memory

and processing power is being wasted in a task that could be

optimized.

Two approaches were developed to solve this situation. The first

one was to store the word in an array with the first position

reserved for the amount of times it repeated itself before a

different command took place and the second for the command.

This solution would also allow expanding the program and

developing Parametric L-Systems along with the DOL ones.

The second solution was to keep using a string to store the word,

but reserving the first two characters for numerical values (could

be more, but anything above 100 involves plants far too big for

the memory to handle) and the third one for the command.

4.7.2.1 Array Solution

Because it was being tested the possibility to expand the program

to draw Parametric L-Systems as well, the array solution was

implemented on the axiom and productions.

The problem however was that the split and join methods used in

the previous versions don’t work on arrays, and Flash doesn’t

provide similar methods for them. Instead of being able to replace

a certain symbol in all the places it occurs in the string, it was

 92

necessary to read the word symbol by symbol and search for the

corresponding successor in the successor array for each of them.

This involved using several loops within loops and the result was

so heavy on the processor that Flash asked to terminate the

program before any of the plants could be drawn.

4.7.2.2 String Solution

Although this solution could be used to implement the Parametric

L-Systems as well, it has the disadvantage of having a restricted

number of characters for the numerical values. This is especially

true when they don’t use whole numbers.

The compression was tested both during and after the production

of the L-System word. The second one proved more efficient

because in order to apply the production rules it was necessary to

decompress the word again before they could be applied.

Fig.76–Comparison between both Compressions

As it can be seen in Figure 76, if the word isn’t decompressed

before applying the productions the result is an invalid plant, since

the interpreter is expecting for the first two characters to be

numerical values and the third the command.

The only exception to this rule is the brackets. When compressed

as well, the Draw function wasn’t able to restore the position and

angle when it reaches a closing bracket. In order for the plants to

be drawn correctly, the function checks for an occurrence of a

w = FF // axiom
p = F->FF[+F] // production

Original Compressed

0: FF 02F

1: FF[+F] FF[+F] 02 FF[+F]

 Compressed

 02F[01+01F]02F[01+01F]

 93

bracket before converting the first 2 characters into a numerical

value.

Fig.77–Example of the Compression function

Compression = function(words){

 var temp = ""; // temporary word storage

 var i = 0;

 var j = 0;

 var n = 1;

 // reads the word and condenses it

 for(i = 1; i <= words.length; i++){

 // checks the number of occurrences of the same symbol

 if(words.charAt(j) == words.charAt(i)){

 n++;

 if(words.charAt(i - 1) == "[" || words.charAt(i - 1) == "]"){

 temp += words.charAt(i - 1);

 }

 }

 else{

 // doesn't condense the brackets

 if(words.charAt(i - 1) != "[" && words.charAt(i - 1) != "]"){

 if(n < 10){

 temp += words.charAt(i - 1) + String(0) + String(n);

 }

 else{

 temp += words.charAt(i - 1) + String(n) ;

 }

 }

 else{

 temp += words.charAt(i - 1);

 }

 j = i; // places the flag in the position of the new symbol

 n = 1; // resets the counter

 }

 }

 return temp;

}

 94

What the Compression function in Figure 77 does is take the

given word and read it character by character, comparing the

symbols and incrementing a counter until a different one occurs.

When that happens it stores the counter and the command before

setting the counter back to zero and updating the position flag

used in the symbol comparison.

When a bracket occurs, however, it adds it to the temporary string

before updating the counter and the position flag.

4.7.3 Color and Thickness

There was an attempt to make the plants look more realistic by

giving the branches different colors and thickness depending of

their level.

Fig.78–Example of the Color Setting function

ColorSetting = function(words){

 var colors = []; var count = 0; var max = 0; var i;

 for(i = 0; i < words.length ; i++){

 if(words.charAt(i) == "["){

 if(count == max){

 max++;

 }

 count++;

 }

 else{

 if(words.charAt(i) == "]"){

 count --;

 }}}

 for (i = 0; i <= max; ++i){

 colors[i] = Math.floor(255 * (1 - i / (max + 3))) << 8;

 }

 return colors;

}

 95

As shown in Figure 78, the levels are determined by the largest

amount of sub-branches that plant possesses. Thus, the function

travels through the word and counts how many opening brackets

it can find before a closing one occurs. If that number equals to

the maximum number of brackets found, then it’s incremented.

After determining the number of levels, it determines the

hexadecimal value of the green spectrum and stores it in an

array.

In the Draw function, there’s a variable called levels, which

contains the size of the color array. That value is decremented or

incremented every time an opening or closing bracket occurs.

That variable is then applied on the lineStyle method which

determines the line’s color and thickness before it’s drawn.

Fig.79–Example of Color and Thickness Levels in Two Different Plants

As you can see in figure 79, the result looks significantly different

from plant to plant. It’s not that the second plant is badly defined

or an error occurred with the colors and thickness, but the

brackets are defined in a different sequence than from the first

plant. This only proves the L-Systems are counter-intuitive and

hard to predict the result when reading the raw word.

 96

4.7.4 Information Presentation

When the program starts, the L-System information of each plant

is taken and the words are produced. Before the compression

and drawing can take place, the words are clean from

unnecessary code, such as canceling rotations or empty

brackets.

Fig.80–Program Interface

As seen in the Figure 80, the plants in the thumbnails are resized

versions of their original size. If the coordinates were calculated

directly for that size then there would be a larger margin of error

when the values are rounded to fit in the pixels. Also, it would

mean calling the Draw function a second time when the plant is

presented in full size. Instead, a scaling property the movie clips

possess is used, taking advantage of Flash’s vectorial nature.

Like in the previous version, each time one of the plants is

clicked, the information is presented on the left box. The main

difference however was the use of horizontal sliders to facilitate

the picking of the values and immediately present the changes on

the plant, instead of having to click on a button to apply them.

 97

Fig.81–Example of the Fitness onMouseMove event

When the buttons on the sliders are clicked, this triggers an

event. While pressed, it allows the button to be dragged within the

limits of the slider bar, but it also turns a flag to true. When

released the drag method stops and the flag returns to false

(Figure 81).

The onMouseMove event, unlike the other two, is called every

time the mouse moves and not just when it moves the

corresponding button. To keep it from performing code

unnecessarily the flag was used. What the rest of the code does

is to calculate the value corresponding to the coordinates the

button is currently at, then writing it on the text box and storing on

the corresponding variable before sending it to be drawn. The

fitness is the only one that doesn’t redraw the plant because its

value doesn’t change its physical appearance.

fitness_button.onMouseMove = function() {

 if(fitness_button.flag){

 var fitness_val = 0;

 var fitness_plantNo = 0;

 // calculates the position of the button in relation to the
beginning of the bar

 var fitness_xx = fitness_button._x - fitness_button.x1;

 // calculates the corresponding value

 fitness_val = Math.floor((fitness_xx * (fitness_bar.max - 1)) /
fitness_button.distance) + 1;

 // writes the value

 text_fitness.text = fitness_val;

 // updates the plant value

 fitness_plantNo = "Plant" + text_plantNo.text;

 _root[fitness_plantNo].fitness = fitness_val;

 }

}

 98

The New Generation button uses pretty much the same code as

the previous version. The only adaptation was using for loops to

go through the different plants, thanks to the use of movie clips

instead of structures, which reduced the code duplication by 10.

As for the word compression, it wasn’t necessary to make any

adaptations for that because the brackets don’t have a numerical

value attached to them.

4.7.5 Validation

It had been proven the Genetic Programming is capable of taking

two different plants and combine them to generate different

offspring, but that alone isn’t enough to prove the plants are

actually evolving.

According to the theory of Evolution, the fittest individuals pass on

the traits that aid their survival to their offspring through heritage,

while harmful or less fit traits become less likely to occur. If there

isn’t a constant change of their environment that forces them to

adapt in order to survive, then the evolution tends to converge

and stagnate after a certain amount of time.

So, in order to validate the evolutionary process of this program, a

series of tests were made in order to prove the occurrence of

convergence.

Fig.82–Example of some evolved plants

 99

4.7.5.1 Evaluation System

We have the fitness value to determine which plants are apt to

pass on their traits to their children, but how is that value

determined in the first place? Ideally, we would have an

evaluation system that would be able to classify the plants all in

the same manner and help determine the precise value of the

fitness.

There are two ways to analyze the plant, Quantitative and

Qualitative evaluation. The first focus in obtaining objective values

from attributes can be measured. The second uses a subjective

evaluation and interpreters according to certain criteria.

As discussed before, the evaluation of the plants can’t be

determined by numerical values alone because it depends on an

aesthetical evaluation. This means the type of evaluation to be

used is a Qualitative one.

4.7.5.1.1 Qualitative Evaluation

The criteria decided were the Verticality, Excessive Angles, Odd

Branches and Density. More criteria could have been used, but

they wouldn’t be mutually exclusive, which would result in a

duplication of traits and ambiguity in the determination of the

values.

Fig.83–Example of a Good and Bad Verticality criteria
As illustrated in Figure 83, the Verticality criteria checks if the

plant is in a good upright position, or it’s pending too much to one

 100

of the sides, which would make it look unrealistic because of

gravity.

Fig.84–Example of a Good and Bad Excesive Angles criteria

As illustrated in Figure 84, the Excessive Angles criteria checks if

the plant doesn’t have any “broken branches”, which result from

too many rotations in the same direction.

Fig.85–Example of a Good and Bad Odd Branches criteria

As illustrated in Figure 85, the Odd Branches criteria checks if the

branches seem to belong to the same species of the plant. This

occurs more often when selecting plants from different species,

though occasionally, within the same species, a branch will jut out

and give an unnatural feeling.

Fig.86–Example of a Good and Bad Density criteria

 101

As illustrated in Figure 86, the Density criteria checks if the plant

doesn’t thin out and loses its shape as a result from bad branch

replacements.

4.7.5.1.2 Evaluation Problems

Qualitative evaluation is never a transparent process because it

depends of the user’s personal opinion and psychological

background, but in this particular situation it is even less.

The evaluation of the plants is done by taking in the different

criteria and verifying how well each is fulfilled. The trouble is,

because the parent pairing and the branch picking are random,

the appearance of the plants varies greatly and is rarely the

same. This means that, with exception for the initial population,

the evaluation of the plants can only be done once.

Taking into account that in order to prove this Qualitative

Evaluation method is reliable, it’s necessary to evaluate the plants

by an N number of individuals, it becomes impossible to obtain

100% of reliability on the data produced.

Fig.87–Example of a possible exception

Another problem is that not all plants that don’t match the criteria

can be considered as bad plants, as seen in Figure 87.

Depending on the personal interpretation done by the user, this

plant could be considered plausible or not under the right

 102

circumstances (for example, a plant blocked partially by an object

would bend itself in order to reach the sunlight).

As for the criteria themselves, it’s not possible to define an

interval to determine from which point a plant is acceptable and

from which is not. The reason why is for the same reason each

needed a different number of iterations and unit length when they

were first determined. Each plant is different, so the same values

can’t be applied to the others, and the same is true for the

offspring.

4.7.5.2 Convergence

Fig.88–Example of convergence

As more generations take place, the more alike the population

starts to become. This is because the words that form them start

to become more and more alike. However, there is always some

variation, as you can see above in Figure 88.

The amount of generations necessary to reach a minimal state of

convergence depends mostly on the number of parents plants

picked. The larger the amount of parents picked, the more

variation between the words exists. This allows different types of

combinations to occur, especially when the plants are from

different species, but it takes longer to reach a convergence than

by picking a single plant to create the offspring of the next

population.

 103

Chance also plays a part in the amount of generation necessary

for the plants to converge. Because the appearance of the

offspring results from random exchange of branches, there’s no

way to predict the outcome. Sometimes the offspring match the

criteria; sometimes the branch exchange results in bad children,

and sometimes the whole population turns out as invalid plants

which forces the user to start from the beginning.

So the amount of generation it takes to reach a convergence

depends on the population produced and the choices the user

makes. It’s not possible to determine an exact number, but from

the results observed, usually, it starts occurring between 5 to 10

generations, varying with the species in question.

 104

5 Conclusions

As presented in Chapter 1, the problem we set out to solve was:

Is it possible to develop an application that simulates
plants and uses genetic programming to optimize their

graphical representation?

Being the subsequent sub-problems:

• What’s the best structure to simulate 2D plants in a

computer?

• How to optimize a graphical representation through an

Evolutionary Algorithm?

• How to transfer that structure into the Actionscript

language?

• Which are the parameters a user can manipulate to obtain

the best graphical representations?

Knowing these goals, in this chapter we will discuss the final

conclusions drawn from the learnt procedures, the obstacles

found and the achieved results.

We will also discuss the future improvements and applications

that could be produced from this work.

5.1 Achieved Objectives

Taking into consideration the objectives we’ve set out to fulfill and

the results obtained in the final program, we can say all goals

were achieved:

 105

1. To Identify a method to build plants in a computer,

or that can be adapted to work in a computer;

2. Determine how to use the Genetic Programming to

evolve those plants;

3. Adapt the developed approach for Actionscript;

4. Allow some level of control to the user to select and

adjust the plants.

The results presented show that the L-system method was clearly

identified and adapted to work in Flash. Comparing the plants

generated in this application to the ones done with normal LOGO

turtle graphics, they’re exactly the same.

The Genetic Programming implementation deployed to evolve the

parent plants proved to be successful, as the resulting children

are clearly different from their parents. As for the adaptation of

these methods to work in Actionscript and allowing the user to

adjust the plants, these goals were also reached.

The user can pick which plants to breed, determine their fitness

and adjust their size and branch angle. Also, it’s possible for the

user to evolve and adapt his or her plants during several

generations until he reaches what he or she considers the optimal

solution.

5.2 The Application

Since the purpose of this project was to prove we could take an L-

system and evolve it through the use of Genetic Programming, we

can say the application was successful.

Taking a deeper look into the obtained results, although the

offspring go through several generations, they keep a certain

resemblance with the original parents. This is because only the

change of branches occurs in the Genetic Programming, not

altering the information within them.

 106

The recursive nature of the L-systems proved to be frustrating

when dealing with memory issues. When drawing more than eight

iterations the program takes a long time to process and draw the

word, sometimes even stops working. This situation isn’t

something that can’t be fixed however, since it’s a necessary evil

when working with L-systems, but the problem doesn’t occur just

in Flash. Other applications developed with different languages

suffer from this as well.

One of things that was only realized during the implementation of

the application was the difference between the initial population

and the ones generated afterwards. The initial plants are

generated by the L-system, using the axioms, productions and

number of iterations to produce the final word, but the offspring

result from the exchange of branches between the parent plants.

In other words, the children are no longer L-systems. This means

that if we wanted the offspring to have more iterations, to add

more complexity to their appearance, it wouldn’t be possible. This

drawback was detected while developing the 4th version.

Depending what the next objective would be, this would either

have a major or minor impact on the program. If the goal was to

generate a plant but still expect to be able to control the optimal

solution like a normal L-system, then the whole Genetic

Programming approach would have to be reworked in order to

evolve the axiom and the productions instead of the final word.

As for Actionscript as a programming language, the conclusion

drawn from the ongoing learning process and techniques found is

that this language has a great potential, especially when it comes

to developing graphical and interactive applications. The only

drawback was its lack of processing power compared to other

languages, which was visible when calculating several iterations

in a L-System and drawing multiple, detailed plants at once.

 107

5.3 Future Improvements

One of the ideas that came to mind, but there wasn’t enough time

to develop, was to create a plant editor where the user could

generate and personalize his or her own plant. This could be

done by either allowing him or her to edit the axiom, productions

and number of iterations, or by implementing the Stochastic L-

system.

In the beginning it would be necessary to limit the symbols that

could be used and the amount of productions the plant could

have. Also, validations would be in order to prevent errors like

unopened or unclosed brackets. As for the second, there would

be a list of productions that could be picked, depending of the

axiom selected (having productions with the “X” predecessor

when the axiom is “F” would just waste time and memory,

because they would never occur). Introducing productions could

also be accepted.

As for the plant personalization, leaves could be added and the

color of the plant changed. The leaves would be movie clips

placed in the library that would be duplicated and placed at the

end of each branch, aligning them with the rotation calculated by

the interpreter. Changing the color would be done by using sliders

and converting the RGB values into hexadecimal, so they could

be applied to the Line method.

Another future application could be a program capable of

generating plants without the aid of the user. The fitness value

would be calculated by the computer, using some of the criteria

identified and quantifying it into numerical values. This would

allow working with a much larger population and at a much faster

pace, though it’s uncertain if the results would be pleasant to the

eye.

 108

Another idea is having the application eliminating some of the

children that don’t qualify to be part of the population. Things like

branches growing outside the boundaries of the window or,

especially, below the horizon line are situations that aren’t

dependent on an aesthetic evaluation and therefore can be

processed by the computer.

 109

6 References

[1] Azevedo, E, 2005, Desenvolvimento de Jogos 3D e Aplicações em
Realidade Virtual, Campus (eds.), Rio Janeiro.

[2] Bian, R, Hanan, J, and Chiba, N 2004, ‘Statistical data directed evolution of
L-system models for botanical trees: Calibration of an L-System model’. FSPM,
viewed, 15, Oct. 2007,
<http://amap.cirad.fr/workshop/FSPM04/proceedings/4thFSPM04_S5Bian.pdf>.

[3] Bisoi, AK, Mishra, SN and Mishra, J 2004, ‘Growing a class of fractals based
on combination of classical fractals and recursive mathematical series in L-
systems’, MG&V vol. 13, 3, p. 275-288.

[4] Bonfim, D & Castro, L 2005, ‘Projeto Evolutivo de Sistemas Lindermayer:
Uma Abordagem Baseada em Programação Genética’, XXV Congresso da
Sociedade Brasileira de Computação, UNISINOS – São Leopoldo/RS (eds.), Rio
Janeiro.

[5] Borovikov, IA 1995, ‘L-systems with inheritance: an object-oriented extension
of L-systems’. SIGPLAN, Vol. 30, 5, p.43-60, viewed 7 Oct. 2007,
<http://doi.acm.org/10.1145/201937.201944>.

[6] Chen, YP and Colomb, RM 2003, ‘Database technologies for L-system
simulations in virtual plant applications on bioinformatics’. Knowl. Inf. Syst. 5, 3,
p.288-314., viewed, 15 Spt. 2007, <http://dx.doi.org/10.1007/s10115-002-0087-
0>.

[7] Coello, CA 2007, ‘Evolutionary Algorithms: Basic Concepts and Application in
Biometrics, Image Pattern Recognition: Synthesis and Analysis in Biometrics’,
World Scientific, p.289-320, Singapore.

[8] Crawford, S and Boese, E 2006, ‘ActionScript: a gentle introduction to
programming’, Journal Comput. Small Coll. 21, 3, p.156-168.

[9] Fogel, DB 2000, Evolutionary computation, 2nd edition. IEEE Press (eds.),
Piscataway, NY.

[10] Fuhrer, M 2005, ‘Hairs, Textures, and Shades: Improving the realism of
plant Models Generated with L-Systems’, Master Thesis. Department Computer
Science, Calgary.

[11] Grubert, M (2001), ‘Simulating Plant Growth, L-arbor’, viewed, 12, Oct.
2007, <www.acm.org/crossroads/crew/marco_grubert.html>.

[12] Jacob, C 1994, ‘Genetic L-System Programming’, PPSN III - Parallel
Problem Solving from Nature, International Conference on Evolutionary
Computation, Lecture Notes in Computer Science 866, p.334-343, Springer-
Verlag, Berlin.

[13] Jacob, C 1995, ‘Genetic L-System Programming: Breeding and Evolving
Artificial Flowers with Mathematica’, IMS´95, Proc. First International
Mathematica Symposium, Southampton, Great Britain, Computational
Mechanics Publications, p. 215-222, Southampton, UK.

 110

[14] Jacob, C 1995, ‘Modeling Growth with L-Systems & Mathematica’, in:
Mathematica in Education and Research, Volume 4, No. 3, pp. 12-19, TELOS-
Springer.

[15] Jacob, C 1996, ‘Evolving Evolution Programs: Genetic Programming and L-
Systems’, Genetic Programming 1996: First Ann. Conf. MIT Press, Cambridge.

[16] Karwowski, R & Prusinkiewicz, P 2004, ‘The L-system-based plant-modeling
environment L-studio 4.0, In FSPM04. wiewed 30 September 2007,
<http://amap.cirad.fr/workshop/FSPM04/proceedings/4thFSPM04_S5Allen.pdf>.

[17] Koza, JR 1990, Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems, Technical report STAN-
CS90 -1314. Stanford, CA: Stanford University.

[18] Koza, JR 1992, ‘Genetic Programming’, On the programming of computers
by means of natural selection. Cambridge MA: The MIT Press. Cambridge,
Massachusetts.

[19] Koza, JR 1994, Genetic programming II: automatic discovery of reusable
programs, MIT Press, Cambridge, MA.

[20] Koza, JR 2001, ‘Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems’, Proceedings of the 6th
European Conference on Advances in Artificial Life, p.659-668.

[21] Koza, JR 2007, ‘Introduction to genetic programming’, In Proceedings of the
GECCO Conference Companion on Genetic and Evolutionary Computation
(London, United Kingdom, July 07 - 11, 2007). GECCO '07. ACM, New York,
NY, p.3323-3365, viewed 12 Oct. 2007
<http://doi.acm.org/10.1145/1274000.1274116>.

[22] Lecky-Thompson, G 2001, Infinite Game Universe: Mathematical
Techniques. Pub., Charles River Media (eds.), Boston, Massachusetts.

[23] Leutenegger, S and Edgington, J 2007, ‘A games first approach to teaching
introductory programming’, In Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education (Covington, Kentucky, USA, March
07 - 11, 2007). SIGCSE '07. ACM, p.115-118. New York, NY, viewed 22 Oct.
2007, < http://doi.acm.org/10.1145/1227310.1227352>.

[24] Lindenmayer, A & Prusinkiewicz, P 1990, ‘The algorithmic beauty of plants’.
Chapter 1: Graphical modeling using L-systems. Springer-Verlag (eds).

[25] Lluch, J, Camahort, E, and Vivó, R 2003, ‘Procedural multiresolution for
plant and tree rendering’. In Proceedings of the 2nd international Conference on
Computer Graphics, Virtual Reality, Visualisation and interaction in Africa (Cape
Town, South Africa, February 03 - 05, 2003). AFRIGRAPH '03. ACM, New York,
NY, p.31-38, viewed 25 Oct. 2007 <http://doi.acm.org/10.1145/602330.602336>

[26] Quan, L, Tan, P, Zeng, G, Yuan, L, Wang, J and Kang, SB 2006. Image-
based plant modeling. In ACM SIGGRAPH 2006 Papers (Boston,
Massachusetts, July 30 - August 03, 2006). SIGGRAPH '06, p.599-604. ACM,
New York, NY, viewed 25 Oct. 2007,
<http://doi.acm.org/10.1145/1179352.1141929>.

[27] Mook, C. 2003, ActionScript for Flash MX; The Definitive Guide, San
Francisco, CA: O’Reilly & Associates. Ford H Odling-Smee A, New Handmade
Graphics, Beyond Digital Design (eds).

[28] Morais, SF (2003), ‘Computação Evolutiva e Lógica Fuzzy’, Master Thesis.
Universidade Federal do Rio Grande do Sul – ufrgs. Brasil.

 111

[29] Noser, H, Stucki, P, Walser H, 2001, ‘Integration of Optimization by Genetic
Algorithms into an L-System-Based Animation System’, Proceedings Computer
Animation 2001 (November 7-8), pp. 106-112, Seoul, Korea.

[30] Ochoa, G 1998, ‘On Genetic Algorithms and Lindenmayer Systems’,
Lecture Notes in Computer Science 1498, p.335--344.

[31] Olsen, P 2006, The Golden Section: Nature’s Greatest Secret, Wooden
Books Ltd. (eds.), Glastonbury, Somerset.

[32] Onishi, K, Hasuike, S, Kitamura, Y and Kishino, F 2003, ‘Interactive
modeling of trees by using growth simulation’, In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology (Osaka, Japan, October
01 - 03, 2003). VRST '03. ACM, New York, NY, p.66-72, viewed 7 Oct. 2007,
<http://doi.acm.org/10.1145/1008653.1008667>

[33] Pappa G & Freitas A 2006, ‘Towards a Genetic Programming Algorithm for
Automatically Evolving Rule Induction Algorithms’, Lecture Notes in Computer
Science Publisher Springer Berlin (eds.), p. 341-352, Heidelberg.

[34] Parish, YI and Müller, P 2001, ‘Procedural modeling of cities’, In
Proceedings of the 28th Annual Conference on Computer Graphics and
interactive Techniques SIGGRAPH '01. ACM, New York, NY, p.301-308, viewed
12 Oct. 2007, <http://doi.acm.org/10.1145/383259.383292>.

[35] Peterson PR, 1997, ‘A Genetic Engineering Approach to Texture Synthesis’,
Simon Fraser University School of Computing Science Theses, viewed 12 Oct.
2007 <http://fas.sfu.ca/pub/cs/theses/2005/>
[36] Prusinkiewicz P, 1986, ‘Graphical applications of L-systems’, Proceedings of
Graphics Interface '86 / Vision Interface '86, p. 247-253.

[37] Prusinkiewicz, P, Lindenmayer, A and Hanan, J 1988, ‘Development models
of herbaceous plants for computer imagery purposes’ In Proceedings of the 15th
Annual Conference on Computer Graphics and interactive Techniques R. J.
Beach, Ed. SIGGRAPH '88, p.141-150ACM, New York, NY, viewed 7 Oct. 2007,
<http://doi.acm.org/10.1145/54852.378503>.

[38] Prusinkiewicz, P & Hanan J 1990, ‘Visualization of botanical structures and
processes using parametric L-systems’. In D. Thalmann (eds.), Scientific
Visualization and Graphics Simulation, p.183–201, Chichester, J. Wiley Sons.

[39] Prusinkiewicz P 1993, ‘Modelling and visualization of biological structures’,
In Proceedings of Graphics Interface ’93, p. 128–137.

[40] Prusinkiewicz, P, Hammel, MS and Mjolsness, E 1993, ‘Animation of plant
development’, In Proceedings of the 20th Annual Conference on Computer []
Graphics and interactive Techniques SIGGRAPH '93, p.351-360. ACM, New
York, NY, viewed 13 Oct. 2007, <http://doi.acm.org/10.1145/166117.166161>.

[41] Prusinkiewicz P, Hammel M., Hanan J and Mech, R 1996, ‘L-systems: from
theory to visual models’, In proceedings of the 2nd CSIRO symposium on
computational challenges in life science.

[42] Prusinkiewicz P, 1997, Modelling of Spatial Structure and Development of
Plants: Review.

[43] Prusinkiewicz, P, Hanan, J & Mech, R 2000, ‘An L-system-based Plant
Modeling Language’, Lecture Notes in Computer Science 1779, p.395–410.
Springer- Verlag, Berlin.

[44] Roden, T, and Parberry, I 2004, ‘From Artistry to Automation: A Structured
Methodology for Procedural Content Creation. In Proceedings of the 3rd

 112

International Conference on Entertainment Computing (Eindhoven, The
Netherlands, September 1-3), p.151-156.

[45] Roden, T, and Parberry, I 2005, Procedural Level Generation, Game
Programming Gems 5, Charles River Media (eds.).

[46] Rodkaew Y, Chongstitvatana P, Siripant S, Lursinsap, C 2004, ‘Modeling
plant leaves in marble-patterned colours with particle transportation system’, In
FSPM04, viewed 13 Oct.
2007,http://amap.cirad.fr/workshop/FSPM04/proceedings/4thFSPM04_S7Rodka
ew.pdf

[47] Russel S, Norvig P, 2003, Inteligência artificial. 2ª Edição, Campus (eds.),
Rio Janeiro, Brasil.

[48] Salomaa, A, 1987, Formal languages, Academic Press Professional, Inc.,
San Diego, CA,

[49] Samuel, E 2007, ‘M-Systems, A Conformal Approach to Plant
Morphogenesis’. Uppsala Universitet.
<http://www.math.uu.se/studie/grundutb/exjobb/exarbeten.php>

[50] Sims, K. 1991, ‘Artificial Evolution for Computer Graphics’, In SIGGRAPH
'91: Proceedings of the 18th annual conference on Computer graphics and
interactive techniques, p.319--328.

[51] Tan, P, Zeng, G, Wang, J, Kang, SB, and Quan, L 2007, ‘Image-based tree
modeling’, In ACM SIGGRAPH 2007 Papers (San Diego, California, August 05 -
09, 2007). SIGGRAPH '07. ACM, New York, NY, p.87, viewed 3 Oct. 2007,
http://doi.acm.org/10.1145/1275808.1276486.

[52] Vega, FF 2001,’Parallel and distributed Genetic Programming Models with
applications to Logic Sintesis on FPGAs, PhD Thesis. Computer Science
Department, Universidad Extremadura. Espanha.

[53] Wonka, P 2006, ‘Procedural modeling of architecture’. In ACM SIGGRAPH
2006 Courses (Boston, Massachusetts, July 30 - August 03, 2006). SIGGRAPH
'06. p.17-83, ACM, New York, NY, viewed 11 Oct. 2007
<http://doi.acm.org/10.1145/1185657.1185713>.

	TESE MESTRADO FINAL - Index2.pdf
	TESE MESTRADO FINAL2.pdf

