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Resumo 

 

Tirando vantagem dos poderosos mecanismos existentes na 

natureza, o objectivo deste trabalho foi o de criar uma aplicação 

capaz de evoluir estruturas de plantas em Flash. Isto foi possível 

através da combinação da gramática L-System, que define a 

arquitectura da planta, e da Programação Genética, que evolui a 

planta produzida e gera uma população de filhos que diferem 

bastante dos pais originais em apenas algumas gerações.  

O que este programa faz é a Validação da Sintaxe, a Produção e 

a Interpretação da planta L-System, pegando no axioma e regras 

de produção dadas e fazendo um constante substituição dos 

símbolos pelos seus respectivos sucessores durante várias 

iterações. De seguida a palavra é lida e cada comando 

interpretado para fazer o seu desenho.  

Quando as diferentes plantas são atribuídas com um valor de 

aptidão pela sua aparência estética, as palavras que compõem a 

sua estrutura são enviadas para a Programação Genética a fim de 

servirem de indivíduos. Aí os indivíduos são seleccionados e os 

seus ramos aleatoriamente trocados entre pares de plantas de 

forma a gerar um par de plantas filho, sendo de novo enviadas 

para a Interpretação do L- System de forma a serem desenhadas.  

Uma vez que as novas gerações de plantas são visualmente 

distintas das estruturas dos pais, conseguimos evoluir plantas L-

Systems através da Programação Genética. 
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Abstract 

 

Taking advantage of the powerful mechanisms existing in nature, 

the purpose of this work was to create an application capable of 

evolving a plant structure in Flash. It does so by combining the L-

System grammar, which defines the architecture of the plant, and 

Genetic Programming, which will evolve the produced L-Systems 

and generate a population of children quite different from their 

original parents in just a few generations.  

What this program does is the Syntax Validation, the Production 

and the Interpretation of the L-System plant, taking the given 

axiom and production rules and doing a constant replacement of 

the symbols with their respective successors during several 

iterations. Then the word is read and each command interpreted to 

draw the plant. 

When the different plants are given a fitness value for their 

aesthetic appearance, the words that define their structures are 

sent to the Genetic Programming to serve as individuals. There 

the individuals are selected and their branches randomly switched 

between parent plants in order to create a pair of child plants, 

being those sent again to the L-System's Interpretation step to be 

drawn. 

Since the new generations of plants are visually distinct from their 

parents’ structures, we can evolve L-System plants through 

Genetic Programming. 
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1 Introduction 

The natural world is a place of wonders and miracles, a palette 

full of ideas and hidden lessons just waiting to be discovered. 

Taking those natural mechanisms to simulate them in a virtual 

world is just another way of exploring new concepts and uncover 

new possibilities. 

This work explores some of the systems inspired by natural 

systems. It takes the unlimited power Evolutionary Algorithms 

have to offer and attempts to evolve the plants produced by L-

system grammatical structures. The global goal is to create an 

application which produces plants and allows the user to choose 

and evolve them within a Flash environment. 

This chapter will explain how each of the topics was reached and 

the context this work is set in, along with the identified problems 

and proposed objectives. 

 

1.1 Simulation and Visualization of Plants  

How would you represent a plant in a computer? 

It might sound like a silly thing to ask, but many people who are 

interested in simulating flora have come across some issues in 

trying to answer this question. If even a child knows how to draw 

a tree, then why can’t the computer do the same? 

Through observation of the real thing, a person builds a mental 

representation of what a plant should look like, taking the 

structure and all of its components through the same way. 

However the computer doesn’t think, nor does it understand what 
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a plant is without being told how it should process the information 

it receives.  

So how can a computer represent a plant without knowing how it 

should look like? Someone has to tell it what the structure of the 

plant is. Because computers are mathematical machines, the 

answer has to be in a language it can understand. This brings us 

back to the original question: how to represent a plant. For 

centuries people have been trying to develop a formula that could 

explain how plants develop and grow (Grubert, 2001). The golden 

ratio was perhaps the first equation to explain how the proportion 

of all sections of the plant worked, but still it did not answer how 

the structure behaved (Olsen, 2006). 

Many systems have been developed in order to solve this 

question, especially in recent years when computers came to aid 

in complex calculations (Rodkaew et al., 2004; Tan et al., 2007; 

Lluch et al., 2003), but no system offers a better solution so far 

than that developed by Aristid Lindenmayer in 1968 (Cited in 

Prusinkiewicz & Lindenmayer, 1990). The Lindenmayer systems, 

or L-systems as they are commonly known, are a formal grammar 

(Salomaa, 1973) that not only show how the structure of a plant is 

organized but allow us to see how it develops as it grows. Also, 

it’s a universal language, as it can be used to explain any given 

plant (Lindenmayer & Prusinkiewicz, 1996). 

Summarily, the L-system takes in the axiom (Prusinkiewicz & 

Lindenmayer, 1990), a word composed by several symbols, 

which describe the structure of the plant, and on each iteration, or 

step of the growth, replaces the existing symbols by new ones, 

according to the production rules, rules which are used to 

determine how the growth will exactly happen (Lindenmayer & 

Prusinkiewicz, 1996).  
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This is basically what happens in the biological growth of the 

plant, the system that served as inspiration to Lindenmayer in 

1968 (Cited in Prusinkiewicz & Lindenmayer, 1990). 

 

1.1.1 Evolution of L-Systems  

 “Lindenmayer System is a grammar-like formalism that 

allows the generation of plant models. As a result of its 

grammatical derivation, there are strings containing the 

information used to draw a model of a biological organism; 

in the present case, a plant. Therefore, the grammar can 

be viewed as the genetic information of a plant. This 

information can be manipulated by an evolutionary 

algorithm, which is used to investigate the effects of 

applying genetic operators to evolve derived L-System 

plants“(Bonfim & Castro, 2005). 

 

Despite of all expansion and refinement it suffered at the hands of 

other scientists (Grubert, 2001; Samuel, 2007; Chen et al., 2003; 

Bisoi et al., 2004; Borovikov, 1995), who wanted to improve this 

tool to be able to represent and simulate much more realistic 

trees and be able to predict their development under several 

circumstances, the L-system still has some limitations (Grubert, 

2001; Prusinkiewicz 1986, 1993; Prusinkiewicz et al., 1990, 1994, 

1997, 2000). A major one is the fact these plant structures cannot 

evolve (Jacobs, 1994, 1995a, 1995b, 1996; Noser et al., 2001; 

Ochoa, 1998). 

What the L-system does is represent the genetic information of 

the plant and rules that determine its growth and development: in 

other words, the information contained within the genes 

(Lindenmayer & Prusinkiewicz, 1996). However the growth of an 

individual isn’t determined just by that information, but also by 

outside factors and physical attributes.  
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A good example is a plant placed next to a window but not 

receiving direct sunlight. It will still grow according to the genetic 

information characteristic of its species, but this individual in 

particular will bend towards the window, in an attempt to receive 

as much sunlight as possible.  

In order to produce plants that behave in a more realistic manner, 

Evolutionary Algorithms (Fogel, 1960; Rechenberg, 1973; 

Schwefel, 1975, cited in Coello, 2007), often Genetic Algorithms 

(Holland, 1975, cited in Coello, 2007), are used. By simulating the 

processes used by the Natural Selection to evolve populations of 

individuals (Darwin, 1859, cited in Russell & Norvig, 2003), these 

algorithms can optimize and solve the given problem (Golberg, 

1989; Russell & Norvig, 2004). In this case, evolve a given 

population of plants, as seen further below.  

 

1.2 Genetic Programming  

Why Genetic Programming and not other Evolutionary 

Algorithms? 

When talking about Evolutionary Algorithms (Fogel, 1960; 

Rechenberg, 1973; Schwefel, 1975, cited in Coello, 2007), 

Genetic Algorithms (Holland, 1975, cited in Russell & Norvig, 

2004) usually come to mind. They are the most popular and the 

most commonly used, but that doesn’t mean they are often the 

best approach. 

The main difference between Genetic Algorithms (Holland, 1975, 

cited in Coello, 2007) and Genetic Programming (Koza, 1992) is 

in how the individuals within the population are represented in 

each. In the Genetic Algorithms they are traditionally arrays of bits 

of a fixed sized, while in the Genetic Programming they are small 

programs organized in a tree structure. 
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Because each node can take in operations (arithmetic, logic, etc), 

atomic values, or even L-system symbols, this makes the Genetic 

Programming more suitable to handle the evolution of L-system 

plants (Koza, 1992, 1993, 2007; Coello, 2007). Also, the fact tree 

structures aren’t limited in size like the arrays in the Genetic 

Algorithms, is another advantage, considering the recursive 

nature of the L-systems can make the axioms grow greatly (Koza, 

1992, 1993, 2007). 

However, it’s not mandatory to use Genetic Programming to 

evolve L-systems though. For example, in one application it’s 

used an array to store the three components that define all L-

systems (Bian et al., 2004), while another simply generates the 

axiom before sending it to evolve (Bonfim & Castro, 2005).  

The first approach is more suitable to evolve through Genetic 

Algorithms, because the size of the individual doesn’t vary during 

the evolutionary process, only the information contained within it. 

The second one works better with Genetic Programming because 

of the similarities the axiom and the tree structure share.  

Both techniques are valid. Basically, it all depends on which 

approach the programmer thinks is best to solve the problem. 

Some even prefer to use systems outside the Evolutionary 

Algorithms or the L-systems, like Image Processing (Quang et al., 

2006) or Particle Systems (Rodkaew et al., 2004) to reach the 

representation of the plants. Again, this is all up to the 

programmer. 

 

1.3 Computer Games and Graphical Applications   

So what’s the connection between generating virtual plants and 

computer games? 
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Most people outside the world of computer games usually don’t 

realise it, but the graphical content necessary to produce them 

and the amount of resources it takes is a big issue within games 

(Lecky-Thompson, 2001; Azevedo, 2005; Leutenegger & 

Edgington, 2007). This is not a new situation however, but 

something that has always been part of them. 

Basically, there are two approaches when developing graphics for 

games. The first one is Handmade Graphics, very unique looking 

images produced by artists (Sims, 1991). Their strength is on the 

highest level of quality, but there are some drawbacks. Besides 

the amount of money and time they take to produce and the 

amount of memory they often take, they limit the flexibility of the 

game itself (Azevedo, 2005). 

After being created it’s very hard to change the image. If it’s 

necessary to use a different one in a later step of production, this 

means having to redraw it again, wasting more time and money 

again. The same applies to any variations in order to avoid 

overpopulation of duplicated items, which only consume even 

more memory and other valuable resources. 

The second approach is Procedural Content Generation, the use 

of code to generate the graphics, and other elements, on the fly 

(Gibbs, 2004; Roden & Parberry, 2004, 2005). Compared to the 

handmade ones, the procedural graphics take very little space, a 

few kilobytes of code to the couple of megabytes for full images. 

Back in the beginning of computer games, when memory was a 

very limited resource, having algorithms to generate the different 

levels was an efficient way to save space (Gibbs, 2004; Roden & 

Parberry, 2004, 2005; Prachyabrued et al., 2007), but there are 

some drawbacks on this approach as well. Besides the great 

amount of time and effort it can take to develop the code, 

unpredictable and undesirable results can happen, especially 

when dealing with graphical content (Gibbs, 2004; Roden & 
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Parberry, 2004, 2005; Prachyabrued et al., 2007). A good 

example is particle systems. Despite the great graphical quality 

computers have today, it’s still not possible to render fire or water 

out of pure code without people saying it looks fake. 

A way to get around this is using hybrid versions to take a pre-

fabricated work and have the code altering and generating new 

objects out of it. This is the approach most games take today 

(Prachyabrued et al., 2007; Parish & Müller, 2001; Wonka, 2006). 

The connection this has with the artificial evolution of virtual plants 

is that L-Systems and Genetic Programming are ways of 

generating Procedural Content. Both of them generate the 

content on the moment of request, simply taking the rules that 

define them to produce the end result. Noise, fractals, particle 

systems, pseudo-random generators and many others, are all 

forms of Procedural Content Generation. 

As for the connection with games, because there has been an 

increasingly higher demand for richer, more detailed and longer 

gaming experiences, the market of games has grown from a small 

handful of people to whole teams of programmers, artists, 

designers and such working together to strive in a highly 

competitive market (Roden & Parberry, 2005; Azevedo, 2005). 

In order to aid this continuous search for diversity and originality, 

limited by deadlines and tight budgets, the use of externally 

developed resources has become more and more indispensable, 

both for programmers and designers, and many of these tools are 

based on Procedural Content to generate their elements. 
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1.3.1 Developed Applications  

Though the concept of L-systems has been around for some time, 

the idea of developed applications is fairly recent. This is mostly 

because of the great boost computers experienced in terms of 

memory, graphical and processing capacities in the late years. Up 

until then, the machine couldn’t keep up with the requirements of 

most heavy computations. In the case of L-systems, their 

recursive nature and the exponential amount of processing power 

require to process greater number of iterations. 

Currently, there are many applications developed, too many to 

list. Some are simple experiments or small programs done to 

illustrate how the L-systems work, while others are more complex 

works that can realistically simulate the different components of 

plants and their behaviour under several circumstances. L-Studio 

(Prusinkiewicz et al., 2000; Prusinkiewicz & Karwowski, 2004) 

and SpeedTree are two good examples of professional 

applications. The first one is a more scientific driven program 

used to simulate and study plants in their different stages of 

development with the possibility to put it under several different 

kinds of environment to see how those affect their growth. 

 

Fig.1 – L-Studio. Taken from http://algorithmicbotany.org/lstudio/whatis.html 
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SpeedTree on the other hand is a middleware specifically 

designed to produce realistic trees to populate games. It can 

procedurally create real-time, realistic 3D trees, as well as 

simulate wind and other effects on them.  

 

Fig.2 – Game done with aid of SpeedTree. Taken from http://www.speedtree.com/ 

 

1.4 Flash Actionscript 

Why Flash? 

Like in the examples presented above, most developed 

applications are done in either C++ or Java. They are powerful 

and universal languages, but they aren’t very intuitive when in 

comes to graphical development. For example, to create a rolling 

ball animation in Java, it’s necessary to use several lines of 

scaffolding code before one reaches the drawing and animation 

part itself. In Flash the same doesn’t happen (Crawford & Boese, 

2006). 

Flash is a tool meant to deal with graphical content and 

animation, especially when it comes to the web. Unlike many 

other applications, it offers a great deal of control and freedom to 

the user. When doing a web page for example, one doesn’t have 
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to worry about the code necessary to define the positions of the 

elements (Rosenzweig, 2003; Rhodes, 2007; Mook, 2003; Makar, 

2003).  

Another important aspect about Flash is interaction. It isn’t just 

limited to generating movies and other one-way messages, so to 

speak, but it can also receive information and process it. The best 

known example is likely the amount of flash games found in the 

internet. Although most of them are simple, casual 2D games 

compared with their bigger cousins produced for consoles and 

PCs, they have a great popularity (Crawford & Boese, 2006; 

Rosenzweig, 2003; Rhodes, 2007; Mook, 2003; Makar, 2003). 

However, all of this would be meaningless if there wasn’t a 

programming language underneath to control it all. Actionscript is 

similar to Javascript in its structure, though more high-level. This 

language can control all the elements populating the movie clip 

and the movie clip itself. Also, it’s possible to change their 

properties directly through code which is more reliable and more 

efficient than trusting the timeline and doing things by hand 

(Crawford & Boese, 2006; Rosenzweig, 2003; Rhodes, 2007; 

Mook, 2003; Makar, 2003). 

Comparatively to other programming languages, like C++ or Java, 

Flash has some disadvantages (Rosenzweig, 2003). Some of its 

main weaknesses are: 

‐ Being timeline based; 

‐ Slow when processing heavy environments; 

‐ Not really meant for 3D graphics; 

‐ Having a limited feature set. 

 

But in terms of strengths, besides what was already mentioned, 

Flash has (Rosenzweig, 2003): 
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‐ A rapid development rate; 

‐ The ability to work with many different multimedia; 

‐ A good delivery; 

‐ And is easy to use and program. 

 

These are the reasons why Flash is considered mostly as a web 

tool. It doesn’t possess the requirements to produce major games 

or movies. Though with all the distribution the Internet has today, 

and its ability to be available immediately and free, Flash has 

become quite popular.  

 

1.5 The Problem and Objectives   

In recent years research has been done to expand the L-systems 

and to include the evolving nature of real plants by combining it 

with Evolutionary Algorithms, such as Genetic Programming. The 

aim of this work is to develop an application to explore this 

relationship between the two in a 2D environment.  

Taking into account the topics presented previously and the fact 

that there was no Flash application found for the purpose, we are 

lead to believe it would be interesting to deepen the following 

question.  

 

1.5.1 Problem 

Is it possible to develop an application that simulates plants 
and uses genetic programming to optimize their graphical 

representation?  
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1.5.1.1 Sub-problems:  

• What’s the best structure to simulate 2D plants in a 

computer? 

• How to optimize a graphical representation through an 

Evolutionary Algorithm? 

• How to transfer that structure into the Actionscript 

language? 

• Which are the parameters a user can manipulate to obtain 

the best graphical representations? 

 

 

1.5.2 Objectives 

By having the sub-problems defined, it’s easier to settle a strategy 

on how to tackle the main problem, and through the sub-problems 

it’s possible to define the goals the application must try to fulfil:  

1. Identify a method used to build plants in a computer, or 

that can be adapted to work in a computer; 

2. Determine how to use the Genetic Programming to evolve 

those plants; 

3. Adapt the developed approach for Actionscript; 

4. Allow some level of control to the user to select and adjust 

the plants. 

 

1.6 Limitations 

There are some things that pose an obstacle to the fulfilment of 

the milestones that are the objectives: 

‐ The time available for the project; 

‐ The knowledge of Actionscript 2.0; 

‐ The lack of related code in Actionscript to study. 
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1.7 Dissertation Structure 

After this introduction, Chapter 2 presents in more detail L-

systems and Genetic Programming, as well as the main 

components on which the application is based on.  

Chapter 3 explains the System Architecture and how the theories 

discussed in Chapter 2 where adapted to build the conceptual 

model.  

Chapter 4 discusses the System Implementation through the 

different version of the program and how the conceptual model 

was translated into code, as well as the different improvements 

and changes each suffered. 

Finally Chapter 5 presents the Final Conclusions and Future 

Improvements. 
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2 Theoretical Setting 

2.1 Introduction 

In this chapter we will take a deeper look on how exactly L-

systems and Genetic Programming work. Both of them have 

roughly thirty years of work added since their first appearance in 

the scientific community, which makes it very difficult to cover all 

the developed work so far. 

L-systems have a huge ramification of different varieties, but 

basically all of them have roots on four main ones, which will be 

addressed in more detail. Because the problem question only 

deals with a 2D environment, 3D plants will not be discussed, as 

well as timed L-systems because the goal isn’t to visualise a plant 

in its several stages of development. 

As for the Genetic Programming, the different operators which 

dictate the way it works are pretty much the same in all developed 

applications. However, because most people are more familiar 

with Genetic Algorithms, comparisons are done in all the points to 

better illustrate how each section work. 

 

2.2 L-Systems 

L-systems are a formal grammar used for plant structure 

generation, developed by Aristid Lindenmayer.  

Originally, it was meant to reproduce the growth of simple plant 

structures, but the system was so well received by the scientific 

community, it received contribution from botanists, 

mathematicians and computer programmers, expanding and 
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refining it into a multitude of varieties (Lindenmayer & 

Prusinkiewicz, 1990; Grubert, 2001; Prusinkiewicz, 1997).  

Because there are too many different types of L-systems, only the 

four main ones will be explained, as they cover the deterministic, 

parametric, context-free and stochastic varieties. They will be 

presented by order of complexity (Grubert, 2001; Fuhrer, 2005). 

 

2.2.1 DOL-Systems  

The DOL-System is the simplest of all the different types of L-

Systems. It uses a tuple  G = <V, w, P>, which consists of: 

• V (the alphabet)  the set of variables; 

• ω (the axiom or word) is the equation defining the initial 

state of the system, formed by symbols of V; 

• P is the set of production rules, or productions, defining 

how the variables will be replaced by the combinations of 

symbols. The productions consist of a predecessor and a 

successor. 

 

The process starts by picking the word and replacing the symbols 

within it according to the rules defined in the productions. Once all 

the productions have been applied, the axiom will become a new 

word and the process can repeat itself. Each replacement step is 

an iteration which represents a different point in time as the 

system grows and develops (Grubert, 2001; Prusinkiewicz & 

Lindenmayer, 1990, 1996; Prusinkiewicz et al., 1988; Bonfim & 

Castro, 2005; Onishi et al., 2003; Prusinkiewicz, 1997). 
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Fig.3 – Example of DOL system. Adaptation from Prusinkiewicz & Lindenmayer, 1990  

As can be observed in the example shown in Figure 3, the initial 

word invokes the first production, but in the second iteration there 

has been the replacement of both symbols in a single step. This 

illustrates the parallelism feature typical in l-systems, mimicking 

nature in the sense of several changes happening in different 

places in the same time. (Grubert, 2001; Envall, 2007; Bonfim & 

Castro, 2005; Prusinkiewicz et al., 1988). 

Unlike the Chomsky grammar, a formal language similar to the l-

systems, terminals (symbols that can’t be replaced) and non-

terminals (symbols that can be replaced) are not used in l-

systems. This is because there isn’t a final goal to be reached. 

(Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al., 

1988; Grubert, 2001; Bonfim & Castro, 2005). Also, because all 

words produced are valid models, the empty word λ can be used 

in a production. As long as all the symbols belong to the alphabet 

V, they are valid (Grubert, 2001; Bonfim & Castro, 2005; 

Prusinkiewicz et al., 1988). 

 

V: aR, aL, bR, bL 

w: aR 

P1: aR → aLbR 

P2: aL → bLaR 

P3: bR → aR 

P4: bL → aL 

 

aR 

aLbR 

bLaRaR 

aLaLbRaLbR 

… 
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2.2.2 Graphical Interpretation  

2.2.2.1 Tree Structure 

One interesting aspect of the l-system word is that it can be 

interpreted as a tree structure. Each symbol represents a node 

and by reading the word from left to right, with the left-most 

symbol being the root, we obtain a structure reminiscent to real 

plants (Prusinkiewicz & Lindenmayer, 1990, 1996; Grubert, 2001; 

Envall, 2007; Prusinkiewicz et al., 1988). These structures will be 

very much like straight lines, unless we use the branching 

structure so well known in plants. To achieve that we need to use 

two additional symbols, the square brackets to define the 

beginning and end of a branch V’ = V ∪ { [ , ] } (Grubert, 2001; 

Envall, 2007; Prusinkiewicz et al., 1988). 

When the open bracket ( [ ) occurs the values of the current node 

and hidden parameters are stored, as well as the position where it 

occurred. The word is drawn normally until another open bracket 

or the corresponding closing bracket ( ] ) occurs. When the 

bracket closes the stored values for that bracket pair are then 

returned and replace the previous ones. The rest of the tree is 

drawn from that saved point and the section that was enclosed by 

the brackets is a sub-tree that sticks out much like a branch from 

the main trunk (Grubert, 2001; Envall, 2007; Fuhrer, 2005). 

 

Fig.4 – Example of tree representation of the word “A [+ B] [C [D] E] F”. Adaptation from 

figure 1 of Grubert (2001). 



 18 

2.2.2.2 Turtle Representation 

Although the tree structure helps visualizing the l-system word, it 

doesn’t give a clear idea of the appearance of the model. In order 

to have a full idea of their appearance the LOGO turtle graphics 

are used (Grubert, 2001; Prusinkiewicz & Lindenmayer, 1990, 

1996; Prusinkiewicz et al., 1988; Fuhrer, 2005). 

The turtle is a cursor that moves and rotates in a Cartesian 

coordinate system, depending on the instructions given and the 

defined angle. Examples of some of the commands are (Grubert, 

2001; Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et 

al., 1988; Envall, 2007; Fuhrer, 2005; Onishi et al., 2003): 

F : Move forward a unit and draw a line from the last 

position to the current one; 

f : Move forward a unit, without drawing a line; 

+ : Rotate the cursor counter-clockwise by angle α; 

- : Rotate the cursor clockwise by angle α. 

 

Fig.5 – Example of a turtle representation of a L-System. Adaptation from figure 2 of 

Grubert, (2001) 
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As it can been seen in the example shown in Figure 5, each 

iteration replaces each unit of the previous one with the whole 

structure previously generated, creating a model with increasing 

detail. This happens as each predecessor (in this case just one) 

is replaced by its correspondent successor (Prusinkiewicz & 

Lindenmayer, 1990, 1996; Prusinkiewicz et al., 1988; Envall, 

2007; Chen et al., 2003; Onishi et al., 2003). 

Values like angles and unit length are hidden parameters. They 

are set before the iterations take place and do not change as they 

go (Envall, 2007; Prusinkiewicz et al., 1988). 

 

2.2.3 Parametric L-Systems  

A problem with the DOL system is that when you need to use 

different sizes or angles, it’s necessary to find a denominator 

common to all and combine several transformation symbols to 

achieve a certain rotation or translation (Grubert, 2001; 

Prusinkiewicz & Lindenmayer, 1990, 1996). 

The Parametric L-System allows adding different parameters to 

different symbols. These parameters can be used to store 

information about the model from age and size to angle and time 

(Grubert, 2001; Envall, 2007; Prusinkiewicz & Lindenmayer, 

1990, 1996; Prusinkiewicz & Hanan, 1990; Prusinkiewicz, 1997). 

 

 

 

 

 

Fig.6 – Example of a Parametric L-System. Adaptation from Grubert (2001) 

V: { A } 

w: A (2) 

P1: A (a): a > 0 → A (a – 1) 

Pa: A (a): a <= 0 → λ 

 

A (2) => A (1) => A (0) => λ 
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As can been seen in the example shown in Figure 6,  the symbol 

is followed by the parameter. Like in the DOL system, every time 

the productions occur the value is replaced accordingly, though 

the conditions have to be fulfilled for the value to be altered 

(Prusinkiewicz & Lindenmayer, 1990, 1996; Grubert, 2001; 

Envall, 2007; Fuhrer, 2005; Prusinkiewicz, 1997). 

In the turtle interpretation, in order to draw the model the 

operators used are a bit different from the ones used in DOL 

systems (Envall, 2007; Bonfim & Castro, 2005; Prusinkiewicz, 

1997): 

F(a) : Move forward a unit of length a > 0 and draw a line from 

the last position to the current one; 

F (a) : Move forward a unit of length a > 0, without drawing a line 

+(a) : Rotate the cursor by angle a. Counter-clockwise if a is 

positive, clockwise if negative.  

 

Fig.7 – Example of a Parametric L-System. Adaptation from figure 1.40 from Envall 

(2007) 

 

2.2.4 Context-Sensitive L-Systems  

Up until now we’ve only seen context free systems (OL-Systems), 

systems that don’t take into consideration the context its 

predecessor is in, but any living organism suffers influence from 

its surrounding environment which affects its growth. 
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The Context-Sensitive L-System takes into consideration the 

different interactions between the different sections of the word by 

verifying what’s happening on the right and left of the said symbol 

(Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al., 

1988; Envall, 2007 Bonfim & Castro, 2005; Fuhrer, 2005). 

 

 

 

 

 

Fig.8 – Example of a Context-Sensitive L-System. Adaptation from Prusinkiewicz & 

Lindenmayer (1990) 

As you can see in Figure 8, the productions use the < and > 

brackets to check what is happening on the left and right context, 

respectively. It’s not mandatory to check both sides, as illustrated 

in the second production, but in either case the production will 

only be applied if the specified context occurs. (Grubert, 2001; 

Prusinkiewicz & Lindenmayer, 1990, 1996; Prusinkiewicz et al., 

1988; Envall, 2007; Chen et al., 2003). 

In the example from Figure 8 the first production checks if there’s 

a symbol A on the left and a symbol C on the right of the symbol 

B. In case that’s true then the symbol B takes the value n in A and 

replaces its own with it. The second production only checks if 

there’s a symbol B on the left of C, but the sucessor will only 

occur when the condition is true. 

In the situation where both context-free and context-sensitive 

productions are used and both applied on the same letter, the 

context-sensitive has priority over the context-free production. 

However, if neither occurs, then the letter is replaced by itself 

(Prusinkiewicz & Lindenmayer, 1990, 1996; Envall, 2007). 

V: { A, B, C } 

w: A(5) B(0) C(0) 

P1: A(n) < B > C: true → B(n) 

Pa: B(n) < C: n > 2.5 → C(n – 2) 

 

A(5) B(0) C(0) => A(5) B(5) C(0) => A(5) B(5) C(3) => … 
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The [ and ] brackets make it harder to keep track of the context, 

because the branches they specify don’t preserve the segment 

neighborhood. Therefore, it’s often necessary to skip the 

information contained within them to verify the context of the other 

symbols (Prusinkiewicz & Lindenmayer, 1990). 

Below is an example of a word where the predecessor BC < S > 

G [ H ] M is valid to the symbol S, because it skips over the 

symbols [ DE ] to look for the left context and the I [ JK ] L to 

search for the right one.  

ABC [ DE ] [ SG [ HI [ JK ] L ] MNO ] 

In the turtle interpretation the + and – symbols are ignored when 

verifying the context in the word (Prusinkiewicz & Lindenmayer, 

1990, 1996). 

 

Fig.9 – Example of Context-Sensitive L-Systems. Adaptation from figure 1.31 from 

Prusinkiewicz & Lindenmayer (1990). 

 

2.2.5 Stochastic L-Systems  

All of the L-Systems seen so far are deterministic in nature. No 

matter how many times they are run, as long as the word and the 

productions stay unchanged, the result is always the same. In 

some situations this might not be a good option. 
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The Stochastic L-Systems introduce a variation from individual to 

individual, but does not alter the general information of the 

species. This is done by introducing a probability value that will 

determine which production will be used (Grubert, 2001; 

Prusinkiewicz & Lindenmayer, 1990, 1996; Chen et al., 2003). 

 

 

 

 

Fig.10 – Example of a Stochastic L-Systems. Adaptation from figure 3 from Grubert 

(2001). 

As can been observed in the example presented in Figure 10, the 

probability for each of the productions to occur is written in front of 

the arrow, though in some cases it’s written on top, where the 

sum of the probabilities is 1 (Grubert, 2001; Envall, 2007). During 

the iterations, if more than one production occurs on the same 

symbol a random number is generated to select one of them, 

based on their assigned probabilities (Grubert, 2001; Envall, 

2007). 

 

Fig.11 – Example of a Stochastic L-Systems. Adaptation from figure 1.27 from 

Prusinkiewicz & Lindenmayer (1990) 

 

V: { F, +, -, [, ] } 

w: F 

P1: F →0.33  F [+F] F [-F] F 

P2: F →0.33  F [+F] F 

P3: F →0.34  F [-F] 
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2.3 Genetic Programming  

The theory of evolution proposed by Charles Darwin in 1882 

(Cited in Russell & Norvig, 2004; Azevedo et al., 2005), in which 

natural selection plays a crucial role in the species evolution, is by 

far the best model which can explain the wide variety of life in our 

planet (Darwin, 1859, cited in Russell & Norvig, 2003). The theory 

has evolved, with the aid of new discoveries, such as genes, 

which has filled many of the gaps that Darwin struggled to explain 

during his time, but the theory itself is in constant evolution 

(Darwin, 1859, cited in Russell & Norvig, 2003). 

Natural Selection is a process that favours certain individuals in a 

population in order for a species to evolve (Russell & Norvig, 

2004; Azevedo et al., 2005; Vega, 2001).  

Each individual carries genotype and phenotype information. 

Genotype is the type of genes it carries, all the information it 

inherited from its parents and the information its offspring will 

inherit from it. Phenotype is its physical attributes, like weight for 

example, and they determine its survival and reproduction 

chances (Peterson, 1997, Azevedo et al., 2005; Vega, 2001).  

These traits determine the ability of an individual to survive in its 

environment. Those with more favourable traits are more likely to 

survive and pass on their heritage than those with less favourable 

attributes: this is the survival of the fittest principle.  As new 

generations keep evolving and continuously adapting to their ever 

changing environment, there’s the chance new species may 

emerge as they take different ecological niches (Peterson, 1997, 

Azevedo et al., 2005; Vega, 2001). 

Evolutionary Algorithms, in which Genetic Programming is a 

particular branch, take advantage of this highly powerful 

mechanism and try to simulate it in a computer. This will be 

explained further below. 
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2.3.1 Evolutionary Approaches 

The power of nature has always marvelled humanity, but only in 

the last few centuries has mankind truly tried to understand and 

harvest its potential. The creation of velcro, the invention of the 

airplane, all of these ideas were inspired by models that existed in 

nature for ages (Vega, 2001). 

The same happens in Evolutionary Computation. This subfield of 

Computacional Intelligence takes inspiration from biological 

evolution and natural selection to optimize possible solutions and 

solve a given problem (Morais, 2003; Coello, 2007; Pappa & 

Freitas, 2006; Vega, 2001) 

 

Fig.12 – Evolutionary Computation Index. Adaptation from figure 1 of Morais (2003) 

As shown in Fig.12, the Evolutionary Computation branches into 

five different subfields: Genetic Algorithms, Evolutionary 

Programming, Evolution Strategy, Learning Classifier System and 

Genetic Programming. All of them share the same evolutionary 

nature but take different approaches when it comes to its 

implementation (Morais, 2003; Coello, 2007; Pappa & Freitas, 

2006). 
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2.3.1.1 Genetic Algorithms 

The most popular of the Evolutionary Algorithms, Genetic 

Algorithms, use the mechanisms of natural evolution, such as 

selection, crossover, mutation and fitness evaluation,and apply 

them to a population of individuals (Morais, 2003; Coello, 2007; 

Vega, 2001). 

Each of the individuals (in a canonical GA) has a fixed size and is 

usually represented by an array of bits, in analogy to 

chromosomes in DNA. One of the advantages of that 

representation is the simplicity of the crossover operator, though 

it’s possible to use arrays of different sizes, but that increases the 

level of complexity (Morais, 2003; Coello, 2007; Vega, 2001). 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 – Example of a Genetic Algorithm. Adaptation from figure 2 of Morais (2003). 

 

 

Begin { 

 t = 0;   // Initialization of time 

 initPop P(t);  // Initialization of Population 

 fitnsEval P(t);  // Evaluation of the Initial Population 

 

 While (solution not reached) { 

  t ++;      // Incrementation of time 

  P’ = selctParent P(t);   // Select parents of future 
generation 

  crossover P’(t);        // Breed parents 

  mutate P’(t);     // Add diversity to generation 

  evaluate P’(t) ;    // Evaluate fitness of 
generation 

  P = survive P,P’(t);    // Replace population 

 } 

} 
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2.3.1.2 Evolutionary Programming 

Evolutionary Programming shares a lot of similarities to Genetic 

Algorithms, but it pays more attention to the behavioural 

relationship between parents and offspring, instead of mimicking 

the genetic operators found in nature (Morais, 2003; Coello, 

2007). 

The main difference in the implementation method is not using 

the crossover operator but relying on mutation and fitness to 

determine the survival. Another difference between evolutionary 

programming and Genetic Algorithms is the use of graphs instead 

of arrays in the solution representation (Morais, 2003; Coello, 

2007). 

 

 

 

 

 

 

 

 

 

Fig.14 – Example of an Evolutionary Programming algorithm. Adaptation from figure 3 

of Morais (2003). 

 

 

 

Begin { 

 t = 0;   // Initialization of time 

 initPop P(t);  // Initialization of Population 

 fitnsEval P(t);  // Evaluation of the Initial Population 

 

 While (solution not reached) { 

  P’ = mutate P(t);      // Add diversity to Population 

  evaluate P’(t) ;    // Evaluate fitness of 
generation 

  P = survive P,P’(t);    // Replace population 

  t ++;      // Incrementation of time 

 } 

} 
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2.3.1.3 Evolution Strategy 

The Evolution Strategy works with vectors of real numbers to 

represent solutions. Its approach is for each parent to produce an 

offspring per generation by the use of mutations. It’s more likely 

for the evolution to occur in smaller steps until the descendent 

shows a better performance than its parent, replacing it (Morais, 

2003; Coello, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15 – Example of an Evolution Strategy algorithm. Adaptation from figure 4 of Morais 

(2003). 

 

 

Begin { 

 t = 0;   // Initialization of time 

 initPop P(t);  // Initialization of Population 

 fitnsEval P(t);  // Evaluation of the Initial Population 

 

 While (solution not reached) { 

  P’’(t) = selectBest (a, P(t));    // Select best parents 

  P’(t) = crossover (b, P’’(t));    // Breed parents 

  mutate P’(t);         // Add diversity to generation 

  evaluate P’(t) ;      // Evaluate fitness of 
generation 

 

  if (usePlusStrategy)  

   P (t+1) = P’(t) ∪ P(t); // Child joins Population 

else 

 P (t+1) = P’(t);  // Population remains same 

 

  t ++; // Incrementation of time 

 } 

} 
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2.3.1.4 Learning Classifier System 

The Classifier System doesn’t use a fitness function to evaluate 

the individuals, but a rule based on a reinforcement learning 

technique (Morais, 2003; Coello, 2007). This technique works by 

setting the program on an environment about which it has no 

knowledge and through a set of actions provided, reacts and 

classifies the environment as it changes. The Classifier System, 

specifically, has a population of binary rules on which a special 

genetic algorithm selects the best ones (Morais, 2003; Coello, 

2007). 

 

 

 

 

 

 

 

Fig.16 – Example of Learning Classifier System rules. Adaptation from figure 5 of 

Morais (2003). 

 

2.3.1.5 Genetic Programming 

Genetic Programming is very similar to Genetic Algorithms, to the 

point that some authors consider it a subtype (Coello, 2007). The 

main difference is that in Genetic Programming individuals are 

represented as a tree instead of an array or string. Actually, 

they’re not a string of characters, but programs, thanks to the way 

of defining information (Morais, 2005; Peterson, 1997; Coello, 

2007; Pappa & Freitas, 2006; Vega, 2001). 

// Takes decisions by If-then rules 

(1) If (ship is left) then send @ 

(2) If (ship is right) then send % 

(3) If (ship is centre) then send $ 

(4) If (ship is attacking) then send # 

(5) If (ship is not attacking) then send 
* 

(6) If (* and @) then don’t set cannon 

(7) If (* and %) then don’t set cannon 

(8) If (* and $) then set cannon 

(9) If (#) then fire cannon 
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The array representation has some limitations the tree-based 

structure can overcome. Because of their rigid nature, they’re not 

suitable to represent arbitrary computational procedures or to 

incorporate iterations or recursion within the individual. Also, their 

fixed size doesn’t allow much dynamic variability being the string 

length given in the initial population (Koza, 1990, 1992, 2001, 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17 – Example of a Genetic Program. Adaptation from Algorithm 2.2 fig of Peterson, 

1997.  

 

 

 

 

t = 0;   // Initialization of time 

initPop P(t);  // Initialization of Population 

fitnsEval P(t);  // Evaluation of the Initial Population 

While (solution not reached) { 

 t ++;  // Incrementation of time 

 if (reproduce) { 

  P’ = selctProg P(t);  // Select individual programs 

 } 

 else { 

  if (recombine) { 

   P’ = selctParent P(t);  // Select parents  

   crossover P’(t);    // Breed parents 

  } 

 } 

 mutate P’(t);     // Add diversity to generation 

 evaluate P’(t) ;    // Evaluate fitness of generation  

 P = survive P,P’(t);    // Replace population 

} 
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2.3.2 Operators 

According to Koza, the creator of Genetic Programming, the 

algorithm can be divided into two major operators and five minor 

ones (Koza, 1990, 1992, 2001, 2007). The two major operators 

are reproduction and crossover, the fundamental forces behind 

evolution (Peterson, 1997; Koza, 1990, 1992, 2001, 2007; Vega, 

2001).  

The five minor ones are mutation, permutation, editing, 

encapsulation and decimation. Usually, only mutation is used and 

sometimes editing and encapsulation as well, while permutation 

and decimation are quite rare (Peterson, 1997; Koza, 1990, 1992, 

2001, 2007; Vega, 2001). 

Koza defends that the two major operators are enough to have a 

working Genetic Program, but the minor ones may be used to 

provide extra functionality (Peterson, 1997; Koza, 1990, 1992, 

2001, 2007). 

 

2.3.2.1 Individuals and Initial Population 

As stated before, individuals in Genetic Programming are 

programs organized in a tree structure. Their shape, size and 

complexity change dynamically during the evolutionary process, 

but because individuals are represented in a tree hierarchy, the 

initial population generation is more complex than in Genetic 

Algorithms (Peterson, 1997). 

Instead of a randomly generated number, a correct tree structure 

has to be created. Each tree is created individually with a single 

function as the root and has a predefined tree depth maximum 

value to balance the weight of the branches (Peterson, 1997; 

Koza, 1990, 1992, 2001, 2007; Vega, 2001). This is important 
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during the crossover in order to prevent unwanted individuals 

from being generated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18 – Generating a Random Program. Adaptation from Algorithm 2.3 fig of Peterson, 

1997. 

// F = {f1, f2, …, fn}; set of functions 

// T = {t1, t2, …, tn}; set of terminals 

 

Randomly select a function root ∈ F 

If (depth = depthmax – 1) { 

 Randomly select a terminal ∈ T 

} 

else { 

 if (root is a function) { 

  for (argj ,  j = 1,…, φ(root)) { 

   φ(f) = the parity of f 

   if (use grow method) { 

    Randomly select argj ∈ F ∪ T 

   } 

   else { 

    if (use full method) { 

     Randomly select argj ∈ F  

    } 

   } 

   Recursively generate subtree with argj as root  

  } 

 } 

 else { 

  root is a terminal 

 } 

 This branch is complete 

} 
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Figure 18 shows the generation of an individual. Koza defines two 

different variations, the Grow and the Full methods. The Grow 

generates trees of random size and shape while the Full 

produces them with uniform size and shape. However, in order to 

ensure diversity, he uses a hybrid version of the two methods, 

called Ramped Half and Half method (Koza 1990, 1992, 2001, 

2007; Peterson, 1997; Vega, 2001). 

The maximum tree depth is ramped according to the size of the 

population. In a population of size N, the subpopulation will be of 

size N/2 (Peterson, 1997; Vega, 2001). 

 

Fig.19 – Example of an Individual. Adaptation from fig.11 of [18] 

Individuals may contain arithmetic operations (e.g. =, -, x, /), 

mathematical functions (e.g. sine, exponential, logarithms), 

Boolean operations (e.g. AND, OR, NOT), logical operators (if-

then-else, etc), iterative operators (while-do, etc), recursive 

functions, among others. It all depends on the problem in cause. 

These will be the functions defining the body of the program 

(Koza, 1990, 1992, 2001, 2007; Coello, 2007; Pappa & Freitas, 

2006; Vega, 2001). 

The terminals can be constant atomic arguments (state variables 

of a system for example), constant atomic values (0, 1, etc) and 

even other atomic entities, like functions with no arguments 

(Koza, 1990, 1992, 2001, 2007; Pappa & Freitas, 2006; Vega, 

2001). 
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When defining the set of functions and terminals for a specific 

problem, it’s necessary to satisfy the conditions of closure and 

sufficiency. Closure requires that any function used can accept 

any value and data type returned by any other function or terminal 

(Peterson, 1997; Pappa & Freitas, 2006), which guarantees the 

validity of the program. In order to do this it might be necessary to 

use functions that return default values (for example, if a value is 

divided by zero, the function returns a default value instead of an 

unidentified situation). 

Sufficiency requires that the given problem solution exists within 

the search space by using functions and terminals (Peterson, 

1997; Pappa & Freitas, 2006). 

 

2.3.2.2 Fitness 

The fitness function (objective function) evaluates the aptitude of 

survival of the individuals in the population and it is an 

indispensable tool for the Genetic Programming to work. The 

fitness function analyses how much a potential solution can 

satisfy the problem (Peterson, 1997; Koza, 1990, 1992, 2001, 

2007; Pappa & Freitas, 2006). 

The fitness function varies according to the problem at hand, 

since most optimal solutions have to be calculated with different 

formula. But all fitness functions try to determine which individuals 

of the population of possible solutions is closer to the optimal 

result. For example, on a broom balancing problem, the smaller 

the time it takes to balance the broom and the longer it stays 

balanced, the better the fitness of that individual (Koza, 1990, 

1992, 2001, 2007; Vega, 2001). 

It’s important that the value the fitness function returns gives 

enough information of how fit the individual is. For example, if it 

only returns either 0 or 1, the performance of the individual can’t 
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be evaluated correctly, especially in later cases where the fitness 

values are higher and therefore more similar (Koza, 1990, 1992, 

2001, 2007). 

However, if the problem requires a subjective judgement, like 

evaluating the aesthetic quality of an image, then it may be very 

difficult to define the fitness. To solve this problem an outside 

source, as a user, replaces the fitness function and determines 

which members of the population are more suitable for 

reproduction. In some cases the selection is done directly, while 

others filter part of the population beforehand (Peterson, 1997). 

This interactive evolution system is best for small populations. 

There are many limitations the human comprehension forces 

upon this, such as inability to pick minor variations in the 

representation or not being able to deal with many individuals at 

the same time (Peterson, 1997). Usually the magnitude of 

individuals to be picked is less that 25, which reduces the 

diversity of the population greatly. Because of the sall population 

size high mutation rates are often used to compensate the lack of 

diversity (Peterson, 1997). 

 

2.3.2.3 Reproduction 

This genetic operator combines the information contained by 

parents to create an offspring. In the natural world the same 

happens when a chromosome pair recombines to generate a new 

DNA strand (Peterson, 1997; Coello, 2007). 

Before the parents information is recombined, they are both 

selected based on the same fitness criteria. Depending on the 

approach to solve the problem, we can either have an asexual or 

sexual reproduction and reselection might or might not be allowed 

(Peterson 1997; Koza, 1990, 1992, 2001, 2007). 
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An asexual reproduction only involves one parent to generate an 

offspring. Several individuals of the population are selected based 

on their fitness (which evaluates their performance) and the 

probability of reproduction (which defines how many can 

reproduce) (Peterson, 1997). 

The offspring that will form the new population are clones of their 

parents. As a result of that, reselection is allowed in this case 

(Peterson, 1997; Vega, 2001).  

Sexual reproduction, also known as Crossover, recombines the 

genetic information of the parents to generate an offspring. The 

parents are selected in the same fashion as in the asexual 

reproduction, based on their fitness and crossover probability 

(Peterson 1997; Koza, 1990, 1992, 2001, 2007; Coello, 2007; 

Vega, 2001). 

Usually in Genetic Programming the crossover is done by using 

the tree nature the individuals possess and numbering the tree 

nodes by their reading order (Coello, 2007; Vega, 2001). First, a 

point is chosen randomly in both trees. Second, the subtrees 

rooted on those points are selected and detached from the parent 

trees. Third and finally, the subtrees are switched between the 

parents, generating a pair of offspring (Coello, 2007; Peterson 

1997; Koza, 1990, 1992, 2001, 2007; Vega, 2001). 

Note that the resulting offspring from any crossover points are 

always valid programs, because their parts are taken from the 

parents, which were also valid expressions (Koza, 1990, 1992, 

2001, 2007). The reason for this to happen is because of the 

closure and sufficiency requirements imposed when the 

population was first created. 
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Fig.20 – Crossover example. Adaptation from fig.2.6 of Peterson (1997) 

It’s also possible for the root of the trees to be selected, either in 

one or both parents. If only one root is selected, the entire parent 

will be copied onto the second, while the subtree of the second 

parent will become the full tree of the first one (Koza, 1990, 1992, 

2001, 2007). If the roots of both parents are selected as 

crossover points, the children will be copies of their parents, as in 

a reproduction and not a crossover (Koza, 1990, 1992, 2001, 

2007). 

In the case of a terminal and a root being selected as crossover 

points, this often increases the size of one of the trees 

dramatically (Koza, 1990, 1992, 2001, 2007; Coello, 2007). In 

order to prevent memory problems, Genetic Program usually 

imposes a limit on the maximum depth of a tree. 

Compared to the Crossover operator in Genetic Algorithms, there 

are two main differences from the one used in Genetic 

Programming. First, in  standard Genetic Algorithms offsprings 

have the same size as their parents, no matter the number of 

generations. In Genetic Programming there’s a big chance of 
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different sizes and shapes to be formed because of the random 

crossover points (Peterson, 1997; Coello, 2007). 

Second, if reselection is allowed, and individual with high fitness 

may be chosen to act as both parents, incestuous offspring result. 

In Genetic Algorithms an incestuous crossover degrades the 

quality of the offspring to an asexual reproduction. In Genetic 

Programming the two offspring will likely be different, unless the 

same crossover points are chosen in both parents (Peterson, 

1997; Koza, 1990, 1992, 2001, 2007; Coello, 2007). 

 

2.3.2.4 Mutation 

Occasionally a random change will occur during the genes 

recombination, resulting on a slight mutation that brings variation 

and new possibilities in the process of evolution. 

In Genetic Programming, mutation works by randomly picking a 

point in the tree and replacing it with a new randomly generated 

subtree. A probability based on the tree’s depth can prevent 

excessive terminal swapping or encourage bigger or smaller tress 

to be produced Peterson, 1997; Coello, 2007; Vega, 2001). 

 

Fig.21 – Mutation example. Adaptation from fig.2.7 of Peterson (1997) 
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Mutation is very good to add variety and keep the population from 

becoming stagnated, but it might damage or render a program 

non functional (Peterson, 1997). It’s possible to protect a certain 

subtree, known as a good building block, by using encapsulation. 

The subtree is replaced by a symbolic name that points to its real 

location (Coello, 2007). 

Editing is another operator which helps protecting the tree. Like 

mutation it replaces certain subtrees with new information, but 

instead of using a new random subtree, it cleans up the existing 

one by replacing a constant valued subtree with its corresponding 

value. For example, (1 (+ 1)) would be replaced by the terminal 2 

(Peterson, 1997). This helps avoiding waste of memory and 

unnecessary depth of the tree, but this parsimony can be harmful 

to the diversity of the population (Peterson, 1997). 

 

2.3.2.5 Termination Criteria 

The evolutionary process ends when the population reaches the 

solution to the problem, or gets as close to it as possible. There 

are many different criteria that can be used to define when the 

whole process terminates, including number of generations, lack 

of increase of fitness within the population after a certain number 

of generations, etc (Koza, 1990, 1992, 2001, 2007). 

Once that step is reached, the best individual of the whole 

population is considered the optimal solution to the given problem 

(Koza, 1990, 1992, 2001, 2007). 

There are some cases where outside factors might force the 

program to end before the optimal solution is found, such as: 

time, resources and funds. 
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3 System Architecture 

This work intends to combine L-Systems with Genetic 

Programming to produce new plants which are evolved forms of 

their parents. The developed application takes the parents 

chosen by the user and draws the given L-System before 

receiving order to breed the plants by the user and then draw the 

children through the same system. 

Though the graphical elements of the interface were drawn in 

Flash, the whole computation and plants drawing was solely 

produced by the code. 

In this chapter the conceptual model is presented, which 

describes the decisions taken based on the problem. It also 

describes the project goals, the pseudo-code developed for each 

of the parts, and the system implementation, which describes how 

the program was implemented based on the pseudo-code as well 

as the adaptations that had to be made. 

 

3.1 Conceptual Model  

As the purpose of this project is to answer the problem identified 

in the first chapter, it’s best if we remind ourselves of the 

objectives we set out to fulfill: 

1. Identify a method used to build plants in the computer, 

or that can be adapted to work in a computer; 

2. Determine how to use the Genetic Programming to 

evolve those plants; 

3. Adapt the developed approach for Actionscript; 

4. Allow some level of control to the user to select and 

adjust the plants. 
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Knowing these milestones and taking into consideration the 

information presented in the second chapter, we can start 

defining the solution. This section focuses on answering the first 

and second points.  

The Actionscript is done later in the implementation because we 

first need a solid idea on how the L-system has to be 

implemented and what will the Genetic Programming take from it 

in order to optimize the plants. 

 

3.1.1 The L-System 

Before we can evolve a plant, we need a plant to evolve. That’s 

why the first point was to find a method that could represent 

plants and be translated into the computer. The L-system was 

picked from the different methods because of the reasons stated 

in the previous chapters. 

From the different types of L-systems, the DOL-system was 

selected to describe the process of development of plants in 

Actionscript. The reason behind this method selection is because 

it allows an easier control of the programming stages and 

resulting validation. 

 
Fig.22 – L-system architecture. Adaptation from fig.1 From Noser et al., 2001 
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Figure 22 illustrates how the common L-system architecture 

works. Taking the L-system plant provided by the user, the Parser 

prepares it to be interpreted by the computer, resulting in a valid 

axiom and productions, syntax wise. With this verification done, 

the computer can run them through several iterations, and on 

each one send the resulting word to be interpreted by the Turtle 

Program. In this drawing stage, both the symbol alphabet of that 

plant and the turtle procedures are taken by the Interpreter to 

decipher the commands. 

Taking this architecture as the model to be followed, we can 

divide the process to obtain an L-system into three steps: 

‐ Syntax Validation; 

‐ Production; 

‐ Interpretation. 

 

3.1.1.1 Syntax Validation 

The Validation step acts like the Parser described before. It takes 

a given plant, defined by the alphabet, axiom, the production rules 

and hidden parameters, and validates them. This is done by 

eliminating any empty spaces or unwanted symbols so the 

computer doesn’t come across with any unexpected characters in 

the next steps. 
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Fig.23 – Example of Validation step 

Figure 23 presents an example of a simple validation. The cycle 

checks the string, this case the production P, character by 

character and removes any symbol that doesn’t belong in the 

alphabet of that plant or isn’t a turtle command. More complete 

validations can include checking if all the opening brackets have 

their closing counterparts or see if there are rotations canceling 

each other. 

This verification is more of a precaution than a real component of 

the L-system method. It only needs to be done once at the 

beginning of the program since the next steps don’t generate 

invalid symbols or insert blank spaces between the characters, 

unless if badly coded. 

 

3.1.1.2 Production 

The Production step generates a word on each iteration before 

it’s sent to be interpreted by the Turtle Program.  This process is 

done by taking the axiom and applying the productions to replace 

any symbols that match their predecessors with the symbols 

V    // Alphabet 

W = “X”  // Axiom 

P = “X->F[+X][-X]FX" // Production 

 

While ( i  <  length of P ) { 

 Read character by character  

 If (character == empty space || !=  from turtle or V 
symbol) 

  Then remove from P 

 i ++ 

} 

 



 44 

contained in their successors, generating the word that will be the 

new axiom of the next iteration. 

 

 

 

 

 

 

 

 

 

 

Fig.24 – Example of Production step 

As shown in the example in Figure 24, before the replacement 

was done, the predecessor and the successor of each production 

were separated and stored as separate strings. It’s not mandatory 

to perform this separation, but instead of having a function 

locating the predecessor and the successor every time we need 

to work with the production, we only have to perform this 

operation once. So after we have the two strings per production, 

on each iteration we check the current axiom and try to find 

symbols matching the predecessors in it. When that occurs, we 

replace that match with the corresponding successor, creating a 

new word in result. A variation to this step is to do all iterations at 

once and send the final result to be drawn, instead of doing it on 

each iteration. To accomplish this, the drawing function is called 

outside of the cycle. 

 

 

W = X   // Axiom 

P = X->F[+X][-X]FX // Production 

N    // Number of Iterations  

 

Split P into two strings where -> occurs 

String1 = P’s predecessor 

String2 = P’s successor 

 

While ( i  <  N ) { 

 W= Replace every predecessor with successor in the W 

 i ++ 

} 
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3.1.1.3 Interpretation 

The Interpretation step is the same as the Turtle Program in the 

diagram. It takes the produced word, the symbols in the plant’s 

alphabet, the turtle commands and the hidden parameters, such 

as branch angle and unit length, to send them to the Interpreter 

and draw them on screen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.25 – Example of Interpretation step 

As it can be seen in Figure 25, because this is a simulation of the 

Turtle Interpretation, it’s important to remove any non-drawing 

symbols in the word before it’s sent to be interpreted. Once that’s 

done it reads the word character by character and compares it 

with the commands available, performing the corresponding task.  

Word  // Produced word 

Alpha  // Angle 

Length // Unit Length 

… 

Remove empty symbols 

While ( i  <  Word length ) { 

 Read Word character by character 

 Switch (character) 

  Case F: 

   Draw forward 

  Case +: 

   Rotate counter-clockwise by Alpha degrees 

  Case -: 

   Rotate clockwise by Alpha degrees 

  Case [: 

   Store current coordinates and angle 

  Case ]: 

   Restore coordinates and angle 

 i ++ 

} 
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Note that this program only deals with 2D L-systems, because of 

the Flash limitations, which was mentioned in the first chapter. To 

simulate a 3D L-system there would one be a difference in this 

last step, which would include the rest of the commands on the 

list. 

 

 

 

 

 

 

 

Fig.26 – Example of a plant that would need to be converted  

In some cases, like in the one above (Figure 26), it would be 

necessary to convert at least one of the symbols into the drawing 

command F, either by using a function or doing it before this L-

system was given to the program. This is because if the 

Interpreter was to use this word, all we would get would be a 

blank screen.  

This is an unusual, but not impossible, occurring situation. The 

best way to get around it would be including a validation in the 

Syntax Validation step, to either warn the missing symbol or ask 

to replace another non turtle command one by it. 

 

 

 

 

 

 

w: A 

P1: A → B[+A] 

P2: B→ AA 

 

A 

B[+A] 

AA[+B[+A]] 

… 
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3.1.2 Genetic Programming 

According to the explanation given in the second chapter, the 

various applications of Genetic Programming used the same 

operators. One of the most important topics is the decisions made 

on individuals and the fitness evaluation, since they will affect the 

whole process on how the plants result. 

 

3.1.2.1 Initial Population 

Because the goal is to optimize the existing plants in order to 

generate children, the decision was made to use the produced 

word instead of the productions as the individual, reason why 

Genetic Programming was chosen over Genetic Algorithms. 

 

Fig.27 – Corresponding tree structure of a L-system word 

As you can see from Figure 27, the L-system word easily 

translates into a tree representation, with each symbol being a 

node. This can also be translated as the individual genotype, the 

information contained in the gene, while the hidden parameters 

can be considered as the phenotypes, the physical attributes of 

the individual. As this type of grammar is counter-intuitive and 

hard to predict the outcomes of the different productions, as it can 

be seen in Figure 28, it was decided to use pre-developed plants 

for the initial population instead of randomly generated ones to 

ensure the validity of the individuals. 
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Fig.28– Examples of non-plant L-systems 

 

3.1.2.2 Fitness Function 

We’re not aiming to simulate plants existing in real life, but to 

generate structures that look like plants. This is because this work 

isn’t a scientific research on a certain species. We want to give 

room for creativity and to explore solutions that we likely wouldn’t 

come across in real life. Because we’re working with unexpected 

results and basing evaluation on the aesthetic appearance of the 

plant, the fitness will be decided by the user rather than by the 

computer. This evaluation process limits the amount of results we 

can present at a time, due to the human component. 

 

3.1.2.3 Reproduction 

Sexual reproduction, which involves two parents instead of just 

one, is done by randomly picking a point on each parent and 

exchanging the resulting subtrees between them. The reason why 

two parents are used instead of one, is the bigger diversity it 

brings to the end result. Also, the decision of having a user acting 

as the fitness function influenced this. If by using two parents the 

children are more likely to be different, then it helps having 

resulting offspring with bigger differences between themselves, 

which is important when working with a small population pool. 
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Fig.29– Reproduction step 

As you can see in Figure 29, the resulting offspring come from the 

exchange of subtrees from the two parents. However, because 

we’re dealing with the L-system grammar the picking of the nodes 

has to be restricted. 

 

Fig.30– Examples of bad replacement of the nodes 

The Figure 30 shows what happens when an extra bracket or 

rotation occurs. Even if none of these extreme cases happens, 

there’s still a good chance of the resulting L-system not resulting 

in a plant structure.  

So, the selection of nodes is restricted to the branches of each 

plant. Besides preventing the occurrences just shown, they are 

proven to be stable sections of commands since they work well 

on each plant. Of course, bad crossovers can still occur, but the 

probability is much smaller. 

Plant1    // First parent word 

Plant2    // Second parent word  

 

Position1 = Randomly pick a node on Plant1 

Position2 = Randomly pick a node on Plant2 

 

Child1 = In Position1 of Plant1 put subtree taken from Position2 of Plant2 

Child2 = In Position2 of Plant2 put subtree taken from Position1 of Plant1 
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3.1.2.4 Mutation 

This operator isn’t used in this work, because it relies on 

randomly generated trees, the probability to generate bad lines of 

commands is too great, as explained in the previous points. 

It would be possible to set an array of branches however, taken 

from produced plants, but that would involve collecting and testing 

their validity beforehand which was too time consuming for this 

project. 

The inclusion of mutation isn’t mandatory though, as explained in 

the second chapter. It would only be used if the crossover 

couldn’t provide enough diversity in the population in order for the 

user to tell the difference which is not the case. 
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4 System Implementation 

Having the concept of how the L-system and the Genetic 

Programming will be implemented, the next goal can be 

addressed: implementing these methods in Actionscript.  

Although Flash is an excellent tool when it comes to interaction 

and graphic development, we have to keep in mind it has some 

limitations when it comes to code, since usually most people don’t 

use it for its coding language. Besides, it can get very slow when 

processing heavy calculations such as large number of iterations 

involved in producing the L-system word. There are some slight 

differences between Actionscript and other languages like C++ or 

Java, which can give very confusing results.  

One of them is the variable declaration. A variable once declared 

can be used in any part of the code, even if it’s outside the 

function where it’s declared. This means sometimes the variable 

will “drag” the content it has previously and not have replaced 

properly when used in a different section of the code, causing 

unexpected results like a word far bigger than it should be. To get 

around this it is necessary to “empty” the variable before it is used 

or declaring it again, which apparently had the same effect.  

These type of mishaps are a fairly common occurrence, 

especially when one is learning a new programming language. 

Being more of a minor nuisances than a major hindrances, their 

occurrence isn’t described in the explanation of the code 

implementation.  
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4.1 Versions Introduction   

Instead of producing an ongoing program where each new 

section of the conceptual model would be implemented, it was 

decided to work on separate versions of the same application.  

There were several reasons behind this decision, mainly: 

• The constant learning of new Actionscript functions and 

techniques as the implementation was taking place; 

• The testing of different sections of the conceptual model 

separately, to reduce the chance of faulty results; 

• To ease the code optimization and performance of the 

application. 

 

Since the Genetic Programming needs a population of plants to 

evolve, the 1st Version focuses on the implementation of the L-

System and the Draw function. 

The 2nd Version focuses on the optimization of the prior L-System 

code, correcting some minor mistakes and eliminating useless 

lines of code. 

The 3rd Version focuses in the Genetic Programming code and 

the implementation of its operators, but only using a section of the 

L-System code to test the results. 

The 4th Version is the first to implement both the L-System and 

Genetic Programming codes simultaneously, as well as providing 

a basic interface for the user. 

The 5th Version uses a larger population of plants and allows the 

user to view more than a single generation, as well as attributing 

them with a fitness.  

The 6th and final version optimizes the code used in the previous 

one, by removing unnecessary duplications and compressing the 

produced word, and improves the design of the interface.  
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4.2 Version 1  

The first version of the project only focused on getting the L-

system to work and be drawn on the screen. It didn’t have any 

interaction and simply used a plant hardcoded into the program 

with all the corresponding hidden parameters.  

Its purpose was to identify which parameters were exactly 

necessary and which changes would have to be added to the 

conceptual scheme in order for the program to work. 

 

4.2.1 Syntax Validation 

Because the plant was hardcoded, this step was unnecessary. 

We were using a plant that had already been validated by 

someone else, one of the many examples of successful L-system 

plants people use out there on the internet to illustrate how the 

grammar works.  

No invalid symbols were used, and all blank spaces had been 

removed when building the solution, as it can be seen in Figure 

31. 

 

 

 

 

 

 

 

Fig.31– L-system plant used 

 

 

V = { X, F, +, -, [, ] } // Alphabet of the plant 

W = X   // Axiom  

P1 = X->F[+X][-X]FX // First Production 

P2 = F->FF  // Second Production 

Angle = 70  // Branch Angle 

Steps = 4  // Iterations 

Length = 4  // Unit Length 
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4.2.2 Production 

Though this version was more of a test on how to get the L-

system method to work, attempts were made from the beginning 

to make the system as universal as possible. Functions were 

used instead of a big block of sequence of code with many 

unnecessary duplications in the middle. 

So taking the L-system grammar, the only element that can have 

multiple members is the productions. In order to ensure the L-

System function can receive any type of plant, the productions 

were stored in an array before being sent, as seen in Figure 32. 

 

 

 

 

 

Fig.32– Storing the productions into an array 

As seen before, the first part in the Productions step is to 

separate the predecessor from the successor in each of the 

productions, but because we’re dealing with an array of 

productions of unknown size, we can’t define a pair of string 

variables for every single case. 

Instead we can use two arrays, one for the predecessors and 

another for the successors, with the same position in each 

corresponding to the same production. This is easier to handle, 

and particularly easier to debug, rather than using one array to 

store both. 

 

 

// Productions 

var p1 = “X->F[+X][-X]FX” 

var p2 = “F->FF” 

// Set productions into an array 

var p = new Array (p1,p2); 
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Fig.33– Separating predecessor from successor 

As shown in Figure 33, in this cycle that lasts while i is less than 

the length of the array p, the program takes each string within it 

and where the -> occurs, the string is split into two and stored in 

the array stringVect, then stores the predecessor and the 

successor in each respective array. 

The split is a method in Actionscript that takes a string and 

returns an array containing two strings, separated where the 

delimiter string occurred. Except in the case of an empty string, it 

splits every single character within that string. There’s also an 

optional parameter that limits the number of items to be put in the 

array, but it’s unnecessary in this case. 

With the predecessors and successors ready, we can then start 

replacing the occurrences in the word.  

 

 

 

 

 

 

 

 

var vect1 = new Array(); // Predecessor array 

var vect2 = new Array(); // Successor array 

 

while ( i < this.p.length) { 
 

         var stringVect = this.p[i].split("->"); 
   
         vect1[i] = stringVect[0]; 
         vect2[i] = stringVect[1]; 
 
         ++i; 
} 
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Fig.34– Replacing symbols in the word 

As you can see in Figure 34, on each iteration the program goes 

through all the different predecessors and checks for any 

correspondences by sending them to the function replace shown 

above. If that function finds a correspondence to the given string, 

it splits the word in two and then joins it back together, inserting 

the successor in between those strings before it’s returned and 

replaces the old word with the new one. 

The join is another Actionscript method, which takes an array and 

converts it into a string, inserting the given character or string in 

the parameter between the elements of the array, concatenating 

them. 

 

4.2. 3 Interpretation 

With the L-system word ready to be interpreted and knowing 

which symbols were used from the alphabet, all we need are the 

parameters necessary to draw the plant. However, this is where 

the problem really starts. The information that came with the 

String.prototype.replace = function (from, to) { 
  
 return this.split(from).join(to); 
}; 
// -------------------------------------------------------- 

while ( j <  steps) { 
 
 var k = 0; 
 
 while ( k <  vect1.length) { 
 
  var val1 = vect1[k]; 
  var val2 = vect2[k]; 
 
  this.words = this.words.replace (val1, val2); 
 
  ++k; 
 } 
 
 ++j; 
} 
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axiom and the productions isn’t enough. More parameters are 

necessary in order to reproduce it correctly on screen. 

The initial coordinates were the first ones to be added. Because 

we want the plant to grow upwards, like normal plants do, we 

picked the middle of the stage as the x coordinate and the bottom 

of the stage as the y coordinate.  

The next ones were the properties of the line to be drawn. In 

Flash when drawing figures out of pure code is first necessary to 

declare an empty movie clip to draw them in. Only then we can 

change the properties of the movie clip, as seen below in Figure 

35. 

 

 

 

 

Fig.35–Changing the properties of the movie clip 

The first line creates the empty movie clip as a child of the 

existing one (the stage), giving it a name and setting its depth on 

the screen. The lineStyle allows us to determine the thickness, 

color and opacity of the lines drawn within that movie clip, 

respectively. And finally the moveTo moves the current drawing 

condition to the given coordinates. 

The last parameter that had to be added was the angle of the 

plant. This was detected afterwards; when drawing the plant, the 

line was first moving horizontally before the rotations changed its 

angle. To solve this problem it was necessary to rotate the plant 

before it was drawn, in this case 90 degrees so it would grow 

vertically instead. 

There were two different attempts made at reading the word 

before sending it to be interpreted by the different list of 

commands. The first one was to have the plant drawn all at once, 

px = 300; // X coordinate 
py = 400; //Y coordinate 
 
 

this.LS = _root.createEmptyMovieClip ("drawClip", 100); 

this.LS.lineStyle (2, 0x33CC00, 100); 

this.LS.moveTo (this.px, this.py); 
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while the second shows the sequence of how the word was read 

and how that reflected in the appearance of the plant.  

 

 

 

 

 

 

Fig.36–Drawing the plant all at once 

 As you can see in Figure 36, this function there’s an infinite cycle 

where the word is read character by character and sent to be 

rendered. Actually, the cycle isn’t really infinite, because once the 

counter exceeds the length of the word, it calls the function return 

and automatically jumps out of the cycle, terminating it.  

Using a loop that would check the condition would probably be 

best. This was just done as an experiment.  

 

 

 

 

 

 

 

 

Fig.37–Drawing the plant character by character 

The reason why this function was used instead of the other in this 

version of the program was to check how the plant was built 

exactly and to ensure the whole process was occurring properly. 

 

 

LSystem.prototype.renderSteps = function() { 
 
 var i = 0; 
 var obj = this; 
 
 
 this.LS.onEnterFrame = function() { 
 
  var charVal = obj.words.charAt (i); 
 
  obj.renderInstruction (charVal); 
 
  if (i++ >= obj.words.length-1) { 
 
   delete this.onEnterFrame; 
  } 

}; 
}; 
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In order to do that, we used a special function existing in 

Actionscript to control the movie clip. OnEnterFrame is an event 

handler that is invoked on the beginning of each frame before any 

of the other actions are preformed. So as each frame occurs, the 

function reads a character of the word and sends it to be 

rendered, but when there are no longer more words to be 

rendered, this onEnterFrame function is deleted. 

The speed of how fast the plant is drawn varies with the amount 

of frames per second defined. The default in Flash is 12 fps, but it 

can range from 0.01 to 120.This can pose a problem however. 

Though it’s quite useful for debugging purposes, it takes some 

time to draw the plant, especially large ones, no matter the speed 

set. Because the final solution will deal with not one, but several 

plants at the same time, we can’t have the user wait for one plant 

to be drawn before he or she can visualize the next. 

With all the parameters defined and the rendering function 

sending the individual characters to be interpreted, all we need to 

do is send the characters through the command list and 

implement the different actions.  

Even so, before the characters can be analyzed, even before they 

were sent by the render function, the non-drawing symbols had to 

be removed from the produced word. In this case it was done 

right after the production of the word. The only reason this point 

wasn’t addressed before was because it concerns the drawing 

stage. 

 

Fig.38–Deletion of the non-drawing symbols in this plant 

To do the deletion it calls the replace function and replaces all the 

non-drawing symbols with an empty string (not a blank space), as 

it can be seen in Figure 38. Considering we’re working with a 

hardcoded plant, we already know which are the empty symbols.  

    this.words = this.words.replace ("X", ""); 
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In the case of receiving an unknown plant from the user, then we 

would have to ask which were drawing symbols and which 

weren’t. Otherwise, we would have to restrict the symbols that 

could be used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.39–The available commands and their actions 

As shown in Figure 39, the function receives the character sent 

by the rendering function and travels through the several if 

statements until either a match is found or it announces it as an 

unknown command. This figure only contains the commands 

used for this specific plant. With different grammars it is 

necessary to introduce more conditions. 

LSystem.prototype.renderInstruction = function (instr) { 
 
         if (instr === "F") { 
          this.Draw (px, py, angleInit, segmentLength); 
          return; 
         }  
         else { 
          if (instr === "-") { 
           this.angleInit = this.angleInit + this.angleInc; 
           return; 
          }  
          else { 
           if (instr === "+") { 
            this.angleInit = this.angleInit - this.angleInc; 
            return; 
           }  
           else { 
            if (instr === "[") { 
             var flag = new Cursor (this.px, this.py, this.angleInit); 
             this.stack.push (flag); 
             return; 
            }  
            else {                                 
             if (instr === "]") { 
              flag = this.stack.pop(); 
              this.px = flag.px; 
              this.py = flag.py; 
              this.angleInit = flag.angleInit; 
              this.LS.moveTo(this.px, this.py); 
              return; 
             } 
            } 
           }                     
          } 
         } 
         trace("unknown command: "+instr); 

}; 
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Like in the Turtle Interpretation, F corresponds to drawing a line 

forward. In order to do that, it sends the current coordinates, the 

angle of the branches and the current angle of the plant to the 

draw function. This will be explained further below. 

When a rotation occurs, either clockwise or counter-clockwise, 

the current angle of the plant is updated by adding, or subtracting, 

the angle of the branch to the previous angle of the plant. 

As for the brackets, when the opening bracket occurs it sends the 

current coordinates and the angle of the plant to be copied and 

then pushed into an array. When the closing bracket occurs, the 

last values are popped from the array and replace the current 

coordinates and plant angle to restore them to the original 

position before entering that branch.  

 

 

 

 

Fig.40–Drawing function 

When drawing the plant we have to keep in mind that the 

rotations change the direction of the line and that affects the 

position of the final coordinates. Because we have to keep the 

same length to all units of the plant and Flash can’t calculate 

directly the final coordinates just by giving the initial coordinate 

pair, unit length and amount of rotation, we have to calculate the 

projection of the segment on each of the axis in order to find the 

position the line has to move to (Figure 40). 

This is done by applying the rules of trigonometry to calculate 

exactly how much each unit will measure on each axis, 

depending on the rotation applied to them, and added to the 

current coordinates to find out where the final ones will be. After 

LSystem.prototype.Draw = function (px, py, angleInit, segmentLength) {  
 
 this.px = this.px + this.segmentLength * Math.cos (this.angleInit); 
 this.py = this.py + this.segmentLength * Math.sin (this.angleInit); 
  
 this.LS.lineTo (this.px, this.py); 
}; 
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that, all we need to do is call the lineTo function which draws a 

line from where the drawing cursor last was to the new position. 

 

 

 

Fig.41–Cursor function 

Data structures in Flash don’t work in the same way they do in 

C++ or Java. While in C we would have to declare a structure 

outside of the program sequence and define all the parameters 

inside, in Flash, it is done as shown in Figure 41 and declared as 

a regular function.  

The reason why it was used is because it makes it easier to store 

all the information concerning one bracket in a single position of 

the array instead of pushing and popping three all the time. 

 

4.3 Version 2  

The second version of the program still focused exclusively on the 

L-systems, this time cleaning up unnecessary code used on the 

first version and correcting some minor mistakes that could have 

some negative effects when including the Genetic Programming 

and producing the new plants.  

 

4.3.1 Syntax Validation 

Hardcoded plants were still used, so again, this step was seen as 

unnecessary since there had been some preparation prior to their 

inclusion in the code. The only difference this time was that two 

new plants were included to test the effectiveness of the code and 

to later be used as parents in the Genetic Programming. 

 

Cursor = function (px, py, angleInit) {  
 
    this.px = px; 
    this.py = py; 
    this.angleInit = angleInit; 
}; 
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Fig.42–Different L-system plants used 

Many of the variables which define the plants were shared, as 

seen in Figure 42, while the ones that determine their individual 

appearance were defined separately. The reason for this was to 

compare how each behaved when having the same number of 

iterations and unit length (the other shared values pay little 

importance in their appearance).  

// Shared Variables 

var px = Stage.width / 2; // X coordinate 

var py = Stage.height;  // Y coordinate 

var plantAngle = Radians(-90); // Plant Angle 

var steps = 4;   // Iterations 

var lenght = 3;   // Unit Length 

var color = 0x33CC00;  // Color 

//Plant 1 

var w1 = "X";    // Axiom  

var p1 = "X->F[+X][-X]FX";  // First Production 

var p2 = "F->FF";   // Second Production 

var productions1 = new Array(p1, p2); // Production Array 

var angle1 = Radians(70);  // Branch Angle 

//Plant 2 

var w2 = "F";    // Axiom  

var p1 = "F->FF-[-F+F+F]+[+F-F-F]"; // Production 

var productions2 = new Array(p1); // Production Array 

var angle2 = Radians(20);  // Branch Angle 

//Plant 3 

var w3 = "X";    // Axiom  

var p1 = "X->F-[[X]+X]+F[+FX]-X"; // First Production 

var p2 = "F->FF";   // Second Production 

var productions3 = new Array(p1, p2); // Production Array 

var angle3 = Radians(25);  // Branch Angle 
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Fig.43–Resulting plants 

As you can see from Figure 43, the same parameters can result 

in quite different plants, depending of the axiom and productions 

used. The first plant would need more iterations, while the second 

would need less. The lengths would also have to be adjusted, if 

we want the plants to have roughly the same size. 

 

 

 

 

Fig.44–Radians function 

There was one mistake that wasn’t detected on the first version 

that caused some issues. When working with angles, Flash uses 

radians instead of degrees. The function from Figure 44 takes the 

angle we want to use and converts it into radians by applying the 

conversion formula:  

α × (∏ ÷ 180°) 

 

 

 

 

 

 

Radians = function (degrees) {  
 
 return degrees * Math.PI / 180; 
} 
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4.3.2 Production 

In the Production stage there was only one minor change done. 

This was eliminating unnecessary code in the L-system function, 

which deals the separation of the predecessors from the 

successors and the constant replacement of the word during the 

several iterations (Figure 45). 

 

 

 

 

 

 

 

 

 

Fig.45–Production step within the L-System function 

 

4.3.3 Interpretation 

The major change done in this section of the code was to replace 

the series of if conditions by a switch statement, which is much 

more functional (Figure 46). Besides being easier to add new 

commands if necessary, it is less prone to mistakes like the large 

amount of brackets for example.  

 

 

 

 

 

while (i < this.productions.length) { 
 
 var stringVect = this.productions[i].split("->"); 
   
 vect1[i] = stringVect[0];  
 vect2[i] = stringVect[1];  
 ++i; 
} 
   
while (j < steps) { 
 i = 0; 
 
 while (i < vect1.length) { 
 
  this.words = this.words.replace(vect1[i], vect2[i]); 
  ++i; 
 } 
 ++j; 
} 
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Fig.46–The RenderInstruction function using the switch instead of if statements 

 

4.4 Version 3  

This version is more of a separate program to prepare and test 

the Genetic Programming section of the solution. Using what was 

developed before for the L-system, it takes the produced word 

and extracts all the branches within it and then selects one 

randomly to be exchanged with another plant. 

LSystem.prototype.renderInstruction = function(instr) { 
 
  
 switch (instr){ 
  case "F": 
   
  this.Draw(px, py, angleInit, unitLength); 
        return; 
  break; 
   
  case "-": 
   
  this.angleInit = this.angleInit + this.angleRot; 
        return; 
  break; 
   
  case "+": 
   
  this.angleInit = this.angleInit - this.angleRot; 
        return; 
  break; 
   
  case "[": 
   
  var flag = new TurtleCursor (this.px, this.py, this.angleInit); 
  this.stack.push(flag); 
        return; 
  break; 
   
  case "]": 
   
  flag = this.stack.pop(); 
  this.px = flag.px; 
  this.py = flag.py; 
  this.angleInit = flag.angleInit; 
  this.LS.moveTo(this.px, this.py); 
        return; 
  break; 
   
  default: 
   
  trace("unknown command: "+instr); 
  break; 
 } 
} 
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4.4.1 Individual 

Because this whole version is meant to test the Genetic 

Programming reproduction stage, we’re only working with one 

individual and not a whole population.  

To generate the individual we took a plant used previously in the 

other versions and generated the word the same way it was done 

in the production step. The resulting word was as shown below in 

Figure 47.  

 

 

 

 

 

 

 

 

Fig.47–Plant and resulting word after Production step 

 

4.4.2 Branches 

Once we have the word to work with, we can start taking all the 

branches that occur within it and store them in an array, along 

with the initial and final positions where they occur, so that when 

the exchange takes place we know exactly which section of the 

plant will be replaced. 

 

 

 

var w1 = "X";    // Axiom  

var p1 = "X->F[+X][-X]FX";  // First Production 

var p2 = "F->FF";   // Second Production 

var productions1 = new Array(p1, p2); // Production Array  

var steps = 4;    // Iterations 

 

Word: FFFFFFFF[+FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX][-FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX]FFFFFFFFFFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX 
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Fig.48–Extraction of the branches within the plant 

As it can be seen in Figure 48, whenever an opening bracket 

occurs, the position is pushed into the position array. When the 

closing bracket occurs, the position of the last opening bracket is 

taken out. The reason the value is incremented by one is to have 

the opening bracket start in the next position, so it doesn’t store 

the bracket itself and cause a missing bracket when the 

replacement takes place. 

After storing the initial and final positions of that branch in the 

branch array, all the characters occurring in that interval are 

copied into a variable and stored in the array as well, as 

exemplified in Figure 49. After that, the string variable is cleared 

to prevent the next branch to be added to the previously copied 

one and cause an error. 

 

 

 

 

 

Fig.49–Collected branches and their positions  

while (i < words.length){ 
  
 if (words.charAt (i) == "["){ 
  position.push (i); 
 } 
  
 if (words.charAt(i) == "]"){ 
  j = position.pop () + 1; 
   
  branches.push (j); 
  branches.push (i); 
   
  while (j < i){ 
   subtree = subtree + words.charAt (j); 
   j ++; 
  } 
  branches.push (subtree); 
  subtree = ""; 
 } 
 i++; 
} 
 

Branches: 19,21,+X,23,25,-X,15,29,+FF[+X][-X]FFX,35,37,+X,39,41,-
X,31,45,-FF[+X][-X]FFX,53,55,+X,57,59,-X,9,63,+FFFF[+FF[+X][-X]FFX][-
FF[+X][-X]FFX]FFFFFF[+X][-X]FFX,75,77,+X,79,81,-X,71,85,+FF[+X][-
X]FFX,91,93,+X,95,97,-X,87,101,-FF[+X][-X]FFX,109,111,+X,113,115,-
X,65,119,-FFFF[+FF[+X][-X]FFX][-FF[+X][-X]FFX]FFFFFF[+X][-
X]FFX,137,139,+X,141,143,-X,133,147,+FF[+X][-X]FFX,153,155,+X,157,159,-
X,149,163,-FF[+X][-X]FFX,171,173,+X,175,177,-X 
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4.4.3 Random Pick 

The next step is to randomly pick a branch of that plant and take 

out its initial and final position, as well as the symbols that occur 

in that interval. 

Flash has two different random methods, random() and 

Math.random(). The first one takes a value and generates an 

integer number between zero and the given value minus one. 

However, currently it’s barely used being the second one 

preferred, even recommended by Macromedia Flash itself.  

It generates a random number between 0 and 1, but in order to 

obtain an integer Math.round(), Math.ceil() or Math.floor() are 

used. The first rounds the number up or down to the nearest 

whole number. The second always rounds up, while the third 

rounds down. In order to get a random number between the 

values Min and Max, this function is used, though there are 

variations: 

randomNumber = Math.floor (Math.random () * (Max – Min + 1)) + Min; 

 

 

 

Fig.50–Random pick of a branch  

In this case we want to pick a position within the branches array 

that ranges from zero to the last branch introduced. Because the 

minimum value is zero, there’s no need to add it in the function. 

As shown in Figure 50, the length of the branch is divided by 3 to 

ensure only the initial positions are picked, so that when we 

retrieve the information of the branch we get the right information. 

As for ignoring the + 1, arrays are always their length minus one, 

so if we were to use the + 1 we would be accessing a position 

that doesn’t exist and get an undefined as value, instead of a 

branch.  

randomBranch = Math.floor(Math.random() * (branches.length / 3)); 
 
var initialPos = branches[randomBranch * 3]; 
var finalPos = branches[randomBranch * 3 + 1]; 
var branch = branches[randomBranch * 3 + 2]; 
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4.4.4 Drawing Optimization 

Outside Genetic Programming, this version also implemented a 

drawing optimization for the L-system.  

When working with complex plants or too many iterations, this 

starts to weigh too much on Flash and takes some time to 

process. A way to reduce the size of the plant is eliminating the 

empty symbols once the word is produced, but that’s often not 

enough. One other thing that consumes too much memory is the 

in and out of functions when drawing the plant. 

In order to reduce this, it was decided to separate the 

interpretation in two parts, the calculation of all coordinate 

positions the plant will take and then the drawing of those 

coordinates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.51–Calculation and storage of the coordinates  

for(i = 0; i < words.length ; i++){ 
 var instr = words.charAt(i); 
  switch (instr){ 
  case "F": 
   px = px + lenght * Math.cos(plantAngle); 
       py = py + lenght * Math.sin(plantAngle); 
   coords.push(px, py); 
   break;  
  case "-": 
   plantAngle = plantAngle + branchAngle; 
   break; 
  case "+": 
   plantAngle = plantAngle - branchAngle; 
   break;   
  case "[":  
   var flag = new TurtleCursor(px, py, plantAngle); 
   stack.push(flag); 
   break;   
  case "]":  
   flag = stack.pop(); 
   px = flag.px; 
   py = flag.py; 
   plantAngle = flag.plantAngle;   
   coords.push(words.charAt(i)); 
   coords.push(px, py); 
   break;  
  default: 
   trace("unknown command: "+ words.charAt(i)); 
   break; 
 } 
} 
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As shown in Figure 51, the calculation of the coordinates is very 

much like the renderInstruction used in the previous version, 

except that it stores the coordinates in the coords array instead of 

drawing them. One other difference is storing the closing bracket 

and the coordinates previous to the branch as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.52–Drawing the coordinates  

In Figure 52 the for loop reads the coords array one value at the 

time and not in jumps of two. This is because there are closing 

brackets in between, so the array isn’t of an even number length.  

When the character isn’t a bracket, then it means it’s a set of 

coordinates. When this occurs it draws a line from where the 

cursor last was to the new position, incrementing the counter so it 

may correspond to the beginning of the next coordinate pair. 

for(i = 0; i < coords.length ; i++){ 
  
 var instr = coords[i]; 
  
 switch (instr){ 
   
  case "]": 
   
  c = coords[i+1]; 
  if(c != "]"){ 
   i++;  
   a = coords[i]; 
   b = coords[i+1]; 
   LS.moveTo(a, b);    
   i++; 
  } 
  else{ 
   i++; 
  } 
  break; 
   
  default: 
   
  a = coords[i]; 
  b = coords[i+1]; 
  LS.lineTo(a, b); 
   
  i++; 
  break; 
 } 
} 
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Yet whenever a bracket occurs, it checks if the next position of 

the array is a bracket as well. If not, it jumps to the next position 

and moves the cursor to that coordinate, incrementing the counter 

again so when the counter increments at the top of the loop it 

corresponds to the beginning of the next coordinate pair. If it’s 

another bracket, then it moves to the next position, since it 

already knows what’s in that position isn’t a coordinate pair. 

 

4.5 Version 4 

This version finally merges the L-system with Genetic 

Programming and generates a pair of evolved children. Also in 

answer to the last objective, an interface was implemented to 

allow the user to pick the parents and generate the offspring once 

he or she has satisfied with the choice. 

As we intend to exemplify the evolution of L-system plants 

through the application of Genetic Algorithms on the words, in this 

program we only simulate the reproduction of parents and the 

resulting offspring. 

 

4.5.1 Individuals 

For each of the parents we allow the user to pick one of the three 

plants we used before on the second version. As shown in Figure 

53, each button contains the information of the corresponding 

plant and when pressed it sends it to the main program. This is 

achieved by taking advantage of the event handlers Flash has. 
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Fig.53–Example of the code in a button 

The on is a mouse event that triggers an action, in this case 

whenever the mouse presses the button while the pointer is still 

over it. 

The depth was an extra parameter added to all plants. This will be 

explained more accurately below, but this value is what allows 

multiple plants to be drawn at the same time. 

 

 

 

 

Fig.54–Example of an action triggered by clicking on a button 

On the main code there is another event handler triggered by the 

release of a certain button. Each button has an instance name 

attached to it, so this event will only be triggered by that specific 

button, as exemplified in Figure 54. 

When released the event will run the L-System and Draw 

functions, the same ones developed in the second and third 

version respectively. The only difference, besides reorganization 

on(press){ 
 w = "X";   // axiom  
  
 var p1 = "X->F[+X][-X]FX"; // production 1 
 var p2 = "F->FF";  // production 2 
  
 productions[0] = p1; 
 productions[1] = p2; 
  
 branchAngle = 70 * Math.PI / 180; //branch angle 
 plantAngle = -90 * Math.PI / 180; // plant angle  
 
 steps = 5; // iterations  
 lenght = 1; // unit length 
  
 px = 250; //X coordinate 
 py = 149; //Y coordinate 
  
 color = 0x33CC00; // color 
  
 depth = 1; // depth of movie clip 
} 
 

plant1_a.onRelease = function(){ 
  
 word = LSystem(w, productions, steps); 
 Draw(word, branchAngle, plantAngle, steps, lenght, px, py, color, depth); 
  
 storage[0] = branchAngle; storage[1] = plantAngle; storage[2] = lenght; 
storage[3] = steps; 
} 
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and cleaning of the code, is that the Draw function takes the new 

depth parameter. 

This parameter is to be used when creating a new empty movie 

clip. As long as the depth of each movie clip is different, it’s 

possible to have multiple ones on the same stage, but if they are 

the same then the latest will replace the other. This is why we 

only have two parents and no more on stage. The first three 

plants have a depth of 1 while the other three have a depth of 2. 

Thus, whenever a button of the same color is clicked, it will 

replace the parent it was previously there, and the same applies 

to the offspring, though their values are 3 and 4, so they won’t 

erase the parents from the screen. 

The storage array saves the parents which were picked to be 

later sent to be processed by the Genetic Program. We can’t use 

push and pop in this situation because the second parent has the 

4th, 5th and 6th positions in the array reserved for it. 

 

4.5.2 Breeding 

Once both parents are picked, the user can breed the two plants 

and generate a pair of offspring. It doesn’t matter if they’re the 

same type of plant or not, as long as there are enough branches 

in the plant to provide a good pool, the chances are the offspring 

will result different from each other. 
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Fig.55–Example of the breed button event 

The if statement ensures no action is performed if the word of any 

of the parents wasn’t generated yet, preventing an error when 

performing the crossover later on (Figure 55).  

The Segments function is the picking and storage of all branches 

occurring in that plant. Once all nodes valid for exchange are 

collected, the array is sent to the RandomBranches function to 

pick one of those branches, returning an array with the initial and 

final positions an the corresponding subtree. Both of these 

functions are the same as the ones developed in the third version 

of the program. 

The last part is sending both parents, the picked branches and 

the parameters to generate and draw the offspring. 

 

 

 

 

 

Fig.56–Children function 

The function in Figure 56 starts by creating the string that will 

receive the word defining the child and empty one instead of an 

breed.onRelease = function(){ 
  
 if((word != "") && (word2 != "")){ 
   
  nodes = Segments(word); 
  nodes2 = Segments(word2); 
   
  randomB = RandomBranches (nodes); 
  randomB2 = RandomBranches (nodes2); 
   
  Children (word, randomB, randomB2, storage[1], 
storage[0], storage[2], storage[3], 250, 394, color, 3); 
  Children (word2, randomB2, randomB, storage[5], 
storage[4], storage[6], storage[7], 450, 394, color, 4); 
 } 
} 

Children = function (parentWord, random1, random2, plantAngle, branchAngle, 
lenght, steps, px, py, color, depth) 
{ 
 var child = "";  
 var i; 
  
 child = Replace(parentWord, random1, random2); 
  
 Draw(child, branchAngle, plantAngle, steps, lenght, px, py, color, depth); 
} 
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undefined variable like most ones in Flash because otherwise the 

first character will have an error. Afterwards, it calls the function 

Replace to do the switching between the two picked branches 

and then it sends it to be drawn like a normal L-system. 

 

 

 

 

 

 

 

 

 

Fig.57–Replace function 

Taking the parent word where the replacement will take place, the 

function in Figure 57 keeps copying the characters of the parent 

plant into the string, while outside the limit defined the edges of 

the branch. 

While the counter is inside the interval defined by the initial and 

final position of that branch, the loop just keeps running until the 

position just before the end of it is reached, adding the string of 

commands of the branch from the other parent plant.  

The reason why it’s done this way is to prevent constant 

duplication of that string in the word, creating an error, and 

because the branch from the other plant is likely of different 

length, we can’t use the counter to travel through the string like 

before.  

 

 

Replace = function(words, randomBranch1, randomBranch2) 
{ 
 var newWord = "";  
 var i; 
  
 for(i = 0; i < words.length; i++){ 
   
  if((i < randomBranch1[0]) || (i > randomBranch1[1])){ 
    
   newWord = newWord + words.charAt(i); 
  }   

  else{ 
   if(i > randomBranch1[1] - 1){ 
     
    newWord = newWord + randomBranch2[2]; 
   } 
  } 
 } 
 return newWord; 
} 
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4.5.3 Validation 

In order to verify if the application reaches the goal of taking two 

L-system plants and generating two evolved and distinctively 

different children, we’re going to illustrate the program by 

presenting screenshots of several different results obtained. 

 

4.5.3.1 Parent Plants 

 

Fig.58–Program interface 

As seen in Figure 58, the application has three different buttons 

for each parent, each containing the information for the respective 

plant. They will draw the parents on the top section of the window 

while the children will be presented below. 

 

Fig.59–Two identical parents 
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As said mentioned before, it’s possible to use the same type of 

plants as parents, in this case being the first one (Figure 59). The 

reproduction will be like an asexual one despite two parents being 

used, because they’re both from the same species. 

 

Fig.60–Different parents 

In Figure 60 the first parent is the second plant, while the second 

is the third one. The resulting offspring will tend to look much 

more different from this sexual breeding than the asexual one 

showed before. 

 

4.5.3.2 Asexual Reproduction 

 

Fig.61–Offpring of Plant 1 
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Fig.62–Offpring of Plant 2 

 

 

Fig.63–Offpring of Plant 3 

As you can see in Figures 61, 62 and 63, the children have clear 

differences from their parents, even when they’re both of the 

same type.  

The amount of change they’ll suffer depends of which branches 

were selected. Sometimes they might be minor, like a small 

branch turned into the opposite direction as shown in the second 

child of the figure 61, but generally they’re quite noticeable. 

 

 



 80 

4.5.3.3 Sexual Reproduction 

 

Fig.64–Offpring between Plant 1 and 2 

 

 

Fig.65–Offpring between Plant 1 and 3 

 

 

Fig.66–Offpring between Plant 3 and 2 
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The resultsseen in Figures 64, 65 and 66 might not look too 

different from the ones obtained through the asexual 

reproduction, but some of the results obtained by the crossing of 

two parents from different species wouldn’t occur otherwise.  

 

4.5.3.4 Bad Offspring 

 

Fig.67–Bad offspring between Plant 1 and 2 

 

 

Fig.68–Bad offspring between Plant 1 and 3 
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Fig.69–Bad offspring between Plant 3 and 2 

Sometimes occasional bad crossings occur, as can be seen in 

Figures 67, 68 and 69. What can be considered as a bad child is 

quite relative since we’re dealing with a human factor as a fitness 

function and therefore with a relative perception of what’s right 

and wrong in a plant. 

Generally branches that are too long, bending in odd angles or 

showing a completely different structure from the rest of the plant 

are viewed as wrong by most people. 

 

4.6 Version 5 

Having achieved the goal of using Genetic Programming to 

evolve L-System plants and proven the resulting offspring are 

quite different from the parent plants even though only a single 

generation was produced, this version focuses on increasing the 

parent population to allow more combinations to take place.  

There were some changes in the interface as well. Besides 

providing more information on each selected plant, the user was 

given the opportunity to manipulate some of the parameters 

(branch angle and unit length).  

More importantly, the user now needs to determine the fitness 

value of each of the selected plants in order to determine their 
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probability to generate new offspring, instead of just matching 

them directly as before. 

 

4.6.1 Individuals 

Unlike the previous version, all the code was built in the stage 

instead of having each button sending the information of the 

corresponding plant back and forth. The reason for this was to 

prevent hunting down where the code was located, especially 

when the number of iterations, the size and the branch angles 

had to be adjusted. 

Also more information was added, such as an identification 

number, number of the generation and fitness value. The 

identification and the generation numbers are to identify which of 

the 10 plants and generation is currently being viewed when the 

information is presented to the user. As for the fitness, it’s a 

necessary value for the Genetic Programming. 
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Fig.70–Example of the information of each Plant 

As you can see in Figure 70, the initial L-System information and 

the X and Y coordinates were kept separate from the plant 

structure. This is because the L-System is only calculated for the 

parent plants. The offspring result only from the branch exchange 

between parent plants, not from constant calculation of the axiom 

and productions through the several steps.  

In other words, the evolved plants aren’t technically L-Systems 

but strings of commands. This was detected in the previous 

version and is a trait that was kept in the later ones. 

This was because the purpose of the program is to produce 

evolved plants, not evolved L-systems (the L-System is simply 

//Initial plant variables 

var w1 = "F";      //axiom 

var productions1 = new Array("F->FF-[-F+F+F]+[+F-F-F]"); // productions 

var steps1 = 3;      // iterations 

// Coords 

var xx1 = Plant1._x + (Plant1._width / 2); // X coordinate 

var yy1 = Plant1._y + Plant1._height - 2; // Y coordinate 

// Plant structure 

plant1 = {}; 

plant1.word = ""; 

plant1.branchAngle = 20 * Math.PI / 180; // branch angle 

plant1.plantAngle = -90 * Math.PI / 180; // plant angle 

plant1.lenght = 6;   // unit length 

plant1.color = 0x128729;   // color 

plant1.px = xx1;    // X coordinate 

plant1.py = yy1;   // Y coordinate 

plant1.fitness = 0;   // fitness 

plant1.generation = 0;   // number of generation 

plant1.number = 1;   // number of plant (id) 

plant1.depth = this.getNextHighestDepth(); //depth of movie clip 
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used to generate the initial string). If it were the other way around, 

then the productions and not the final word would be evolved.  

 

4.6.2 Information Presentation  

Initially, when the program starts the information from each plant 

is taken and drawn on the stage with the L-System and Draw 

functions developed in the previous versions. 

 

Fig.71–Program Interface 

As seen in Figure 71, each of the squares where a plant is drawn 

is a movie clip with a mouse event attached. Each time the 

mouse is released while over one of these movie clips, Flash will 

search for the corresponding event and perform the code 

contained within it. 
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Fig.72–Example of Information Presentation code 

What the code in Figure 72 does is take the information from the 

corresponding structure and send it to be written in the left and 

bottom text boxes, as well as clear the information in the update 

boxes. 

 

 

 

 

 

 

 

 

 

 

Fig.73–Example of Value Update code 

Plant1.onRelease = function(){ 

 // displays parent plant info 

 text_generation.text = plant1.generation; 

 text_plantNo.text = plant1.number; 

 text_branchAngle.text = plant1.branchAngle * (180 / Math.PI); 

 text_unitLength.text = plant1.lenght; 

 text_fitness.text = plant1.fitness; 

 text_word.text = plant1.word; 

 // clears the values in the updating windows 

 text_newBranchAngle.text = ""; 

 text_newUnitLength.text = ""; 

 text_newFitness.text = ""; 

} 

bt_fitnessUpdate.onRelease = function(){ 

 // checks if value is valid 

 if(text_newFitness.text != "" and text_newFitness.text >= 0 and 
text_newFitness.text <= 10){ 

  // updates the corresponding plant 

  if(text_plantNo.text == 1){ 

   plant1.fitness = text_newFitness.text; 

   text_fitness.text = plant1.fitness; 

   Draw(plant1.word, plant1.branchAngle, 
plant1.plantAngle, plant1.lenght, plant1.px, plant1.py, plant1.color, plant1.depth); 

  } 

  (…) 

 } 

} 
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As shown in Figure 73, the unit length, branch angle and fitness 

values can be updated by the user. The new values can be 

written in the white text boxes and updated by clicking on the 

corresponding button on the right, which triggers another mouse 

event. 

Before the value is updated, the code checks if the value is within 

the determined limits. If it is, it takes the value written on the text 

box, writes over the old one in the structure and sends the plant 

to be drawn again, so the user can decide if he likes the changes 

or not. 

 

4.6.3 Breeding 

The breeding of plants takes place when the New Generation 

button is pressed. The process is the same as in the previous 

version, except there’s a roulette to determine the parent pairs.  

The Roulette Wheel Selection is an operator often used in 

Genetic Algorithms for the parent selection. Taking the total 

fitness and the fitness of each individual, it assigns a probability of 

selection to each one, according to the Probability Formula: 

P = Favorable cases  
      Possible cases 

 

The Roulette Wheel Selection can also be compared to a pie 

chart, where each slice corresponds to the fitness of a certain 

individual. The larger the probability that individual has, the bigger 

the chance of being selected. 
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Fig.74–Example of the Roulette Wheel Selection code 

Because the fitness values are given by the user and there’s no 

constant total fitness, an array was used to store the identity 

number of the plant the same amount of times of its fitness, as 

seen in Figure 74. 

Roulette = function(){ 

 var totalFitness; 

 var randomNumber; 

 var fitnessArray = new Array(); 

 var parentPairs = new Array(); 

 var i; 

 var j; 

 // filling the fitness array 

 for(i = 1; i <= 10; i++){ 

  if(i == 1){ 

   for(j = 0; j < plant1.fitness; j++){ 

    fitnessArray.push(i); 

   } 

  } 

  (…) 

 } 

 // getting the sum of all fitness values 

 totalFitness = fitnessArray.length; 

 // picks a random number within the total fitness and stores the picked parent in the array 

 for(i = 0; i < 10; i++){ 

  randomNumber = Math.floor (Math.random () * (totalFitness + 1)); 

  parentPairs.push(fitnessArray[randomNumber]); 

 } 

 return parentPairs; 

} 
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After going through all the plants, a random number is generated 

between 0 and the total fitness and the identity number of the 

corresponding plant is taken out and stored in an array to return 

all the picked pairs. 

Having the pairs determined, the rest follows the same steps as in 

the previous version, taking each pair of plants corresponding to 

the identification number in the array, generating the offspring and 

drawing the results on the stage. 

 

4.7 Version 6  

Although the previous version was successful in randomly pairing 

parent plants according to the probability determined by their 

fitness and generating plants through several generations, the 

code itself was inefficient because of unnecessary duplication. 

Besides the code cleaning and the fixing of some minor bugs, the 

compression of the L-System word was implemented. This was 

done to reduce the amount of drawing commands, and 

consequently, the amount of time spent on that task. 

The interface was rearranged as well, in order to make it more 

intuitive for the user. The information displayed is the same, but 

the update buttons were replaced by horizontal sliders, and 

instead of 10 small plants, thumbnails and a full view were used 

to make it easier to tell which plant is selected and how the 

changes look. 

 

4.7.1 Individuals 

Taking advantage of a piece of code commonly found in Flash 

games to generate multiple enemies and bullets, instead of 

having 10 different structures declared separately, empty movie 
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clips were declared in a for loop and the parameters defined 

there. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.75–Example of the generation of the Plants  

In Flash it’s possible to refer to a symbol either directly by its 

instance name or with _root[…] and a string containing the name. 

The previous version used the first approach, but that has the 

disadvantage of duplicating code when using more than one 

// creates movie clips where plants will be drawn and inserts the general information 

for(i = 0; i < 10; i++){ 

 var newName = "Plant" + (i + 1); 

 _root.createEmptyMovieClip(newName,_root.getNextHighestDepth()); 

 // movie clip position and size 

 _root[newName]._x = 250 * i; 

 _root[newName]._y = 0; 

 _root[newName].width = 240; 

 _root[newName].height = 400; 

 // X and Y coord of plant 

 _root[newName].px = _root[newName]._x + (_root[newName].width / 2); 

 _root[newName].py = _root[newName]._y + (_root[newName].height / 2); 

 _root[newName].word = "";    // word 

 _root[newName].color = 0x128729;   // color 

 _root[newName].plantAngle = -90 * Math.PI / 180; // plant angle 

 _root[newName].fitness = 0;   // fitness 

 _root[newName].generation = 0;   // generation number 

 _root[newName].number = i + 1;   // plant ID number 

 _root[newName].depth = _root[newName].getDepth(); // movie clip depth 

} 

//Initial plant variables 

Plant1.w = "F";      //axiom 

Plant1.productions = new Array("F->FF-[-F+F+F]+[+F-F-F]"); // productions 

Plant1.steps = 3;      // iterations 

Plant1.branchAngle = 20 * Math.PI / 180;    // branch angle 

Plant1.lenght = 6;      // unit length 
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movie clip performing the same tasks. Besides reducing the code, 

the second approach can be applied to a virtually infinite amount 

of symbols (Figure 75).  

 

4.7.2 Word Compression 

One of the things noticed in the previous version was a large 

quantity of commands repeated in the row when displayed on the 

interface. As mentioned before, the Draw function reads and 

performs the commands one by one. This means time, memory 

and processing power is being wasted in a task that could be 

optimized. 

Two approaches were developed to solve this situation. The first 

one was to store the word in an array with the first position 

reserved for the amount of times it repeated itself before a 

different command took place and the second for the command. 

This solution would also allow expanding the program and 

developing Parametric L-Systems along with the DOL ones. 

The second solution was to keep using a string to store the word, 

but reserving the first two characters for numerical values (could 

be more, but anything above 100 involves plants far too big for 

the memory to handle) and the third one for the command. 

 

4.7.2.1 Array Solution 

Because it was being tested the possibility to expand the program 

to draw Parametric L-Systems as well, the array solution was 

implemented on the axiom and productions.  

The problem however was that the split and join methods used in 

the previous versions don’t work on arrays, and Flash doesn’t 

provide similar methods for them. Instead of being able to replace 

a certain symbol in all the places it occurs in the string, it was 
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necessary to read the word symbol by symbol and search for the 

corresponding successor in the successor array for each of them. 

This involved using several loops within loops and the result was 

so heavy on the processor that Flash asked to terminate the 

program before any of the plants could be drawn.  

 

4.7.2.2 String Solution 

Although this solution could be used to implement the Parametric 

L-Systems as well, it has the disadvantage of having a restricted 

number of characters for the numerical values. This is especially 

true when they don’t use whole numbers. 

The compression was tested both during and after the production 

of the L-System word. The second one proved more efficient 

because in order to apply the production rules it was necessary to 

decompress the word again before they could be applied.  

 

 

 

 

 

  

Fig.76–Comparison between both Compressions 

As it can be seen in Figure 76, if the word isn’t decompressed 

before applying the productions the result is an invalid plant, since 

the interpreter is expecting for the first two characters to be 

numerical values and the third the command. 

The only exception to this rule is the brackets. When compressed 

as well, the Draw function wasn’t able to restore the position and 

angle when it reaches a closing bracket. In order for the plants to 

be drawn correctly, the function checks for an occurrence of a 

w = FF   // axiom 
p = F->FF[+F]        // production 
  

Original   Compressed 

0:  FF    02F 

1: FF[+F] FF[+F]  02 FF[+F] 

 Compressed 

 02F[01+01F]02F[01+01F] 
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bracket before converting the first 2 characters into a numerical 

value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.77–Example of the Compression function 

Compression = function(words){ 

 var temp = "";  // temporary word storage 

 var i = 0; 

 var j = 0; 

 var n = 1; 

 // reads the word and condenses it 

 for(i = 1; i <= words.length; i++){ 

  // checks the number of occurrences of the same symbol  

  if(words.charAt(j) == words.charAt(i)){ 

    n++; 

    if(words.charAt(i - 1) == "[" || words.charAt(i - 1) == "]"){ 

     temp += words.charAt(i - 1); 

    } 

  } 

  else{ 

   // doesn't condense the brackets  

   if(words.charAt(i - 1) != "[" && words.charAt(i - 1) != "]"){  

    if(n < 10){ 

     temp +=  words.charAt(i - 1) + String(0) + String(n); 

    } 

    else{ 

     temp += words.charAt(i - 1) + String(n) ; 

    } 

   } 

   else{ 

    temp += words.charAt(i - 1); 

   } 

   j = i; // places the flag in the position of the new symbol 

   n = 1; // resets the counter 

  } 

 } 

 return temp; 

} 
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What the Compression function in Figure 77 does is take the 

given word and read it character by character, comparing the 

symbols and incrementing a counter until a different one occurs. 

When that happens it stores the counter and the command before 

setting the counter back to zero and updating the position flag 

used in the symbol comparison. 

When a bracket occurs, however, it adds it to the temporary string 

before updating the counter and the position flag. 

 

4.7.3 Color and Thickness 

There was an attempt to make the plants look more realistic by 

giving the branches different colors and thickness depending of 

their level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.78–Example of the Color Setting function 

ColorSetting = function(words){ 

 var colors = [];   var count = 0;   var max = 0;   var i; 

 for(i = 0; i < words.length ; i++){ 

  if(words.charAt(i) == "["){  

   if(count == max){   

    max++; 

   } 

    count++; 

  } 

  else{ 

   if(words.charAt(i) == "]"){ 

    count --; 

   }}} 

 for (i = 0; i <= max; ++i){  

  colors[i] = Math.floor(255 * (1 - i / (max + 3))) << 8; 

 } 

 return colors; 

} 
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As shown in Figure 78, the levels are determined by the largest 

amount of sub-branches that plant possesses. Thus, the function 

travels through the word and counts how many opening brackets 

it can find before a closing one occurs. If that number equals to 

the maximum number of brackets found, then it’s incremented. 

After determining the number of levels, it determines the 

hexadecimal value of the green spectrum and stores it in an 

array. 

In the Draw function, there’s a variable called levels, which 

contains the size of the color array. That value is decremented or 

incremented every time an opening or closing bracket occurs. 

That variable is then applied on the lineStyle method which 

determines the line’s color and thickness before it’s drawn. 

 
Fig.79–Example of Color and Thickness Levels in Two Different Plants 

As you can see in figure 79, the result looks significantly different 

from plant to plant. It’s not that the second plant is badly defined 

or an error occurred with the colors and thickness, but the 

brackets are defined in a different sequence than from the first 

plant. This only proves the L-Systems are counter-intuitive and 

hard to predict the result when reading the raw word.  
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4.7.4 Information Presentation 

When the program starts, the L-System information of each plant 

is taken and the words are produced. Before the compression 

and drawing can take place, the words are clean from 

unnecessary code, such as canceling rotations or empty 

brackets.  

 

Fig.80–Program Interface 

As seen in the Figure 80, the plants in the thumbnails are resized 

versions of their original size. If the coordinates were calculated 

directly for that size then there would be a larger margin of error 

when the values are rounded to fit in the pixels. Also, it would 

mean calling the Draw function a second time when the plant is 

presented in full size. Instead, a scaling property the movie clips 

possess is used, taking advantage of Flash’s vectorial nature. 

Like in the previous version, each time one of the plants is 

clicked, the information is presented on the left box. The main 

difference however was the use of horizontal sliders to facilitate 

the picking of the values and immediately present the changes on 

the plant, instead of having to click on a button to apply them.  
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Fig.81–Example of the Fitness onMouseMove event 

When the buttons on the sliders are clicked, this triggers an 

event. While pressed, it allows the button to be dragged within the 

limits of the slider bar, but it also turns a flag to true. When 

released the drag method stops and the flag returns to false 

(Figure 81). 

The onMouseMove event, unlike the other two, is called every 

time the mouse moves and not just when it moves the 

corresponding button. To keep it from performing code 

unnecessarily the flag was used. What the rest of the code does 

is to calculate the value corresponding to the coordinates the 

button is currently at, then writing it on the text box and storing on 

the corresponding variable before sending it to be drawn. The 

fitness is the only one that doesn’t redraw the plant because its 

value doesn’t change its physical appearance. 

fitness_button.onMouseMove = function() { 

 if(fitness_button.flag){ 

  var fitness_val = 0; 

  var fitness_plantNo = 0; 

  // calculates the position of the button in relation to the 
beginning of the bar 

  var fitness_xx = fitness_button._x - fitness_button.x1; 

  // calculates the corresponding value 

  fitness_val = Math.floor((fitness_xx * (fitness_bar.max - 1)) / 
fitness_button.distance) + 1; 

  // writes the value 

  text_fitness.text = fitness_val; 

  // updates the plant value 

  fitness_plantNo = "Plant" + text_plantNo.text; 

  _root[fitness_plantNo].fitness = fitness_val; 

 } 

} 
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The New Generation button uses pretty much the same code as 

the previous version. The only adaptation was using for loops to 

go through the different plants, thanks to the use of movie clips 

instead of structures, which reduced the code duplication by 10. 

As for the word compression, it wasn’t necessary to make any 

adaptations for that because the brackets don’t have a numerical 

value attached to them. 

  

4.7.5 Validation 

It had been proven the Genetic Programming is capable of taking 

two different plants and combine them to generate different 

offspring, but that alone isn’t enough to prove the plants are 

actually evolving. 

According to the theory of Evolution, the fittest individuals pass on 

the traits that aid their survival to their offspring through heritage, 

while harmful or less fit traits become less likely to occur. If there 

isn’t a constant change of their environment that forces them to 

adapt in order to survive, then the evolution tends to converge 

and stagnate after a certain amount of time. 

So, in order to validate the evolutionary process of this program, a 

series of tests were made in order to prove the occurrence of 

convergence.  

 
Fig.82–Example of some evolved plants 
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4.7.5.1 Evaluation System 

We have the fitness value to determine which plants are apt to 

pass on their traits to their children, but how is that value 

determined in the first place? Ideally, we would have an 

evaluation system that would be able to classify the plants all in 

the same manner and help determine the precise value of the 

fitness.  

There are two ways to analyze the plant, Quantitative and 

Qualitative evaluation. The first focus in obtaining objective values 

from attributes can be measured. The second uses a subjective 

evaluation and interpreters according to certain criteria. 

As discussed before, the evaluation of the plants can’t be 

determined by numerical values alone because it depends on an 

aesthetical evaluation. This means the type of evaluation to be 

used is a Qualitative one. 

 

4.7.5.1.1 Qualitative Evaluation 

The criteria decided were the Verticality, Excessive Angles, Odd 

Branches and Density. More criteria could have been used, but 

they wouldn’t be mutually exclusive, which would result in a 

duplication of traits and ambiguity in the determination of the 

values. 

 

Fig.83–Example of a Good and Bad Verticality  criteria 
As illustrated in Figure 83, the Verticality criteria checks if the 

plant is in a good upright position, or it’s pending too much to one 
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of the sides, which would make it look unrealistic because of 

gravity. 

 
Fig.84–Example of a Good and Bad Excesive Angles  criteria 

As illustrated in Figure 84, the Excessive Angles criteria checks if 

the plant doesn’t have any “broken branches”, which result from 

too many rotations in the same direction. 

 
Fig.85–Example of a Good and Bad Odd Branches  criteria 

As illustrated in Figure 85, the Odd Branches criteria checks if the 

branches seem to belong to the same species of the plant. This 

occurs more often when selecting plants from different species, 

though occasionally, within the same species, a branch will jut out 

and give an unnatural feeling. 

 
Fig.86–Example of a Good and Bad Density  criteria 
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As illustrated in Figure 86, the Density criteria checks if the plant 

doesn’t thin out and loses its shape as a result from bad branch 

replacements. 

 

4.7.5.1.2 Evaluation Problems 

Qualitative evaluation is never a transparent process because it 

depends of the user’s personal opinion and psychological 

background, but in this particular situation it is even less. 

The evaluation of the plants is done by taking in the different 

criteria and verifying how well each is fulfilled. The trouble is, 

because the parent pairing and the branch picking are random, 

the appearance of the plants varies greatly and is rarely the 

same. This means that, with exception for the initial population, 

the evaluation of the plants can only be done once. 

Taking into account that in order to prove this Qualitative 

Evaluation method is reliable, it’s necessary to evaluate the plants 

by an N number of individuals, it becomes impossible to obtain 

100% of reliability on the data produced. 

 
Fig.87–Example of a possible exception 

Another problem is that not all plants that don’t match the criteria 

can be considered as bad plants, as seen in Figure 87. 

Depending on the personal interpretation done by the user, this 

plant could be considered plausible or not under the right 
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circumstances (for example, a plant blocked partially by an object 

would bend itself in order to reach the sunlight). 

As for the criteria themselves, it’s not possible to define an 

interval to determine from which point a plant is acceptable and 

from which is not. The reason why is for the same reason each 

needed a different number of iterations and unit length when they 

were first determined. Each plant is different, so the same values 

can’t be applied to the others, and the same is true for the 

offspring. 

 

4.7.5.2 Convergence 

 
Fig.88–Example of convergence 

As more generations take place, the more alike the population 

starts to become. This is because the words that form them start 

to become more and more alike. However, there is always some 

variation, as you can see above in Figure 88. 

The amount of generations necessary to reach a minimal state of 

convergence depends mostly on the number of parents plants 

picked. The larger the amount of parents picked, the more 

variation between the words exists. This allows different types of 

combinations to occur, especially when the plants are from 

different species, but it takes longer to reach a convergence than 

by picking a single plant to create the offspring of the next 

population. 
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Chance also plays a part in the amount of generation necessary 

for the plants to converge. Because the appearance of the 

offspring results from random exchange of branches, there’s no 

way to predict the outcome. Sometimes the offspring match the 

criteria; sometimes the branch exchange results in bad children, 

and sometimes the whole population turns out as invalid plants 

which forces the user to start from the beginning. 

So the amount of generation it takes to reach a convergence 

depends on the population produced and the choices the user 

makes. It’s not possible to determine an exact number, but from 

the results observed, usually, it starts occurring between 5 to 10 

generations, varying with the species in question. 
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5 Conclusions  

As presented in Chapter 1, the problem we set out to solve was: 

Is it possible to develop an application that simulates 
plants and uses genetic programming to optimize their 

graphical representation?  

Being the subsequent sub-problems: 

• What’s the best structure to simulate 2D plants in a 

computer? 

• How to optimize a graphical representation through an 

Evolutionary Algorithm? 

• How to transfer that structure into the Actionscript 

language? 

• Which are the parameters a user can manipulate to obtain 

the best graphical representations? 

 

Knowing these goals, in this chapter we will discuss the final 

conclusions drawn from the learnt procedures, the obstacles 

found and the achieved results.  

We will also discuss the future improvements and applications 

that could be produced from this work. 

 

5.1 Achieved Objectives   

Taking into consideration the objectives we’ve set out to fulfill and 

the results obtained in the final program, we can say all goals 

were achieved:  
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1. To Identify a method to build plants in a computer, 

or that can be adapted to work in a computer; 

2. Determine how to use the Genetic Programming to 

evolve those plants; 

3. Adapt the developed approach for Actionscript; 

4. Allow some level of control to the user to select and 

adjust the plants. 

The results presented show that the L-system method was clearly 

identified and adapted to work in Flash. Comparing the plants 

generated in this application to the ones done with normal LOGO 

turtle graphics, they’re exactly the same. 

The Genetic Programming implementation deployed to evolve the 

parent plants proved to be successful, as the resulting children 

are clearly different from their parents. As for the adaptation of 

these methods to work in Actionscript and allowing the user to 

adjust the plants, these goals were also reached. 

The user can pick which plants to breed, determine their fitness 

and adjust their size and branch angle. Also, it’s possible for the 

user to evolve and adapt his or her plants during several 

generations until he reaches what he or she considers the optimal 

solution. 

5.2 The Application  

Since the purpose of this project was to prove we could take an L-

system and evolve it through the use of Genetic Programming, we 

can say the application was successful. 

Taking a deeper look into the obtained results, although the 

offspring go through several generations, they keep a certain 

resemblance with the original parents. This is because only the 

change of branches occurs in the Genetic Programming, not 

altering the information within them.  
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The recursive nature of the L-systems proved to be frustrating 

when dealing with memory issues. When drawing more than eight 

iterations the program takes a long time to process and draw the 

word, sometimes even stops working. This situation isn’t 

something that can’t be fixed however, since it’s a necessary evil 

when working with L-systems, but the problem doesn’t occur just 

in Flash. Other applications developed with different languages 

suffer from this as well. 

One of things that was only realized during the implementation of 

the application was the difference between the initial population 

and the ones generated afterwards. The initial plants are 

generated by the L-system, using the axioms, productions and 

number of iterations to produce the final word, but the offspring 

result from the exchange of branches between the parent plants. 

In other words, the children are no longer L-systems. This means 

that if we wanted the offspring to have more iterations, to add 

more complexity to their appearance, it wouldn’t be possible. This 

drawback was detected while developing the 4th version.  

Depending what the next objective would be, this would either 

have a major or minor impact on the program. If the goal was to 

generate a plant but still expect to be able to control the optimal 

solution like a normal L-system, then the whole Genetic 

Programming approach would have to be reworked in order to 

evolve the axiom and the productions instead of the final word.  

As for Actionscript as a programming language, the conclusion 

drawn from the ongoing learning process and techniques found is 

that this language has a great potential, especially when it comes 

to developing graphical and interactive applications. The only 

drawback was its lack of processing power compared to other 

languages, which was visible when calculating several iterations 

in a L-System and drawing multiple, detailed plants at once. 
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5.3 Future Improvements  

One of the ideas that came to mind, but there wasn’t enough time 

to develop, was to create a plant editor where the user could 

generate and personalize his or her own plant. This could be 

done by either allowing him or her to edit the axiom, productions 

and number of iterations, or by implementing the Stochastic L-

system. 

In the beginning it would be necessary to limit the symbols that 

could be used and the amount of productions the plant could 

have. Also, validations would be in order to prevent errors like 

unopened or unclosed brackets. As for the second, there would 

be a list of productions that could be picked, depending of the 

axiom selected (having productions with the “X” predecessor 

when the axiom is “F” would just waste time and memory, 

because they would never occur). Introducing productions could 

also be accepted. 

As for the plant personalization, leaves could be added and the 

color of the plant changed. The leaves would be movie clips 

placed in the library that would be duplicated and placed at the 

end of each branch, aligning them with the rotation calculated by 

the interpreter. Changing the color would be done by using sliders 

and converting the RGB values into hexadecimal, so they could 

be applied to the Line method. 

Another future application could be a program capable of 

generating plants without the aid of the user. The fitness value 

would be calculated by the computer, using some of the criteria 

identified and quantifying it into numerical values. This would 

allow working with a much larger population and at a much faster 

pace, though it’s uncertain if the results would be pleasant to the 

eye. 



 108 

Another idea is having the application eliminating some of the 

children that don’t qualify to be part of the population. Things like 

branches growing outside the boundaries of the window or, 

especially, below the horizon line are situations that aren’t 

dependent on an aesthetic evaluation and therefore can be 

processed by the computer. 
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