UNIVERSIDADE DE TRÁS-OS-MONTES E ALTO DOURO

ESCOLA DE CIÊNCIAS E TECNOLOGIA

Departamento de Engenharias

Impacto de Alterações Climáticas no Dimensionamento de Tubagens e Órgãos de recolha de Águas Pluviais Prediais

Eduarda Maria Barros Macário

Orientador: Professor Doutor Luís Filipe Sanches Fernandes Coorientador: Professor Doutor Mário Jorge Modesto Gonzalez Pereira

Dissertação apresentada à Universidade de Trás-os-Montes e Alto Douro para obtenção do Grau de Mestre em Engenharia Civil

Vila Real, Janeiro de 2013

"A mente que se abre a uma nova ideia jamais volta ao seu tamanho original." Albert Einstein

AGRADECIMENTOS

O trabalho que aqui se apresenta só foi possível graças à colaboração e apoio de algumas pessoas, às quais não posso deixar de prestar o meu reconhecimento.

Ao Professor Doutor Luís Filipe Sanches Fernandes, meu orientador, pela disponibilidade e orientação prestada, bem como pelas críticas, correções e sugestões relevantes feitas durante a orientação.

Ao Professor Doutor Mário Jorge Modesto Gonzalez Pereira, meu coorientador, pelo apoio insubstituível e permanente prestado ao longo de todas as etapas realizadas neste trabalho. Os seus conhecimentos, orientação, disponibilidade e prontidão foram fatores fundamentais na execução desta dissertação.

Ao Professor Doutor Joaquim Pinto da universidade de Cologne, por facultar os dados meteorológicos simulados pelo modelo regional de clima COSMO-CLM.

Ao Centro de Geofísica da Universidade de Lisboa, nomeadamente ao Tomás Calheiros e Menezes, pela seleção dos dados de precipitação provenientes do modelo COSMO-CLM do domínio espacial de Portugal Continental.

Aos meus pais e à minha querida avó, pela estabilidade, incentivo, orientação e apoio incondicional que sempre me proporcionaram.

Aos meus amigos, em especial ao Simão, à Licínia, ao Pato, á Mónica e à Sónia, por se mostrarem sempre disponíveis a ajudar na execução deste trabalho.

A todos os meus sinceros agradecimentos.

RESUMO

O dimensionamento de infraestruturas de drenagem pluvial assenta implicitamente no pressuposto de que a distribuição da precipitação intensa é estatisticamente estacionária. Esta hipótese é posta em causa pelas projeções do clima para o futuro, que apontam para um aumento da frequência e magnitude de eventos extremos de precipitação, nomeadamente episódios de precipitação intensa que resulta na incerteza sobre o desempenho futuro dos sistemas construídos sob o paradigma atual.

O objetivo deste estudo consiste na avaliação das potenciais consequências das alterações climáticas no dimensionamento de órgãos de drenagem predial de águas pluviais e, consequentemente, na necessidade de rever regras e legislação sobre este dimensionamento, recorrendo à análise comparativa das curvas de Intensidade-Duração-Frequência (IDF) definidas no Decreto Regulamentar nº23/95 de 23 de Agosto, propostas por Matos e Silva (1986), e as obtidas com dados observados em estações meteorológicas representativas das três zonas pluviométricas preconizadas para Portugal em relação às obtidas com dados simulados pelo modelo regional de clima COSMO-CLM para cenários de clima passado (C20) e futuro (A1B e B1).

A metodologia adotada para o delineamento das curvas IDF, é baseada no estudo de Brandão et al. (2001) e inclui: (i) o processo de desagregação da precipitação para escalas sub-diárias (método dos fragmentos) e sub-horárias (coeficientes de desagregação sugeridos em Brandão et al. 2001); (ii) a análise exploratória estatística preliminar e ajuste da função distribuição de Gumbel ajustada às séries temporais de intensidade de precipitação máxima para dez valores de duração; (iii) a utilização da função de distribuição de probabilidade inversa de Gumbel para estimar valores de intensidade de precipitação máxima para oito períodos de retorno; (iv) a linearização das curvas IDF com recurso a escalas logarítmicas e a estimação dos valores dos parâmetros a e b com a regressão robusta; e, (v) a correção do viés introduzido pelo modelo COSMO-CLM devido à sua dificuldade em reproduzir exatamente as condições observadas. A metodologia adotada e desenvolvida garante a robustez, a significância estatística e a adequada análise comparativa dos resultados obtidos e permite concluir que o impacto das alterações climáticas no dimensionamento dos órgãos de drenagem predial pluvial se traduz, em geral, pelo aumento da dimensão destes órgãos e que esta variação não deverá ser idêntica nas três regiões pluviométricas preconizadas para Portugal, nem no interior de cada uma destas regiões.

Palavras-chave:Precipitações intensas; Alterações climáticas; Curvas IDF;Dimensionamento de órgãos de drenagem predial pluvial.

ABSTRACT

Impact of climate change in the design of stormwater drainage organs building

The design of stormwater drainage infrastructure relies on the implicit assumption that the intense precipitation distribution is statistically stationary. This assumption is questioned by the projections of climate change, which points to an increase of frequency of extreme precipitation events, including long drought periods and heavy precipitation episodes, resulting in high uncertainty about the future performance of systems constructed under this paradigm.

The objective of this study is to assess the potential consequences of climate change in the design of drainage systems for rainwater and hence the need to review rules and legislation on this design, based on a comparative analysis between Intensity-Duration-Frequency (IDF) curves defined in the Regulatory Decree n ° 23/95 of 23rd August, proposed by Matos and Silva (1986), and those obtained with observed data in meteorological stations representing the three rainfall zones recommended for Portugal compared to those obtained with data simulated by the COSMO-CLM regional climate model for recent past (C20) and future (A1B and B1) climate scenarios.

The methodology adopted for the delineation of IDF curves, is based on study of Brandão et al. (2001) and includes: (i) precipitation disaggregation process for sub-daily (method fragments) and sub-hourly (disaggregation coefficients suggested by Brandão et al. 2001) scales; (ii) preliminary statistical exploratory analysis and fitting of the Gumbel distribution function to time series of maximum precipitation intensity for each of the ten durations; (iii) the use of the Gumbel inverse probability distribution to estimate maximum precipitation intensity values for eight return periods; (iv) linearization of IDF curves with logarithms and the estimation of the parameters a and b with robust regression after; and (v) correction of the bias introduced by the COSMO-CLM model dues to its difficulty in reproducing exactly the observed conditions. The methodology developed and ensures robustness, statistical significance and adequate comparative analysis of the results and suggest that the impact of climate change in the design of stormwater drainage organs building will imply, in general, the increase of the dimension of these organs and that this

variation is not identical in all three rainfall regions defined for Portugal, or between stations within of these regions.

Keywords: Intense precipitation; Climate change; IDF Curves; Design of stormwater drainage organs building.

ÍNDICE

Índice de Fi	guras	ix
Índice de qu	adros	xiii
Simbologia,	Siglas e Acrónimos	xvii
Simbologi	a	xvii
Siglas e A	crónimos	xvii
1. INTRO	DUÇÃO	1
1.1. Enc	juadramento e objetivos	1
1.2. Esti	utura da dissertação	3
2. REVIS	ÃO BIBLIOGRÁFICA	5
2.1. Alte	erações climáticas	5
2.1.1.	Conceito de clima, variabilidade climática e alteração climática	5
2.1.2.	Classificação climática	6
2.1.3.	Modelos climáticos	7
2.1.4.	Alterações do Ciclo Hidrológico devido às Mudanças Climáticas	10
2.1.5.	Eventos de precipitação extrema	12
2.1.6.	Estudos realizados no âmbito das alterações climáticas/dimensionam	ento
hidráuli	co	13
2.1.7.	Projeções climáticas a nível Global, Europeu e em Portugal	14
2.2. Det	erminação de parâmetros hidrológicos	
2.2.1.	Caudal de águas pluviais	
2.2.2.	Período de retorno	
2.2.3.	Tempo de concentração	
2.2.4.	Intensidade de precipitação	
2.3. Din	nensionamento hidráulico	
2.3.1.	Considerações prévias	
2.3.2.	Constituição dos sistemas de drenagem	
2.3.3.	Traçado e dimensionamento de ramais de descarga	
2.3.4.	Traçado e dimensionamento de caleiras e algerozes	
2.3.5.	Traçado e dimensionamento de tubos de queda	
2.3.6.	Traçado e dimensionamento de coletores prediais	
3. METO	DOLOGIA	
3.1. Dad	los	41
3.1.1.	Obtenção de dados observados e caracterização da rede udográfica	41
3.1.2.	Obtenção de dados simulados	
3.2. Agi	egação e desagregação da precipitação	
3.2.1.	Desagregação da precipitação diária em precipitação sub-diária	
3.2.2.	Desagregação da precipitação horária em precipitação sub-horária	
3.3. Cur	vas de Intensidade-Duração-Frequência	
3.4. Din	nensionamento do sistema de drenagem predial pluvial	55
3.4.1.	Caraterização do edifício	
3.4.2.	Caudais de cálculo	57

4. ANÁLISE E DISCUSSÃO DE RESULTADOS
4.1.Caracterização do regime de precipitação observado
4.2. Ajuste do modelo distributivo à variável hidrológica 62 4.2.1. Apreciação da qualidade do ajuste 62 4.2.2. Função densidade de probabilidade 66 4.3. Curvas IDF 73 4.3.1. Parâmetros a e b 73 4.3.2. Análise comparativa para o período de retorno de 10 anos 78 4.4. Dimensionamento do sistema de drenagem predial pluvial 90 4.4.1. Caleiras 90 4.4.2 Tubos de queda 96
4.2.1. Apreciação da qualidade do ajuste624.2.2. Função densidade de probabilidade664.3. Curvas IDF734.3.1. Parâmetros a e b734.3.2. Análise comparativa para o período de retorno de 10 anos784.4. Dimensionamento do sistema de drenagem predial pluvial904.4.1. Caleiras904.4.2 Tubos de queda96
4.2.2.Função densidade de probabilidade664.3.Curvas IDF734.3.1.Parâmetros a e b734.3.2.Análise comparativa para o período de retorno de 10 anos784.4.Dimensionamento do sistema de drenagem predial pluvial904.4.1.Caleiras904.4.2.Tubos de queda96
4.3. Curvas IDF 73 4.3.1. Parâmetros a e b 73 4.3.2. Análise comparativa para o período de retorno de 10 anos 78 4.4. Dimensionamento do sistema de drenagem predial pluvial 90 4.4.1. Caleiras 90 4.4.2 Tubos de queda
 4.3.1. Parâmetros a e b
 4.3.2. Análise comparativa para o período de retorno de 10 anos
4.4. Dimensionamento do sistema de drenagem predial pluvial 90 4.4.1. Caleiras 90 4.4.2 Tubos de queda 96
4.4.1. Caleiras
4 4 2 Tubos de queda 96
4.4.3. Coletor
5 CONCLUSÕES 109
5.1 Conclusões gerais
5.2 Recomendações futuras
REFERENCIAS BIBLIOGRAFICAS 113
ANEXO A – Determinação de parâmetros hidrológicos 125
A1 - Método Racional
A2 - Método Soil Conservation Service
A3 - Intensidade de Precipitação
ANEXO B – Curvas IDF
B1 – Parâmetros <i>a</i> e <i>b</i>
ANEXO C – Dimensionamento do sistema de drenagem predial pluvial
C1 – Caleiras
C2 – Tubos de queda

ÍNDICE DE FIGURAS

Figura 2.1 – Classificação climática de Köppen-Geiger em Portugal continental (adaptado de AEMET,IM, 2011)7
Figura 2.2 – Esquema do Modelo de Circulação Global (adaptado de Kotlarski, 2010) 8
Figura 2.3 – Ilustração do downscaling dinâmico por aplicação de um RCM (retirado de Kotlarski, 2010)
Figura 2.4 – Cenarização proposta pelo IPCC no SRES (retirado de Aguiar, 2007)10
Figura 2.5 – Diagrama de Horton (retirado de Lencastre e Franco, 1992)11
Figura 2.6 – Alteração da precipitação (em percentagem) para o período de 2090 – 2099, em relação a 1980 – 1999 (retirado de IPCC, 2007d)14
Figura 2.7 – Alterações de precipitação média anual, DJF e JJA entre 1980 – 1999 e 2080 – 2099, sobre a Europa das simulações MMD-A1B (extraído de IPCC,2007g)15
Figura 2.8 – Precipitação média anual para o período de 1961 – 1990: (a) observada; (b) simulada pelo HadRM2; (c) simulada pelo HadRM3 (extraído de Santos e Miranda, 2006)
Figura 2.9 – Anomalia relativa da precipitação obtida com o modelo HadRM3 para o cenário A2
Figura 2.10 – Relação entre a precipitação útil e a precipitação total, segundo o método do SCS (retirado de Oliveira, 1996)
Figura 2.11 – Fator corretivo do tempo de atraso relativo à melhoria das condições hidráulicas do escoamento canalizado (retirado de Correia, 1984b)27
Figura 2.12 – Fator corretivo do tempo de atraso relativo à percentagem da área impermeável (retirado de Correia, 1984b)
Figura 2.13 – Esquema do modelo de pulsos retangulares de Bartlett-Lewis modificado (retirado de Kossieris et al., 2012)
Figura 3.1 – Localização das estações meteorológicas da rede em estudo no zonamento de Matos e Silva (1986)
Figura 3.2 – Domínio do modelo COSMO-CLM (retirado de CLM-Community, 2012) 45
Figura 3.3 – Localização das estações meteorológicas na malha do COSMO-CLM
Figura 3.4 – Planta de cobertura
Figura 3.5 – Planta do piso 1
Figura 3.6 – Planta do piso 0
Figura 4.1 – Gráficos de bigodes representativos da variabilidade mensal da precipitação horária não nula, nas 8 estações meteorológicas selecionadas neste estudo 60
Figura 4.2 – Gráfico Quantil-Quantil para intensidades máximas de precipitação observadas em 5 min na estação de Pinhel

Figura 4.3 – Tal como a Figura 2, mas para intensidades máximas de precipitação observadas em 30 min
Figura 4.4 – Tal como a Figura 2, mas para intensidades máximas de precipitação observadas em 360 min
 Figura 4.5 – Função densidade de probabilidade (<i>fdp</i>) de Gumbel para dados observados (painéis da esquerda) e para o cenário C20 (painéis da direita) para três valores de duração: 5 min (painéis superiores), 30 min (painéis centrais) e 360 min (painéis inferiores).
Figura 4.6 – Tal como a Figura 4.5, mas para o cenário A1B (painéis da esquerda) e para o cenário B1 (painéis da direita)
Figura4.7 – Tal como a Figura 4.5, mas para o cenário A1B, para a duração de 5 min, para três períodos de tempo: 2011 – 2040 (painel superior), 2041 – 2070 (painel central), e 2071 – 2100 (painel inferior)
Figura 4.8 – Ajuste dos parâmetros que definem a reta $logI = loga + b \times logt$ pelo método dos mínimos quadrados e pelo método do ajuste robusto, para T=10 anos, para todas as durações da estação de Pinhel
Figura 4.9 – Tal como a Figura 8, mas para durações entre 5 e 30 min
Figura 4.10 – Tal como a Figura 8, mas para durações entre 30 min e 6 h
Figura 4.11 – Tal como a Figura 8, mas para durações entre 6 e 48 h
Figura 4.12 – Curvas IDF (período de retorno de 10 anos) estabelecidas para dados observados e simulados para cenários futuros, para as estações da região A: a) Ponte da Barca; b) São Manços; e c) Serpa
Figura 4.13 – Tal como a Figura 4.12, mas para as estações da região B: a) Castelo Melhor; b) Pinelo; e c) Pinhel
Figura 4.14 – Tal como a Figura 4.12, mas para as estações da região C: a) Covilhã; e b) Pega
Figura 4.15 – Tal como a Figura 4.12, mas em relação às curvas IDF estabelecidas por Matos e Silva (1986)
Figura 4.16 – Tal como a Figura 4.15, mas para as estações da região B: a) Castelo Melhor; b) Pinelo; e c) Pinhel
Figura 4.17 – Tal como a Figura 4.15, mas para as estações da região C: a) Covilhã; e b) Pega
Figura 4.18 – Curvas IDF para todas as estações e para as três regiões pluviométricas preconizadas por Matos e Silva (1986)
Figura 4.19 – Curvas IDF para a estação da Covilhã para os períodos de retorno de 5, 10 e 20 anos
Figura A2.1 – Carta dos solos de Portugal classificados pelas suas características hidrológicas (retirado de David, 1976)

ÍNDICE DE QUADROS

Quadro 2.1 – Coeficiente de ajustamento em função do período de retorno (adaptad JAE, 1998)	o de 19
Quadro 2.2 – Definição das condições antecedentes de humidade (adaptado de Corr 1984b)	reia, 21
Quadro 2.3 – Condição antecedente de humidade em função da precipitação total no dias antecedentes (adaptado de Correia, 1984b).	os cinco 22
Quadro 2.4 - Valores do período de retorno, T (adaptado de Marques e Sousa, 2008	3) 26
Quadro 3.1 - Caraterização das estações meteorológicas da rede em estudo	44
Quadro 3.2 - Relações entre precipitações sub-diárias máximas e diária	49
Quadro 3.3 – Valores dos coeficientes de desagregação da precipitação para duraçõe horárias em relação à precipitação horária para estações nacionais e mundia (extraído de Brandão et al., 2001).	es sub- ais 50
Quadro 3.4 – Relações entre precipitações sub-horárias e horária	50
Quadro 4.1 – Valores do parâmetro de localização (μ), dos seus limites inferior (μ_{inf} superior (μ_{sup}), do parâmetro de escala (σ), e dos seus limites inferior (σ_{inf}) superior (σ_{sup}) da distribuição de Gumbel e resultado do teste Kolmogorov-Smirnov (K-S teste).	e) e e - 63
Quadro 4.2 – Parâmetros $a e b$, e indicadores de qualidade do ajuste (R^2 , teste F e va do erro).	ariância 77
Quadro 4.3 – Dimensionamento da caleira 1 para a região A, recorrendo à intensida precipitação estimada com dados observados no período (2001 – 2012) e ca dados simulados em três períodos de trinta anos para dois cenários futuros B1)	de de om (A1B e 91
Quadro 4.4 – Tal como o quadro 4.3, mas para a região B.	
Quadro 4.5 – Tal como o quadro 4.3, mas para a região C.	
Quadro 4.6 – Dimensionamento da caleira 1 para a região A, recorrendo à intensida precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agos com os dados simulados para períodos de trinta anos dos dois cenários futu (A1B e B1).	de de sto e iros 94
Quadro 4.7 – Tal como o Quadro 4.6, mas para a região B.	95
Quadro 4.8 – Tal como o Quadro 4.6, mas para a região C.	
Quadro 4.9 – Dimensionamento do tubo de queda 1 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (20 2012) e com dados simulados em três períodos de trinta anos para dois cen futuros (A1B e B1).)01 – ários 97
Quadro 4.10 – Tal como o Quadro 4.9, mas para a região B.	98

Quadro 4.11 – Tal como o quadro 4.9, mas para a região C	99
Quadro 4.12 - Dimensionamento do tubo de queda 1 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 d de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).	e 23 100
Quadro 4.13 – Tal como o Quadro 4.12, mas para a região B	101
Quadro 4.14 – Tal como o Quadro 4.12, mas para a região C	102
Quadro 4.15 – Dimensionamento do coletor para a região A, recorrendo à intensidade precipitação estimada com dados observados (2001 – 2012) e simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1)	de três 103
Quadro 4.16 – Tal como o Quadro 4.15, mas para a região B	104
Quadro 4.17- Tal como o Quadro 4.15, mas para a região C	105
Quadro 4.18- Dimensionamento do coletor para a região A, recorrendo à intensidade o precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto com os dados simulados para períodos de trinta anos dos dois cenários futuro (A1B e B1).	de e os 106
Quadro 4.19- Tal como o Quadro 4.18, mas para a região B	107
Quadro 4.20- Tal como o Quadro 4.18, mas para a região C	108
Quadro A1.1 – Valores médios do coeficiente C da fórmula racional - ÁREAS URBA (adaptado de ASCE, manual nº37) Quadro A2.1 – Classificação hidrológica de solos segundo o SCS (adaptado de Marqu	ANAS 126 nes e
Sousa, 2008)	127
Quadro A2.2 – Número de escoamento CN para regiões urbanas e sub-urbanas (adapt de Marques e Sousa, 2008).	ado 128
Quadro A2.3 – Valores corrigidos do número de escoamento para AMCI e para AMC em função dos valores do número de escoamento para AMCII (adaptado de Marques e Sousa, 2008).	EIII 129
Quadro A3.1 – Parâmetros das Curvas de Intensidade-Duração-Frequência (adaptado Matos e Silva, 1986).	de 131
Quadro A3.2 – Parâmetros das curvas IDF, para duração entre 5 e 30 minutos (retirad Brandão, et al., 2001).	o de 132
Quadro A3.3 – Parâmetros das curvas IDF, para duração entre 30 minutos e 6 horas (retirado de Brandão, et al., 2001).	133
Quadro A3.4 – Parâmetros das curvas IDF, para duração entre 6 e 48 horas (retirado d Brandão, et al., 2001).	le 134

Quadro	B1.1 – Parâmetros das curvas IDF para o 1º trecho (válido dos 5 aos 30min) para dados observados e simulados para cenários futuros, para as estações da região	a A. 136
Quadro	B1.2 – Tal como o Quadro B1.1, mas para as estações da região B 1	137
Quadro	B1.3 - Tal como o Quadro B1.1, mas para as estações da região C 1	138
Quadro	B1.4 das curvas IDF para o 2º trecho (válido dos 30min a 6h) para dados observados e simulados para cenários futuros, para as estações da região A 1	139
Quadro	B1.5 - Tal como o Quadro B1.4, mas para as estações da região B 1	140
Quadro	B1.6 - Tal como o Quadro B1.4, mas para as estações da região C 1	41
Quadro	B1.7 – Parâmetros das curvas IDF para o 3º trecho (válido das 6h às 48h) para dados observados e simulados para cenários futuros, para as estações da região	A. 142
Quadro	B1.8 – Tal como o Quadro B1.7, mas para as estações da região B 1	143
Quadro	B1.9 – Tal como o Quadro B1.7, mas para as estações da região C 1	44
Quadro	B1.10 – Parâmetros das curvas IDF para o 1º trecho (válido dos 5 aos 30 min) estabelecidos para a região A por Matos e Silva (1986) e para os dados simulad para cenários futuros para as estações da correspondente região	os 145
Quadro	B1.11 – Tal como o Quadro B1.10, mas para a região B 1	46
Quadro	B1.12 – Tal como o Quadro B1.10, mas para a região C 1	147
Quadro	C1.1 – Dimensionamento da caleira 2 para a região A, recorrendo à intensidade precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1E B1)	de 3 e 149
Quadro	C1.2 – Tal como o Quadro C1.1, mas para a região B 1	150
Quadro	C1.3 – Tal como o Quadro C1.1, mas para a região C 1	150
Quadro	C1.4 – Dimensionamento da caleira 2 para a região A, recorrendo à intensidade precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).	de 151
Quadro	C1.5 – Tal como o Quadro C1.4, mas para a região B 1	152
Quadro	C1.6 – Tal como o Quadro C1.4, mas para a região C 1	152
Quadro	C1.7 – Dimensionamento da caleira 3 para a região A, recorrendo à intensidade precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1E B1)	de 3 e 153
Quadro	C1.8 – Tal como o Quadro C1.7, mas para a região B 1	154
Quadro	C1.9 – Tal como o Quadro C1.7, mas para a região C 1	154

Quadro C1.10 – Dimensionamento da caleira 3 para a região A, recorrendo à intensida de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agos com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).	de sto e 3 . 155
Quadro C1.11 – Tal como o Quadro C1.10, mas para a região B	. 156
Quadro C1. 12 – Tal como o Quadro C1.10, mas para a região C	. 156
Quadro C2.1 – Dimensionamento do tubo de queda 2 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 2012) e com dados simulados em três períodos de trinta anos para dois cenário futuros (A1B e B1)	– os . 157
Quadro C2.2 – Tal como o Quadro C2.1, mas para a região B	. 158
Quadro C2.3 – Tal como o Quadro C2.1, mas para a região C	. 158
Quadro C2.4 – Dimensionamento do tubo de queda 2 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1)	23 . 159
Quadro C2.5 – Tal como o Quadro C2.4, mas para a região B	. 160
Quadro C2.6 – Tal como o Quadro C2.4, mas para a região C	. 160
Quadro C2.7 – Dimensionamento do tubo de queda 3 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 2012) e com dados simulados em três períodos de trinta anos para dois cenário futuros (A1B e B1)	– os . 161
Quadro C2.8 – Tal como o Quadro C2.7, mas para a região B	. 162
Quadro C2.9 – Tal como o Quadro C2.7, mas para a região C	. 162
Quadro C2.10 – Dimensionamento do tubo de queda 3 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1)	23 . 163
Quadro C2.11 – Tal como o Quadro C2.10, mas para a região B	. 164
Quadro C2.12 – Tal como o Quadro C2.10, mas para a região C	. 164

SIMBOLOGIA, SIGLAS E ACRÓNIMOS

Simbologia

- a Constante dependente do período de retorno
- b Constante dependente do período de retorno
- b Largura da caleira
- Dim Dimensionamento
- DR n°23/95 Decreto Regulamentar n°23/95 de 23 de Agosto
- fdp função densidade de probabilidade

h – Hora

- H Altura da caleira
- I-Intensidade de Precipitação
- inc Inclinação

min – Minuto

- Obs Dados observados
- t Duração da precipitação
- tc Tempo de concentração
- T Período de retorno
- σ Parâmetro escala da distribuição de Gumbel
- µ Parâmetro localização da distribuição de Gumbel

Siglas e Acrónimos

AEMET – Agencia Estatal de Meteorologia ASCE – American Society of Civil Engineers CCSM3 – Community Climate System Model version 3.0 COSMO-CLM – COnsortium for Small-scale MOdelling and Climate Limited-area Modelling community DJF – Dezembro, Janeiro e Fevereiro ECHAM5 – European Centre/Hamburg Model version 5.0 GCM - Global Circulation Model

GEE - Gases de Efeito de Estufa

HadCM3 – Hadley Centre for Climate Prediction and Research/Coupled Model version 3

HadRM2 – Hadley Centre for Climate Prediction and Research/Regional Model version 2

HadRM3 – Hadley Centre for Climate Prediction and Research/Regional Model version 3

IDF - Intensidade Duração e Frequência

IGIDL - Instituto Geofísico Infante Dom Luiz

IM - Instituto Meteorológico

INAG – Instituto Nacional da Água

IPCC – Intergovernmental Panel on Climate Change

JAE – Junta Autónoma de Estradas

JJA – Junho, Julho e Agosto

LNEC – Laboratório Nacional de Engenharia Civil

MAM – Março, Abril e Maio

MMD - Multi-Model Data

NAO - North Atlantic Oscillation

NYCDEP - New York City Department of Environmental Protection

OMM – Organização Meteorológica Mundial

PIB - Produto Interno Bruto

PRUDENCE - Prediction of Regional scenarios and Uncertainties for Defining

EuropeaN Climate change risks and Effects

RCM - Regional Circulation Model

SCS – Soil Conservation Service

SIAM - Scenarios, Impacts and Adaptations

SNIRH - Sistema Nacional de Informação de Recursos Hídricos

SON - Setembro, Outubro e Novembro

SRES – Special Report on Emission Scenarios

1. INTRODUÇÃO

1.1. Enquadramento e objetivos

A existência de cheias é principalmente provocada por eventos de precipitação intensa que, habitualmente ocorrem em curtos períodos de tempo. Assim, informações relativas a este tipo de fenómeno permitem quantificar e delimitar locais suscetíveis de inundação, procurando evitar ou diminuir prejuízos materiais, nomeadamente, problemas de erosão do solo, danos em infraestruturas rodoviárias e sistemas de drenagem, entre outros prejuízos relacionados com obras hidráulicas e, em situações extremas, danos ou perda de vidas humanas (Vieira et al., 1991; Hartmann et al., 2011).

O conhecimento do regime de precipitação intensa em cada região constitui portanto, um elemento essencial não apenas ao adequado dimensionamento de obras hidráulicas, mas também ao correto planeamento e gestão de recursos hídricos, uma vez que a conceção destes projetos é realizada mediante a associação do custo mínimo da obra e o risco admissível de o caudal associado a um certo período de retorno ser excedido durante o tempo de vida útil da obra (Beijo et al., 2005).

A designação de precipitação intensa está associada à ocorrência de volumes precipitados significativos em intervalos de duração variáveis, conjugadas com a frequência com que são igualadas ou excedidas, ou seja, com o período de retorno. A duração a considerar num projeto encontra-se habitualmente compreendida entre os 5 minutos e as 48 horas, dependendo do tipo e dimensão da bacia a drenar, mas esta duração não deve ser inferior ao tempo de concentração da dita bacia (Brandão et al, 2001).

Os valores extremos de precipitação em Portugal, para durações entre 5 min e 48 h, são consideravelmente inferiores aos registados no resto do mundo notando-se uma diferença mais acentuada para as durações superiores a 6 h, consequência dos processos de precipitação característicos de cada região (Brandão et al., 2001). Esta discrepância justifica a caracterização e o desenvolvimento de ferramentas específicas para Portugal de forma a poderem ser utilizadas no dimensionamento e planeamento de obras hidráulicas.

As curvas de Intensidade Duração e Frequência (IDF) constituem informação fundamental para o dimensionamento de um conjunto de obras hidráulicas (sistemas de

drenagem de águas residuais pluviais, bacias de retenção, descarregadores de barragens, etc). Estas fornecem a intensidade de precipitação referente a uma dada duração e a um dado período de retorno. Em Portugal, os projetistas de sistemas de drenagem de águas residuais pluviais regem-se pelo Decreto Regulamentar n°23/95 de 23 de Agosto, onde constam as curvas IDF idealizadas por Matos e Silva (1986).

Contudo, as projeções das alterações climáticas apontam, em geral, para o aumento da frequência de ocorrência de eventos de precipitação extrema e, tal facto, pode ter impactos significativos sobre o regime hidrológico de uma região e consequentemente comprometer o dimensionamento atual e futuro das obras hidráulicas (Moreira e Corte-Real, 2008; Adam, 2011).

No caso de Portugal, as projeções para o clima futuro apontam igualmente para diferenças no regime da precipitação, em particular, na frequência e intensidade de eventos extremos. Esta contínua mudança fomenta a avaliação do impacto das precipitações extremas no dimensionamento de obras hidráulicas no território nacional e a eventual atualização das curvas IDF.

Os modelos de circulação global e regional são ferramentas ao dispor dos investigadores para o estudo do impacto das alterações climáticas nos processos hidrológicos e hidráulicos. Estes modelos proporcionam projeções das variáveis meteorológicas para cenários climáticos definidos *à priori*, sendo que cada cenário pretende representar um mundo futuro possível (Aguiar, 2007; IPCC, 2007i).

Os modelos de circulação global (GCM) constituem a base para este tipo de estudo, embora a sua resolução espacial da ordem das centenas de quilómetros seja demasiadamente elevada para a utilização direta dos seus resultados em estudos a nível local. Para além disso, em geral, as saídas dos GCM são disponibilizadas em escalas temporais da ordem do mês e do dia, portanto igualmente desadequadas para algumas aplicações hidrológicas. Os modelos regionais de clima (RCM) pretendem solucionar este problema. Estes modelos são alimentados com as saídas dos GCM, mas operam em malhas espaciais muito mais finas, o que permite ter em conta características específicas do domínio da operacionalidade (por exemplo, topografia da região) e simular a evolução diária das variáveis meteorológicas com maior precisão (Santos e Miranda, 2006; Kotlarski, 2010; Adam, 2011). Contudo, no caso específico do estudo de sistemas urbanos de drenagem pluvial o dimensionamento exige o conhecimento de valores de intensidade de precipitação em curtas durações, da ordem de minutos a horas. Neste pressuposto, frequentemente, é ainda necessário recorrer a metodologias capazes de realizar a desagregação da precipitação diária em precipitação sub-diária e sub-horária.

Neste contexto, o objetivo deste trabalho consiste em avaliar eventuais alterações nas curvas IDF e consequentemente no dimensionamento de órgãos de drenagem predial pluvial, em resultado de alterações na distribuição dos valores extremos de intensidade de precipitação devido às mudanças climáticas.

1.2. Estrutura da dissertação

A presente dissertação está organizada em cinco capítulos cuja descrição se pode sumariar da seguinte forma:

- Capítulo 1 Introdução onde se procede ao enquadramento do tema, e à apresentação dos objetivos e estruturação do trabalho;
- Capítulo 2 Revisão bibliográfica dedicado à apresentação dos resultados da pesquisa bibliográfica que permite fazer a avaliação do estado do conhecimento dos diversos assuntos necessários ao desenvolvimento e fundamentação da dissertação;
- Capítulo 3 Metodologia onde são descritas as várias etapas do processo necessário à construção e comparação das curvas IDF com dados observados e simulados para o futuro, para posterior aplicação a determinado sistema de drenagem predial de águas residuais pluviais;
- Capítulo 4 Análise e discussão de resultados dedicado à análise e interpretação dos resultados obtidos com a metodologia proposta para avaliar o impacto das alterações climáticas sobre o regime de intensidade de precipitação intensa e consequentemente sobre o dimensionamento dos sistemas de drenagem predial de águas residuais pluviais;
- Capítulo 5 Conclusões onde serão apresentadas as conclusões finais e sugestões para trabalhos futuros.

2. REVISÃO BIBLIOGRÁFICA

2.1. Alterações climáticas

As projeções das alterações climáticas para Portugal apontam para o aumento da temperatura e da frequência de eventos de precipitação extrema o que pode comprometer o dimensionamento atual e futuro das obras hidráulicas (Moreira e Corte-Real, 2008).

2.1.1. Conceito de clima, variabilidade climática e alteração climática

O conceito de clima é definido pela descrição estatística das variáveis meteorológicas que caracterizam o estado da atmosfera num determinado local, durante um período de tempo suficientemente longo, que pode variar de alguns meses até milhões de anos. A organização Meteorológica Mundial (OMM) sugere um período mínimo de 30 anos para definir o clima de uma região (IPCC, 2007a).

A variabilidade climática reporta-se às variações espaciais e temporais dos parâmetros estatísticos utilizados para definir o clima, nomeadamente na média, desvio padrão, e outros descritores estatísticos de ordem mais elevada. A variabilidade climática pode ser influenciada por processos naturais internos ao sistema climático, ou variações no forçamento externo natural ou antropogénico (IPCC, 2007a).

Uma alteração climática consiste numa variação estatisticamente significativa em pelo menos um dos descritores estatísticos que definem o clima, como a média, e/ou desvio padrão de uma ou mais variáveis que definem o clima, que persistem normalmente durante décadas, sem identificar especificamente a causa daquela alteração (IPCC, 2007a).

No passado, a maioria das alterações climáticas ocorriam em períodos de tempo extremamente longos, podendo chegar aos milhões de anos e, aparentemente, estas alterações tinham causas naturais. Entre estas causas podem ser destacadas as variações na orbita que a terra descreve em torno do sol, variações na posição do eixo de rotação da terra, flutuações na atividade solar e períodos de maior atividade vulcânica (Santos e Miranda, 2006).

Atualmente, a atenção dos investigadores está focada nas alterações climáticas de origem antropogénica, isto é, provocadas pelas atividades humanas, principalmente as associadas às alterações do uso do solo e que implicam a emissão adicional de gases de efeito de estufa (GEE) para a atmosfera por se temer serem capazes de provocar o aumento da temperatura média global, alterações na distribuição espacial e temporal da precipitação ao longo do ano, entre outras mudanças na frequência e intensidade de fenómenos climáticos extremos (Santos e Miranda, 2006).

2.1.2. Classificação climática

A classificação climática é uma ferramenta que permite distinguir o clima das várias regiões a nível global, frequentemente com base em dados observados da temperatura do ar e precipitação, em estações meteorológicas e postos udométricos. De entre as várias classificações climáticas existentes, podem ser salientadas a de Thornthwaite (1931), a de Trewartha (1896) e, provavelmente a mais utilizada, a proposta por Koppen em 1900. Esta última classifica o clima por meio de três letras, a primeira letra indica a característica geral do clima da região, a segunda traduz as particularidades do regime pluviométrico e a terceira letra indica a temperatura média (Rolim et al, 2007).

Na Figura 2.1, é apresentada a classificação climática de Portugal Continental, realizada pelo Instituto de Meteorologia de Portugal e a Agência Estatal de Meteorologia de Espanha. Nesta classificação é utilizada a última revisão da classificação de Koppen (1936), designada de Koppen-Geier, apoiada em series normais de precipitação e temperatura do ar do período de 1971 – 2000. Segundo esta classificação, Portugal pode ser dividido em uma região com clima temperado com Inverno chuvoso e Verão seco e quente (Csa), e outra com clima temperado com Inverno chuvoso e Verão seco e pouco quente (Csb), (AEMET,IM, 2011).

Figura 2.1 – Classificação climática de Köppen-Geiger em Portugal continental (adaptado de AEMET,IM, 2011).

2.1.3. Modelos climáticos

Os modelos climáticos são ferramentas que permitem, através de simulação do funcionamento do sistema climático terrestre, obter cenários do clima futuro (Yu et al, 2004). Estas ferramentas podem incluir a modelação da interação entre atmosfera, o oceano e superfícies continentais, bem como, a descrição dos vários processos físicos e químicos que determinam o clima da Terra. Contudo, apesar da sua complexidade, os modelos são ainda muito incompletos e envolvem vários tipos de aproximações e simplificações (França et al., 2000), nomeadamente, a representação de nuvens e detalhes regionais, o que não impede a obtenção de resultados absolutamente fidedignos (IPCC, 2007b).

A confiança nos modelos é testada com a sua capacidade para reproduzir as características atuais do clima, de simularem registos históricos, e na concordância com que os vários modelos preveem o aquecimento global em resposta às emissões de gases de efeito de estufa (IPCC, 2007c).

Os modelos de circulação geral (GCM), simulam o sistema climático terrestre através de uma malha tridimensional com uma resolução horizontal de 100 a 300 Km e com 10 a 40 níveis verticais (o seu funcionamento é exemplificado na Figura 2.2). Para cada célula da malha, o modelo, projeta valores para vária variáveis meteorológicas como a temperatura, precipitação, humidade e nebulosidade (Santos e Miranda, 2006).

Figura 2.2 - Esquema do Modelo de Circulação Global (adaptado de Kotlarski, 2010).

Os GCMs perdem credibilidade quando usados em regiões ou países com áreas pequenas, uma vez que a resolução espacial dos modelos e, portanto dos resultados é demasiado grosseira (Santos e Miranda, 2006). Uma possível solução é efetuar um *downscaling* estatístico ou dinâmico (Figura 2.3), ou seja, recorrer ao uso de relações estatísticas ou de modelos de circulação regionais (RCMs), respetivamente, para transferir a informação do GCM para menores escalas, tanto espaciais como temporais (Adam, 2011).

Assim sendo, o modelo regional atua sob um domínio de menor dimensão, mas com uma resolução mais elevada, embora tenha a desvantagem de ser forçado com informação de grande escala, ou seja, com as condições fronteira geradas pelos GCMs (Santos e Miranda, 2006).

Figura 2.3 - Ilustração do downscaling dinâmico por aplicação de um RCM (retirado de Kotlarski, 2010).

Para se obter uma projeção do clima futuro através de um GCM, é necessário escolher um cenário de evolução das concentrações de gases de efeito de estufa (GEE), de forma a mensurar os efeitos das emissões antropogénicas. Um cenário de alterações climáticas é uma descrição coerente, internamente consistente e plausível, de um possível estado futuro do mundo (Aguiar, 2007).

Neste âmbito, em 1992 o *Intergovernmental Panel on Climate Change* (IPCC) criou uma série de cenários de emissões de GEE, designados por cenários IS92, que viriam a apoiar o *Second Assessment Report*. Em 1996, foi sentida a necessidade de os atualizar, e surgiram os *Special Report on Emission Scenarios* (SRES), usados no *Third e Fourth Assessment Report* (Mendes, 2011).

Existem 40 cenários SRES, todos igualmente válidos, sustentados por 4 famílias base de cenários, A1, A2, B1, e B2 (IPCC, 2007i). Estas incluem diferentes suposições, que se relacionam com fatores demográficos, sociais, económicos e tecnológicos, descritas concisamente de seguida e exemplificadas esquematicamente na Figura 2.4.

O contexto e a família de cenários A1 descrevem um mundo futuro com um desenvolvimento económico e tecnológico muito rápido, com a população global a atingir um máximo em meados do século XXI. As principais questões subjacentes são a convergência entre as regiões, a capacitação e o aumento das interações culturais e sociais, com uma redução substancial das diferenças do PIB *per capita*.

A família de cenários A1 está subdividida em 3 grupos – A1FI, A1B, e A1T que descrevem direções alternativas da mudança tecnológica no sistema energético.

O grupo A1FI distingue-se pela enfase tecnológica intensiva no uso de combustíveis fósseis, o A1T pelo uso de fontes energéticas não-fósseis, por último o grupo A1B reflete um equilíbrio entre todas as fontes.

O contexto e a família de cenários A2 descrevem um mundo verdadeiramente heterogéneo, com um desenvolvimento socioeconómico e tecnológico fragmentado, orientado principalmente para a preservação das identidades locais, conduzindo a um aumento crescente da população ao longo do seculo XXI.

O contexto e a família de cenários B1 descrevem um mundo que privilegia as soluções globais para a sustentabilidade económica, social e ambiental, inclusive a melhoria da equidade. Este cenário reflete o crescimento da população até meados do seculo XXI e o seu posterior declínio.

O contexto e família de cenários B2 descrevem um mundo centrado na procura de soluções locais para a sustentabilidade económica, ambiental e equidade social. É um mundo em que a população global aumenta continuamente, mas a um ritmo inferior ao cenário A2.

Figura 2.4 - Cenarização proposta pelo IPCC no SRES (retirado de Aguiar, 2007).

Portanto, o cenário A1 é o que implica maior emissão de GEE, que por sua vez conduz a um maior aumento da temperatura e outras alterações climáticas (IPCC,2007 d). A emissão de GEE diminui de A1 para A2 e assim sucessivamente até B2, sendo este último, o cenário mais conservador para meio ambiente (Smith et al, 2000).

2.1.4. Alterações do Ciclo Hidrológico devido às Mudanças Climáticas

A água do planeta está em constantemente em movimento consistindo no ciclo hidrológico, podendo ser encontrada nas várias fases: sólida, líquida e gasosa (Orsi e Sarabugo, 2010). Segundo Lencastre e Franco (1992), este movimento só é possível graças à energia solar e a melhor definição de ciclo hidrológico passa pela análise do diagrama de Horton (Figura 2.5).

Figura 2.5 – Diagrama de Horton (retirado de Lencastre e Franco, 1992).

O ciclo hidrológico não tem início nem fim e é um processo que ocorre continuamente. Na atmosfera ocorre a acumulação de vapor de água, e consequentemente a precipitação. Parte da precipitação pode evaporar durante a queda, voltando imediatamente à atmosfera, outra parte é intercetada pela vegetação e experimenta o mesmo fenómeno. Embora a parte mais significativa da precipitação atinja a superfície da terra onde se infiltra, dá origem ao escoamento superfícial e também evapora. Os oceanos recebem a água que escoa e são os sistemas que mais contribuem para o fenómeno de evaporação (Chow et al., 1988).

A precipitação e a temperatura são das variáveis mais significativas para diagnosticar as mudanças climáticas, e consequentemente as alterações no ciclo hidrológico (Wang et al., 2011).O aumento da temperatura afeta diretamente a evaporação, que conjuntamente com o aumento da capacidade de retenção da humidade na atmosfera fomenta alterações nas características da precipitação (IPCC, 2007e), estimulando uma intensificação do ciclo hidrológico (IPCC, 2007f).

As alterações climáticas têm causado períodos de maior exposição a chuvas extremas em menores intervalos de tempo e, consequentemente períodos mais longos sem

precipitação (Diodato et al., 2011). Estas mudanças no ciclo da água são suscetíveis de aumentar a ocorrência de inundações e secas (IPCC, 2007g).

As componentes do ciclo hidrológico com maior interesse no ramo da engenharia civil são a precipitação e o escoamento superficial, tomando este último, aspetos peculiares nas redes urbanas de drenagem pluvial (Lencastre e Franco, 1992).

2.1.5. Eventos de precipitação extrema

As variações e tendências em eventos climáticos extremos ocorrem cada vez mais frequentemente. Por exemplo, intensidades de precipitação anteriormente experimentadas em média a cada 25 anos, ocorrem agora com 6 anos de intervalo. O aumento de precipitação intensa, associado ao subdimensionamento dos sistemas de drenagem de águas pluviais gera consequências em detrimento humano, agrícola e financeiro (Flowler and Kilsby, 2003).

No Norte da Itália, no período de 1920 a 1998, foi registado uma diminuição do número de dias chuvosos mas, em contrapartida, foi registado um aumento de precipitação total acompanhado de pesados eventos de precipitação. Neste contexto, verifica-se a diminuição do período de retorno de eventos de precipitação intensa (Brunetti et al., 2001).

Na Etiópia, os eventos climáticos extremos têm afetado claramente o meio ambiente agro-sócio-económico causando ainda, grande sofrimento humano e perdas de vida. A ocorrência desses fenómenos tem sido caracterizada pela insuficiente quantidade de precipitação, grandes períodos de seca dentro da estação chuvosa, como se verificou nos anos de 1972 e 1987, e ocasionalmente chuvas extremas, originando inundações que levam à destruição das culturas e provocam deslizamentos de terras (Seleshi e Camberlin, 2006).

No início da década de 1990, Espanha viveu sob uma seca por um período longo e persistente, causando elevado stresse hídrico nas produções agrícolas e nas áreas florestais (Peñuelas et al., 2001) mas, no final desse ano e início da década de 2000, a ocorrência de chuvas extremas e consequentes inundações provocaram diversas perdas humanas e financeiras (Gonzalez-Hidalgo et al., 2010).

Na ilha da Madeira, no inverno de 2010, assistiu-se a um evento de precipitação intensa. A precipitação ocorreu em curtos intervalos de tempo com intensidades muito elevadas que originaram rapidamente cheias e deslizamentos de terras. A tempestade além de provocar a destruição de diversos bens materiais e o ambiente paisagístico da ilha, onde

a fonte principal de rendimento é o turismo, causou 43 vítimas mortais, dezenas de feridos e prejuízos avaliados em 1,3 mil milhões de euros (Sepúlveda, 2011).

2.1.6. Estudos realizados no âmbito das alterações climáticas/dimensionamento hidráulico

As infraestruturas de drenagem de águas residuais pluviais em zonas costeiras, são particularmente vulneráveis à subida da água do mar, uma das consequências das alterações climáticas. A Florida Atlantic University analisou a implementação de várias soluções técnicas aplicadas à cidade de Pompano Beach Fla, de forma a melhorar a resistência aos efeitos dessas mudanças (Bloetscher et al., 2010).

Em La Ceiba, cidade das Honduras situada na América Central, banhada pelo oceano atlântico, é temida a subida do mar e a ocorrência de episódios de precipitação intensa e, segundo Smith et al. (2011) é necessário um sistema de drenagem adequado à nova realidade das alterações climáticas.

Em Washington, foram comparados registos históricos de precipitação horária do período de 1949 – 2007 com simulações para o período de 2020 – 2050, para averiguar a incerteza do desempenho futuro das infraestruturas de drenagem de águas pluviais. Para as projeções futuras foram utilizados dois modelos climáticos/cenários climáticos (ECHAM5/A1B e CCSM3/A2), os resultados obtidos apontam para regimes de precipitação futuros muito diferentes do atual, sugerindo que o dimensionamento pode estar desajustado (Rosenberg et al., 2010).

No Canadá, foi realizada uma investigação dos impactos potenciais das alterações climáticas sobre os sistemas de águas pluviais, na zona sudeste de Calgary, Alberta. Foram efetuadas projeções climáticas futuras a partir de modelos climáticos globais para períodos compreendidos entre 2010 - 2039, 2040 - 2069 e 2070 - 2099, que permitiram verificar aumentos na intensidade de precipitação, e consequentemente o aumento do caudal de ponta de cheia (He et al., 2011).

Em Nova Iorque, é também evidente a preocupação com a influência das alterações climáticas sobre os sistemas de infraestruturas e consequente adaptação de forma regular e planeada. O New York City Departement of Enviromental Protection (NYCDEP), responsável pela gestão da água de Nova Iorque desenvolveu um processo de gestão de riscos devido às alterações climáticas. No estudo foram utilizados dados simulados por

cinco modelos climáticos de circulação geral (ECHAM5, CCSM3, HadCM3, Goddard Institute for Space Studies ModelE e Geophysical Fluid Dynamics Laboratory CM2.1), para três cenários SRES, nomeadamente B1, A1B e A2 com o objetivo de apoiar decisões futuras com base na evolução do clima e incutir na realização de projetos de engenharia processos não estacionários, em vez dos estacionários como atualmente (Rosenzweig et al., 2007).

Em Portugal, o cálculo do caudal de ponta para o dimensionamento de sistemas de drenagem de águas pluviais é realizado com base nas curvas IDF propostas por Matos e Silva (1986), determinadas com base em registos históricos. Moreira e Corte-Real (2008), defendem a necessidade de se afetarem as curvas IDF de um coeficiente de alterações climáticas, de modo a mensurar a influência das precipitações extremas no dimensionamento de obras hidráulicas. Para evitar sistemas de drenagem subdimensionados, estes autores propõem que a legislação em vigor seja revista, de forma a contemplar medidas de adaptação climática.

2.1.7. Projeções climáticas a nível Global, Europeu e em Portugal

Os estudos no âmbito das projeções climáticas evidenciam que a relação entre a intensidade de precipitação e a precipitação total não segue uma lei universal (Brunetti et al., 2001). Assim, no que respeita ao ciclo da água os modelos climáticos apontam para um aumento da precipitação global e significativas alterações na sua distribuição espacial e temporal, como é visível na Figura 2.6.

Figura 2.6 – Alteração da precipitação (em percentagem) para o período de 2090 – 2099, em relação a 1980 – 1999 (retirado de IPCC, 2007d).
Os valores médios dos múltiplos modelos baseiam-se no cenário SRES A1B para o inverno, definido como os meses de dezembro, janeiro e fevereiro (à esquerda) e para o verão, definido como os meses de junho, julho e agosto (à direita). As áreas em branco são onde menos de 66% dos modelos concordam no sinal da mudança, e as áreas pontilhadas correspondem a regiões onde mais de 90% dos modelos concordam com o sinal da mudança.

A ocorrência de precipitações intensas em curtos períodos de tempo deverá aumentar o que poderá provocar cheias principalmente nas latitudes médias e elevadas do hemisfério norte enquanto que, em África, na Ásia Ocidental e Sul da Europa a tendência é para aumento da frequência de situações de seca (IPCC, 2007d).

Contudo, mesmo em locais onde a precipitação total diminuiu, poderá vir a verificar-se um aumento da frequência e intensidade de eventos de precipitação intensa, pelo que podem igualmente ocorrer situações de inundação (IPCC, 2007f).

Para além disso, as mudanças na frequência e intensidade de eventos extremos resultam maioritariamente da influência humana sobre o clima (IPCC, 2007e).

Na Europa, de acordo com os modelos climáticos deverá ser percetível um contraste entre o Norte e o Sul, como se pode visualizar na Figura 2.7. As projeções apontam para um abrupto aumento da precipitação média a Norte, embora esse aumento seja mais acentuado no Inverno. É ainda esperado um aumento no número de ocorrência de eventos de precipitação extrema de elevada magnitude. Por outro lado, é prevista uma diminuição generalizada da precipitação no Sul, ainda que os eventos extremos de curta duração durante a estação de verão tanto possam aumentar como diminuir (IPCC,2007h).

Figura 2.7 – Alterações de precipitação média anual, DJF e JJA entre 1980 – 1999 e 2080 – 2099, sobre a Europa das simulações MMD-A1B (extraído de IPCC,2007g).

Assim, é suscetível o aumento do risco de inundação no Norte e centro da Europa, e o aumento do risco de seca no Sul, principalmente na região Mediterrânica (IPCC, 2007g).

O clima de Portugal continental é influenciado pela sua localização pela orografia da região com áreas a norte e centro com altitudes superiores a 1000 m, pela proximidade ao oceano atlântico, e consequentemente pela NAO (North Atlantic Oscillation) que é um modo de circulação atmosférica de larga escala que influencia a precipitação e temperatura de toda a Europa e se pode definir com base na diferença de pressão entre os Açores e a Islândia (Trigo et al., 2002).

O primeiro estudo de evolução climática em Portugal realizou-se no âmbito do projeto SIAM (Climate Change in Portugal. Scenarios, Impacts and Adaptations Measures), cuja primeira fase decorreu de 1999 a 2002. A fim de colmatar e aprofundar a investigação deste projeto, decorreu em 2002 e 2003 a segunda fase do projeto, SIAM II. No projeto SIAM II foi verificada a aplicabilidade dos modelos climáticos HadRM (Hadley Centre for Climate Prediction and Research/Regional Model) nas versões 2 e 3 efetuando a comparação entre a normal climática observada no período de 1961 – 1990 e as simulações para o mesmo (Santos e Miranda, 2006).

Apresentam-se de seguida os mapas referentes à precipitação média anual (Figura 2.8).

Figura 2.8 – Precipitação média anual para o período de 1961 – 1990: (a) observada; (b) simulada pelo HadRM2; (c) simulada pelo HadRM3 (extraído de Santos e Miranda, 2006).

Verifica-se a existência de um pico de precipitação média anual acumulada de 3000mm na região Noroeste, por sua vez, no interior Alentejano esta precipitação não ultrapassa os 500mm/ano. A simulação HadRM2 apresenta resultados mais próximos da climatologia observada em 1961 – 1990, embora sobrestime a precipitação nas zonas montanhosas. Por sua vez, o HadRM3 subestima a precipitação na metade sul de Portugal. Contudo, os resultados do HadRM3 apesar dos desvios apresentados foram considerados pelo Hadley Centre como aptos a serem usados em estudos de alterações climáticas. Com

efeito, é apresentada na Figura 2.9 a anomalia relativa da precipitação anual e trimestral projetada para o período 2071 – 2100 com o modelo HadRM3 para o cenário climático A2.

Figura 2.9 – Anomalia relativa da precipitação obtida com o modelo HadRM3 para o cenário A2 (retirado de Santos e Miranda, 2006).

O cenário climático obtido com o HadRM3 evidencia a diminuição da precipitação anual em todo o país, embora mais acentuada a Sul do que a Norte. A anomalia sazonal é em geral negativa, isto é, a precipitação diminui em todas as estações do ano, com exceção da estação de Inverno, onde é projetado um ligeiro aumento (da ordem dos 10%) no litoral Norte e Centro e no interior transmontano, e na estação de Verão no litoral Centro, atingindo aumentos até 30%. Apesar das estimativas apontarem para a diminuição da precipitação, são esperados aumentos no número de dias de precipitação intensa (acima de 10mm/dia), o que pode aumentar o risco de episódios de cheias (Santos e Miranda, 2006).

2.2. Determinação de parâmetros hidrológicos

2.2.1. Caudal de águas pluviais

Para determinação dos caudais de ponta, é frequente recorrer a fórmulas simplificadas, nomeadamente ao método Racional e ao método do Soil Conservation Service.

2.2.1.1. Método Racional

A fórmula racional é certamente a mais utilizada, quer a nível nacional quer internacional, para calcular o caudal de ponta de cheia em pequenas bacias hidrográficas. Pode ser utilizado desde que não se negligenciem as suas limitações, se adequem os parâmetros de base e os procedimentos sejam aplicados corretamente.

As limitações deste método resultam principalmente de simplificações de natureza hidrológica e hidráulica na sua formulação. As limitações hidrológicas consistem no pressuposto que a precipitação se mantém invariável no espaço e no tempo, na existência de uma relação linear da transformação da precipitação em escoamento, em ignorar as perdas iniciais por infiltração e a saturação do terreno. A limitação hidráulica consiste em considerar que o caudal de ponta de cheia apenas ocorre quando toda a bacia contribui para o escoamento.

É comum utilizar a fórmula racional satisfatoriamente, em bacias com áreas inferiores a 25 Km² (Lencastre, 1992).

A utilização da fórmula racional requer o conhecimento da área e do tipo de ocupação do solo da bacia hidrográfica, do coeficiente de escoamento e da intensidade da precipitação. A fórmula racional é definida pela expressão (1):

$$Qp = k \times C \times I \times A \tag{1}$$

Sendo:

Qp – caudal de ponta de cheia [l/s]

K - coeficiente de ajustamento em função do período de retorno

C – coeficiente de escoamento

I – intensidade de precipitação para um período de retorno T [l/s.ha]

A – área da bacia drenante [ha]

Os valores do coeficiente de escoamento, C, são apresentados no Quadro A1.1 do anexo A1 e correspondem a um período de retorno compreendido entre os 5 e os 10 anos. Para chuvadas menos frequentes será necessário corrigir o coeficiente de escoamento por intermédio do coeficiente de ajustamento, K (Quadro2.1). Contudo, o produto do coeficiente de escoamento pelo coeficiente de ajustamento não pode exceder o valor unitário.

Quadro 2.1 - Coeficiente de ajustamento em função do período de retorno (adaptado de JAE, 1998).

Período de retorno (Anos)	K
25	1,10
50	1,20
100	1,25

Tendo em conta que no dimensionamento de sistemas de drenagem pluvial predial se utilizam normalmente períodos de retorno inferiores a 25 anos o coeficiente de escoamento toma o valor unitário, representando a expressão (2) a adaptação da fórmula racional para sistemas de águas pluviais prediais.

$$Q = C \times I \times A \tag{2}$$

Sendo:

Q – caudal de cálculo [l/min]

C – coeficiente de escoamento

I – intensidade de precipitação [l/min.m²]

A – área a drenar em projeção horizontal [m²]

2.2.1.2. Método Soil Conservation Service

Para obter o caudal através deste método, é necessário quantificar a precipitação que dá origem ao escoamento superficial, ou seja, a precipitação útil ou efetiva. A precipitação útil corresponde à diferença entre a quantidade de água precipitada e as perdas para o escoamento superficial, seja por interceção, retenção e infiltração (Marques e Sousa, 2008).

O cálculo da precipitação útil pelo método Soil Conservation Service (SCS, 1973), é baseado na definição de uma grandeza designada por capacidade máxima de retenção da bacia, *Smr*, que quantifica a capacidade da bacia em reter a água não utilizável na génese do escoamento superficial e é obtida pela expressão (3):

$$Smr = \frac{25400}{CN} - 254$$
 (3)

Sendo:

Smr - capacidade máxima de retenção segundo o SCS [mm]

CN-número de escoamento segundo o SCS

As perdas iniciais devidas à interceção, retenção e infiltração, são calculadas pela expressão (4):

$$Ia = 0,2.Smr \tag{4}$$

Sendo:

Ia – perdas iniciais para o escoamento superficial segundo o SCS [mm]
 Smr – capacidade máxima de retenção segundo o SCS [mm]

Por sua vez, a precipitação útil, é calculada pela expressão (5) e (6):

$$Pu = \frac{(P - Ia)^2}{P - Ia + Smr} \text{ se P} > Ia$$
(5)

$$Pu = 0 \text{ se } P < Ia \tag{6}$$

Sendo:

Pu – precipitação útil [mm]

P – precipitação total sobre uma dada bacia [mm]

Esta expressão pode ser utilizada para calcular o hietograma de precipitação útil a partir do hietograma de precipitação total.

Na Figura 2.10 apresenta-se a relação entre precipitação útil e a precipitação total estabelecida pelas expressões (5) e (6). Pela observação do gráfico, é percetível que a

parcela da precipitação total que constitui a precipitação útil aumenta com o número de escoamento e com a precipitação total. Em bacias totalmente impermeáveis (CN=100), a precipitação útil é igual à precipitação total.

Figura 2.10 – Relação entre a precipitação útil e a precipitação total, segundo o método do SCS (retirado de Oliveira, 1996).

Para determinar o número de escoamento é necessário efetuar uma classificação dos solos. O Quadro A2.1, presente no anexo A2, ilustra a classificação do tipo de solo de acordo com as características hidrológicas e a Figura A2.1 a sua distribuição em Portugal continental.

O método SCS define três condições antecedentes de humidade designadas por AMCI, AMCII e AMCIII, definidas no Quadro 2.2.

Condição	Definição				
AMCI	Situação em que os solos estão secos mas não no ponto de emurchecimento. A consideração deste caso é pouco recomendável para estudos de caudais de cheia.				
AMCII	Situação média em que, a humidade do solo deve corresponder aproximadamente à capacidade de campo. Esta situação corresponde provavelmente às condições de humidade antecedentes de cheias de pequenas dimensões.				
AMCIII	Situação em que ocorreram precipitações consideráveis nos cinco dias anteriores e o solo se encontra quase saturado. Esta é a situação mais propícia à formação de maiores cheias e portanto aquela que se reveste de maior importância para projeto.				

Quadro 2.2 - Definição das condições antecedentes de humidade (adaptado de Correia, 1984b).

A precipitação total ocorrida nos cinco dias antecedentes, é o critério utilizado para classificar a condição antecedente de humidade (Quadro 2.3).

Quadro 2.3 – Condição antecedente de humidade em função da precipitação total nos cinco dias antecedentes (adaptado de Correia, 1984b).

Precipitação total nos o	Condição antecedente de	
Período dormente	Período de crescimento	humidade
< 13	< 36	AMCI
13 a 28	36 a 53	AMCII
> 28	> 53	AMCIII

O Quadro A2.2, presente no anexo A2, indica os números de escoamento correspondentes a uma condição normal antecedente de humidade (AMCII), em função do tipo e ocupação do solo. Para outras condições antecedentes de humidade do solo, os valores devem ser corrigidos de acordo com o Quadro A2.3, presente no anexo A2, usando AMCI para situações particularmente secas e AMCIII para situações particularmente húmidas.

Em alternativa a este quadro, podem ser utilizadas as expressões (7) e (8) para corrigir o número de escoamento em situações particularmente secas e em situações particularmente húmidas, a partir da normal condição antecedente de humidade do solo (Chow et al., 1988).

Número de escoamento para situações particularmente secas CN(I):

$$CN(I) = \frac{4,2CN(II)}{10 - 0,058CN(II)}$$
(7)

Número de escoamento para situações particularmente húmidas CN(III):

$$CN(III) = \frac{23CN(II)}{10 - 0.13CN(II)}$$
(8)

Sendo:

CN(I) – Número de escoamento para situações particularmente secas. CN(II) – Número de escoamento para situações de humidade normal. CN(III) – Número de escoamento para situações particularmente húmidas.

No caso da natureza do solo e condições de cobertura heterogéneas, o número de escoamento a considerar deve resultar da média ponderada dos números de escoamento correspondentes às várias zonas homogéneas em que se puder subdividir a bacia (expressão (9)).

$$CN = \frac{\sum CNi \times Ai}{\sum Ai} \tag{9}$$

Sendo:

CN-número de escoamento segundo o SCS

CNi – número de escoamento segundo o SCS para uma zona homogénea da bacia

Ai – área da zona homogénea da bacia

Quando uma bacia está exposta a precipitação uniformemente distribuída, é atingida uma situação de equilíbrio quando a duração da precipitação útil ultrapassa o tempo de concentração (Correia, 1984a). A partir desse momento de equilíbrio, o caudal escoado na secção de estudo da bacia, iguala a intensidade de precipitação útil, podendo ser calculado pela expressão (10):

$$Qp = \frac{Iu \times Ab \times K}{3.6} \tag{10}$$

Sendo:

Qp – caudal de ponta de cheia [m³/s]

Iu – intensidade de precipitação útil [mm/h]

Ab – área da bacia hidrográfica [Km²]

K – fator de ponta da bacia hidrográfica

O fator de ponta de uma bacia hidrográfica pode variar entre 0,5 e 1,0 para bacias muito planas e muito inclinadas, respetivamente. Frequentemente é utilizado o valor de 0,75.

Em geral, a duração da chuvada provoca a diminuição da intensidade de precipitação e, assim sendo, a duração de uma chuvada para a situação mais gravosa (t), é dada pela expressão (11):

$$\mathbf{t} = \mathbf{t}_0 + \mathbf{t}_c \tag{11}$$

Sendo:

t – duração da precipitação total para a situação mais gravosa [h]

 t_0 – tempo que decorre até ocorrerem as perdas iniciais, isto é, até se iniciar o escoamento superficial [h]

t_c – tempo de concentração [h]

Para calcular t_0 é necessário recorrer ao seguinte processo iterativo:

- Assumir que $t_0=0$;
- Calcular $t = t_0 + t_c$;
- Calcular a intensidade de precipitação, *I*, correspondente a uma duração de chuvada, *t*, recorrendo por exemplo, a curvas IDF;
- Calcular as perdas iniciais, *Ia*;
- Estimar $t_0 = Ia/I$;
- Repetir o processo iterativo até que t₀ tome valores semelhantes em iterações consecutivas.

Após o cálculo de t_0 , pode obter-se a intensidade de precipitação correspondente a uma chuvada de duração $t = t_0 + t_c$, calculando a intensidade de precipitação útil pela expressão (12):

$$Iu = \frac{Pu}{tc}$$
(12)

Sendo:

Iu – intensidade de precipitação útil [mm/h]

Pu – precipitação útil [mm]

 t_c – tempo de concentração [h]

Este método é aplicado a bacias hidrográficas com áreas inferiores a 8 Km² e inclinações inferiores a 30%. No entanto é pouco usual a sua utilização no âmbito do dimensionamento predial.

2.2.2. Período de retorno

O período de retorno (T) é o intervalo de tempo médio, necessário, para que determinado evento seja igualado ou excedido (Quintela, 1996).

Assim, designando por F(x) a função de distribuição de determinado fenómeno (probabilidade do valor da variável ser inferior a x), o período de retorno é dado pela expressão (13):

$$T = \frac{1}{1 - F(x)} \tag{13}$$

O conhecimento do valor do fenómeno com um dado período de retorno pressupõe uma análise de frequência da série histórica do fenómeno.

No cálculo de caudais de ponta de cheia, para dimensionamento de infraestruturas de drenagem, é crucial a escolha adequada do período de retorno, uma vez que, uma escolha incorreta pode afetar pessoas e bens.

O período de retorno pode também ser determinado, fixando previamente o risco de o caudal associado a um certo período de retorno ser excedido durante o período de tempo de vida útil da obra (expressão (14)), ou seja:

$$T = \frac{1}{1 - (1 - R)^{\frac{1}{C}}}$$
(14)

Sendo:

T – período de retorno [anos]

R – risco aceitável

C – período de vida útil da obra [anos]

No Quadro 2.4 são apresentados os valores de período de retorno de acordo com a equação (12), considerando que a obra tem uma vida útil C, e tendo em conta o risco que se está disposto a correr é R.

Risco aceitável	Vida útil da obra (<i>C</i>)						
(R)	10	20	30	40	50	100	200
0,01	995	1990	2985	3980	4975	9950	19900
0,10	95	190	285	380	475	950	1899
0,25	35	70	105	140	174	348	696
0,50	15	29	44	58	73	145	289
0,75	8	15	22	29	37	73	145
0,99	3	5	7	9	11	22	44

Quadro 2.4 - Valores do período de retorno, T (adaptado de Marques e Sousa, 2008).

Segundo o artigo 210°, ponto 2, do Decreto Regulamentar n°23/95 de 23 de Agosto, o período de retorno a considerar no dimensionamento hidráulico de uma rede predial de drenagem pluvial deve ser, no mínimo, de cinco anos, para uma duração de precipitação de cinco minutos.

2.2.3. Tempo de concentração

O tempo de concentração pode ser definido, como o tempo que uma gota de água, caída no ponto cinematicamente mais afastado da bacia de drenagem, demora a atingir a secção em estudo.

Existe uma quantidade considerável de equações para estimar o tempo de concentração, nomeadamente:

- David (1976)
- Schaake (1967)
- Kerby (1959)
- Soil Conservation Service (1973)

O método SCS, como já foi referido, é aplicável para precipitações uniformes, para determinar o tempo de concentração, t_c , recorrendo ao tempo de atraso, t_l (expressão (15)):

$$t_c = 1.67 \times t_l \tag{15}$$

O tempo de atraso é o tempo decorrido entre o instante correspondente ao centro de gravidade do hietograma de precipitação útil e o instante em que ocorre a ponta do hietograma, que pode ser estimado pela expressão (16):

$$tl = \frac{Lb^{0,8}(0,03937Smr + 1)^{0,7}}{734 \times 43imb^{0,5}}$$
(16)

Sendo:

 t_l – tempo de atraso [h]

Lb – comprimento do curso de água principal da bacia [m]

Smr – capacidade máxima de retenção [mm]

imb – declive médio da bacia [%]

Contudo, a sua aplicação pode conduzir a sobrestimação do tempo de atraso, pelo que se devem efetuar correções. Os fatores corretivos podem ser obtidos pelos ábacos das Figuras 2.11 e 2.12 (Correia, 1984b).

Figura 2.11 – Fator corretivo do tempo de atraso relativo à melhoria das condições hidráulicas do escoamento canalizado (retirado de Correia, 1984b).

Figura 2.12 – Fator corretivo do tempo de atraso relativo à percentagem da área impermeável (retirado de Correia, 1984b).

2.2.4. Intensidade de precipitação

A quantificação da intensidade de precipitação é um aspeto fundamental para a determinação do caudal de ponta de cheia (Martins, 2000).

A caracterização da precipitação é essencialmente baseada na altura pluviométrica, ou seja, altura da quantidade precipitada numa unidade de área, na duração da chuvada, na intensidade, que traduz a velocidade da precipitação e na frequência que corresponde ao número de ocorrências da precipitação num intervalo de tempo (Orsi e Sarubo, 2010).

As curvas IDF estabelecem a relação entre os parâmetros referidos anteriormente, de acordo com a expressão (16):

$$I = a(T) \times t^{b(T)} \tag{16}$$

Onde:

I – Intensidade de precipitação [mm/h]

T – Período de retorno [anos]

t – tempo de concentração [min]

a, b – parâmetros que definem a reta e dependem do período de retorno

Logaritmizando a expressão e aplicando-a num gráfico com eixos logarítmicos, em que se marca a duração e a intensidade, para um determinado valor de T, a expressão é representada por uma reta, $I = a \times t^b$, em que a intensidade média da precipitação, I, vem expressa em milímetros por hora, e a duração, t, em minutos. Os parâmetros a e b, dependem do tempo de retorno, da localização e historial pluviométrico do local em estudo, podem ser determinados através do método dos mínimos quadrados (Marques e Sousa, 2008).

As precipitações diárias máximas anuais são registadas em redes udométricas da responsabilidade do Instituto da Água (INAG), facilmente consultáveis via Internet, no sítio do Sistema Nacional de Informação de Recursos Hídricos (SNIRH). Contudo, estes dados não contemplam as precipitações intensas com durações inferiores ao dia, que são as que mais frequentemente intervêm na análise de cheias em bacias hidrográficas urbanas e outros estudos hidrológicos. A dificuldade em obter este tipo de valores conduziu vários autores, a preparar informação de carácter local, regional e nacional (Portela, 2006).

Em 1941, Arantes de Oliveira, determinou valores de precipitação inferiores ao dia para diferentes períodos de retorno, os quais foram usados na determinação de caudais para dimensionar coletores de águas pluviais em Lisboa (Quintela e Portela, 2002). Em 1976 e 1984, David e Godinho, respetivamente, apresentaram para Portugal, os primeiros mapas de isolinhas da relação entre precipitações intensas para o mesmo período de retorno mas diferentes durações de precipitação (Quintela e Portela, 2002). Matos e Silva (1986), propuseram a utilização a nível nacional das curvas IDF que estabeleceram para Lisboa, aconselhando que as intensidades médias das precipitações resultantes da aplicação daquelas curvas sejam agravadas de 20% nas regiões montanhosas de altitude superior a 700 m e depreciadas de 20% nas regiões do Nordeste. Na materialização das curvas IDF referentes a Lisboa foram utilizadas precipitações registadas no Observatório Infante D. Luís (de 1860 a 1939), no Instituto Geofísico (de 1940 a 1967) e no Instituto Nacional de Meteorologia e Geofísica (de 1968 a 1983).

Na Figura A3.1, presente no anexo A3, são apresentadas as regiões pluviométricas a que a classificação proposta por Matos e Silva deu origem. O Quadro A3.1 indica os valores dos parâmetros a e b, a considerar nas diferentes regiões pluviométricas para determinação das curvas IDF em função do período de retorno. Em conformidade com as séries de precipitação analisadas pelas autoras, t não deverá exceder 120 min. As curvas IDF idealizadas por Matos e Silva, são ainda hoje as utilizadas no Decreto Regulamentar n°23/95 de 23 de Agosto.

No início da década de 90, Tomás (1992), estabelece curvas IDF, para períodos de retorno entre os 2 e os 100 anos para os postos udográficos de Sassoeiros, Portela e Vale Formoso. A análise efetuada incide sobre acontecimentos pluviosos independentes, sendo considerados, como tal, os acontecimentos separados de pelo menos seis horas sem ocorrência de precipitação. Na obtenção das curvas IDF, o autor adota a função de distribuição de Pearson III que se ajusta bem às amostras de precipitações máximas anuais com durações entre 15 min e 24 h.

Mais tarde, Brandão (1995), apresenta uma ampla e completa análise no âmbito das precipitações intensas com base séries dos registos contínuos de precipitação (udogramas), registados nos postos udográficos da Universidade de Aveiro, de Lisboa (IGIDL), de Évora-Cemitério e de Faro-Aeroporto. Mediante a análise estatística das precipitações máximas anuais com durações entre 5 min e 12h registadas nos postos udográficos

mencionados, estabelece, para esses postos, curvas IDF para períodos de retorno entre 2 e 100 anos, através de um programa elaborado pela mesma, denominado IDF. As curvas são facilmente representadas pela função de distribuição de extremos tipo I, ou simplesmente lei de Gumbel.

No seguimento deste trabalho, Brandão e Hipólito (1997), definem uma relação, válida para o País, entre precipitações intensas com diferentes durações e igual período de retorno. Posteriormente, Brandão e Rodrigues (1998), apresentam curvas IDF para dezassete postos udográficos e para os períodos de retorno de 50, 100, 500 e 1000 anos.

Mais recentemente, Brandão et al., 2001, apresentam os valores dos parâmetros das curvas IDF para 27 postos udográficos, razoavelmente dispersos pelo território nacional, selecionados por apresentarem séries longas de registos com poucas falhas. A metodologia utilizada foi a elaborada por Brandão (1995), os períodos de retorno estão compreendidos entre 2 e 1000 anos para três intervalos de duração da precipitação, 5 a 30 minutos, 30 minutos a 6 horas, e 6 a 48 horas. Os parâmetros das curvas IDF, encontram-se sintetizados nos Quadros A3.2, A3.3, e A3.4, no anexo A3. O trabalho de Brandão et al., (2001), pela informação reunida e pelos procedimentos aplicados, constitui a mais completa análise no domínio das precipitações intensas em Portugal Continental.

2.2.4.1. Desagregação da Precipitação

Maioritariamente os dados disponíveis nas estações meteorológicas são dados diários, pelo que a desagregação da precipitação se tornou uma ferramenta imprescindível para estudos hidrológicos. A desagregação está igualmente associada a estudos de alterações climáticas, uma vez que, os dados de precipitação fornecidos pelos modelos de circulação geral e regional, se encontram normalmente em escalas temporais demasiado grosseiras para aplicações hidrológicas.

A desagregação da precipitação envolve duas escalas de tempo, uma mais elevada que a outra e permite estimar dados a uma escala temporal mais fina do que a escala dos dados originais, por exemplo de uma escala diária para horária. A série sintética de nível temporal inferior deve contudo ser consistente com a série de nível superior, ou seja, a que lhe deu origem (Katsoyannis, 2003).

Existem algumas metodologias para desagregar dados de precipitação, o método de desagregação mais básico é a desagregação uniforme, simplesmente distribui uniformemente os dados diários pelas 24 horas. Portanto é um método pouco eficiente,

uma vez que a precipitação não ocorre sucessivamente durante 24 horas com igual intensidade (Second et al., 2006; Way, 2006).

Por sua vez, os modelos estocásticos têm sido uma das ferramentas mais utilizadas, principalmente os modelos de fragmentação de Poisson. A título de exemplo, pode ser destacado o modelo dos pulsos retangulares de Bartlett-Lewis modificado, desenvolvido por Rodrigues-Iturbe et al., (1987). Este modelo é frequentemente utilizado devido à sua aplicabilidade em diversos climas, o que proporcionou uma grande evolução na modelagem da precipitação (Hanaish et al., 2011; Back et al., 1999).

O modelo considera que os eventos de precipitação são formados por células, cuja distribuição no tempo segue um processo estocástico definido. Considera-se por tanto, que as células se distribuem no tempo em agrupamentos (*clusters*), e cada célula é considerada um pulso retangular com duração e intensidade aleatórias, sendo a intensidade constante ao longo da duração da célula.

O esquema do modelo encontra-se representado na Figura 2.13.

Figura 2.13 – Esquema do modelo de pulsos retangulares de Bartlett-Lewis modificado (retirado de Kossieris et al., 2012).

Este modelo pressupõe que:

- A origem dos eventos de precipitação, *t_i*, segue um processo de Poisson com parâmetro λ;
- A origem de cada célula, *t_{ij}*, segue igualmente um processo de Poisson com parâmetro β;
- Cada grupo de células termina após o tempo *v_i*, exponencialmente distribuído com parâmetro γ;
- A duração de cada célula, w_{ij}, é exponencialmente distribuída com o parâmetro η;

- A intensidade de cada célula, x_{ij} , segue uma distribuição exponencial ou gama;
- A precipitação total é dada pela soma de todas as células de todos os eventos pluviosos (Glasbey et al., 1995; Damé et al. 2007; Back et al., 1999; Kossieris et al., 2012).

O modelo de Bartlett-Lewis está na base do programa Hyetos R, uma adaptação implementada por Panagiotis Kossieris, Hristos Tyralis e Demetris Koutsoyannis, a partir do programa original Hyetos da autoria de Koutsoyannis e Onof (Kossieris et al., 2012).

O HyetosR é um pacote desenvolvido no ambiente de programação R, que permite a simulação estocástica temporal de precipitação em finas escalas de tempo. Assim sendo, permite a desagregação da precipitação diária em precipitação horária, salvaguardando importantes características estatísticas.

O procedimento interno do programa para desagregar séries de dados diários em séries de dados horários consiste inicialmente em agrupar os dias consecutivos de precipitação, assim, cada grupo fica delimitado no mínimo por um dia seco, no caso de grupos com número excessivo de dias molhados são divididos em sub grupos. Cada grupo ou sub grupo é tratado individualmente, desta forma, o modelo Bartlett-Lewis é executado para cada grupo de dias molhados (*clusters*) formando as células de cada *cluster* e respetivos parâmetros que constituem a série sintética. O tratamento posterior consiste em efetuar várias repetições e escolher a série sintética de baixo nível que estiver mais de acordo com a série de alto nível, e por fim aplicar um procedimento de ajuste proporcional à série escolhida para a tornar completamente consistente com a de nível superior (Katsoyannis, 2003).

O pacote Hyetor R contém quatro funções base, que permitem não só efetuar a desagregação da precipitação mas também simulações sequencias (Kossieris et al., 2012).

A função *eas* é apropriada para estimar os parâmetros do modelo de precipitação Bartlett-Lewis.

A função *DisagSimulTest* desagrega séries de precipitação diária em séries de precipitação horária. Os dados de entrada desta função podem conter ou não os dados horários originais. A sua utilização é apropriada para testar o programa, ou seja, comparar os dados horários originais e os dados horários sintéticos.

A função *DisagSimul* desagrega dados de precipitação diária em precipitação horária. A diferença entre esta função e a *DisagSimulTest* é que os dados de entrada são apenas diários.

Por sua vez, a função *Sequentialsimul* é apropriada para gerar séries de precipitação a várias escalas usando os parâmetros do modelo Bartlett-Lewis sem, contudo, realizar qualquer tipo de desagregação.

Koutsoyiannis (2003), a fim de verificar a veracidade dos dados simulados, aplicou o programa Hyetos a duas zonas climáticas distintas, uma onde chove durante todo ano, Heathrow Airpot – England, e numa zona semi-árida com uma estação chuvosa, Walnut Gulch, Gauge 13 – USA. Desagregou as séries diárias em séries horarias, obtendo para ambas as estações, resultados muito satisfatórios, que preservam as propriedades da precipitação, nomeadamente, momentos marginais, correlações temporais, proporção e comprimentos de intervalos secos.

Hanaish et al., (2011), efetuou um estudo com o objetivo de desagregar dados de precipitação diária em dados horários, recorrendo ao programa Hyetos. Os dados referemse ao período compreendido entre 1970 e 2008, registados na estação de Petaling, Malásia. Os resultados revelam também o bom desempenho do software Hyetos no que respeita à preservação da média, no entanto, pode ser observada uma discrepância entre a série sintética e a serie histórica, nomeadamente nos valores extremos.

No âmbito deste estudo, foi efetuada a desagregação da precipitação diária em precipitação horária, para os meses de janeiro e julho (característicos da estação húmida e seca, respetivamente), em 3 estações meteorológicas de Portugal, recorrendo ao programa Hyetos R. A análise comparativa entre os dados horários observados e os simulados, permitiu observar que o programa preserva a precipitação diária, contudo não representa satisfatoriamente os valores máximos de precipitação (Gaspar et al., 2012). Por esta razão, o Hyetos R não foi utilizado para desagregar os dados de precipitação neste estudo.

Outro método de utilização comum no âmbito da desagregação da precipitação é o método dos fragmentos introduzido por Svanidze nos anos 60 (Wey, 2006). Os fragmentos são uma fração da precipitação diária que ocorreu em cada hora do dia, ou seja, os fragmentos são coeficientes que traduzem a percentagem de precipitação ocorrida em determinada hora do dia, sendo que o somatório dos coeficientes das 24 horas de um dia é igual à unidade. Os fragmentos são calculados com base na equação (17):

$$wi = \frac{hi}{\sum_{i=1}^{24} hi}$$
(17)

Onde:

wi - fragmento calculado para a hora i

hi – valor da precipitação na hora i

Cada fragmento é multiplicado pelos dados diários, efetuando a desagregação sem que a precipitação total diária seja alterada, produzindo desta forma os valores da precipitação horária (equação 18).

$$hi' = wi \times d \tag{18}$$

Onde:

hi' - valor da precipitação na hora i

wi – fragmento da hora i

d – valor da precipitação horária

Uma escolha apropriada dos fragmentos garante que a série desagregada possua características apropriadas. Na escolha dos fragmentos a utilizar para a desagregação da precipitação deve ser tido em conta uma aproximação entre o valor da precipitação diária que deu origem aos fragmentos e o valor da precipitação a ser desagregada. Isto porque eventos de pequena e grande duração ocorrem de forma diferente.

Existem ainda outros fatores que, se possível, devem ser incluídos no processo de comparação entre os dados de precipitação, tais como, época do ano, temperatura, a humidade ou a pressão do ar.

Um dos problemas que pode ocorrer com os fragmentos aquando da utilização de um pequeno número de dados para a produção dos mesmos, é a repetição de fragmentos, incutindo um padrão cíclico na série desagregada.

A utilização do método dos fragmentos para desagregação temporal de dados meteorológicos em vários locais é ainda um campo em desenvolvimento, pelo que cada

local deve ser tratado individualmente e possuir os seus próprios fragmentos (Wójcik e Buishand, 2003).

Pui et al., (2009), realça a importância de discernir tanto os pontos fracos como os fortes dos modelos de desagregação da precipitação, especialmente porque se prevê a intensificação do uso de precipitações provenientes dos modelos climáticos, devido à preocupação iminente com o impacto das alterações climáticas sobre os sistemas de drenagem pluvial. Assim sendo, o seu estudo consistiu na desagregação da precipitação em Sidney durante o período de 1916 a 2001, recorrendo a três métodos de desagregação, nomeadamente, o método dos fragmentos, o modelo de Bartlett-Lewis e a versão canónica e microcanónica do modelo da cascata multiplicativa. Concluiu que o método dos fragmentos foi o que melhor se ajustou à reprodução da precipitação de Sidney, tendo superado os restantes em termos de reprodução estatística, o que era esperado porque este método opera com base em reamostragem de frações da precipitação observada. O modelo de Bartlett-Lewis foi o que mais sobrestimou a proporção de dias secos, e a utilização do modelo microcanónico é de todo desadequada à reprodução da precipitação de Sidney.

2.3. Dimensionamento hidráulico

As instalações de águas prediais constituem uma das principais fontes de patologias nos edifícios. As irregularidades de conceção e execução traduzem-se em fatores de desconforto, como sejam a manifestação de ruídos na canalização ou a deterioração precoce de elementos do edifício devido a humidades (Silva-Afonso, 2003). De forma a minorar as irregularidades presentes nos sistemas de águas prediais, estas devem obedecer a uma regulamentação específica.

Em Portugal o dimensionamento, conceção, construção, exploração, bem como a aplicação das respetivas normas de higiene e segurança de sistemas de drenagem predial, são realizados de acordo com o Decreto Regulamentar nº23/95 de 23 de agosto.

Sousa (2011), efetuou um estudo relativo à uniformização de metodologias de dimensionamento de sistemas de drenagem predial de águas pluviais, comparando o dimensionamento realizado com o regulamento português (Decreto Regulamentar n°23/95) e com a Norma Europeia EN 12056-3, tendo concluído que a norma EN 12056-3: (i) conduz a caudais de cálculo superiores aos obtidos pelo Regulamento Português, o que

garante maiores secções, e consequentemente favorece a segurança e o desempenho dos sistemas; (ii) apresenta um cálculo detalhado no que se refere ao dimensionamento de caleiras, uma vez que, distingue cada tipo de caleira (beirado, vala e parapeito); e, (iii) no que respeita ao dimensionamento de tubos de queda e coletores prediais é semelhante ao Regulamento Português. O autor refere, que se devem efetuar algumas alterações na Norma EN 12056-3, mais precisamente acrescentar anexos técnicos nacionais, para adaptação à Norma Portuguesa, tal como foi feito para outros países, nomeadamente, o Reino Unido (Sousa, 2011).

2.3.1. Considerações prévias

A regulamentação portuguesa exige a separação dos sistemas de drenagem de águas residuais domésticas das águas residuais pluviais, a montante das câmaras de ramal de ligação, independentemente do sistema de drenagem público.

Nos sistemas de drenagem de águas residuais pluviais são apenas permitidos os lançamentos provenientes de:

- Águas da chuva;
- Rega de jardins, lavagem de arruamentos, parques de estacionamento, e similares recolhidos por sargetas, sumidouros ou ralos;
- Circuitos de refrigeração e de instalações de aquecimento;
- Piscinas e depósitos de armazenamento de águas;
- Drenagem do subsolo.

O sistema de drenagem pluvial pode ser gravítico, com elevação ou misto, dependendo dos níveis altimétricos de recolha de águas pluviais, relativamente ao nível do arruamento onde se encontra instalado o coletor público.

2.3.2. Constituição dos sistemas de drenagem

Os sistemas de drenagem predial de águas residuais pluviais são constituídos pelos seguintes elementos:

• Caleiras e algerozes: dispositivos de recolha destinados a conduzir a água para ramais ou tubos de queda;

- Ramais de descarga: canalização destinada ao transporte das águas provenientes dos dispositivos de recolha para o tubo de queda ou coletor predial;
- Tubos de queda: canalização destinada a aglutinar em si as descargas provenientes das zonas de recolha e transporta-las para o coletor predial;
- Coletores prediais: canalização destinada a aglutinar em si as descargas de tubos de queda e ramais adjacentes, e a sua condução para o ramal de ligação;
- Acessórios: dispositivos que possibilitam as operações de manutenção, limpeza, retenção e garantia de boas condições de habitabilidade dos espaços.

O traçado e dimensionamento dos elementos supracitados, são sumariamente descritos nos pontos seguintes, de acordo com o Manual dos Sistemas Prediais de Distribuição e Drenagem de Águas (Pedroso, 2000) e o Decreto regulamentar nº23/95 de 23 de Agosto.

2.3.3. Traçado e dimensionamento de ramais de descarga

O traçado desta tubagem deve ser constituído por troços retilíneos, unidos por curvas de concordância.

A ligação dos ramais de descarga aos tubos de queda deve ser feita por meio de forquilhas, e aos coletores prediais por forquilhas ou câmara de inspeção.

Podem ser colocados à vista, embutidos, em caleiras, tetos falsos, ou enterrados.

As inclinações dos ramais de descarga não deverão ser inferiores a 5 mm/m, e o diâmetro mínimo admitido é de 40 mm, com a exceção das situações em que possuam ralos de pinha, passando o valor do diâmetro mínimo para 50 mm. A secção do ramal não deve diminuir no sentido do escoamento.

Podem ser dimensionados para escoamento a secção cheia. O dimensionamento pode ser efetuado através da fórmula de Manning-Strikler (expressão (19)):

$$Q = K \times Af \times R^{2/3} \times i^{1/2} \tag{19}$$

Sendo:

Q – caudal de cálculo [m³/s]

K – Rugosidade da tubagem $[m^{1/3}/s]$

Af – secção da tubagem ocupada pelo fluido [m²]

R – Raio hidráulico [m]

i – inclinação [m/m]

O raio hidráulico no caso de uma secção circular, é dado pelo quociente entre a área da secção líquida e o perímetro molhado, para secção cheia recorre-se à expressão (20):

$$R = \frac{Di}{4} \tag{20}$$

Sendo:

R – Raio hidráulico [m]

Di – Diâmetro interno da tubagem [m]

2.3.4. Traçado e dimensionamento de caleiras e algerozes

A altura da lâmina líquida no interior das caleiras e algerozes não deve exceder 7/10 da altura da secção transversal, salvo se assegure que, em caso de transbordo, este não ocorrerá para o interior do edifício.

A inclinação das caleiras e algerozes deve estar compreendida entre 2 e 15 mm/m, embora seja recomendado a adoção de inclinações entre os 5 e os 10 mm/m. O dimensionamento é efetuado pela fórmula de Manning-Strikler (expressão (19)), indicada em 2.3.4.

O raio hidráulico e a área ocupada pelo fluido, no caso de secções retangulares são determinados pelas expressões (21) e (22):

$$R = \frac{b \times h}{(b+2h)} \tag{21}$$

$$A = b \times h \tag{22}$$

Em que:

R – raio hidráulico [m]

b – largura da soleira da caleira [m]

h – altura de água de projeto [m]

A – secção ocupada pelo fluido [m²]

2.3.5. Traçado e dimensionamento de tubos de queda

O traçado dos tubos de queda deve ser vertical, constituído de preferência por um único alinhamento reto. No caso de não ser possível, as mudanças de direção devem ser obtidas através de curvas de concordância, com translação não superior a duas vezes o diâmetro da tubagem. Sempre que este valor seja excedido o troço de fraca pendente deve ser tratado como coletor predial.

Os tubos de queda devem ser preferencialmente instalados à vista na face exterior do edifício, ou em galerias de forma a facilitar o seu acesso, em caso algum devem ser embutidas em elementos estruturais.

A inserção dos tubos de queda nos coletores prediais deve ser feita através de forquilhas ou câmaras de inspeção.

O diâmetro dos tubos de queda não deve ser inferior ao maior dos diâmetros dos ramais de descarga que para ele confluem, com um mínimo de 50 mm.

O dimensionamento dos tubos de queda, quando o escoamento é considerado normal, ou seja processa-se em descarregador, pode ser efetuado através da expressão (23):

$$Q = \left(\alpha + \beta \frac{H}{D}\right) \pi. D. H \sqrt{2gH}$$
⁽²³⁾

Em que:

Q – caudal escoado [m³/s]

H – carga no tubo de queda (lâmina liquida) [m]

D – diâmetro interior do tubo de queda [m]

g – aceleração da gravidade [m/s²]

$$\beta = 0,350$$

 $\alpha = 0,453$ para entrada em aresta viva no tubo de queda

 $\alpha = 0,578$ para entrada cónica no tubo de queda

A utilização desta fórmula é aconselhada quando:

- O tubo de queda tem um comprimento $L \ge 40D$ e entrada em aresta viva;
- O tubo de queda tem um comprimento $L \ge 1m$ e entrada cónica;
- Quando o tubo de queda não possua acessórios na base que introduzam sinuosidades.

Nas situações em que o tubo de queda tem um comprimento $L \ge 40D$ e entrada em aresta viva ou comprimento $L \ge 1$ m e entrada cónica, e se verifique que o escoamento é acidental, ou seja, quando se processa através de um orifício, o caudal escoado pode ser determinado pela expressão (24):

$$Q = C.S.\sqrt{2gH} \tag{24}$$

Em que:

Q – caudal escoado $[m^3/s]$

C – coeficiente de escoamento [0,5]

S – secção do tubo de queda $[m^2]$

g – aceleração da gravidade $[m/s^2]$

H – carga no tubo de queda (lâmina liquida) [m]

2.3.6. Traçado e dimensionamento de coletores prediais

O traçado destas tubagens deve ser retilíneo, tanto em planta, como em perfil.

Podem ser instalados à vista, enterrados, ou em tetos falsos.

Quando enterrados deverão ser dotados de câmaras de inspeção no seu início, mudanças de direção e/ou inclinação, alteração de diâmetro e nas confluências, de forma a possibilitar uma correta manutenção e limpeza.

Quando as tubagens são instaladas à vista, as camaras de inspeção podem ser substituídas por curvas de transição, forquilhas, reduções e bocas de limpeza.

Para satisfazerem um eficiente serviço de manutenção, os acessórios consecutivos, não devem distar mais de 15 m entre si.

O diâmetro dos coletores prediais não deve ser inferior ao maior diâmetro das tubagens que para ele confluem, com um mínimo de 100 mm.

As inclinações a utilizar compreendem-se entre os 5 e os 40 mm/m, sendo aconselhável inclinações superiores a 10 mm/m.

Os coletores podem ser dimensionados para secção cheia, utilizando a fórmula de Manning-Strikler (expressão (19)), indicada em 2.3.4.

3. METODOLOGIA

3.1. Dados

Neste trabalho a caraterização das precipitações intensas foi fundamentada com duas bases de dados distintas, nomeadamente dados de precipitação observada obtidos da base de dados do Sistema Nacional de Informação e Recursos Hídricos (SNIRH) e os dados de precipitação projetada, para o cenário do passado recente e dois cenários futuros, simulados pelo modelo climático de circulação regional COSMO-CLM.

3.1.1. Obtenção de dados observados e caracterização da rede udográfica

Os dados observados de precipitação à escala horária podem ser encontrados no sítio do SNIRH (<u>http://snirh.pt</u>), e o acesso pode ser conseguido com o seguinte procedimento:

- a. Selecionar a opção Dados de Base Monitorização
- b. Redes Meteorológica
- c. Parâmetros precipitação horária
- d. Datas com um mínimo de 10 anos de dados.

As estações meteorológicas foram selecionadas com o objetivo de serem representativas do regime de precipitação máxima, e localizam-se nas três zonas pluviométricas idealizadas por Matos e Silva (1986) presentes no Decreto Regulamentar nº23/95 de 23 de Agosto.

O número de estações da base de dados do SNIRH com registos para durações superiores a 10 anos era muito reduzido, o que não permitia cobrir convenientemente as três zonas pluviométricas estabelecidas por Matos e Silva (1986), em particular a região pluviométrica B. Consequentemente foram ainda selecionadas algumas estações com um mínimo de oito anos de dados para colmatar este défice de estações existente na zona B, do zonamento supracitado.

Este procedimento possibilitou a obtenção de dados para mais de 60 estações meteorológicas, com, pelo menos, 8 anos de dados o que significa que, cada estação possui aproximadamente cem mil valores de precipitação horária. Devido ao tempo disponível para o tratamento dos dados e como não se pretendia caracterizar exaustivamente cada uma das regiões pluviométricas, o número de estações selecionadas foi reduzido parar oito.

A região A abrange uma vasta área de Portugal, reconhecidamente com diferentes regimes de precipitação, por exemplo, a quantidade de água precipitada observada na zona do Minho (zona húmida) e do Alentejo (zona árida) pelo que se optou por escolher uma estação a Norte do país e duas a Sul. Na zona B, foram igualmente escolhidas 3 estações, para as quais as séries de precipitação horária apresentavam melhor qualidade. Para a zona C, o processo de seleção foi mais simplificado, uma vez que o número de estações da base de dados nesta região pluviométrica, com pelo menos 8 anos de dados, era exatamente de duas estações.

A qualidade da série de valores históricos foi, também, um dos critérios de seleção e, foi estimada a partir do número total de valores em falta e no número de meses com falhas. De acordo com informação disponibilizada pelo SNIRH, a ausência de informação nestes períodos de tempo pode ser devida a férias, greves dos observadores ou avarias nos udógrafos.

A localização e caracterização das estações meteorológicas da rede SNIRH selecionadas para este estudo são apresentadas a Figura 3.1 e no Quadro 3.1, respetivamente.

Figura 3.1 – Localização das estações meteorológicas da rede em estudo no zonamento de Matos e Silva (1986)

Na Figura 3.1, pode ser verificada a localização das estações meteorológicas selecionadas no interior das três regiões pluviométricas preconizadas no Decreto Regulamentar n°23/95 de 23 de Agosto, cujos critérios de definição se baseiam não apenas na localização geográfica mas também na altitude (apresentada no Quadro 3.1). Para além da localização e altitude de cada estação, o quadro indica o tipo e a data de entrada em funcionamento das estações automáticas, tal como indicado para a precipitação horária no sítio do SNIRH.

Código	Nome	Distrito	Altitude (m)	Latitude (°N)	Longitude (°W)	Tipo Estação (automática)	Início do Funcionamento
03G/02C	Ponte Da Barca	Viana do Castelo	39	41.803	-8.42	Climatológica	23-01-2003
23K/01UG	São Manços	Évora	190	38.46	-7.751	Udográfica	13-02-2001
26L/01UG	Serpa	Beja	209	37.94264	-7.60383	Udográfica	10-01-2001
07O/05UG	Castelo Melhor	Guarda	286	41.01546	-7.06808	Udográfica	08-10-2001
04R/02G	Pinelo	Bragança	607	41.635	-6.552	Udográfica	27-02-2003
09O/01G	Pinhel	Guarda	606	40.771	-7.061	Udográfica	30-10-2001
12L/03G	Covilhã	Castelo Branco	719	40.28489	-7.51028	Udográfica	02-06-1998
110/01G	Pega	Guarda	770	40.432	-7.143	Udográfica	13-09-2001

Quadro 3.1 - Caraterização das estações meteorológicas da rede em estudo.

Para identificar e caracterizar o regime de precipitação observado nas estações em estudo, efetuou-se uma análise exploratória recorrendo a gráficos de bigodes, cujos resultados serão apresentados na secção 4.1.

3.1.2. Obtenção de dados simulados

Este estudo não objetivo а modelação simulação tem como e meteorológica/climática mas apenas uma avaliação dos potenciais impactos das alterações no regime de precipitação máxima no dimensionamento de tubagens e órgãos de recolha de águas pluviais prediais. Neste sentido, os dados pluviométricos correspondentes às projeções para diferentes cenários futuros utilizados neste estudo foram gentilmente disponibilizados pelo Professor Doutor Joaquim Pinto da Universidade de Cologne, e consistem nas saídas do modelo regional de clima COSMO-CLM. Este modelo foi desenvolvido por dois grupos, nomeadamente, o "COnsortium for Small-scale MOdelling" (COSMO) e o "Climate Limited-area Modelling Community" (CLM-community). Estes dois grupos pertencem respetivamente, a serviços meteorológicos europeus e centros de pesquisa climática (Davin et al., 2011). O modelo COSMO-CLM, cujo domínio espacial é ilustrado na Figura 3.2, tem demonstrado a sua capacidade para modelar as condições meteorológicas, em particular de temperatura e precipitação, em diferentes regiões da Europa. De fato, simulações deste modelo têm vindo a ser utilizadas em projetos internacionais como o PRUDENCE e o ENSEMBLES (Rockel et al., 2008; van der Linden e Mitchell (eds.), 2009) e em vários estudos de alterações climáticas (Dobler e Ahrens,

2011; Haslinger et al., 2012; Kotlarski et al., 2012; Nolan et al., 2012). Sobre este aspeto, é de referir, pela relevância para este estudo o trabalho de Costa et al. (2011) sobre cenários de mudanças climáticas para extremos de precipitação em Portugal utilizando, precisamente, saídas do modelo COSMO -CLM.

Figura 3.2 - Domínio do modelo COSMO-CLM (retirado de CLM-Community, 2012).

Os dados de precipitação foram disponibilizados à escala diária para uma malha de 0.2° de latitude por 0.2° de longitude, sobre o subdomínio espacial definido entre $36,6^{\circ}$ N – $42,4^{\circ}$ N e $6,2^{\circ}$ W – 9.8° W (Figura 3.3) que cobre o território nacional, para 3 simulações diferentes: uma do passado recente do final do século XX (C20), que cobre o período de 1960 a 2000; e, duas correspondentes a dois cenários SRES futuros nomeadamente o cenário B1 e A1B, ambas cobrindo um período de cem anos do século XXI, definido de 2001 a 2100.

O cenário B1 descreve um mundo convergente que privilegia as soluções globais para a sustentabilidade económica, social e ambiental, com um crescimento populacional até meados do seculo XXI e o seu posterior declínio.

Por outro lado, o cenário A1B descreve um mundo futuro com um desenvolvimento económico e tecnológico muito rápido, em que o uso das diversas fontes energéticas se encontra em equilíbrio. Reflete um crescimento populacional global a atingir um máximo em meados do século XXI.

Para a avaliação das eventuais alterações na ocorrência de precipitações extremas em cenários futuros de clima, foram selecionadas as séries temporais das células da malha onde se localizam cada uma das estações meteorológicas selecionadas anteriormente (Figura 3.3).

Figura 3.3 – Localização das estações meteorológicas na malha do COSMO-CLM.

3.2. Agregação e desagregação da precipitação

Como referido anteriormente, neste estudo são utilizadas duas bases de dados, uma que possui dados observados de precipitação à escala horária num conjunto de estações selecionadas, e outra composta por valores de precipitação à escala diária simulados pelo modelo regional de clima COSMO-CLM. Contudo, nenhuma destas bases de dados tem, originalmente, as características necessárias para a realização deste estudo.

De fato, os dados mais utilizados nos estudos hidrológicos são os dados à escala horária, que, contudo, muito raramente se encontram disponíveis com a densidade exigível e cobrindo um período suficientemente longo. Existem ainda estudos, como o presente, que são ainda mais exigentes quanto às características das bases de dados, por exemplo, requerendo a existência de valores de precipitação para durações inferiores à hora. Uma das soluções para mitigar este problema passa pela desagregação da precipitação dos períodos amostrais em que foi medida, para períodos amostrais de menor duração. Este processo consiste na estimação de valores para durações inferiores a partir de dados observados em durações superiores.

A desagregação da precipitação é frequentemente utilizada em estudos de cheias, simulação e melhoramento de dados registados, porém, em estudos de alterações climáticas tornou-se uma ferramenta imprescindível (Koutsoyiannis, 2003), uma vez que, os dados fornecidos pelos modelos de circulação geral e regional, possuem geralmente escalas temporais demasiado elevadas às necessárias para estudos hidrológicos, como o que se pretende realizar.

O objetivo nesta secção consiste na descrição dos processos de agregação e desagregação dos dados diários simulados pelo RCM COSMO-CLM e dos dados horários observados até escalas sub-horárias. No final, pretendeu-se dispor de dados de precipitação para dez valores de duração, nomeadamente: 5 min, 10 min, 15 min, 30 min, 1 h, 2 h, 6 h 12 h, 24 h e 48 h. Os resultados do processo de agregação e desagregação permitirão obter a intensidade de precipitação máxima para diferentes durações, a construção de curvas IDF para ambas as bases de dados e a comparação de resultados obtidos.

O processo de agregação foi relativamente simples e consistiu na utilização de valores de precipitação obtidos para durações amostrais inferiores para calcular valores de precipitação para durações superiores. Por exemplo, dispondo de valores de precipitação horária facilmente se obtêm valores de precipitação para 2, 6, 12, 24 e 48 h consecutivas, bastando para tal somar os valores horários que integram a duração pretendida. Este procedimento foi seguido para as bases de dados observados e simulados, para durações superiores às amostrais.

Nas seções seguintes serão apresentados os procedimentos associados à desagregação dos dados de precipitação.

3.2.1. Desagregação da precipitação diária em precipitação sub-diária

Esta secção é dedicada ao processo de desagregação dos dados diários do RCM COSMO-CLM até à duração horária, a partir de coeficientes de desagregação obtidos através dos dados observados. Este processo de desagregação permitirá obter valores de precipitação e de intensidade de precipitação máxima para 1, 2, 6 e 12 h, com o intuito final de poder dispor de dados que permitam a construção de curvas IDF para ambas as bases de dados.

Os valores dos coeficientes de desagregação foram definidos como o quociente entre os valores de precipitação para durações inferiores em relação aos valores de precipitação para durações superiores. Neste estudo não se pretendeu proceder à desagregação dos valores de precipitação mas dos valores de precipitação máxima. O processo inclui os seguintes passos:

- Calcular, em cada dia, com base nos dados observados, o valor máximo de precipitação em cada duração (1, 2, 6 e 12 h);
- Calcular para cada dia o coeficiente referente ao valor da precipitação máxima correspondente a cada duração (1, 2, 6 e 12 h), através da fórmula (17) presente na secção 2.2.4.1;
- Para cada duração (1, 2, 6 e 12 h) ordenar a base de dados por ordem decrescente do valor de precipitação máximo da respetiva duração;
- Obter o coeficiente médio para cada duração, calculando o valor da média aritmética dos primeiros 50, 100 e 200 valores do coeficiente de precipitação máxima da respetiva duração; o coeficiente médio permite uniformizar a percentagem dos valores de precipitação máxima para os registos de precipitação mais elevada de cada duração.

Os coeficientes médios determinados para cada duração, refletem a relação entre a precipitação diária e a precipitação máxima sub-diária dos dados observados em cada estação individualmente. No Quadro 3.2 são apresentados os valores dos coeficientes estimados com os dados observados e utilizados para efetuar a desagregação da precipitação diária em precipitação máxima sub-diária dos dados simulados.

Relações Estações	1h/24h	2h/24h	6h/24h	12h/24h
Ponte Da Barca	0.370	0.476	0.718	0.853
São Manços	0.532	0.651	0.866	0.923
Serpa	0.536	0.681	0.849	0.945
Castelo Melhor	0.470	0.616	0.821	0.925
Pinelo	0.430	0.545	0.794	0.900
Pinhel	0.485	0.609	0.808	0.905
Covilhã	0.330	0.451	0.773	0.870
Pega	0.485	0.604	0.806	0.905

Quadro 3.2 - Relações entre precipitações sub-diárias máximas e diária.

O passo seguinte consistiu na desagregação dos dados diários provenientes do modelo COSMO-CLM através dos coeficientes obtidos anteriormente, recorrendo à fórmula (18) na secção 2.2.4.1, ou seja, multiplicando os coeficientes de precipitação máxima para cada duração, e para cada estação, pelos valores simulados de precipitação diária. Desta forma, são obtidos, para os cenários futuros, os valores de precipitação máxima para 1, 2, 6, e 12 h para as células da malha onde se localizam as estações em estudo.

3.2.2. Desagregação da precipitação horária em precipitação sub-horária

Para caraterizar precipitações intensas associadas a curtas durações, é imprescindível possuir informação sobre precipitação à escala sub-horária.

Uma das formas de estimar os valores de precipitação (máxima) para durações inferiores à hora, consiste no estabelecimento de relações entre a precipitação horária e sub-horária. No Quadro 3.3, são apresentados os valores médios dos quocientes entre as precipitações a escalas sub-horárias e horária para estações nacionais e mundiais. Pode ser verificada a grande semelhança entre os valores dos coeficientes de desagregação estimados para Portugal, (em ambas as ocasiões) e para todas as regiões do mundo, para todas as durações exceto para a duração de 5 minutos.

Relações	5min/1h	10min/1h	15min/1h	30min/1h
Mundiais	0.29	0.45	0.57	0.79
Nacional, INMG (1984)	-	0.47	-	0.79
Nacional, INMG (2001)	0.35	0.49	0.59	0.78

Quadro 3.3 – Valores dos coeficientes de desagregação da precipitação para durações sub-horárias em relação à precipitação horária para estações nacionais e mundiais (extraído de Brandão et al., 2001).

Neste trabalho, os valores dos coeficientes de desagregação para as durações inferiores à hora foram obtidos através dos mapas de isolinhas das relações associadas ao percentil 50% entre precipitações de 5, 10, 15, e 30 minutos e a hora, propostos por Brandão et al. (2001). A metodologia utilizada para a obtenção destes mapas encontra-se especificada no trabalho supracitado. O processo consistiu na leitura dos valores dos coeficientes de desagregação, nos mapas de isolinhas acima referidos, nas localizações das estações em estudo.

Os valores dos coeficientes de desagregação obtidos e que serão utilizados para estimar os valores da precipitação para durações sub-horárias são os indicados no Quadro 3.4. Em geral os valores dos coeficientes de desagregação obtidos encontram-se entre os limites definidos no Quadro 3.3, exceto para algumas estações (e durações) como para Ponte da Barca (5 min), Pinelo (10 e 15 min) e são Manços (30 min).

Relações Estações	5min/1h	10min/1h	15min/1h	30min/1h
Ponte Da Barca	0.420	0.490	0.560	0.725
São Manços	0.359	0.480	0.590	0.815
Serpa	0.328	0.465	0.590	0.785
Castelo Melhor	0.328	0.480	0.580	0.755
Pinelo	0.358	0.540	0.635	0.785
Pinhel	0.297	0.450	0.560	0.755
Covilhã	0.297	0.440	0.530	0.725
Pega	0.297	0.440	0.540	0.755

Quadro 3.4 - Relações entre precipitações sub-horárias e horária.

Assim, os valores de precipitação máxima para durações inferiores à hora, nomeadamente 5, 10, 15 e 30 minutos, foram determinados individualmente para cada estação, multiplicando os respetivos coeficientes sub-horários pelo valor máximo horário de cada dia da série observada e das séries projetadas pelo modelo COSMO-CLM para os cenários C20, A1B e B1.
3.3. Curvas de Intensidade-Duração-Frequência

A caracterização do regime de precipitação intensa constitui um importante elemento de apoio ao dimensionamento de sistemas de drenagem pluvial, entre outras obras hidráulicas. Este processo inclui o recurso a curvas IDF para determinar o caudal de ponta de cheia. A materialização de curvas IDF que considerem as alterações climáticas são fundamentais para o correto dimensionamento destes sistemas no futuro, permitindo diminuir a frequência da ocorrência de cheias e reduzir os prejuízos que lhe estão associados, uma vez que os modelos climáticos apontam, em geral, para um aumento de eventos extremos de precipitação.

Nesta secção procedeu-se à obtenção de curvas IDF, para duas bases de dados, uma com séries de valores observados de intensidade de precipitação para um conjunto de oito estações meteorológicas e outra com séries de valores projetados para o futuro, pelo RCM COSMO-CLM, num mesmo número de células da rede do seu domínio espacial.

A metodologia adotada foi desenvolvida com base na descrita em Brandão et al. (2001) que, por sua vez, constitui um desenvolvimento relativamente à sua metodologia anterior (Brandão, 1995). Esta metodologia integra os seguintes pontos:

- Determinar os valores máximos de precipitação em durações de 5, 10, 15 e 30 min e em 1, 2, 6, 12, 24 e 48 h, em cada ano. Este procedimento permite obter séries de valores anuais de intensidade de precipitação máxima, para cada um dos dez valores de duração;
- Análise estatística exploratória destas dez séries, que inclui a estimação de vários descritores estatísticos (média, desvio-padrão, coeficiente de assimetria e coeficiente de achatamento), bem como o ajuste da função densidade de probabilidades de extremos tipo I (lei de Gumbel), às séries de valores de intensidade de precipitação máxima para cada uma das durações. A estimação dos valores dos parâmetros da distribuição de Gumbel foi realizada com o método da máxima verossemelhança enquanto a avaliação da qualidade do ajuste foi realizada com o teste de kolmogorov-Smirnov (KSteste) bem como dos gráficos Quantil-Quantil ou de probabilidade;
- Gerar valores de intensidades de precipitação para oito valores de períodos de retorno (2, 5, 10, 20, 50, 100, 500 e 1000 anos) e para os dez valores de

duração utilizando a função inversa de distribuição de probabilidade de extremos tipo I, ajustada para cada caso;

- Representar graficamente, para cada período de retorno, as intensidades de precipitação (mm/h) em função da duração da precipitação (min) cujo estudo sugeriu, tal como indicado em Brandão (1995), que a relação entre estas duas grandezas associadas a um determinado período de retorno é do tipo potencial (*I* = *a* × *t*^b); foi ainda verificado que existe uma ligeira alteração na evolução da intensidade de precipitação aquando das durações de 30 minutos e 6 horas. Neste sentido, foi considerado conveniente realizar a estimação dos valores dos parâmetros *a* e *b*, da lei de potência, para todas as durações e para três trechos distintos: o primeiro entre 5 e 30 minutos, o segundo entre 30 minutos e 6 horas, e o terceiro entre 6 e 48 horas;
- Estimar os valores dos parâmetros a e b, para cada período de retorno, com base na linearização do gráfico, (após aplicação de logaritmos decimais aos valores da intensidade da precipitação máxima em função da duração) e recorrendo ao método dos mínimos quadrados e ao método de ajuste robusto. Em ambos os casos, os parâmetros foram estimados para uma significância estatística de 5% enquanto a qualidade do ajuste é avaliada pelos valores do coeficiente de determinação (R^2), da estatística F e da variância do erro.

A distribuição de Gumbel foi a adotada para o ajuste dos valores máximos de precipitação, porque segundo a literatura é a que melhor descreve este processo meteorológico (Brandão, 1995; Brandão et al., 2001; Beijo et al., 2005; Hartmann et al., 2011).

A função densidade de probabilidades da distribuição de Gumbel, associada a valores máximos, é dada pela expressão (25):

$$f(x) = \sigma^{-1} \exp(-z) \exp(-\exp(-z))$$
⁽²⁵⁾

Onde $z = \frac{x-\mu}{\sigma}$, $x (-\infty < x < \infty)$ é a variável aleatória associada a valores máximos do período, $\mu (-\infty < \mu < \infty)$ é o parâmetro de localização e σ ($\sigma < 0$) o parâmetro de escala.

A função cumulativa da função de distribuição de Gumbel da variável aleatória x, para valores extremos máximos, é dada por (26):

$$F(x) = \exp\left[-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right]$$
(26)

Para uma amostra com esta distribuição, a moda é igual ao parâmetro de localização, μ , a mediana igual a $\mu - \sigma \ln(\ln(2))$, a média é igual a $\mu \pm \sigma \gamma$, onde γ é a constante de Euler-Mascheroni, que assume o valor de 0.577216. Por outro lado, o desvio padrão é igual a $\sigma \pi/\sqrt{6}$, o valor do coeficiente de assimetria é aproximadamente igual a $1,14 \approx \left(\frac{12\sqrt{6}\varsigma(3)}{\pi^3}\right)$, enquanto que a curtose é igual a 12/5.

A função inversa é obtida sabendo que a probabilidade (P) de que ocorra uma precipitação máxima superior a um certo valor x, é dada pela expressão (27):

$$P = 1 - F(x) = 1 - \exp\left[-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right]$$
(27)

Tendo em conta que a probabilidade (*P*) é inversamente proporcional ao período de retorno (*T*), $P = \frac{1}{T}$, a precipitação máxima provável para um determinado tempo de retorno *T* pode ser determinada pela função inversa da distribuição de Gumbel (28), cuja expressão matemática é:

$$X = \mu - \sigma \ln \left[\ln \left(\frac{T}{T - 1} \right) \right]$$
⁽²⁸⁾

Há ainda a salientar que no decorrer da metodologia houve a necessidade de eliminar o erro associado aos modelos climáticos, que se traduz pelo fato dos resultados não representarem exatamente a realidade, no caso do cenário do passado recente (1960 –

2000). As fontes destes erros são de diversa índole, como a incapacidade dos modelos em representar convenientemente todos os processos e a não linearidade das equações que regem o comportamento da Atmosfera bem como os problemas associados à sua integração numérica e à dependência com as condições iniciais e fronteira.

A correção do viés introduzido pelo modelo climático foi efetuada recorrendo a dois procedimentos distintos, dependendo da análise de comparação que se pretende concretizar, ou seja, na comparação dos resultados obtidos para o dimensionamento de determinado sistema de drenagem predial de águas pluviais, recorrendo às curvas IDF fundamentadas nos cenários futuros, em relação às curvas IDF fundamentadas nos dados observados e em relação às curvas idealizadas por Matos e Silva (1986) referentes ao Decreto Regulamentar n°23/95 de 23 de Agosto.

Assim, quando o objetivo residia na comparação dos resultados obtidos para os cenários futuros (A1B e B1) e os resultados obtidos para os dados históricos registados nas estações, a correção do viés foi efetuada pela alteração aos parâmetros $\mu e \sigma$ (localização e escala, respetivamente) característicos da distribuição de Gumbel. Uma vez obtidos os valores de $\mu e \sigma$ pelo método da máxima verossimilhança para os dados observados, para o cenário C20 e para os cenários futuros, obrigou-se a que os parâmetros do cenário C20 se igualassem aos parâmetros dos dados observados (por serem ambos referentes a um passado recente), utilizando os seguintes fatores de correção, $\Delta \mu = \mu_{(obs)} - \mu_{(C20)}$ e $\Delta \sigma = \frac{\sigma_{obs}}{\sigma_{C20}}$.

De seguida, estes mesmos fatores de correção foram aplicados aos parâmetros da função de Gumbel obtidos para o cenário A1B, procedendo da seguinte forma: $\mu_{(A1B \ corrigido)} = \mu_{(A1B)} - \Delta \mu \ e \ \sigma_{A1B(corrigido)} = \sigma_{A1B} \times \Delta \sigma$, o que permitiu obter versões corrigidas dos parâmetros de localização e escala. O mesmo procedimento foi aplicado ao cenário B1. Os valores corrigidos dos parâmetros foram utilizados na função inversa da distribuição de Gumbel, para gerar os valores de intensidade de precipitação associados aos vários períodos de retorno e durações.

Por outro lado, para comparar os resultados obtidos para os cenários futuros (A1B e B1) com os resultados obtidos pelo Decreto Regulamentar n°23/95 de 23 de Agosto, o procedimento adotado na correção do viés consistiu em igualar os valores dos parâmetros a e b obtidos pelo método da regressão robusta para o cenário C20 (cenário de controlo) com os valores de a e b propostos por Matos e Silva (1986), este processo teve como base a

linearização da equação da intensidade $(\log(I) = \log(a) + b \times \log(t))$. O fator corretivo do parâmetro *a* resulta da diferença entre o logaritmo do parâmetro *a* associado ao cenário C20 e o logaritmo do parâmetro *a* proveniente de Matos e Silva (1986) ($\Delta a = \log_{10} a_{(C20)} - \log_{10} a_{(Matos \ e \ Silva)}$). Por sua vez, o fator corretivo do parâmetro *b* resulta da razão entre o parâmetro *b* associado ao cenário C20 e o parâmetro *b* resultante do estudo de Matos e Silva (1986) $\left(\Delta b = \frac{b_{(C20)}}{b_{(Matos \ e \ Silva)}}\right)$. De seguida, estes mesmos fatores de correção foram aplicados aos parâmetros *a* e *b* obtidos para o cenário A1B, procedendo da seguinte forma: $a_{(A1B \ corrigido)} = 10^{(\log_{10} a_{(A1B)} - \Delta a)}$ e $b_{(A1B \ corrigido)} = \frac{b_{(A1B)}}{\Delta b}$, o que permitiu obter versões corrigidas dos parâmetros *a* e *b*. O mesmo procedimento foi aplicado ao cenário B1.

Os valores dos parâmetros da função de distribuição de Gumbel e os que caracterizam as curvas IDF foram obtidos, neste trabalho, para os oito valores de períodos de retorno, para os dez valores de duração, para cada estação e, finalmente para sete períodos diferentes: um período de 8 a 10 anos de dados, no caso dos dados observados, um período de 30 anos (entre 1971 a 2000), no caso do cenário C20, e três períodos distintos de 30 anos, especificamente de 2011 a 2040, de 2041 a 2070 e de 2071 a 2100 para os cenários A1B e B1. A razão pela qual se adotaram períodos de 30 anos, resulta do período sugerido pela OMM para definir o clima (IPCC, 2007a).

3.4. Dimensionamento do sistema de drenagem predial pluvial

O objetivo fulcral deste estudo debruça-se sobre a comparação entre o dimensionamento efetuado com as atuais curvas IDF idealizadas por Matos e Silva (1986) para três regiões pluviométricas (A, B e C), e o dimensionamento fundamentado nas curvas IDF estimadas para diferentes períodos de cenários futuros.

Para que o dimensionamento apenas reflita o impacto das alterações climáticas sobre a intensidade de precipitação, o projeto do edifício, bem como todas as condicionantes do projeto foram mantidos inalterados, à exceção óbvia da intensidade de precipitação.

As subsecções seguintes descrevem o procedimento adotado para dimensionar o sistema de drenagem em estudo.

3.4.1. Caraterização do edifício

O edifício em estudo é uma moradia unifamiliar de dois pisos com cobertura em terraço não acessível com pendentes de 1%. A rede de drenagem pluvial concebida e dimensionada é constituída por um sistema simples de caleiras de recolha de águas na cobertura, as quais conduzem as águas pluviais aos tubos de queda embutidos nas paredes exteriores, que descarregam nas câmaras de inspeção ou caixas de areia, que por sua vez as conduzem ao seu destino final, ou seja, à rede pública através de coletores enterrados.

As Figuras 3.4, 3.5 e 3.6 definem a constituição da rede de drenagem pluvial implementada no edifício.

Figura 3.4 – Planta de cobertura.

Figura 3.5 – Planta do piso 1.

Figura 3.6 – Planta do piso 0.

3.4.2. Caudais de cálculo

Os caudais de cálculo foram obtidos pelo método racional, de acordo com a fórmula (2) apresentada em 2.2.1.1.

Foram definidas as áreas que contribuem para cada órgão de recolha de águas pluviais. A área de contribuição das caleiras 1, 2 e 3, é respetivamente, 100.14, 34.32 e 21.23 m^2 .

O coeficiente de escoamento utilizado para coberturas de edifícios é igual à unidade.

A intensidade de precipitação foi calculada de acordo com a fórmula (16) apresentada em 2.2.4 para uma duração de 5 minutos e um período de retorno de 10 anos. Os parâmetros a e b utilizados no cálculo da intensidade de precipitação são os que caracterizam as curvas IDF estabelecidas no Decreto Regulamentar nº 23/95 de 23 de Agosto, e os prescritos neste trabalho para dados observados e dados simulados para os cenários futuros A1B e B1 após a correção do viés do modelo climático, para o grupo de estações em estudo.

O dimensionamento recorrendo a estas curvas IDF, permitiu mensurar a influência das alterações climáticas sobre os sistemas de drenagem predial pluvial, nas referidas estações.

3.4.3. Órgãos de drenagem

As caleiras definidas para condução das águas pluviais aos tubos de queda são retangulares e têm inclinação de 0,5%. Foram dimensionadas para que a altura da lâmina líquida no seu interior não ultrapasse 7/10 da altura total da caleira. Foi utilizada a fórmula de Manning-Strickler (19) indicada em 2.3.4, e uma rugosidade de 90 m^{1/3}/s, correspondendo a chapa metálica.

Os tubos de queda foram dimensionados para um comprimento superior a 40 vezes o diâmetro e para entrada com aresta viva no tubo de queda, utilizando a equação (23) indicada na seção 2.3.6. Foi determinada a carga na coluna, ou seja a altura de água acima do tubo de queda, utilizando a secção de cálculo das caleiras que neles confluem.

Os coletores prediais foram dimensionados utilizando a fórmula de Manning-Strickler (19) indicada em 2.3.4, considerando a secção cheia e rugosidade 120 $m^{1/3}$ /s correspondente ao PVC.

4. ANÁLISE E DISCUSSÃO DE RESULTADOS

Neste capítulo são apresentados os resultados obtidos com a aplicação da metodologia descrita na secção 3, com o objetivo de obter curvas IDF para oito estações meteorológicas em Portugal continental, para posterior aplicação no dimensionamento de sistemas prediais pluviais. Para além de se delinearem curvas IDF para um período observado, foram também delineadas para cenários futuros, nomeadamente A1B e B1, para 3 períodos de 30 anos diferentes, definidos entre 2011 – 2040, 2041 – 2070 e 2071 – 2100, simulados pelo modelo regional de clima COSMO-CLM. Assim, com a utilização das curvas IDF projetadas para o futuro no dimensionamento de órgão de drenagem pluvial predial, é possível avaliar o eventual impacto das alterações climáticas sobre o atual dimensionamento preconizado no Decreto Regulamentar n°23/95 de 23 de Agosto.

4.1. Caracterização do regime de precipitação observado

Os gráficos de bigodes permitem avaliar a distribuição empírica de dados, ou seja, fornecem informação referente à localização, dispersão e assimetria de dados.

Os gráficos da Figura 4.1, resumem cinco medidas de localização estatística, especificamente a mediana (valor da observação central depois de ordenada a amostra), os valores do 1º e 3º quartil (Q1 e Q3) e o valor máximo e mínimo da amostra.

A dispersão dos dados é dada pela amplitude, ou seja a diferença entre valor máximo e mínimo, e pela distância entre quartis que contém 50% dos valores mais centrais da amostra.

Estes gráficos permitem ainda identificar a simetria dos dados, mediante a distância entre a linha da mediana no interior da caixa e os extremos.

Assim, a caraterização da variabilidade mensal da precipitação horária não nula observada nas estações em estudo, encontra-se representada nos gráficos da Figura 4.1.

Figura 4.1 – Gráficos de bigodes representativos da variabilidade mensal da precipitação horária não nula, nas 8 estações meteorológicas selecionadas neste estudo.

Em primeiro lugar, importa referir que, para permitir a correta comparação dos resultados obtidos para as diferentes estações meteorológicas, foram produzidos gráficos com eixos idênticos, isto é, com a mesma gama de valores. Para além disso, foi utilizada a escala logarítmica para a representação da precipitação horária que permite uma melhor visualização das caixas e bigodes que na escala linear, mas por outro lado, exige maior atenção na realização da análise comparativa.

Pela observação dos gráficos conclui-se que a variabilidade de máximos de precipitação horária é bastante mais acentuada em Serpa e São Manços do que nas restantes estações, variando os mesmos entre os 10 e os 30 mm/h.

Quanto à variabilidade mensal dos valores de precipitação horária para o 3º quartil, verifica-se uma distribuição bastante uniforme ao longo dos 12 meses com valores ligeiramente acima de 1mm/h nas estações de Ponte da barca e Covilhã, as restantes apresentam maioritariamente 75% dos valores observados abaixo de 1 mm/h. É também visível que, para a maior parte das estações, exceto para a Covilhã, o 1º quartil é igual ou inferior a 0.1 mm/h, o que significa que 25% dos valores observados nessas estações são inferiores a 0.1 mm/h.mês.

O valor da mediana da precipitação horária ocorrida em cada mês na mesma estação varia significativamente conforme se verifica pela linha que une os valores da mediana em cada mês. Há também a constatar a variabilidade do valor da mediana da precipitação horária para o mesmo mês em estações distintas, a título de exemplo é de referir o caso do mês de Janeiro na estação da Covilhã e Pega (incluídas na mesma região pluviométrica) com 0.6 e 0.2 mm/h, respetivamente.

A análise dos gráficos permite também identificar uma assimetria positiva nos dados, dado que os menores valores de precipitação horária se encontram mais concentrados que os maiores, o que justifica a utilização da função de distribuição de valores extremos de Gumbel no ajuste destes valores.

Há ainda a salientar o mês de agosto da estação de São Manços, por apresentar valores mais elevados em relação aos demais, uma vez que possui 50% dos seus valores centrais observados entre os 0.2 e 4mm/h.

4.2. Ajuste do modelo distributivo à variável hidrológica

4.2.1. Apreciação da qualidade do ajuste

Para estimar a probabilidade de ocorrência de valores de intensidade de precipitação estima-se a função teórica de densidade de probabilidade. A materialização desta função assenta na estimação dos parâmetros característicos a função a partir dos valores amostrais (Naghettini e Pinto, 2007).

Como referido frequentemente na literatura, a distribuição de extremos tipo I ou simplesmente distribuição de Gumbel, é a função que melhor se ajusta ao comportamento dos valores máximos de precipitação (Brandão, 1995; Brandão et al., 2001; Beijo et al., 2005; Hartmann et al., 2011), contudo para corroborar esta hipótese foram efetuados testes que permitem verificar a aplicabilidade da referida função aos dados.

A estimação dos parâmetros μ (parâmetro de localização) e σ (parâmetro de escala), característicos da distribuição de Gumbel, foi realizada com o método da máxima verossemelhança. O método de estimação permitiu determinar os melhores valores de μ e σ , bem como o limite inferior e superior dos mesmos para um intervalo de confiança de 95%. Por sua vez, a qualidade do ajuste da função de distribuição de probabilidades de extremos tipo I, às séries de valores de intensidade de precipitação máxima para cada uma das durações foi comprovada pelo teste de kolmogorov-Smirnov (K-Steste) e por gráficos de probabilidade e/ou Quantil-Quantil.

O teste kolmogorov-Smirnov é um teste de ajustamento não paramétrico (teste de hipóteses que não requer pressupostos sobre a forma da distribuição subjacente aos dados), que permite averiguar se os dados de uma dada amostra são compatíveis com um modelo distributivo teórico (Naghettini e Portela, 2011).

O teste é fundamentado na máxima diferença entre a distribuição cumulativa empírica e hipotética (distribuição cumulativa teórica em teste) (Massey, 1951), mediante as seguintes hipóteses:

H₀: a função de probabilidade hipotética ajusta-se bem aos dados da amostra.

H₁: a função de probabilidade hipotética não se ajusta bem aos dados da amostra.

Desta forma, o resultado do teste pode ser zero ou um, conforme a hipótese nula seja respetivamente aceite ou rejeitada, para determinado nível de significância.

A título de exemplo, são apresentados no Quadro 4.1 os valores dos parâmetros mencionados anteriormente para os dados observados na estação de Pinhel.

Pinhel - cenário observado (2002-2011)												
Duração	μ_{inf}	μ	μ_{sup}	σ_{inf}	σ	σ_{sup}	K-S teste					
5 min	-41.1727	-32.9688	-24.7649	7.640147	12.58979	20.74605	0					
10 min	-31.1915	-24.9764	-18.7613	5.78799	9.537722	15.71671	0					
15 min	-25.8774	-20.7211	-15.5649	4.801888	7.912776	13.03904	0					
30 min	-17.4441	-13.9683	-10.4924	3.236987	5.334059	8.789713	0					
1 h	-11.5524	-9.2505	-6.94861	2.1437	3.532489	5.821002	0					
2 h	-8.06546	-6.69894	-5.33242	1.240513	2.104951	3.571764	0					
6 h	-3.93707	-3.47668	-3.01628	0.430946	0.707574	1.161773	0					
12 h	-2.51308	-2.14241	-1.77173	0.342812	0.567737	0.940239	0					
24 h	-1.55729	-1.34518	-1.13307	0.194581	0.325339	0.543965	0					
48 h	-0.93291	-0.82313	-0.71335	0.099415	0.169387	0.288608	0					

Quadro 4.1 – Valores do parâmetro de localização (μ), dos seus limites inferior (μ_{inf}) e superior (μ_{sup}), do parâmetro de escala (σ), e dos seus limites inferior (σ_{inf}) e superior (σ_{sup}) da distribuição de Gumbel e resultado do teste Kolmogorov-Smirnov (K-S teste).

Os parâmetros da distribuição de Gumbel foram estimados para os valores de intensidade de precipitação referentes aos dez valores de duração, calculados para os dados observados nas 8 estações meteorológicas, para as séries das 8 células da malha do modelo COSMO-CLM para o período 1970 – 2000 do cenário C20 e para os três períodos (2011-2040; 2041-2070; 2071-2100) dos cenários futuros A1B e B1, perfazendo o total de 640 casos.

Pela observação do Quadro 4.1 verifica-se que a hipótese H_0 não foi rejeitada em nenhum dos casos, uma vez que o resultado do teste Kolmogorov-Smirnov foi sempre nulo, o que significa que os dados analisados seguem a função de distribuição de probabilidade testada, ou seja a distribuição de Gumbel, para um nível de significância de 5%. O mesmo resultado foi obtido para todos os 640 casos estudados.

Os gráficos Quantil-Quantil são dos métodos gráficos mais utilizados na verificação do ajustamento de uma dada distribuição aos dados de determinada amostra. O gráfico Quantil-Quantil é um gráfico de dispersão que compara os quantis dos dados amostrais com os quantis de uma distribuição hipotética, mostrando a linearidade entre os dados empíricos e os ajustados, de forma que, quanto mais próximos os pontos da linha de referência maior é a certeza de que os dados em análise seguem a distribuição testada (Hartemann et al., 2011).

Os gráficos Quantil-Quantil foram produzidos para todas as 640 séries de intensidade de precipitação máxima para os dez valores de duração ajustados à distribuição de Gumbel. A título de exemplo, apresentam-se nas Figuras 4.2, 4.3 e 4.4 os gráficos Quantil-Quantil para a estação de Pinhel, nos quais se pode observar a comparação gráfica entre os quantis teóricos da distribuição de Gumbel com os quantis dos dados observados de intensidade de precipitação máxima em 5, 30 e 360 minutos.

Figura 4.2 – Gráfico Quantil-Quantil para intensidades máximas de precipitação observadas em 5 min na estação de Pinhel.

Figura 4.3 - Tal como a Figura 2, mas para intensidades máximas de precipitação observadas em 30 min.

Figura 4.4 – Tal como a Figura 2, mas para intensidades máximas de precipitação observadas em 360 min.

Pela observação dos três gráficos constata-se a grande semelhança entre os quantis teóricos e empíricos, uma vez que a maioria dos pontos se desenvolve ao longo da reta, pelo que o ajuste da distribuição Gumbel à série estudada é perfeitamente recomendável.

Assim, mediante a aplicação exaustiva do teste Kolmogorov-Smirnov e análise detalhada dos gráficos Quantil-Quantil para todos os casos, conclui-se que as séries de

valores de intensidade de precipitação máxima para cada uma das durações seguem a distribuição de Gumbel, pelo que os valores de intensidade de precipitação máxima para cada uma das durações associadas a diferentes períodos de retorno, mesmo que superiores ao período da amostra, podem ser obtidos pelo emprego da referida distribuição.

4.2.2. Função densidade de probabilidade

Depois de comprovada a hipótese de que a distribuição de Gumbel representa convenientemente a distribuição dos dados, foram produzidos gráficos da função densidade de probabilidade (*fdp*) para cada um dos cenários/períodos, uma vez que permitem analisar graficamente a probabilidade de ocorrência de determinados valores de intensidade de precipitação, bem como avaliar a semelhança entre as distribuições dos valores extremos de intensidade de precipitação para cada duração, nas três regiões pluviométricas.

Nas Figuras 4.5, 4.6 e 4.7 as curvas a vermelho representam as estações meteorológicas da região pluviométrica A, as curvas a verde a região B e as curvas a azul as estações da região C.

Para uma correta avaliação do comportamento do regime pluviométrico importa referir, que as *fdp* da intensidade de precipitação em cada uma das 8 estações e células da malha do modelo COSMO-CLM, para o mesmo cenário/período, foram representadas no mesmo gráfico. Contudo para maximizar a área dos gráficos, em cada cenário/período os gráficos apresentam eixos diferentes.

A Figura 4.5 foi elaborada para permitir a comparação das *fdp* da intensidade de precipitação entre e no seio de cada região. A Figura 4.5 permite a comparação entre as distribuições de intensidade de precipitação observadas (Figura 4.5a, 4.5b e 4.5c) e simulada para o cenário C20 (Figura 4.5d, 4.5e e 4.5f). Este cenário é frequentemente utilizado como cenário de controlo pois permite a avaliação do viés introduzido pelo modelo aquando da simulação para o período do passado recente. Assim, a comparação entre as distribuições provenientes dos dados observados e os dados simulados para o cenário C20, permitiu avaliar a capacidade que o RCM COSMO-CLM tem em reproduzir a realidade.

Figura 4.5 – Função densidade de probabilidade (*fdp*) de Gumbel para dados observados (painéis da esquerda) e para o cenário C20 (painéis da direita) para três valores de duração: 5 min (painéis superiores), 30 min (painéis centrais) e 360 min (painéis inferiores).

Os resultados obtidos para os dados observados e para valores de duração 5 e 30 minutos, (Figura 4.5a e 4.5b) indicam, em geral, valores de intensidade de precipitação mais elevados (parâmetro de localização superior) para a região A que para a região C e valores ainda inferiores para a região B. A região B é onde as *fdp* apresentam menor dispersão (menor valor do parâmetro de escala), seguida da região C e, por fim a região A, à exceção da estação de Ponte da Barca com dispersão semelhante à região B. Para durações mais longas, especificamente 360 minutos (Figura 4.5c), a região que regista maiores valores de intensidade de precipitação passa a ser a C apesar da estação de Pega apresentar valores inferiores à estação da Covilhã, seguida da região A e por último a B. Quanto à dispersão de dados, é menor para a região B, seguida da região A (o que não se verificava para as curtas durações (5 e 30 min)), e maior dispersão na região C.

Comparando os resultados obtidos com os dados observados para as diferentes durações (Figuras 4.5a 4.5b e 4.5c) verifica-se que à medida que aumenta a duração ocorre uma diminuição tanto do fator escala como do fator localização, revelando que as intensidades de precipitação máximas mais frequentes para curtas durações são mais elevadas, e possuem menor probabilidade de ocorrência, que as intensidades máximas de precipitação para durações mais longas.

As *fdp* para dados observados com duração de 5minutos (Figura 4.5a) revelam ainda que para as estações da região A, o parâmetro escala é idêntico para as estações de Serpa e São Manços e superior ao obtido para Ponte da Barca, indicando que a intensidade de precipitação nesta estação apresenta menor dispersão. As estações da região B apresentam semelhança nos parâmetros de localização e de dispersão, registando-se uma ligeira diminuição no parâmetro localização e uma maior dispersão para a estação de Pinhel. Quanto à região C, a Covilhã possui maior dispersão e maior parâmetro de localização que Pega. Para a duração de 30 minutos (Figura 4.5b) as relações entre estações evidenciadas para a duração de 5 minutos mantêm-se. Contudo, para a duração de 360 minutos (Figura 4.5c), e para a região A, Ponte da Barca revela parâmetro localização superior e dispersão semelhante a Serpa e São Manços, na região B, Pinhel passa a ter menor dispersão que Castelo Melhor e Pinelo enquanto a estação da Covilhã passa a possuir maior parâmetro localização e escala que todas as outras estações em estudo.

Os valores de intensidade de precipitação projetadas para o cenário C20, para cada uma das três durações (Figura 4.5d, 4.5e e 4.5f) são de assinalar pela semelhança de

comportamento entre estações que pertencem à mesma região, com a exceção de Ponte da Barca, que apresenta distribuição significativamente diferente das restantes, quer na localização (parâmetro localização mais elevado) como na maior dispersão, e de Pinelo que se aproxima das estações da região C, quer em localização como em dispersão. Excetuando o comportamento destas duas estações por se desviar das demais estações das respetivas regiões, pode dizer-se que a região que experimenta maiores valores de intensidade de precipitação e dispersão de dados é a região C, seguida da região A, e menor para a região B.

Comparando a distribuição apresentada pela amostra observada (Figura 4.5a, 4.5b e 4.5c) com a amostra proveniente do cenário C20 (Figura 4.5d, 4.5e e 4.5f), verifica-se, em geral, valores mais elevados do parâmetro localização e do parâmetro escala no cenário C20, exceto para as estações de Serpa e São Manços. O modelo revela-se menos eficaz na representação de Ponte da barca, uma vez que aumenta significativamente o parâmetro de localização, contudo a diferença torna-se menos evidente para durações mais elevadas. Apesar das dificuldades apresentadas pelo modelo em reproduzir exatamente a distribuição da amostra observada, a distribuição dos valores máximos de intensidade de precipitação simulados é semelhante à observada quer no tipo de distribuição quer nos momentos de primeira ordem.

A Figura 4.6 é referente às *fdp* para as durações de 5, 30 e 360 minutos para os cenários futuros A1B e B1 após a correção do viés, no período de 2011 a 2040. A distribuição evidenciada para estes cenários permite observar alterações na distribuição da intensidade de precipitação projetadas para um futuro próximo.

Figura 4.6 – Tal como a Figura 4.5, mas para o cenário A1B (painéis da esquerda) e para o cenário B1 (painéis da direita).

Em geral, para ambos os cenários futuros, os menores valores do parâmetro de localização e dispersão da distribuição de valores de intensidade de precipitação são registados na região B, seguida da região C, enquanto os maiores são esperados na região

A, constituindo exceção a esta ordenação, a estação de Ponte da Barca (semelhante à região B para as curtas durações) e a estação da Covilhã com parâmetro localização mais elevado que as restantes estações para a duração de 360 minutos, tal como acontece no cenário observado (Figura 4.5c).

As estações de Serpa e São Manços evidenciam maior probabilidade de ocorrência de intensidades de precipitação mais elevadas para as curtas durações (Figuras 4.6a,4.6b, 4.6d e 4.6e), já para a duração de 360 minutos (Figuras 4.6c e 4.6f) a estação com maior probabilidade de ocorrência de precipitações mais elevadas passa a ser a Covilhã, tal como acontecia para o cenário observado.

Os cenários futuros (A1B e B1) denotam em geral em relação ao período observado um aumento da intensidade dos eventos máximos mais frequentes (parâmetro localização superior), bem como um aumento da probabilidade com que ocorrem esses eventos, o que implica uma diminuição do período de retorno. Estas diferenças são mais acentuadas para o cenário A1B do que para o cenário B1.

Na Figura 4.7 pretendeu-se ilustrar a distribuição da intensidade de precipitação para o cenário A1B e para a duração de 5 min, ao longo dos três períodos de tempo em estudo (2011 - 2040, 2041 - 2070, e 2071 - 2100).

Em geral, verifica-se que todas as estações revelam uma ligeira diminuição no parâmetro localização e no parâmetro escala do primeiro período para o segundo e um aumento do segundo período para o terceiro, revelando este último valores superiores aos verificados no primeiro período.

O período de retorno dos valores de intensidade de precipitação mais elevada diminui para os três períodos dos cenários futuros em relação ao período observado (Figura 4.5a), porém, esta diminuição não é linear entre os três períodos dos cenários futuros.

4.3. Curvas IDF

4.3.1. Parâmetros a e b

Para determinar a precipitação de projeto característica de cada local ou região, é necessário conhecer a relação entre a intensidade de precipitação máximas e a duração para diferentes períodos de retorno.

A relação entre estas variáveis pode ser avaliada por um simples diagrama de dispersão, o que permite identificar a função que formaliza essa dependência. Uma técnica estatística disponível para esse efeito, quando a relação é linear, é a análise de regressão. Assim, a equação do modelo de regressão que relaciona *Y*, denominada variável dependente (neste estudo, a intensidade de precipitação), e *X* chamada variável independente (neste estudo, a duração), deve ser capaz de explicar, em termos médios, a variação de *Y* a partir de *X*. Os pontos definidos por {*x*_i, *y*_i} devem apresentar uma variabilidade aleatória e de pequena dimensão em torno da reta estabelecida pela análise de regressão fornece o valor médio de *Y* em função de *X*. Sabendo que a relação entre a intensidade de precipitação (*I*) e a duração (*t*) é do tipo potencial $I = a \times t^b$, onde *a* e *b* são constantes dependentes do período de retorno, é óbvia a existência de uma relação curvilínea. Contudo, algumas funções não lineares podem ser linearizadas mediante o uso de transformações adequadas, neste caso a linearização é facilmente alcançada pela aplicação de logaritmos (log(I) = log(a) + b × log(t)).

O método mais usual para realizar a regressão linear, é o método dos mínimos quadrados. O objetivo deste método consiste em encontrar a função de regressão que minimiza a soma dos quadrados dos resíduos da regressão (diferenças entre o valor

estimado e os dados observados), obtendo desta forma estimativas dos valores dos parâmetros (a e b) da reta que mais se aproxima dos pontos experimentais.

Porém, os modelos de regressão linear com base na minimização do quadrado dos erros assenta num conjunto de pressupostos que nem sempre são verificados. Por exemplo, a não normalidade dos resíduos, a existência de uma distribuição assimétrica de erros, de outliers e pontos extremos, comprometem a validade dos referidos pressupostos, enquanto as estimativas dos parâmetros, intervalos de confiança e outras estatísticas deixam de ser fiáveis, o que fomenta a procura de técnicas mais robustas.

Assim, o método de ajuste robusto ou regressão robusta constitui uma abordagem alternativa que pretende ser mais robusta e resistente que o método dos mínimos quadrados, por ser menos sensível a este tipo de problemas. A grande diferença entre estes métodos reside na atribuição, no caso do método de ajuste robusto, de pesos aos valores observados na amostra, de forma que o peso de determinado valor da amostra seja tanto maior quanto menor for o resíduo da regressão. Este fato é tão mais importante quanto os problemas enunciados possam afetar apenas uma pequena parte dos dados. A descrição mais aprofundada das características e comparação entre o ajuste robusto e o método dos mínimos quadrados podem ser encontrados em Holland e Welsch (1977), Huber (1981), Street et al., (1988) e DuMouchel e O'Brien (1989).

Neste contexto, foi efetuada a regressão linear pelos dois métodos supracitados, resultante na identificação da relação do tipo potencial entre a intensidade de precipitação e a duração, para todas as estações, períodos de retorno, e intervalos de durações considerados (todas as durações, entre 5 e 30 min, entre 30 min e 6 h, e entre 6 h e 2 dias), para os dados observados e simulados.

A título de exemplo, as Figuras 4.8, 4.9, 4.10 e 4.11 mostram a representação gráfica dos logaritmos decimais das intensidades de precipitação em função dos logaritmos decimais da duração da precipitação, para um período de retorno de 10 anos na estação de Pinhel, resultante da existência de uma relação do tipo potencial ($I = a \times t^b$), entre estas duas grandezas para os dados observados.

Figura 4.8 – Ajuste dos parâmetros que definem a reta $log(I) = log(a) + b \times log(t)$ pelo método dos mínimos quadrados e pelo método do ajuste robusto, para T=10 anos, para todas as durações da estação de Pinhel.

Figura 4.9 - Tal como a Figura 8, mas para durações entre 5 e 30 min.

Figura 4.10 – Tal como a Figura 8, mas para durações entre 30 min e 6 h.

Figura 4.11 – Tal como a Figura 8, mas para durações entre 6 e 48 h.

A análise visual dos gráficos revela pequenas e pouco frequentes diferenças nas retas de regressão linear entre a intensidade de precipitação e a duração obtidas com o método dos mínimos quadrados e o método de ajuste robusto. As diferenças mais acentuadas entre os métodos registam-se quando todos os valores de duração fazem parte da amostra, aquando do ajuste para os trechos as retas são praticamente coincidentes e os valores de *a* e *b* muito semelhantes.

O Quadro 4.2 mostra os valores dos parâmetros a e b, e das estatísticas que permitem avaliar a qualidade do ajuste da reta de regressão aos pontos experimentais, referentes aos gráficos apresentados anteriormente.

Pinhel (T=10anos) – cenário observado (2002-2011)													
Duração	Ajuste Robusto		Método Mínimos Quadrados		R^2	Estatística F		Variância					
	а	b	а	b		Valor F	valor-p	do erro					
Todas	211.398	-0.633	202.545	-0.626	0.99482	1536.831	0.00000	0.00210					
1° Trecho	136.223	-0.478	136.195	-0.478	0.99119	224.910	0.00442	0.00032					
2° Trecho	250.152	-0.656	250.456	-0.657	0.99611	511.454	0.00195	0.00054					
3° Trecho	314.511	-0.694	313.807	-0.694	0.99491	390.709	0.00255	0.00056					

Quadro 4.2 – Parâmetros a e b, e indicadores de qualidade do ajuste (R^2 , teste F e variância do erro).

Os parâmetros estatísticos utilizados para interpretar a qualidade da regressão são, o coeficiente de determinação (R^2), a estatística F e a estimativa da variância do erro.

O Coeficiente de determinação (R^2), representa a fração da variância total de *Y* (variável dependente) que foi explicada pelo modelo de regressão, isto é, pela variável *X*. O valor de R^2 , sendo o quadrado do coeficiente de correlação entre as séries de valores originais e simulados pelo modelo de regressão da variável *Y*, varia de zero a um, e a qualidade do ajuste será tanto maior quanto mais elevado for R^2 , isto é, quando mais se aproximar da unidade (Matos, 1995). Como o R^2 apresenta valores superiores a 0.99, pode dizer-se que mais de 99% da variância da intensidade de precipitação é explicada pela variância da duração.

Os valores da estatística F apresentados na tabela permitem avaliar os testes de nulidade dos parâmetros, para determinado nível de significância. A hipótese nula sugere que todos os coeficientes de regressão são iguais a zero. A rejeição desta hipótese dá-se quando o valor da probabilidade é pequeno, correspondendo a valores elevados de F (Matos, 1995). Tendo em conta que o valor de F é elevado, e o valor-p tende para zero, para um nível de significância de 5%, é razoável dizer que a equação de regressão se ajusta bem aos dados.

Por ultimo, o resultado da estimativa da variância do erro vem colmatar a ideia sugerida pelos resultados anteriores, de que a reta de regressão se ajusta aos dados, uma vez que o seu valor é extremamente pequeno, próximo de zero.

Os indicadores de qualidade tiveram resultados igualmente satisfatórios para todas as estações, todos os valores de períodos de retorno, todas as durações, e todos os períodos em análise considerados para os dados observados e simulados.

Os parâmetros *a* e *b* caraterísticos das curvas IDF após correção do viés do modelo, resultantes do ajustamento pelo método do ajuste robusto para os oito períodos de retorno (2, 5, 10, 20, 50, 100, 500 e 1000 anos), para os dados observados e para os dados dos três períodos (2011 - 240, 2041 - 2070, e 2071 - 2100) dos cenários futuros, encontram-se dispostos nos Quadros B1.1 a B1.9, subdivididos por regiões (A, B e C) e pelos intervalos de duração (5 a 30min, 30min a 6h e 6 a 48h), no anexo B1. Por sua vez, os parâmetros *a* e *b* válidos para durações entre 5min e 30 min, para os períodos de retorno de 2, 5, 10, 20, 50 e 100 anos estimados por Matos e Silva (1986) e para os cenários futuros, apresentam-se no anexo B1 nos Quadros B1.10 a B1.12.

4.3.2. Análise comparativa para o período de retorno de 10 anos

Para avaliar o impacto das alterações climáticas sobre as atuais curvas IDF intervenientes no dimensionamento de sistemas de drenagem de águas pluviais, considerou-se relevante efetuar uma análise comparativa entre as curvas IDF projetadas para cenários futuros (após a correção do viés do modelo climático) e as curvas IDF realizadas: (i) com dados observados (no período compreendido entre 2001 - 2012); e, (ii) por Matos e Silva (1986).

As curvas IDF associadas ao período de retorno de 10 anos foram representadas graficamente, com eixos diferentes para cada estação de forma a maximizar a área de cada gráfico, pela utilização dos parâmetros a e b determinados na secção 4.3.1 à expressão matemática que descreve o comportamento da intensidade de precipitação em função da duração e do período de retorno ($I = a \times t^b$). É de salientar, que todas as curvas dizem respeito ao período de retorno de 10 anos, uma vez que foi o período posteriormente utilizado no dimensionamento dos órgãos de drenagem no presente estudo.

Assim, de modo a compreender o impacto das alterações climáticas nas curvas IDF, efetuou-se uma análise comparativa entre as curvas obtidas com os dados observados e as curvas projetadas para o futuro em cada estação meteorológica, apresentadas nas Figuras 4.12, 4.13 e 4.14. Por outro lado, para identificar qual a influência das alterações climáticas

face às curvas idealizadas por Matos e Silva (1986), atualmente utilizadas no dimensionamento de sistemas de drenagem pluvial, efetuou-se uma análise comparativa entre estas curvas e as curvas IDF delineadas para cenários futuros, cujos resultados se apresentam nas figuras 4.15, 4.16 e 4.17.

Figura 4.12 – Curvas IDF (período de retorno de 10 anos) estabelecidas para dados observados e simulados para cenários futuros, para as estações da região A: a) Ponte da Barca; b) São Manços; e c) Serpa.

Figura 4.13 – Tal como a Figura 4.12, mas para as estações da região B: a) Castelo Melhor; b) Pinelo; e c) Pinhel.

Figura 4.14 - Tal como a Figura 4.12, mas para as estações da região C: a) Covilhã; e b) Pega.

Para a região pluviométrica A, atendendo à Figura 4.12a) referente à estação de Ponte da Barca verifica-se um aumento na intensidade de precipitação entre 13% (A1B 2041 - 2070) e 53% (B1 2041 - 2070), no caso de São Manços (Figura 4.12b)) o aumento é muito mais significativo, entre 34% (B1 2071 - 2100) e 81% (A1B 2071 - 2100), enquanto em Serpa (Figura 4.12c)) regista aumentos semelhantes aos de Ponte da Barca, contudo para diferentes cenários, entre 18% (A1B 2041 - 2070) e 56% (A1B 2071 - 2100). De fato, é de salientar que enquanto os valores mais elevados de intensidade de precipitação em Ponte da Barca são obtidos para o cenário futuro B1 (linhas a azul) para São Manços e principalmente Serpa, são verificados para o cenário A1B, o que indica que diferenças entre os cenários não se manifestam apenas na intensidade mas também na distribuição espacial (na localização).

Verifica-se ainda que Serpa e são Manços (estações geograficamente mais próximas e situadas a Sul de Portugal) apresentam intensidades de precipitação semelhantes e mais elevadas que Ponte da Barca (situada a Norte), o que indica que a intensidade de precipitação é independente da quantidade de precipitação.

Os resultados obtidos com os dados simulados para cenários futuros para a região B (Figura 4.13), permitem estimar aumentos entre 7% (A1B 2041 – 2070) e 68% (A1B 2071 – 2100) na estação de Castelo Melhor (Figura 4.13a) enquanto para Pinelo (Figura 4.13b) e Pinhel (Figura 4.13c) se estima um decréscimo na intensidade de precipitação para o cenário A1B 2041 – 2070 de 4% e 1%, respetivamente, e um aumento máximo de 43% na estação de Pinhel, ambos para o cenário A1B 2071 – 2100.

No caso da região C (Figura 4.14) os resultados obtidos apontam para aumentos na intensidade de precipitação muito semelhantes para todas as estações, que variam entre 5% (B1 2071 – 2100) e 29% (A1B 2071 – 2100) para a estação da Covilhã (Figura 4.14a) e entre 8% (B1 2071 – 2100) e 30% (A1B 2071 – 2100) na estação de Pega (Figura 4.14b)).

Figura 4.15 - Tal como a Figura 4.12, mas em relação às curvas IDF estabelecidas por Matos e Silva (1986).

Figura 4.16 – Tal como a Figura 4.15, mas para as estações da região B: a) Castelo Melhor; b) Pinelo; e c) Pinhel.

Figura 4.17 – Tal como a Figura 4.15, mas para as estações da região C: a) Covilhã; e b) Pega.

As estimativas dos valores da intensidade de precipitação para os cenários futuros na estação de Ponte da Barca (Figura 4.15a) apontam para aumentos entre 9% (A1B 2041 – 2070) e 26% (B1 2011 – 2040) enquanto para as estações a Sul de Portugal os aumentos são bastante superiores, situando-se entre 27% (B1 2071 – 2100) e 63% (A1B 2071 – 2100) para a estação de São Manços (Figura 4.15b) e entre 19% (A1B 2041 – 2070) e 58% (A1B 2071 – 2100) em Serpa (Figura 4.15c).

Estimativas para Castelo Melhor (Figura 4.16a) indicam aumentos superiores aos das restantes estações da região B em estudo, com valores entre 18% (A1B 2041 – 2070) e 25% (A1B 2071 – 2100). Para Pinelo (Figura 4.16b) e Pinhel (Figura 4.16c) as estimativas
sugerem uma diminuição na intensidade de precipitação de 10% e 1% para o cenário A1B 2011 – 2040, respetivamente, e aumentos de 28% e 56% para o cenário A1B 2071 – 2100.

Para as estações da região C (Figura 4.17) o aumento estimado é semelhante em ambas as estações, e entre 4% e 25% (A1B 2071 – 2100). Contudo, o valor mínimo do aumento na Covilhã (Figura 4.17a) foi estimado para o cenário B1 no período 2071 - 2100 e, em Pega (Figura 4.17b), para o mesmo cenário mas para o período 2011 - 2040.

Da análise das Figuras 4.12 a 4.17 pode ser inferido que as alterações climáticas têm impactos consideráveis na distribuição da intensidade de precipitação e, consequentemente nas curvas IDF. Em geral, e como esperado, este impactos deverão ser mais significativos no final do que no início século XXI, e para as condições características do cenário A1B que do cenário B1. Contudo, para as condições de cada cenário futuro e para cada um dos períodos de 30 anos, a variação relativa da intensidade de precipitação é constante para as diferentes durações. Importa ainda referir que as estações de Pinelo e Pinhel (região B) foram as únicas a registar decréscimos na intensidade de precipitação prevista para o futuro, entre -5% e -10% na estação de Pinelo para o cenário A1B no período 2011 - 2040 e -1% na estação de Pinhel para o mesmo cenário mas para o período 2041 - 2070. As estações da região C são as que evidenciam percentagens de aumento mais semelhantes em relação as estações das restantes regiões.

Para verificar se a intensidade de precipitação evidenciada em cada estação (com base nos dados observados) se assemelha à intensidade da respetiva região pluviométrica, foi efetuada a representação das curvas IDF realizadas para os dados observados e as regulamentares (Matos e Silva (1986)) no mesmo gráfico (Figura 4.18).

Figura 4.18 – Curvas IDF para todas as estações e para as três regiões pluviométricas preconizadas por Matos e Silva (1986).

Da análise gráfica realizada para o período de retorno de 10 anos é evidente que as curvas IDF realizadas com base nos dados observados nas estações meteorológicas em estudo se encontram abaixo das curvas IDF representadas para a respetiva região pluviométrica proposta por Matos e Silva (1986), indicando que as curvas IDF referentes a cada região se encontram sobrestimadas, o que sugere tenham sido realizadas com base num regime de precipitação intensa que já não se observa e/ou que tenham sido produzidas com um fator de segurança adicional. Há ainda a salientar que, os valores de intensidade de precipitação para a estação de Ponte da Barca são muito inferiores as restantes estações da mesma região, encontrando-se inclusive abaixo da curva IDF da região B (principalmente para durações compreendidas entre os 10 min e 1 h), tal como acontece com Pega que é praticamente coincidente com a curva IDF representativa da região B, contudo ligeiramente abaixo. A estação de Serpa constitui por tanto uma exceção, uma vez que apresenta maiores valores de intensidade de precipitação para o troço das curtas durações (5 a 30 min) que a curva IDF da região A onde se insere.

Esta análise permite ainda verificar a existência de alguma variabilidade espacial dos fenómenos pluviosos intensos, principalmente na região pluviométrica A, o que sugere

a eventual perda de homogeneidade espacial em cada região, evidenciada pelo zonamento pluviométrico proposto por Matos e Silva. De fato, este aspeto tem sido merecedor de alguma reflexão por parte de alguns autores, como é o caso de Rodrigues (1990) que põe em causa a uniformidade do comportamento pluviométrico entre a zona de Lisboa e o Sotavento Algarvio, ou Brandão e Rodrigues (1998) e Brandão et al. (2001) que questionam a disposição contígua de zonas pluviométricas extremas (Região B e Região C) sem faixas de transição, como acontece no Norte do país.

Tendo em conta que a metodologia adotada no delineamento das curvas IDF foi baseada no estudo de Brandão et al. (2001), foi considerado conveniente efetuar uma análise comparativa entre as curvas IDF obtidas neste estudo e no de Brandão et al. (2001). Esta tarefa foi realizada para a estação da Covilhã por se tratar da única estação comum aos dois trabalhos. Na Figura 4.19 apresentam-se as curvas IDF para durações entre 5 e 120 minutos para os períodos de retorno de 5, 10 e 20 anos.

Figura 4.19 - Curvas IDF para a estação da Covilhã para os períodos de retorno de 5, 10 e 20 anos.

Pela análise do gráfico verifica-se que para as durações e períodos de retorno representados, as curvas IDF delineadas neste trabalho revelam intensidades de precipitação superiores às curvas de Brandão et al. (2001), com aumentos mais acentuados à medida que aumenta a duração e o período de retorno. O aumento da intensidade de

precipitação pode ser justificado pelo fato de o período analisado por Brandão et al. (2001) estar compreendido entre 1943 – 1996 e o período analisado neste trabalho entre 1998 – 2012, um período muito mais recente que pode estar a refletir a influência das alterações climáticas, ou seja o aumento da frequência e intensidade de eventos extremos.

4.4. Dimensionamento do sistema de drenagem predial pluvial

Nesta subsecção pretende-se avaliar eventuais alterações no dimensionamento de órgãos de drenagem predial pluvial, nomeadamente, caleiras, tubos de queda e coletores prediais, em consequência das variações registadas nas curvas IDF, em resultado das alterações na distribuição dos valores extremos de precipitação devidas às mudanças climáticas.

Para avaliar a influência das alterações climáticas no dimensionamento dos órgãos de drenagem mencionados anteriormente, a determinação do caudal de dimensionamento foi realizado com base nos valores de intensidades de precipitação calculados a partir das curvas IDF previstas para três períodos simulados para os cenários futuros A1B e B1 (após correção do viés do modelo climático) em relação às curvas IDF obtidas com dados observados e às curvas IDF idealizadas por Matos e Silva (1986).

4.4.1. Caleiras

Nos Quadros 4.3, 4.4 e 4.5 é apresentado o resultado do dimensionamento da caleira 1, respetivamente para as estações da região A, B e C, recorrendo à determinação do caudal a partir da intensidade de precipitação estimada para o período em que se dispõe de dados observados e os três períodos de trinta anos dos cenários futuros. Para que o dimensionamento apenas reflita eventuais alterações na intensidade de precipitação, a largura da caleira e inclinação foram mantidas constantes.

]	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		Obs	2003-2010	1.49	2.49E-03	0.5%	0.20	3.71	
			2011-2040	2.04	3.41E-03	0.5%	0.20	4.57	23%
	Danta da	A1B	2041-2070	1.68	2.80E-03	0.5%	0.20	4.01	8%
	Barca		2071-2100	2.14	3.57E-03	0.5%	0.20	4.71	27%
			2011-2040	2.19	3.66E-03	0.5%	0.20	4.79	29%
		B1	2041-2070	2.28	3.80E-03	0.5%	0.20	4.91	32%
			2071-2100	2.18	3.63E-03	0.5%	0.20	4.76	28%
		Obs	2001-2011	1.86	3.10E-03	0.5%	0.20	4.29	
gião A	São Manços	A1B	2011-2040	2.99	4.99E-03	0.5%	0.20	5.90	38%
			2041-2070	3.03	5.06E-03	0.5%	0.20	5.96	39%
			2071-2100	3.36	5.60E-03	0.5%	0.20	6.39	49%
Re			2011-2040	3.29	5.49E-03	0.5%	0.20	6.30	47%
		B1	2041-2070	2.80	4.67E-03	0.5%	0.20	5.64	32%
			2071-2100	2.49	4.15E-03	0.5%	0.20	5.21	22%
		Obs	2001-2010	1.99	3.32E-03	0.5%	0.20	4.49	
			2011-2040	2.81	4.69E-03	0.5%	0.20	5.66	26%
		A1B	2041-2070	2.36	3.93E-03	0.5%	0.20	5.02	12%
	Serpa		2071-2100	3.11	5.19E-03	0.5%	0.20	6.06	35%
			2011-2040	2.46	4.11E-03	0.5%	0.20	5.17	15%
		B1	2041-2070	2.42	4.04E-03	0.5%	0.20	5.11	14%
			2071-2100	2.62	4.37E-03	0.5%	0.20	5.39	20%

Quadro 4.3 – Dimensionamento da caleira 1 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1B e B1)

Do dimensionamento efetuado para a região A, fica patente a variabilidade espacial eventualmente devido à grande dimensão desta região, uma vez que a intensidade de precipitação verificada em Ponte da Barca é significativamente menor que as intensidades verificadas para Serpa e São Manços que, por se encontrarem geograficamente muito próximas evidenciam um regime de intensidade de precipitação máxima semelhante.

Comparando a altura da caleira dimensionada com os dados simulados em relação aos dados observados, é evidente que os valores de precipitação intensa projetados para o futuro influenciam o dimensionamento.

Exceto raras exceções, é no terceiro período de trinta anos (no final do século XXI) para ambos os cenários que se obtêm as maiores alterações nas dimensões da caleira.

Para Ponte da Barca, o aumento da altura da caleira varia entre 8% (2041 – 2070) e 27% (2071 – 2100) para o cenário A1B e entre 28% (2071 – 2100) e 32% (2041 – 2070) para o cenário B1.

São Manços é a estação da região A que verifica aumentos mais imponentes, estando compreendidas as estimativas de aumento entre 38% (2011 - 2040) e 49% (2071 - 2100) para o cenário A1B e entre 22% (2071 - 2100) e 47% (2011 - 2040) para o cenário B1.

O aumento esperado para Serpa varia entre 12% (2041 – 2070) e 35% (2071 – 2100) para o cenário A1B e entre 14% (2041 – 2070) e 20% (2071 – 2100) para o cenário B1.

O aumento médio estimado para Ponte da Barca é de 25%, para São Manços é de 38% e para Serpa 20%.

]	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		Obs	2002-2008	1.04	1.73E-03	0.5%	0.20	2.93	
			2011-2040	1.35	2.25E-03	0.5%	0.20	3.48	19%
	Castala	A1B	2041-2070	1.11	1.86E-03	0.5%	0.20	3.07	5%
	Melhor		2071-2100	1.74	2.91E-03	0.5%	0.20	4.11	40%
			2011-2040	1.35	2.26E-03	0.5%	0.20	3.49	19%
		B1	2041-2070	1.18	1.97E-03	0.5%	0.20	3.19	9%
			2071-2100	1.49	2.49E-03	0.5%	0.20	3.71	27%
		Obs	2003-2011	1.15	1.92E-03	0.5%	0.20	3.14	
			2011-2040	1.10	1.84E-03	0.5%	0.20	3.06	-3%
io B		A1B	2041-2070	1.20	2.00E-03	0.5%	0.20	3.22	3%
egião	Pinelo		2071-2100	1.65	2.75E-03	0.5%	0.20	3.96	26%
R			2011-2040	1.26	2.10E-03	0.5%	0.20	3.33	6%
		B1	2041-2070	1.23	2.06E-03	0.5%	0.20	3.29	5%
			2071-2100	1.42	2.37E-03	0.5%	0.20	3.60	15%
		Obs	2002-2011	1.05	1.75E-03	0.5%	0.20	2.96	
			2011-2040	1.41	2.35E-03	0.5%	0.20	3.57	21%
		A1B	2041-2070	1.04	1.74E-03	0.5%	0.20	2.94	0%
	Pinhel		2071-2100	1.76	2.95E-03	0.5%	0.20	4.15	40%
			2011-2040	1.26	2.10E-03	0.5%	0.20	3.33	13%
		B1	2041-2070	1.22	2.03E-03	0.5%	0.20	3.26	10%
			2071-2100	1.50	2.50E-03	0.5%	0.20	3.73	26%

Quadro 4.4 - Tal como o quadro 4.3, mas para a região B.

Também para esta região o último período de 30 anos do cenário A1B é o mais gravoso, podendo ser esperado um aumento na altura da caleira de 26% para Pinelo e de 40% para Castelo Melhor e Pinhel. Em geral, para o 1º período de trinta anos e em ambos os cenários, o aumento é de cerca de 20% em Castelo Melhor e Pinhel, embora para Pinelo se preveja uma diminuição (-3%). Quanto ao 2º período o aumento registado para todas as estações é menos significativo, variando de 0 a 10%.

O aumento médio estimado para as estações de Castelo Melhor, Pinelo e Pinhel é de 20%, 9% e 18%, respetivamente.

]	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		Obs	2002-2009	1.84	3.08E-03	0.5%	0.20	4.27	
			2011-2040	1.95	3.25E-03	0.5%	0.20	4.43	4%
		A1B	2041-2070	2.03	3.39E-03	0.5%	0.20	4.55	6%
	Covilhã		2071-2100	2.38	3.97E-03	0.5%	0.20	5.06	18%
			2011-2040	2.04	3.40E-03	0.5%	0.20	4.56	7%
		B1	2041-2070	2.14	3.57E-03	0.5%	0.20	4.71	10%
ão (2071-2100	1.94	3.23E-03	0.5%	0.20	4.41	3%
Regi		Obs	2001-2012	1.41	2.36E-03	0.5%	0.20	3.59	
I			2011-2040	1.54	2.57E-03	0.5%	0.20	3.79	6%
		A1B	2041-2070	1.64	2.74E-03	0.5%	0.20	3.96	10%
	Pega		2071-2100	1.84	3.06E-03	0.5%	0.20	4.26	19%
			2011-2040	1.48	2.46E-03	0.5%	0.20	3.69	3%
		B1	2041-2070	1.58	2.64E-03	0.5%	0.20	3.86	8%
			2071-2100	1.53	2.56E-03	0.5%	0.20	3.77	5%

Quadro 4.5 - Tal como o quadro 4.3, mas para a região C.

Para ambas as estações da região C o maior aumento ocorre também para o terceiro período do cenário A1B, com um aumento de quase 20%, para as estações da Covilhã e Pega.

Para o cenário B1 o maior aumento ocorre para o segundo período de 10% na estação de Covilhã e de 8% em Pega.

O aumento médio estimado para ambas as estações da região C é de 8%.

Assim, a região com maior aumento médio da altura da caleira é a região A com 28%, seguida da estação B com 16% e por fim a estação C com um aumento mais modesto da ordem dos 8%. São Manços e Serpa (região A) foram as estações que registaram maiores valores de intensidade de precipitação, e consequentemente maior altura da caleira.

Nos Quadros 4.6, 4.7 e 4.8 são apresentados os resultados do dimensionamento da caleira 1, respetivamente, para as estações da região A, B e C, recorrendo à determinação do caudal a partir da intensidade de precipitação estimada com os parâmetros a e b presentes no Decreto Regulamentar n°23/95 de 23 de Agosto e com os dados dos três períodos de cada um dos dois cenários futuros.

I	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		DRn°23/95		2.00	3.34E-03	0.5%	0.20	4.51	
			2011-2040	2.28	3.81E-03	0.5%	0.20	4.92	9%
	Dente De	A1B	2041-2070	2.19	3.66E-03	0.5%	0.20	4.79	6%
	Ponte Da Barca		2071-2100	2.35	3.92E-03	0.5%	0.20	5.01	11%
			2011-2040	2.53	4.23E-03	0.5%	0.20	5.28	17%
		B1	2041-2070	2.62	4.37E-03	0.5%	0.20	5.39	20%
			2071-2100	2.43	4.06E-03	0.5%	0.20	5.14	14%
		DRnº23/95		2.00	3.34E-03	0.5%	0.20	4.51	
gião A	São Manços -	A1B	2011-2040	2.95	4.92E-03	0.5%	0.20	5.84	30%
			2041-2070	3.00	5.00E-03	0.5%	0.20	5.91	31%
			2071-2100	3.26	5.44E-03	0.5%	0.20	6.26	39%
Re			2011-2040	3.19	5.33E-03	0.5%	0.20	6.17	37%
		B1	2041-2070	2.77	4.63E-03	0.5%	0.20	5.61	24%
			2071-2100	2.54	4.23E-03	0.5%	0.20	5.28	17%
		DRnº23/95		2.00	3.34E-03	0.5%	0.20	4.51	
			2011-2040	2.84	4.73E-03	0.5%	0.20	5.69	26%
		A1B	2041-2070	2.38	3.98E-03	0.5%	0.20	5.06	12%
	Serpa		2071-2100	3.15	5.27E-03	0.5%	0.20	6.12	36%
			2011-2040	2.49	4.15E-03	0.5%	0.20	5.21	16%
		B1	2041-2070	2.45	4.09E-03	0.5%	0.20	5.16	14%
			2071-2100	2.64	4.41E-03	0.5%	0.20	5.43	20%

Quadro 4.6 – Dimensionamento da caleira 1 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).

Em relação ao dimensionamento realizado com base no Decreto Regulamentar n°23/95 de 23 de Agosto a altura da caleira estimada para Ponte da Barca poderá sofrer um aumento de 6% (2041 - 2070) a 11% (2071 - 2100) para o cenário A1B e de 14% (2071 - 2100) a 20% (2041 - 2070) para o cenário B1.

O maior aumento, da ordem dos 40% para ambos os cenários, é estimado para São Manços enquanto para Serpa os aumentos são entre 12% (2041 - 2070) e 36% (2071 - 2100) para o cenário A1B e entre 14% (2041 - 2070) a 20% (2071 - 2100) para o cenário B1.

O aumento médio estimado para Ponte da Barca, São Manços e Serpa é de 13%, 30% e 21%, respetivamente.

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		DRn°23/95		1.60	2.67E-03	0.5%	0.20	3.89	
			2011-2040	2.00	3.33E-03	0.5%	0.20	4.50	16%
	Contala	A1B	2041-2070	1.88	3.14E-03	0.5%	0.20	4.33	11%
	Melhor		2071-2100	2.63	4.39E-03	0.5%	0.20	5.41	39%
			2011-2040	1.98	3.30E-03	0.5%	0.20	4.47	15%
		B1	2041-2070	1.90	3.17E-03	0.5%	0.20	4.36	12%
			2071-2100	2.33	3.89E-03	0.5%	0.20	4.99	28%
		DRnº23/95		1.60	2.67E-03	0.5%	0.20	3.89	
gião B	Pinelo	A1B	2011-2040	1.44	2.40E-03	0.5%	0.20	3.63	-7%
			2041-2070	1.61	2.69E-03	0.5%	0.20	3.91	1%
			2071-2100	2.05	3.41E-03	0.5%	0.20	4.57	18%
Re			2011-2040	1.68	2.80E-03	0.5%	0.20	4.01	3%
		B1	2041-2070	1.67	2.79E-03	0.5%	0.20	4.00	3%
			2071-2100	1.85	3.08E-03	0.5%	0.20	4.27	10%
		DRnº23/95		1.60	2.67E-03	0.5%	0.20	3.89	
			2011-2040	2.04	3.40E-03	0.5%	0.20	4.56	17%
		A1B	2041-2070	1.59	2.66E-03	0.5%	0.20	3.88	0%
	Pinhel		2071-2100	2.49	4.16E-03	0.5%	0.20	5.22	34%
			2011-2040	1.86	3.11E-03	0.5%	0.20	4.30	11%
		B1	2041-2070	1.82	3.03E-03	0.5%	0.20	4.23	9%
			2071-2100	2.14	3.57E-03	0.5%	0.20	4.71	21%

Quadro 4.7 – Tal como o Quadro 4.6, mas para a região B.

Para a região B, na estação de Castelo Melhor o aumento estimado poderá variar de 11% (2041 - 2070) a 39% (2071 - 2100) para o cenário A1B, e de 12% (2041 - 2070) a 28% (2071 - 2100) para o cenário B1. Para Pinelo, no 1º período do cenário A1B foi estimado um decréscimo de 7% e um aumento de 18% no 3º período do mesmo cenário, enquanto para o cenário B1 o aumento varia entre 3% para o 1° e 2° período a 10% para o 3° período. Pinhel verifica um aumento máximo de 34% para o cenário A1B e 21% para o cenário B1.

O aumento médio estimado para as estações desta região é de 20%, 5%, e 15%, para Castelo Melhor, Pinelo e Pinhel, respetivamente.

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)	Variação H (%)
		DRn°23/95		2.40	4.01E-03	0.5%	0.20	5.09	
			2011-2040	2.51	4.20E-03	0.5%	0.20	5.25	3%
		A1B	2041-2070	2.60	4.34E-03	0.5%	0.20	5.37	5%
	Covilhã		2071-2100	2.98	4.97E-03	0.5%	0.20	5.89	16%
			2011-2040	2.61	4.35E-03	0.5%	0.20	5.38	6%
0		B1	2041-2070	2.72	4.53E-03	0.5%	0.20	5.53	9%
ão (2071-2100	2.50	4.18E-03	0.5%	0.20	5.24	3%
Regi		DRnº23/95		2.40	4.01E-03	0.5%	0.20	5.09	
			2011-2040	2.54	4.24E-03	0.5%	0.20	5.29	4%
		A1B	2041-2070	2.66	4.44E-03	0.5%	0.20	5.45	7%
	Pega		2071-2100	3.01	5.02E-03	0.5%	0.20	5.93	16%
			2011-2040	2.51	4.18E-03	0.5%	0.20	5.24	3%
		B1	2041-2070	2.61	4.36E-03	0.5%	0.20	5.39	6%
			2071-2100	2.61	4.35E-03	0.5%	0.20	5.38	6%

Quadro 4.8 - Tal como o Quadro 4.6, mas para a região C.

Na região C, a estação da Covilhã apresenta um aumento da altura da caleira de 3% (2011 – 2040) a 16% (2071 – 2100) para o cenário A1B, de 3% (2041 – 2070) a 9% (2071 – 2100) para o cenário B1. Os aumentos estimados para estação de Pega variam entre 3% (B1 2011 – 2040) e 16% (A1B 2071 – 2100).

Em resumo, o aumento médio para as estações da região A é de 21%, para as da região B é de 13% e para as da região C apenas de 7%.

Os resultados obtidos para a caleira 2 e 3 podem ser encontrados no anexo C1 uma vez que se considerou desnecessária e repetitiva a sua análise, tendo em conta que os resultados iriam remeter a conclusões semelhantes às evidenciadas para a caleira1.

4.4.2. Tubos de queda

Nos Quadros 4.9, 4.10 e 4.11 é apresentado o resultado do dimensionamento do tubo de queda 1, respetivamente para as estações da região A, B e C, tendo em conta o caudal calculado para a caleira 1 (que nele conflui) com base na intensidade de precipitação estimada para os dados observados e simulados para os diferentes cenários futuros.

			Período	Intensidade	Caudal	Carga na	Cali	bres	Variação
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		Obs	2003-2010	1.49	149.38	26.00	74.20	90	
			2011-2040	2.04	204.65	32.00	69.88	75	-6%
		A1B	2041-2070	1.68	168.26	28.05	73.10	90	-1%
	Ponte Da Barca		2071-2100	2.14	214.08	33.00	69.00	75	-7%
	24.04		2011-2040	2.19	219.40	33.55	68.55	75	-8%
		B1	2041-2070	2.28	228.15	34.40	68.05	75	-8%
			2071-2100	2.18	218.08	33.35	68.99	75	-7%
		Obs	2001-2011	1.86	186.04	30.00	71.56	90	
	São Mancos	A1B	2011-2040	2.99	299.32	41.30	62.46	75	-13%
A d			2041-2070	3.03	303.89	41.70	62.22	75	-13%
giãc			2071-2100	3.36	336.27	44.70	59.62	75	-17%
Re	3	B1	2011-2040	3.29	329.24	44.10	60.00	75	-16%
			2041-2070	2.80	280.10	39.50	63.90	75	-11%
			2071-2100	2.49	249.30	36.50	66.40	75	-7%
		Obs	2001-2010	1.99	199.17	31.40	70.46	75	
			2011-2040	2.81	281.17	39.60	63.82	75	-9%
		A1B	2041-2070	2.36	235.83	35.15	67.54	75	-4%
	Serpa		2071-2100	3.11	311.17	42.41	61.51	75	-13%
			2011-2040	2.46	246.42	36.21	66.66	75	-5%
		B1	2041-2070	2.42	242.67	35.80	67.14	75	-5%
			2071-2100	2.62	262.14	37.74	65.46	75	-7%

Quadro 4.9 – Dimensionamento do tubo de queda 1 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1B e B1).

O principal resultado é que o aumento da intensidade fez diminuir a secção dos tubos de queda. A diminuição do diâmetro de cálculo do tubo varia entre -1% (A1B 2041 – 2070) e -8% (todos os períodos de B1) em Ponte da Barca, -7% (B1 2071 – 2100) e -17% (A1B 2071 – 2100) em São Manços, e entre -4% (A1B 2041 – 2070) e -13% (A1B 2071 – 2100) para Serpa. Estes resultados significam que o diâmetro nominal em Ponte da barca diminui de 90mm para 75mm para todos os cenários, exceto para o A1B 2041 – 2070, em São Manços diminui de 90mm para 75mm para todos os cenários, e Serpa mantem o diâmetro de 75mm apesar das diminuições no diâmetro de cálculo.

			Período	Intensidade	Candal	Carga na	Cali	bres	Variação
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		Obs	2002-2008	1.04	104.05	20.50	77.97	90	
			2011-2040	1.35	134.73	24.35	75.02	90	-4%
	Castala	A1B	2041-2070	1.11	111.53	21.50	77.01	90	-1%
	Melhor		2071-2100	1.74	174.56	28.80	72.26	90	-7%
			2011-2040	1.35	135.53	24.40	75.24	90	-3%
		B1	2041-2070	1.18	118.43	22.30	76.88	90	-1%
			2071-2100	1.49	149.23	26.00	74.11	90	-5%
		Obs	2003-2011	1.15	115.23	21.95	76.81	90	
	Pinelo	A1B	2011-2040	1.10	110.20	21.40	76.62	90	0%
ЭΒ			2041-2070	1.20	119.78	22.55	76.18	90	-1%
gião			2071-2100	1.65	164.80	27.72	73.07	90	-5%
Re			2011-2040	1.26	126.02	23.30	75.76	90	-1%
		B1	2041-2070	1.23	123.55	23.00	75.96	90	-1%
			2071-2100	1.42	141.99	25.20	74.46	90	-3%
		Obs	2002-2011	1.05	105.29	20.70	77.56	90	
			2011-2040	1.41	141.16	25.02	75.05	90	-3%
		A1B	2041-2070	1.04	104.52	20.60	77.63	90	0%
	Pinhel		2071-2100	1.76	176.74	29.04	72.07	90	-7%
			2011-2040	1.26	125.87	23.30	75.65	90	-2%
		B1	2041-2070	1.22	121.73	22.80	75.95	90	-2%
			2071-2100	1.50	149.80	26.10	73.84	90	-5%

Quadro 4.10 - Tal como o Quadro 4.9, mas para a região B.

Nas estações da região B o decréscimo da secção de cálculo é menor que nas estações da região A, chegando a -7% para o cenário A1B (2071 - 2100) e -5% para o cenário B1 (2071 - 2100) nas estações de Castelo Melhor e Pinhel, para Pinelo a diminuição estimada máxima é da ordem dos -5% para o cenário A1B (2071 - 2100) e de - 3% para o cenário B1 (2071 - 2100). Apesar de se verificar uma diminuição geral no diâmetro de cálculo, o diâmetro nominal manteve-se inalterado.

			Período	Intensidade	Caudal	Carga na	Cali	ibres	Variação
	Estação	Cenário	de dados	l(/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		Obs	2002-2009	1.84	184.52	29.90	71.34	90	
			2011-2040	1.95	194.88	31.00	70.53	75	-1%
		A1B	2041-2070	2.03	203.16	31.84	70.02	75	-2%
	Covilhã		2071-2100	2.38	238.06	35.40	67.23	75	-6%
			2011-2040	2.04	203.81	31.90	70.01	75	-2%
7)		B1	2041-2070	2.14	213.98	32.96	69.16	75	-3%
ão (2071-2100	1.94	193.81	30.85	70.81	75	-1%
Regi		Obs	2001-2012	1.41	141.64	25.10	74.86	90	
			2011-2040	1.54	154.35	26.50	74.20	90	-1%
		A1B	2041-2070	1.64	164.17	27.70	72.83	90	-3%
	Pega		2071-2100	1.84	183.89	29.80	71.57	90	-4%
			2011-2040	1.48	147.88	25.80	74.50	90	0%
		B1	2041-2070	1.58	158.55	27.00	73.71	90	-2%
			2071-2100	1.53	153.63	26.40	74.38	90	-1%

Quadro 4.11 - Tal como o quadro 4.9, mas para a região C.

Para as estações da região C, na Covilhã verificou-se uma diminuição média da secção de cálculo do tubo de queda da ordem de -2% para o cenário B1 e -3% para o cenário A1B, o que se traduziu na diminuição da secção efetiva do tubo para todos os cenários, de 90mm para 75mm. Por sua vez, Pega teve uma diminuição média da secção de cálculo do tubo de queda da ordem de -1% para o cenário B1 e -3% para o cenário A1B, pelo que a secção efetiva do tubo não sofreu qualquer alteração, mantendo-se nos 90mm.

Nos Quadros 4.12, 4.13 e 4.14 encontra-se o dimensionamento do tubo de queda 1, respetivamente para as estações da região A, B e C, tendo em conta o caudal calculado para a caleira 1 (que nele conflui) com base na intensidade de precipitação estimada a partir dos parâmetros a e b presentes no Decreto Regulamentar n°23/95 de 23 de Agosto e dos três períodos relativos aos cenários futuros.

			Período	Intensidade	Canqal	Carga na	Cali	bres	Variação
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR nº23/95		2.00	200.51	31.55	70.31	75	
			2011-2040	2.28	228.67	34.45	68.02	75	-3%
		A1B	2041-2070	2.19	219.48	33.55	68.59	75	-2%
	Barca		2071-2100	2.35	235.26	35.10	67.55	75	-4%
			2011-2040	2.53	253.60	36.93	66.03	75	-6%
		B1	2041-2070	2.62	262.07	37.75	65.39	75	-7%
			2071-2100	2.43	243.45	35.97	66.64	75	-5%
		DR nº23/95		2.00	200.51	31.55	70.31	75	
	São Mancos	A1B	2011-2040	2.95	295.12	40.90	62.81	75	-11%
Υ			2041-2070	3.00	300.10	41.35	62.50	75	-11%
giãc			2071-2100	3.26	326.59	43.80	60.44	75	-14%
Re	3		2011-2040	3.19	319.60	43.20	60.81	75	-14%
		B1	2041-2070	2.77	277.51	39.25	64.11	75	-9%
			2071-2100	2.54	254.06	36.93	66.20	75	-6%
		DR nº23/95		2.00	200.51	31.55	70.31	75	
			2011-2040	2.84	284.06	39.85	63.70	75	-9%
		A1B	2041-2070	2.38	238.81	35.45	67.29	75	-4%
	Serpa		2071-2100	3.15	315.93	42.85	61.15	75	-13%
			2011-2040	2.49	249.21	36.45	66.60	75	-5%
		B1	2041-2070	2.45	245.50	36.10	66.82	75	-5%
			2071-2100	2.64	264.72	38.00	65.21	75	-7%

Quadro 4.12 - Dimensionamento do tubo de queda 1 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).

Em Ponte da Barca estima-se um decréscimo médio para o diâmetro de cálculo de - 3 e -6% para o cenário A1B e B1, respetivamente. Em São Manços o decréscimo estimado varia entre -6% (B1 2071 – 2100) e -14% (A1B 2071 – 2100 e B1 2011 – 2040), para Serpa o decréscimo é de -4% a -13% para o cenário A1B e -5% a -7% para o cenário B1. Contudo, perante o decréscimo generalizado do diâmetro de cálculo, o diâmetro nominal manteve-se nos 75mm.

			Período	Intensidade	Caudal	Carga na	Cali	bres	Variação
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR nº23/95		1.60	160.18	27.20	73.47	90	
			2011-2040	2.00	200.04	31.50	70.35	75	-4%
		A1B	2041-2070	1.88	188.22	30.30	71.02	90	-3%
	Castelo Melhor		2071-2100	2.63	263.58	37.90	65.25	75	-11%
			2011-2040	1.98	198.16	31.30	70.51	75	-4%
		B1	2041-2070	1.90	190.46	30.50	71.05	75	-3%
			2071-2100	2.33	233.68	34.90	67.88	75	-8%
		DR nº23/95		1.60	160.18	27.20	73.47	90	
	Pinelo	A1B	2011-2040	1.44	144.04	25.40	74.54	90	1%
В			2041-2070	1.61	161.18	27.35	73.17	90	0%
giãc			2071-2100	2.05	204.85	32.00	69.97	75	-5%
Re			2011-2040	1.68	167.89	28.05	72.90	90	-1%
		B1	2041-2070	1.67	167.29	28.00	72.85	90	-1%
			2071-2100	1.85	185.05	29.90	71.61	90	-3%
		DR nº23/95		1.60	160.18	27.20	73.47	90	
			2011-2040	2.04	204.11	31.90	70.15	75	-5%
		A1B	2041-2070	1.59	159.35	27.15	73.28	90	0%
	Pinhel		2071-2100	2.49	249.72	36.55	66.33	75	-10%
			2011-2040	1.86	186.74	30.10	71.37	90	-3%
		B1	2041-2070	1.82	182.05	29.60	71.73	90	-2%
			2071-2100	2.14	213.99	33.00	68.96	75	-6%

Quadro 4.13 - Tal como o Quadro 4.12, mas para a região B.

Na estação de Castelo Melhor estimam-se diminuições do diâmetro de cálculo entre -3% (período 2041 - 2070 de ambos os cenários) e -8% e -11% para o período de 2071 - 2100 para o cenário B1 e A1B, respetivamente. Para Pinelo, o diâmetro deverá sofrer alterações entre -5% (A1B 2071 - 2100) e 1% (A1B 2011 - 2040), enquanto em Pinhel a diminuição estimada pode atingir os -10% para o cenário A1B (2071 - 2100) e os -6% para o cenário B1 (2071 - 2100). Assim, deverá ser esperada a redução do diâmetro nominal nas três estações, nos casos em que a intensidade mais aumentou em relação à intensidade regulamentar.

			Período	Intensidada	Caudal	Carga na	Cali	ibres	Variação
F	lstação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR nº23/95		2.40	240.62	35.65	67.05	75	
			2011-2040	2.51	251.80	36.75	66.18	75	-1%
		A1B	2041-2070	2.60	260.61	37.60	65.54	75	-2%
	Covilhã		2071-2100	2.98	298.09	41.20	62.49	75	-7%
		B1	2011-2040	2.61	261.22	37.65	65.53	75	-2%
7)			2041-2070	2.72	272.06	38.70	64.66	75	-4%
ão (2071-2100	2.50	250.60	36.65	66.20	75	-1%
Regi		DR nº23/95		2.40	240.62	35.65	67.05	75	
			2011-2040	2.54	254.48	37.00	66.03	75	-2%
		A1B	2041-2070	2.66	266.52	38.15	65.17	75	-3%
	Pega		2071-2100	3.01	301.23	41.50	62.22	75	-7%
			2011-2040	2.51	250.99	36.65	66.35	75	-1%
		B1	2041-2070	2.61	261.75	37.70	65.50	75	-2%
			2071-2100	2.61	260.90	37.65	65.42	75	-2%

Quadro 4.14 - Tal como o Quadro 4.12, mas para a região C.

Na região C a diminuição do diâmetro de cálculo variou entre -1% e -7% para ambas as estações, não se revelando no entanto significativa de forma a alterar o diâmetro nominal do tubo de queda.

Em suma, o impacto do aumento da intensidade de precipitação não é evidente no dimensionamento dos tubos de queda efetuado de acordo com o Regulamento Português, uma vez que o dimensionamento varia não só com o caudal mas também com a carga na coluna, ou seja a altura da lâmina líquida verificada na caleira que nele conflui. Esta altura pode influenciar o dimensionamento de tal forma que quando a intensidade aumenta a secção do tubo de queda diminui. Contudo, no caso de se dimensionarem os tubos de queda de acordo com a fórmula de Wyly-Eaton (29) como indicado na Norma Europeia (EN 12056-3) a situação que se verificaria seria exatamente a contrária, ou seja, o aumento da intensidade de precipitação implicaria o aumento da secção do tubo de queda.

$$Q_{RWP} = 2.5 \times 10^{-4} \times K_b^{-0.167} \times D_i^{2.667} \times f^{1.667}$$
(29)

Em que:

 Q_{RWP} – caudal do tubo de queda [l/s] K_b – rugosidade do tubo [0,25mm] D_i – diâmetro interno da tubagem [mm] f – taxa de ocupação [0,2 ou 0,33] Os resultados do dimensionamento do tubo de queda 2 e 3 podem ser encontrados no anexo C2 uma vez que não se considerou necessária a sua análise, tendo em conta que os resultados iriam remeter a conclusões semelhantes às evidenciadas pelo tubo de queda 1.

4.4.3. Coletor

Nos Quadros 4.15, 4.16 e 4.17 podem ser encontrados os resultados do dimensionamento do coletor 1 para as estações da região A, B e C, respetivamente. O caudal de cálculo provem do somatório dos caudais dos três tubos de queda dimensionados anteriormente, tendo em conta valores de intensidade de precipitação de dados observados e simulados para os diferentes períodos.

Quadro 4.15 – Dimensionamento do coletor para a região A, recorrendo à intensidade de precipitação estimada com dados observados (2001 – 2012) e simulados para três períodos de trinta anos dos dois cenários futuros (A1B e B1).

Estação		Cenário	Período		Caudal	Cali	bres	Variação
			de dados Inc. (%)	Inc. (%)	Dim. (m ³ /s)	Dim. (mm)	Nominal (mm)	Calibre (%)
		Obs	2003-2010	2.0%	3.87E-03	86.51	110	
			2011-2040	2.0%	5.30E-03	97.35	110	13%
		A1B	2041-2070	2.0%	4.36E-03	90.46	110	5%
	Ponte Da Barca		2071-2100	2.0%	5.55E-03	99.01	110	14%
			2011-2040	2.0%	5.69E-03	99.92	110	16%
		B1	2041-2070	2.0%	5.91E-03	101.40	110	17%
			2071-2100	2.0%	5.65E-03	99.70	110	15%
	São Manços	Obs	2001-2011	2.0%	4.82E-03	93.93	110	
		A1B	2011-2040	2.0%	7.76E-03	112.27	125	20%
Υ			2041-2070	2.0%	7.87E-03	112.91	125	20%
giãc			2071-2100	2.0%	8.71E-03	117.27	125	25%
Re		B1	2011-2040	2.0%	8.53E-03	116.35	125	24%
			2041-2070	2.0%	7.26E-03	109.51	125	17%
			2071-2100	2.0%	6.46E-03	104.83	125	12%
		Obs	2001-2010	2.0%	5.16E-03	96.36	110	
			2011-2040	2.0%	7.29E-03	109.66	125	14%
		A1B	2041-2070	2.0%	6.11E-03	102.67	110	7%
	Serpa		2071-2100	2.0%	8.06E-03	113.91	125	18%
			2011-2040	2.0%	6.39E-03	104.37	110	8%
		B1	2041-2070	2.0%	6.29E-03	103.77	110	8%
			2071-2100	2.0%	6.79E-03	106.82	125	11%

Para as estações da região A existe uma grande variabilidade nos resultados do dimensionamento. Para Ponte da Barca o dimensionamento apresenta um aumento entre 5% (A1B 2041 – 2070) e 17% (B1 2041 – 2070) no diâmetro que, contudo, não implica qualquer alteração no calibre nominal da tubagem. O dimensionamento para São Manços apresenta um aumento entre 12% (B1 2071 – 2100) e 25% (A1B 2071 – 2100) o que se traduz no aumento de calibre da tubagem de 110 para 125mm, para todos os períodos de ambos os cenários futuros. Para Serpa, o dimensionamento também apresenta um aumento de menor intensidade, entre 7% (A1B 2041 – 2070) e 18% (A1B 2071 – 2100), o que conduz ao aumento do diâmetro nominal de 110 mm para 125 mm no primeiro e segundo períodos do cenário A1B, e no terceiro do cenário B1.

Estação			Período		Caudal	Cali	bres	Variação
		Cenário	de dados Inc. (%)	Inc. (%)	Dim. (m ³ /s)	Dim. (mm)	Nominal (mm)	Calibre (%)
		Obs	2002-2008	2.0%	2.70E-03	75.54	110	
			2011-2040	2.0%	3.49E-03	83.22	110	10%
		A1B	2041-2070	2.0%	2.89E-03	77.53	110	3%
	Castelo Melhor		2071-2100	2.0%	4.52E-03	91.71	110	21%
			2011-2040	2.0%	3.51E-03	83.41	110	10%
		B1	2041-2070	2.0%	3.07E-03	79.30	110	5%
			2071-2100	2.0%	3.87E-03	86.48	110	14%
	Pinelo	Obs	2003-2011	2.0%	2.99E-03	78.49	110	
		A1B	2011-2040	2.0%	2.86E-03	77.18	110	-2%
B			2041-2070	2.0%	3.10E-03	79.63	110	1%
giãc			2071-2100	2.0%	4.27E-03	89.75	110	14%
Re		B1	2011-2040	2.0%	3.27E-03	81.16	110	3%
			2041-2070	2.0%	3.20E-03	80.56	110	3%
			2071-2100	2.0%	3.68E-03	84.88	110	8%
		Obs	2002-2011	2.0%	2.73E-03	75.87	110	
			2011-2040	2.0%	3.66E-03	84.69	110	12%
		A1B	2041-2070	2.0%	2.71E-03	75.66	110	0%
	Pinhel		2071-2100	2.0%	4.58E-03	92.14	110	21%
			2011-2040	2.0%	3.26E-03	81.13	110	7%
		B1	2041-2070	2.0%	3.15E-03	80.12	110	6%
			2071-2100	2.0%	3 88E-03	86 60	110	14%

Quadro 4.16 – Tal como o Quadro 4.15, mas para a região B.

No dimensionamento efetuado para a região B os valores do diâmetro calculados com dados para os cenários futuros são superiores aos valores obtidos com os dados observados, com um aumento médio de 11%, 5% e 10% para Castelo Melhor, Pinelo e

Pinhel, respetivamente. Contudo este aumento não é suficientemente significativo de modo a aumentar o calibre nominal.

Estação			Período		Caudal	Calibres		Variação Calibre (%)
		Cenário	de dados Inc. (%)	Dim. (m ³ /s)	Dim. (mm)	Nominal (mm)		
		Obs	2002-2009	2.0%	4.78E-03	93.64	110	
			2011-2040	2.0%	5.05E-03	95.58	110	2%
		A1B	2041-2070	2.0%	5.26E-03	97.08	110	4%
	Covilhã		2071-2100	2.0%	6.17E-03	103.03	110	10%
		B1	2011-2040	2.0%	5.28E-03	97.20	110	4%
r)			2041-2070	2.0%	5.54E-03	98.99	110	6%
ão (2071-2100	2.0%	5.02E-03	95.38	110	2%
legi	Pega	Obs	2001-2012	2.0%	3.67E-03	84.80	110	
		A1B	2011-2040	2.0%	4.00E-03	87.58	110	3%
			2041-2070	2.0%	4.25E-03	89.63	110	6%
			2071-2100	2.0%	4.76E-03	93.52	110	10%
		B1	2011-2040	2.0%	3.83E-03	86.18	110	2%
			2041-2070	2.0%	4.11E-03	88.46	110	4%
			2071-2100	2.0%	3.98E-03	87.42	110	3%

Quadro 4.17- Tal como o Quadro 4.15, mas para a região C.

Para a região C, os resultados são semelhantes aos obtidos para a região B, com os aumentos do diâmetro de cálculo a não serem suficientemente significativos para implicar um aumento do diâmetro nominal. Ainda assim, o aumento máximo para ambas as estações para o último período do cenário A1B é de 10%.

Nos Quadros 4.18, 4.19 e 4.20 são apresentados os resultados do dimensionamento do coletor para as estações da região A, B e C, respetivamente. O caudal resulta do somatório dos caudais dos três tubos de queda dimensionados anteriormente, tendo em conta valores de intensidade de precipitação calculados pelo Decreto Regulamentar nº23/95 de 23 de Agosto e com dados simulados para os três períodos dos dois cenários futuros.

			Período		Caudal	Calil	bres	Variação
	Estação	Cenário	de dados	Inc. (%)	Dim. (m ³ /s)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR n°23/95		2.0%	5.20E-03	96.60	110	
			2011-2040	2.0%	5.93E-03	101.48	110	5%
		A1B	2041-2070	2.0%	5.69E-03	99.94	110	3%
	Ponte Da Barca		2071-2100	2.0%	6.10E-03	102.57	110	6%
			2011-2040	2.0%	6.57E-03	105.50	125	9%
		B1	2041-2070	2.0%	6.79E-03	106.81	125	11%
			2071-2100	2.0%	6.31E-03	103.90	110	8%
	São Manços	DR n°23/95		2.0%	5.20E-03	96.60	110	
		A1B	2011-2040	2.0%	7.65E-03	111.67	125	16%
A (2041-2070	2.0%	7.78E-03	112.38	125	16%
giãc			2071-2100	2.0%	8.46E-03	116.00	125	20%
Re		B1	2011-2040	2.0%	8.28E-03	115.06	125	19%
			2041-2070	2.0%	7.19E-03	109.13	125	13%
			2071-2100	2.0%	6.58E-03	105.57	125	9%
		DR n°23/95		2.0%	5.20E-03	96.60	110	
			2011-2040	2.0%	7.36E-03	110.08	125	14%
		A1B	2041-2070	2.0%	6.19E-03	103.15	110	7%
	Serpa		2071-2100	2.0%	8.19E-03	114.56	125	19%
			2011-2040	2.0%	6.46E-03	104.81	110	8%
		B1	2041-2070	2.0%	6.36E-03	104.22	110	8%
			2071-2100	2.0%	6.86E-03	107.21	125	11%

Quadro 4.18- Dimensionamento do coletor para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).

A comparação entre o dimensionamento efetuado com base no Decreto Regulamentar n°23/95 de 23 de Agosto e com os dados para os cenários futuros permite verificar, em geral, um aumento do diâmetro de cálculo, entre 3% (A1B 2041 – 2070) e 11% (B1 2041 – 2070) para Ponte da Barca, entre 9% (B1 2071 – 2100) e 20% (A1B 2071 – 2100) para São Manços, e entre 7% (A1B 2041 – 2070) e 19% (A1B 2071 – 2100) para Serpa.

No entanto, apenas se concretiza o aumento do diâmetro nominal de 110 mm para 125 mm, no 1º e 2º período do cenário A1B em Ponte da Barca, em todos os cenários futuro da estação de São Manços, no 1º período do cenário A1B e 3º período para ambos os cenários (A1B e B1) em Serpa.

			Período		Caudal	Calibres		Variação
	Estação	Cenário	de dados	Inc. (%)	Dim. (m ³ /s)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR nº23/95		2.0%	4.15E-03	88.80	110	
			2011-2040	2.0%	5.18E-03	96.52	110	9%
		A1B	2041-2070	2.0%	4.88E-03	94.34	110	6%
	Castelo Melhor		2071-2100	2.0%	6.83E-03	107.04	125	21%
			2011-2040	2.0%	5.13E-03	96.18	110	8%
		B1	2041-2070	2.0%	4.94E-03	94.76	110	7%
			2071-2100	2.0%	6.06E-03	102.31	110	15%
	Pinelo	DR nº23/95		2.0%	4.15E-03	88.80	110	
		A1B	2011-2040	2.0%	3.73E-03	85.34	110	-4%
ЭB			2041-2070	2.0%	4.18E-03	89.01	110	0%
gião			2071-2100	2.0%	5.31E-03	97.38	110	10%
Re		B1	2011-2040	2.0%	4.35E-03	90.38	110	2%
			2041-2070	2.0%	4.33E-03	90.26	110	2%
			2071-2100	2.0%	4.79E-03	93.74	110	6%
		DR nº23/95		2.0%	4.15E-03	88.80	110	
			2011-2040	2.0%	5.29E-03	97.25	110	10%
		A1B	2041-2070	2.0%	4.13E-03	88.63	110	0%
	Pinhel		2071-2100	2.0%	6.47E-03	104.89	125	18%
			2011-2040	2.0%	4.84E-03	94.06	110	6%
		B1	2041-2070	2.0%	4.72E-03	93.17	110	5%
			2071-2100	2.0%	5.54E-03	98.99	110	11%

Quadro 4.19- Tal como o Quadro 4.18, mas para a região B.

Na região B a estimativa do aumento médio relativo do diâmetro de cálculo é superior para as estações de Castelo Melhor (11%) e Pinhel (8%) do que para Pinelo (2%).

Com os dados da estação de Castelo melhor são estimados aumentos máximos de 21% e 15% para o último período do cenário A1B e B1, respetivamente. Com os dados da estação de Pinelo, é estimada uma variação do diâmetro do tubo entre -4% (2011 - 2040) e 10% (2071 - 2100) para o cenário A1B e entre 2% (2011 - 2040 e 2041 - 2070) e 6% (2071 - 2100) para o cenário B1. Pinhel tem aumentos mais elevados para o último período de ambos os cenários, sendo no entanto o aumento referente ao cenário A1B (18%) superior ao do cenário B1 (11%).

Da análise do Quadro 4.19 é ainda possível verificar que o aumento do diâmetro nominal apenas se materializa para o 3º período do cenário A1B para as estações de Pinhel e Castelo Melhor.

Estação			Período		Caudal	Calibres		Variação
		Cenário	de dados	Inc. (%)	Dim. (m³/s)	Dim. (mm)	Nominal (mm)	Calibre (%)
		DR nº23/95		2.0%	6.23E-03	103.44	110	
			2011-2040	2.0%	6.52E-03	105.22	125	2%
	Covilhã	A1B	2041-2070	2.0%	6.75E-03	106.58	125	3%
			2071-2100	2.0%	7.72E-03	112.09	125	8%
		B1	2011-2040	2.0%	6.77E-03	106.68	125	3%
۲)			2041-2070	2.0%	7.05E-03	108.32	125	5%
ão (2071-2100	2.0%	6.49E-03	105.03	125	2%
Regi	Pega	DR nº23/95		2.0%	6.23E-03	103.44	110	
		A1B	2011-2040	2.0%	6.59E-03	105.64	125	2%
			2041-2070	2.0%	6.91E-03	107.48	125	4%
			2071-2100	2.0%	7.81E-03	112.53	125	9%
		B1	2011-2040	2.0%	6.50E-03	105.09	125	2%
			2041-2070	2.0%	6.78E-03	106.76	125	3%
			2071-2100	2.0%	6.76E-03	106.63	125	3%

Quadro 4.20- Tal como o Quadro 4.18, mas para a região C.

Por último, a região C regista um aumento relativo do diâmetro de cálculo semelhante para as duas estações, da ordem dos 3% para todos os períodos de ambos os cenários, exceto o 3º período de A1B, da ordem dos 9%, o que se traduz no aumento do diâmetro nominal para todos os cenários futuros em ambas as estações.

5. CONCLUSÕES

5.1. Conclusões gerais

A legislação e regulamentação em vigor relativa ao dimensionamento e gestão de obras hidráulicas, quer à escala da bacia hidrográfica quer à escala dos sistemas urbanos, pode a curto prazo encontrar-se desatualizada, face ao aumento da frequência e intensidade de eventos de precipitação extrema que já se observam e em consequência das alterações climáticas.

Neste contexto, o presente trabalho pretendeu verificar a influência de alterações na distribuição de valores extremos de precipitação devido às alterações climáticas no atual dimensionamento de órgãos de drenagem predial pluvial.

O padrão comportamental das precipitações intensas é bem caracterizado pela distribuição de Gumbel, e a adequação desta função às séries de dados de intensidade máxima de precipitação foi corroborada pelo teste Kolmogorov-Smirnov e pelos gráficos Quantil-Quantil. A representação gráfica das funções densidade de probabilidade de Gumbel, permitiu ilustrar as diferenças entre as distribuições de intensidade de precipitação para estações relativas à mesma região sendo ainda de salientar alguma variabilidade dos regimes de precipitação máxima inter-região. Os resultados revelaram ainda que, as intensidades máximas de precipitação mais frequentes para curtas durações são mais elevadas e possuem menor probabilidade de ocorrência que as intensidades máximas de precipitação do período de retorno para os valores de intensidade de precipitação mais elevada, bem como um aumento no valor das intensidades máximas mais frequentes.

A utilização da função de distribuição de Gumbel permitiu estimar valores de intensidade de precipitação máxima para períodos de retorno de 2, 5, 10, 20, 50, 100, 500, e 1000 anos. Sabendo que a intensidade de precipitação varia com a duração de acordo com a função $I = a \times t^b$, foi efetuada a análise de regressão linear após linearização da curva por aplicação de logaritmos, pelo método dos mínimos quadrados e pelo método de

ajuste robusto. A análise realizada produziu resultados estatisticamente significativos, (aferidos pelos indicadores de qualidade do ajuste, nomeadamente, R^2 , teste F, variância do erro) bem como valores muito idênticos dos parâmetros IDF estimados por ambos os métodos. Contudo, pela menor sensibilidade do método de ajuste robusto à normalidade dos resíduos dos valores anómalos, os parâmetros a e b estimados com este método foram os selecionados para fundamentar as curvas IDF.

A análise das curvas IDF para o período de retorno de dez anos adotado no dimensionamento sugere, em geral, um aumento da intensidade de precipitação (durações entre 5 e 120 min) para a totalidade dos cenários e períodos futuros analisados, sendo mais significativos no final do que no início século XXI, e para o cenário A1B que para o cenário B1. Contudo, para o mesmo cenário futuro e para cada um dos períodos de 30 anos, a variação relativa da intensidade de precipitação é constante para as diferentes durações.

As alterações nas curvas IDF não são idênticas em todo o país, o que se deverá refletir no dimensionamento dos órgãos de drenagem. Da comparação do dimensionamento efetuado com as curvas IDF delineadas para valores de intensidade observada e simulada, foi estimado um aumento médio da secção da caleira e do coletor, de 20% e 15% para a região A, de 16% e 8% para a região B e de 8% e 5% para a região C, respetivamente, e uma diminuição média da secção do tubo de queda, maior para a região A (-9%), do que para a região B (-3%) e região C (-2%). Este decréscimo deve-se substancialmente à influência da carga na coluna na fórmula empírica empregue no dimensionamento do mesmo. É ainda de salientar a diferença na variabilidade dos resultados no seio de cada região. Se, na região C, os resultados para as duas estações são muito idênticos, com estimativas de aumento máximo da secção da caleira e do coletor da ordem dos 20% e 10%, respetivamente, e uma diminuição da secção do tubo de queda, que pode atingir os -6%. Na região B, os aumentos máximos da secção da caleira e do coletor são maiores e variam entre 26% e 40% e entre 14% e 21%, respetivamente. No caso do tubo de queda, é estimada uma diminuição máxima da secção do tubo de queda entre -5% e -7%. Finalmente, é na região A onde se deverá verificar um aumento máximo maior e mais diferenciado, entre 32% e 50% na secção da caleira e entre 14% e 21% na secção do coletor, e uma diminuição máxima na secção do tubo de queda que pode atingir os -17%.

Comparando o dimensionamento efetuado com as curvas IDF estimadas para os cenários futuros com as curvas obtidas pelo Decreto Regulamentar nº23/95 de 23 de Agosto, verificou-se um aumento médio da secção da caleira e do coletor, maior para a região A (21% e 11%, respetivamente) que para a região B (13% e 7%) e região C (7% e 4%), e uma diminuição média da secção do tubo de queda de -8%, -4% e de -3% nas mesmas regiões. Quanto à diferença na variabilidade dos resultados entre estações referentes à mesma região, registaram-se estimativas semelhantes para os resultados das estações da região C, com aumentos máximos de 16% para a caleira, 9% para o coletor, e uma diminuição máxima de -7% para o tubo de queda, enquanto para as estações da região B o aumento máximo no dimensionamento da caleira varia entre 18% e 39%, do coletor entre 10% e 21% e, nos tubos de gueda, a diminuição máxima registada varia entre -5% e -10%. Para a região A, é estimado um maior aumento máximo nas estações localizadas no Sul do País (Serpa e São Manços), de 40% para a caleira e de 20% para o coletor do que no Norte do País (Ponte da Barca), que deverá ser da ordem de 20% e 11%, respetivamente para a caleira e coletor e uma diminuição máxima da secção dos tubos de queda de -14% nas estações a Sul e -7% na estação a Norte.

Em suma, perante os resultados apresentados é possível inferir que o impacto das alterações climáticas se deverá traduzir numa alteração não desprezável do dimensionamento dos órgãos de drenagem predial de águas pluviais, quer em relação às curvas IDF obtidas com os dados observados, quer para as curvas IDF idealizadas por Matos e Silva (1986) definidas no Decreto Regulamentar n°23/95 de 23 de Agosto.

5.2. Recomendações futuras

O estudo demonstrou que o dimensionamento de órgãos de drenagem pluvial predial realizado segundo o Decreto Regulamentar nº23/95 sofrerá alterações no futuro em consequência de alterações no regime de intensidade de precipitação devido às alterações climáticas. Assim, recomenda-se como trabalho futuro, a aplicação da metodologia descrita a outras estações meteorológicas, nomeadamente a locais de risco, ou seja, locais onde ocorrem com alguma regularidade situações de inundação, pode ainda efetuar-se o estudo com base na Norma Europeia em vez do Regulamento Português. Outra sugestão de

trabalho futuro passa pela análise de alterações no dimensionamento de sistemas de drenagem pública de águas pluviais.

REFERÊNCIAS BIBLIOGRÁFICAS

Adam, K. N., (2011) – Análise dos impactos de alterações climáticas nos regimes de precipitação e vazão na bacia do rio Ibicui, Trabalho para obtenção de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental da Universidade Federal do Rio Grande do Sul, Porto Alegre.

AEMET, IM (Edt.) (2011): Iberien Climate Atlas, closas-Oscoyen S.h., Madrid.

Aguiar, R., (2007) - Estratégias de Mitigação e Cenários Sócio-Económicos, Seminário "O Quarto Relatório sobre Alterações Climáticas –Perspectivas para Portugal", FCG, Lisboa.

Back, AJ., Dorfman, R., Clarke, R., (1999) – Modelagem da precipitação horária por meio do modelo de pulsos retangulares de Bartlett-Lewis modificado, Revista Brasileira de Recursos Hídricos, 4:5-17.

Beijo, L. A, Muniz, J. A., Volpe, Neto, P. C., (2005) – Tempo de retorno das precipitações máximas em Lavras (MG) pela distribuição de valores extremos do tipo I, Ciência e Agrotecnologia, 29:657-667.

Bloetscher, F., Meeroff, D. E., Heimlich, B. N., Brown, A. R., Bayler, D., Loucraft, M., (2007) – Improving resilience against the effects of climate chaange, Journal American Water Works Association, 102:36-46.

Brandão, C., (1995) – Análise de Precipitações Intensas, Dissertação para obtenção do Grau de Mestre em Engenharia Civil do Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa.

Brandão, C. e Hipólito, J. N. (1997) - Análise da precipitação para o estudo de cheias em Portugal, 3º Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Oficial Portuguesa (3º SILUSBA), Maputo, Moçambique.

Brandão, C. e Rodrigues, R. (1998) - Precipitações intensas em Portugal Continental para períodos de retorno até 1000 anos, DSRH-INAG, Instituto da Água, Lisboa, Portugal.

Brandão, C., Rodrigues, R., Costa, J. P., (2001) - Análise de fenómenos extremos, Precipitações intensas em Portugal Continental, DSRH-INAG, Instituto da Água, Lisboa, Portugal.

Brunetti, M., Maugeri, M., Nanni, T., (2001) – Changes in Total Precipitacion, Raindy Days and Extreme evenst in Northeasternitaly, International Journal of Climatology, 21:861–871.

Chow, V. T., Maidment, D. R. e Mays, L. W. (1988) – Applied Hydrology, McGraw-Hill, New York, Estados Unidos da América.

CLM-community (2012) – Introduction. Acedido em 25 de Setembro de 2012, em: <u>http://www.clm-community.eu/index.php</u>.

Correia, F. N., (1984 a) - Proposta de um método para a determinação de caudais de cheia em pequenas bacias naturais e urbanas, Laboratório Nacional de Engenharia Civil, LNEC, ICT, Informação Técnica, Hidráulica, ITH 6, Lisboa.

Correia, F. N., (1984 b) - Alguns procedimentos adotados pelo Soil Conservation Service para o estudo do impacto da urbanização nos caudais de cheia, Laboratório Nacional de Engenharia Civil, LNEC, ICT, Informação Técnica, Hidráulica, ITH 7, Lisboa.

Costa, A. C., Santos, J. A., & Pinto, J. G., (2011) - Climate change scenarios for precipitation extremes in Portugal based on COSMO-CLM ensemble simulations, Geophysical Research Abstracts, 108:217–234.

Damé, R.C.F., Teixeira, C.F.A., Lorensi, R.P., (2007) - Simulação de precipitação com duração horária mediante o suo do modelo Bartlett-Lewis do pulso retangular modificado, Revista Brasileira de Agrociências, Pelotas, 13:13-18.

David, J.M.S., (1976) - Determinação de Caudais de Ponta de Cheia em Pequenas Bacias Hidrográficas, LNEC, Lisboa, Portugal.

Davin, E. L., R. Stoeckli, Jaeger, E. B., Levis, S., Seneviratne, S.I., (2011) - COSMO-CLM2: A new version of the COSMO-CLM model coupled to the Community Land Model, Climate Dynamics, 37:1889-1907.

Decreto Regulamentar n°23/95 de 23 de Agosto (1996) - Regulamento Geral dos Sistemas Públicos e Prediais de Distribuição de Água e Drenagem de Águas Residuais, Lisboa.

Diodato, N., Bellocchi, G., Romano, N., Chirico, G. B., (2011) - How the aggressiveness of rainfalls in the Mediterranean lands is enhanced by climate change, Climatic Change, 108:591–599.

Dobler, A., e Ahrens, B., (2011) - Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM, Journal of Geophysical Research, vol. 116.

DuMouchel, W. H., e O'Brien., F. L., (1989) - Integrating a Robust Option into a Multiple Regression Computing Environment, Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface, Alexandria, VA: American Statistical Association.

EN 12056-3:2000 – Gravity drainage systems inside buildings – Part 3: Roof drainage, layout and calculation, CEN, Bruxelas, 2000.

França, J. R. A., Li, L. Z., Treut, H. L., (2000) – Simulação de um modelo de circulação geral com grade em zoom centrada no estado do Rio de Janeiro, XI edição de congressos brasileiros de meteorologia, Rio de Janeiro, Brasil.

Fowler, H. J., Kilsby C. G., (2003) - Implications of changes in seasonal and annual extreme rainfall. Geophysical Research Letters, 30:1720-1723.

Glasbey, C. A., Cooper, G., McGechan, M. B., (1995) - Disaggregation of daily rainfall by conditional simulation from a point-process model, Journal of Hydrology 165:1-9.

Gaspar, S., Macário, E., Mpereira, M. G., Fernandes, L., (2012) - Desagregação da precipitação em Portugal Continental com Hyetos R, Física 2012, 18º Conferência Nacional de Física, 22º encontro Ibérico para o Ensino da Física, Aveiro, Portugal.

Gonzalez-Hidalgo, C. J., Brunetti, M., Luis, M., (2010) - Precipitation trends in Spanish hydrological divisions, 1946–2005, Climate Research, 43:215–228.

Hanaish, I. S., Ibrahim, K., Jemain, A. A., (2011) - Daily Rainfall Disaggregation Using HYETOS Model for Peninsular Malaysia, Malaysia, 146-150.

Hartmann, M., Moala, F. A., Mendonça, M. A., (2011) – Estudo das precipitações Máximas anuais em Presidente Prudente, Revista Brasileira de Meteorologia, 26:561–568.

Haslinger, K., Anders, I., Hofstätter M. (2012): Regional Climate Modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region, Climate Dynamics.

He, J., Valeo, C., Chu, A., Neumann, N. F., (2011) - Stormwater quantity and quality response to climate change using artificial neural networks, Hydrological Processes, 25:1298–1312.

Holland, P. W., e Welsch, R. E., (1977) - Robust Regression Using Iteratively Reweighted Least-Squares, Communications in Statistics: Theory and Methods, A6:813– 827.

Huber, P. J., (1981) - Robust Statistics. Hoboken, NJ: John Wiley & Sons, Inc.

IPCC, 2007a: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Glossary. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, 2007b: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, 2007c: Randall, D.A., R.A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R.J. Stouffer, A. Sumi and K.E. Taylor, 2007: Cilmate Models and Their Evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen,

M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, **2007d**: Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, 2007e: Trenberth, K.E., P.D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J.A. Renwick, M. Rusticucci, B. Soden and P. Zhai, 2007: Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, **2007f**: Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.-C. Zhao, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, **2007g**: Alcamo, J., J.M. Moreno, B. Nováky, M. Bindi, R. Corobov, R.J.N. Devoy, C. Giannakopoulos, E. Martin, J.E. Olesen, A. Shvidenko, 2007: Europe. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 541-580.

IPCC, 2007h: Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez,

J. Räisänen, A. Rinke, A. Sarr and P. Whetton, 2007: Regional Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

IPCC, 2007i: Summary for Policymakers. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

JAE (1998) - Manual de Drenagem Superficial em Vias de Comunicação, Tomo 1, versão provisória, Junta Autónoma de Estradas, Direcção de Serviços de Projectos, Portugal.

Kerby, J. H., (1959) – Time of Concentration for Overland Flow, Civil Engineering, 60:174.

Kossieris, P., Koutsoyiannis, D., Onof,C., Tyralis, H. e Efstratiadis, A., (2012) – Hyetos R: An R package for temporal stochastic simulation of rainfall at fine time scales, European Geosciences Union General Assembly, Vienna, Austria.

Kotlarski, S., (2010) – Climate Scenarios, Institute for Atmospheric and Climate Science, Eidgenössische Technische Hochschule Zürich, Zürich.

Kotlarski, S., Bosshard, T., Lüthi, D., Pall, P., Schär C., (2012) - Elevation gradients of European climate change in the regional climate model COSMO-CLM, Climatic Change, 112:189-215.

Koutsoyiannis, D., (2003) - Rainfall Disaggregation Methods:Theory and Applications, Workshop on Statistical and Mathematical Methods for Hydrological Analysis, Rome.

Lencastre, A., (1992) - Lições de Hidrologia, 2^a Edição revista, Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa, Portugal.

Lencastre, A., Franco, F. M., (1992) – Lições de Hidrologia. 2^a Edição revista. Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Lisboa, Portugal.

Marques, J. A. S., Sousa, J. J. O., (2008) - Hidráulica Urbana, Sistemas de abastecimento de água e de drenagem de águas residuais, Imprensa da Universidade de Coimbra, Coimbra.

Martins, F. J. P. (2000) – Dimensionamento hidrológico e hidráulico de passagens inferiores rodoviárias para águas pluviais, Dissertação para obtenção do Grau de Mestre em Engenharia Civil da Faculdade de Ciências e Tecnologia da Universidade de Coimbra, Coimbra.

Massey, F. J. (1951) - The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Statistical Association, 46:68-78.

Matos, M. A., (1995) – Manual operacional para a regressão linear, FEUP, Porto.

Matos, R. e Silva, M. (1986) – Estudos de precipitação com aplicação no projeto de sistemas de drenagem pluvial. Curvas Intensidade-Duração-Frequência da precipitação em Portugal, ITH24, LNEC, Lisboa.

Mendes, A. R., (2011) - Avaliação da capacidade de simulação da precipitação diária máxima e horária máxima dos modelos climáticos regionais para Portugal Continental. Um contributo para a análise do risco de cheias num quadro de alterações climáticas, Dissertação para obtenção do Grau de Mestre em Engenharia Civil do Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa.

Moreira, M. M., Corte-Real, J., (2008) - Adaptação das obras hidráulicas às alterações climáticas, Workshop Internacional sobre Clima e Recursos Naturais nos Países de Língua Portuguesa, Senegal, Cabo Verde.

Naghettini, M., Pinto, E. J. A., (2007) - Hidrologia estatística, CPRM, Belo Horizonte (MG).

Naghettini, M., Portela, M. M., (2011) – Probabilidade e estatística aplicadas à hidrologia, DECivil, IST, Lisboa.

Nolan, P., Lynch, P., Sweeney, C., (2012) - Simulating the future wind energy resource of Ireland using the COSMO-CLM model, Wind Energy.

Oliveira, R. (1996) – Determinação de Hidrogramas de Cheia em Pequenas Bacias Hidrográficas, Curso sobre drenagem de águas superficiais em vias de comunicação, LNEC, Lisboa, Portugal.

Orsi, C. V. L., Sarubo, R. S., (2010) – Captação e tratamento de águas pluviais para uso não potável, Revista Científica da Faculdade de Tecnologia de Tatuí, vol. 2, nº1.

Pedroso, V. M. R., (2000) – Manual dos sistemas prediais de distribuição e drenagem de águas, LNEC, Lisboa.

Peñuelas, J., Lloret, F., Montoya, R., (2001) - Severe drought effects on Mediterranean woody flora in Spain, Forest Science, 47:214–218.

Portela, M. M., (2006) - Modelação Hidrológica, DECivil, SHRHA, Instituto Superior Técnico, Lisboa, Portugal.

Pui, A., Sharma, A., Mehrotra, R., (2009) - A Comparison of Alternatives for Daily to Sub-Daily Rainfall Disaggregation, 18th World IMACS / MODSIM Congress, Cairns, Australia, 3535-3541.

Quintela, A. C., (1996) - Apontamentos de Hidrologia e Recursos Hídricos, Departamento de Engenharia Civil, Instituto Superior Técnico, Lisboa, Portugal.

Quintela, A. C., Portela, M. M., (2002) – A modelação hidrológica em Portugal nos últimos 25 anos do Século XX, nas perspetivas determinística, probabilística e estocástica, Revista da Associação Portuguesa dos Recursos Hídricos, 23:7-22.

Rockel, B., Will, A., Hense, A., (2008) – The Regional Climate Model COSMO-CLM (CCLM), Meteorologische Zeitschrift, 17:347-348.

Rodrigues, R. (1990) – Caracterização de episódios meteorológicos extremos. O sotavento Algarvio, DSH-DGRN, Lisboa.

Rodriguez-Iturbe, I., Cox, D. R., Isham, V., (1987) – Some models for rainfall based on stochastic point processes, Proc. R. Soc. Lond., 410:269-288.

Rolim, G. S., Camargo, M. B. P., Lania, D. G., Moraes, J. F. L., (2007) – Classificação climática de Koppen e de Thornthwaite e sua aplicabilidade na determinação de zonas agroclimáticas para o estado de São Paulo, Bragantia, Campinas, 66:711-720.

Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D., Burkey, J., Steinemann, A. C. Lettenmaier, D.P., (2010) - Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State, Climatic Change, 102:319–349.

Rosenzweig, C., Major, D. C., Demong, K., Stanton, C., Horton, R., Stults, M., (2007)
Managing climate change risks in New York City's system: assessment and adaptation planning, Mitig Adapt Strat Glob Change, 12:1391–1409.

Santos, F. D., Miranda, P. (eds), (2006) - Alterações Climaticas em Portugal: Cenários, Impactos e Medidas de Adaptação – Projecto SIAM II, Gradiva, Lisboa.

Schaake, J. C., Geiger, J. C. e Knap, J. W. (1967) – Experimental Examination os the Ratinal Method, Journal of Hydraulics Division, ASCE N°93, HY6, 330-357.

Seleshi, Y., Camberlin, P., (2006) - Recent changes in dry spell and extreme rainfall events in Ethiopia, Springer-Verlag, Theoretical and Applied Climatology, 83:181–191.

Segond, M.L., Onof, C., Wheater, H.S., (2006) - Spatial-temporal disaggregation of daily rainfall from a generalized linear model, Journal of Hydrology, 331:674–689.

Sepúlveda, S., (2011) – Avaliação da Precipitação Extrema na Ilha da Madeira, Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente do Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa.

Silva-Afonso, A., (2003) – Instalações prediais de águas e esgotos: Erros e defeitos frequentes na sua conceção e construção, 2º Simpósio Internacional sobre Patologias, Durabilidade e Reabilitação de Edifícios, Lisboa.

Smith, J. B., Strzepek, K. M., Cardini, C., Castaneda, M., Holland, J., Quiroz, C., Wigley, T. M. L., Herrero, J., Hearne, P., Furlow, J., (2011) - Coping with climate variability and climate change in La Ceiba, Honduras, Climatic Change, 108:457–470.

Smith, S. J., Wigley, T. M. L., Nakicenovic, N., Raper, S. C. B., (2000) – Climate Implication of Greenhouse Gas Emission Scenarios, Technological Forecasting and Social Chang, 65:195-204.

Soil Conservation Service (1973) – A Method for Estimating Volume and Rate of Runoff in Small Watersheds, U. S. Department of Agriculture, Washington D.C.

Sousa, R. P. G., (2011) – Conceção e dimensionamento de sistemas prediais de drenagem pluvial, Dissertação para obtenção do Grau de Mestre em Engenharia Civil da Universidade de Aveiro, Aveiro.

Street, J. O., Carroll, R. J., e Ruppert, D., (1988) - A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares, The American Statistician, 42:152–154.

Tomás, P. P., (1992) - Estudo da erosão hídrica em solos agrícolas. Aplicação à região sul de Portugal, Dissertação para obtenção do Grau de Mestre em Engenharia Civil do Instituto Superior Técnico da Universidade Técnica de Lisboa, Lisboa.

Trigo, R., Osborn, T. J., Corte-Real, J., (2002) – Influencia da Oscilação do Atlântico Norte no Clima do Continente Europeu e no Caudal dos Rios Ibéricos Atlânticos, Finisterra, XXXVII, 73:5-31.

van der Linden, P., J.F.B. Mitchell (eds.), (2009) - ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES Project, Met Office Hadley Centre, Exeter EX1 3PB, UK, 160pp.

Vieira, S. R., Lombardi Neto, F., Burrows, I. T., (1991) - Mapeamento da chuva diária máxima provável para o Estado de São Paulo, Revista Brasileira de Ciência do Solo, Campinas, 15:93-98.
Wang, W., Zhang, Z., Yong, B., Shao, Q., Xing, W., (2011) - Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China, Springer-Verlag, Stoch Environ Res Risk Assess, 25:881–895.

Wey, M. K., (2006) - Temporal Disaggregation of Daily Precipitation Data in a Changing Climate, A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science in Civil Engineering, Waterloo, Ontario, Canada.

Wójcik, J., e Buishand, T. A., (2003) - Simulation of 6-hourly Rainfall and Temperature by Two Resampling Schemes, Journal of Hydrology, 273:69-80.

Yu, Y., Zhang, X., Gou, Y., (2004) - Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, Advances in Atmospheric Sciences, 21:444–455.

ANEXO A – DETERMINAÇÃO DE PARÂMETROS HIDROLÓGICOS

A1 - Método Racional

Quadro A1.1 – Valores médios do coeficiente C da fórmula racional - ÁREAS URBANAS (adaptado de ASCE, manual nº37).

Tipo de ocupação	С
Comercial	
no centro urbano	0,70 - 0,95
nos arredores	0,50 - 0,70
Residencial	
habitações unifamiliares	0,30 - 0,50
prédios isolados	0,40 - 0,60
prédios germinados	0,60 - 0,70
Suburbano	0,25 - 0,40
Industrial	
pouco denso	0,50 - 0,80
muito denso	0,60 - 0,90
Parques e cemitérios	0,10 - 0,25
Campos de jogos	0,20 - 0,40
Tipo de superfície	С
Tipo de superfície Pavimento	С
Tipo de superfície Pavimento asfáltico	C 0,70 - 0,95
Tipo de superfície Pavimento asfáltico betão	C 0,70 - 0,95 0,80 - 0,95
Tipo de superfície Pavimento asfáltico betão betão Passeios para peões	C 0,70 - 0,95 0,80 - 0,95 0,85
Tipo de superfície Pavimento asfáltico betão betão Passeios para peões Coberturas	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95
Tipo de superfície Pavimento asfáltico betão Passeios para peões Coberturas Relvado sobre solo permeável	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95
Tipo de superfície Pavimento asfáltico asfáltico betão Passeios para peões Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10
Tipo de superfície Pavimento asfáltico betão betão Passeios para peões Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10 0,10 - 0,15
Tipo de superfície Pavimento asfáltico asfáltico betão Passeios para peões Coberturas Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10 0,10 - 0,15 0,15 - 0,20
Tipo de superfície Pavimento asfáltico asfáltico betão Passeios para peões Coberturas Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10 0,10 - 0,15 0,15 - 0,20
Tipo de superfície Pavimento asfáltico betão Passeios para peões Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10 0,10 - 0,15 0,15 - 0,20 0,13 - 0,17
Tipo de superfície Pavimento asfáltico betão Passeios para peões Coberturas Relvado sobre solo permeável plano <2%	C 0,70 - 0,95 0,80 - 0,95 0,85 0,75 - 0,95 0,05 - 0,10 0,10 - 0,15 0,15 - 0,20 0,13 - 0,17 0,18 - 0,22

A2 - Método Soil Conservation Service

Quadro A2.1 - Classificação hidrológica de solos segundo o SCS (adaptado de Marques e Sousa, 2008).

Solo	Características dos solos
	Baixo potencial de escoamento superficial. Solos dando origem a baixo
Tipo A	arejas com bastante espessura, e com nouco limo ou argila, e arenitos com
	bastante espessura e muito permeáveis.
	Potencial de escoamento superficial abaixo da média. Solos menos permeáveis
Tipo P	que os do tipo A mas com permeabilidade superior à média. Inclui
тро в	fundamentalmente solos arenosos menos espessos que os do tipo A e arenitos
	menos espessos e menos agregados que os do tipo A.
	Potencial de escoamento superficial acima da média. Solos originando
Tipo C	escoamentos diretos superiores à média e superiores aos originados pelos tipos
Tipo C	anteriores. Inclui solos pouco espessos e solos com quantidades apreciáveis de
	argilas, se bem que menos do que os do tipo D.
	Elevado potencial de escoamento superficial. Solos com argilas expansivas e
Tipo D	solos pouco espessos, com sub-horizontes quase impermeáveis que originam
	elevado escoamento direto.

Figura A2.1 – Carta dos solos de Portugal classificados pelas suas características hidrológicas (retirado de David, 1976).

Quadro A2.2 - Número de escoamento CN para regiões urbanas e sub-urbanas (adaptado de Marques e
Sousa, 2008).

O ann a a ža	de sele		Tipo de s	solo / CN										
Ocupação	Α	В	С	D										
Espaços abertos, relvados, parqu	paços abertos, relvados, parques, cemitérios, etc.:													
• boas condições, relva co	39	61	74	80										
 condições razoáveis, rel da área 	49	69	79	84										
• más condições, relva col	68	79	86	89										
Zonas comerciais e de escritório ordem dos 85%	89	92	94	95										
Zonas industriais área impermeá	vel da ordem dos 72%	81	88	91	93									
Zonas residenciais:														
Áreas médias dos lotes	% média de Impermeabilização													
$<500m^{2}$	65%	77	85	90	92									
1000 m^2	38%	61	75	83	87									
1300 m^2	30%	57	72	81	86									
2000 m^2	25%	54	70	80	85									
4000 m^2	20%	51	68	79	84									
Parques de estacionamento, cobe	98	98	98	98										
Arruamentos e estradas:														
• asfaltadas e com drenag	98	98	98	98										
• gravilha		76	85	89	91									
• terra		72	82	87	89									

CN para	Valor corri	gido de CN
AMCII	para AMCII	para AMCIII
100	100	100
95	87	98
90	78	96
85	70	94
80	63	91
75	57	88
70	51	85
65	45	82
60	40	78
55	35	74
50	31	70
45	26	65
40	22	60
35	18	55
30	15	50
25	12	43
20	9	37
15	6	30
10	4	22
5	2	13
0	0	0

Quadro A2.3 – Valores corrigidos do número de escoamento para AMCI e para AMCIII em função dos valores do número de escoamento para AMCII (adaptado de Marques e Sousa, 2008).

A3 - Intensidade de Precipitação

Figura A3. 1 - Regiões pluviométricas (adaptado de Matos e Silva, 1986).

- REGIÃO PLUVIOMÉTRICA A inclui as áreas não referidas em B e C.
- REGIÃO PLUVIOMÉTRICA B inclui os concelhos seguintes: Alfândega da Fé, Alijó, Almeida, Armamar, Boticas, Bragança, Carrazeda de Ansiães, Chaves, Figueira de Castelo Rodrigo, Freixo de Espada à Cinta, Macedo de Cavaleiros, Meda, Miranda do Douro, Mirandela, Mogadouro, Montalegre, Murça, Penedono, Pinhel, Ribeira de Pena, Sabrosa, Santa Marta de Penaguião, São João de Pesqueiro, Sernencelhe, Tabuaço, Torre de Moncorvo, Trancoso, Valpaços, Vila Flor, Vila Pouca de Aguiar, Vila Nova de Foz Côa, Vila Real, Vimioso e Vinhais.
- REGIÃO PLUVIOMÉTRICA C inclui os concelhos das regiões autónomas dos Açores e da Madeira e, do continente, os concelhos da Guarda, Manteigas, Moimenta da Beira, Sabugal e Tarouca, e as áreas situadas a altitude superior a 700 metros dos concelhos de Aguiar da Beira, Amarante, Arcos de Valdevez, Arganil, Arouca, Castanheira de Pêra, Castro Daire, Celorico da Beira, Cinfães, Covilhã, Fundão, Góis, Gouveia, Lamego, Marvão, Melgaço, Oleiros, Pampilhosa da Serra, Ponte da Barca, Resende, Seia, S. Pedro do Sul, Terras de Bouro, Tondela, Vale de Cambra, Vila Nova de Paiva e Vouzela.

Periodo de retorno	Regi Curvas II	ião A DF Lisboa	Regi Curvas IDF	ão B Lisboa-20%	Regi Curvas IDF	ão C Lisboa+20%
Tr (anos)	a	b	a	b	a	b
2	202,72	0,577	162,18	0,577	243,26	0,577
5	259,26	-0,562	207,41	-0,562	311,11	-0,562
10	290,68	-0,549	232,21	-0,549	348,82	-0,549
20	317,74	-0,538	254,19	-0,538	381,29	-0,538
50	349,54 -0,524		279,63	-0,524	419,45	-0,524
100	365,62	-0,508	292,50	-0,508	438,75	-0,508

Quadro A3.1 – Parâmetros das Curvas de Intensidade-Duração-Frequência (adaptado de Matos e Silva, 1986).

								Pe	ríodos de r	etorno (anc	is)						
		2	2	Ę	5	1	0	2)	5	0	10)0	50)0	10	00
						Parâ	metros (l _{(mr}	n/h)=aD _(min) b)	IDF	(válidas do	os 5 aos 30	min)				
Códigos	Posto udográfico	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b
02G/09	Casal Soeiro	368.70	-0.697	487.77	-0.674	567.07	-0.665	643.30	-0.659	742.13	-0.652	816.26	-0.649	987.73	-0.643	1061.50	-0.641
03J/05	Vila da Ponte																
03Q/01	Bragança																
05T/01	Miranda do Douro	146.70	-0.539	179.44	-0.483	202.44	-0.461	224.96	-0.446	254.50	-0.431	276.82	-0.423	328.76	-0.409	351.19	-0.405
001/407	Vila Real																
00K/07	Oh avera	140.00	0.505	247.20	0.500	202.40	0.000	205.02	0.000	201.00	0.005	402.04	0.007	700.00	0.000	540.70	0.040
03101/01	Chaves	148.96	-0.585	217.29	-0.596	262.48	-0.600	305.82	-0.603	361.90	-0.605	403.91	-0.607	500.99	-0.609	542.72	-0.610
061/01	Amarante																
06P/01	Cerejais																
08P/02	Escalhao	000.40	0.505	000.54	0.540	0.40.00	0.500	005.00	0.504	105.04	0.500	547.40	0.500	007.00	0.407	000.00	0.400
U3E/U3	Viana do Castelo	202.49	-0.525	286.54	-0.512	342.32	-0.508	395.86	-0.504	465.21	-0.502	517.19	-0.500	b3/.3b	-0.497	689.03	-U.49b
U7 F7U1	Porto (Serra do Pilar)	400.74	0.500	040 70	0.500	0.40.4.4	0.504	074.00	0.504	000.00	0.504	000 50	0.504	100.10	0.500	107.00	0.500
10F/01	Aveiro (Universidade)	168.74	-0.529	213.70	-0.530	243.44	-0.531	271.90	-0.531	308.88	-0.531	336.53	-0.531	400.43	-0.532	427.90	-0.532
100/01	Viseu	110.01	0.457	470.00	0.445	000.40	0.400	000.40	0.405	050.00	0.404	070.50	0.400	000.07	0.405	050.07	0.400
10H/01	Caramulo	142.94	-0.457	179.08	-0.445	203.10	-0.439	226.18	-0.435	256.08	-0.431	278.50	-0.429	330.37	-0.425	352.67	-0.423
111/01	Sta Comba Dao	1/8.//	-0.549	272.05	-0.575	333.98	-0.585	393.45	-0.592	4/0.50	-0.599	528.2b	-0.602	661.80	-0.609	719.22	-0.611
1112/05	Penhas Douradas	163.11	-0.514	242.78	-0.518	295.51	-0.519	346.09	-0.520	411.55	-0.521	460.62	-0.522	573.97	-0.522	622.71	-0.523
120/03	Loviina	159.10	-0.527	215.00	-0.540	252.06	-0.546	287.63	-0.550	333.69	-0.554	368.22	-0.556	448.04	-0.561	482.36	-0.562
126/01	Combra (IG)	240.05	0.500	202.74	0.514	224.05	0.507	204.05	0.500	447.40	0.400	450.00	0.405	EAC 07	0.400	505.04	0.400
131/02	Grainas	219.65	-0.530	282.71	-0.514	324.65	-0.507	364.95	-0.503	417.19	-0.498	456.36	-0.495	546.97	-0.490	200.04	-0.469
210/06	Lisboa (IGIDL)	176.46	-0.529	214.32	-0.499	239.69	-0.486	204.10	-0.477	295.96	-0.467	519.86	-0.461	3/5.21	-0.451	399.04	-0.447
210/02	Lisboa (Porteia)	187.70	-0.516	294.15	-0.555	305.58	-0.571	434.48	-0.581	524.03	-0.592	591.31	-0.598	747.18	-0.608	814.30	-0.611
200/01	S. Juliao do Tojal	104.00	-0.545	236.96	-0.557	204.04	-0.561	330.31	-0.565	309.37	-0.567	433.50	-0.569	535.70	-0.572	579.50	-0.57.3
220/01	Setubal																
16H/U1	Barragem de Castelo de Bode	455.04	0.400	400.07	0.455	242.00	0.407	225.00	0.101	005.45	0.444	007.70	0.404	000.00	0.000	204.00	0.007
1810/01	Portalegre	155.34	-0.498	189.67	-0.455	213.08	-0.437	235.80	-0.424	265.45	-0.411	287.78	-0.404	339.63	-0.392	361.99	-0.387
20E/01	Barragem de Magos	455.00	0.500	000.47	0.500	004.00	0.575	0.40.00	0.504	147.00	0.500	100.05	0.507	500.01	0.005	0.14.40	0.007
201/01	Pavia	155.93	-0.532	239.17	-0.563	294.68	-0.575	348.08	-0.584	417.36	-0.592	469.35	-0.597	589.64	-0.605	641.40	-0.607
22J/U2	Evora-Cemiterio	197.78	-0.534	228.45	-0.474	250.35	-0.449	2/1.98	-0.430	300.48	-0.412	322.13	-0.401	372.70	-0.383	394.60	-0.377
253/02	Beja	163.46	-0.511	199.75	-0.478	224.2b	-0.464	247.97	-0.454	278.84	-0.444	302.07	-0.438	355.92	-0.427	379.12	-0.424
236/01	Pego do Altar	400.00	0.500	222.04	0.540	074.00	0.550	245.42	0.550	007.47	0.550	100.40	0.550	100.00	0.504	505.40	0.500
260/01	Sines	169.86	-0.536	233.04	-0.546	2/4.92	-0.550	315.12	-0.553	367.17	-0.556	406.19	-0.558	496.38	-0.561	535.16	-0.562
27 G/01	Reliquias	162.92	-0.483	208.66	-0.432	240.08	-0.413	270.59	-0.399	310.41	-0.387	340.39	-0.380	409.97	-0.369	439.96	-0.365
303/02																	
31J/01	S. Bras de Alportel *																
3UM/U1	Figueirais *	440.04	0.540	000.05	0.544	054.00	0.555	000.50	0.500	054.50	0.574	000.05	0.575	100.05	0.500	500.00	0.505
31F/U1	Praia da Rocha	143.24	-0.516	209.85	-0.544	254.08	-0.555	296.56	-0.563	351.59	-0.5/1	392.85	-0.575	488.25	-0.582	529.28	-0.585
30F/01	Monchique	231.97	-0.549	274.93	-0.479	306.29	-0.452	337.36	-0.433	3/8.41	-0.415	409.57	-0.405	482.32	-0.387	513.81	-0.382
32D/01	Sagres	100.15												181.85		100.05	
31J/02	Haro	199.45	-0.541	246.18	-0.483	278.56	-0.461	310.14	-0.446	351.44	-0.431	382.59	-0.422	454.99	-0.408	486.23	-0.403
3UM/02	Vila Real de Sto António	163.82	-0.479	204.99	-0.452	232.58	-0.440	259.17	-0.432	293.72	-0.424	319.66	-0.419	379.75	-0.410	405.61	-0.408
	* Digitalização não sistemática (DN	1S)															

Quadro A3.2 - Parâmetros das curvas IDF, para duração entre 5 e 30 minutos (retirado de Brandão, et al., 2001).

	Períodos de retorno (anos)															
	2	2	6	;	1	0	2)	5	0	10	0	50	0	10	00
					Parâr	netros (l _{(mr}	(min) ^b	IDF		(válidas do	s 30 min às	s6h)				
Posto udográfico	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b
Casal Soeiro	208.29	-0.533	347.51	-0.581	445.15	-0.602	541.43	-0.617	668.76	-0.632	765.64	-0.640	992.85	-0.656	1091.60	-0.660
Vila da Ponte																
Bragança																
Miranda do Douro	243.20	-0.699	467.22	-0.766	630.14	-0.793	793.34	-0.812	1011.70	-0.830	1179.10	-0.841	1574.50	-0.859	1747.10	-0.865
Vila Real																
Chaves	211.55	-0.691	390.39	-0.753	520.77	-0.779	651.83	-0.798	827.78	-0.817	963.14	-0.828	1284.00	-0.847	1424.60	-0.853
Amarante																
Cerejais																
Escalhão																
Viana do Castelo	281.33	-0.624	545.43	-0.704	742.80	-0.738	943.80	-0.762	1216.60	-0.786	1428.20	-0.800	1934.00	-0.824	2156.80	-0.832
Porto (Serra do Pilar)																
Aveiro (Universidade)	253.70	-0.654	361.63	-0.683	435.95	-0.697	508.78	-0.707	604.76	-0.718	677.67	-0.725	848.55	-0.738	922.80	-0.742
Viseu																
Caramulo	118.17	-0.416	186.42	-0.466	235.34	-0.489	284.34	-0.507	350.11	-0.526	400.79	-0.537	521.30	-0.558	574.26	-0.565
Sta Comba Dão	241.72	-0.641	378.45	-0.663	470.50	-0.672	559.43	-0.678	675.14	-0.684	762.16	-0.687	963.91	-0.693	1050.80	-0.695
Penhas Douradas	148.88	-0.499	297.38	-0.579	409.76	-0.613	524.90	-0.638	681.88	-0.662	804.03	-0.676	1097.00	-0.700	1226.30	-0.709
Covilhã	138.14	-0.493	194.75	-0.521	233.27	-0.535	270.74	-0.545	319.82	-0.555	356.92	-0.562	443.41	-0.573	480.84	-0.577
Coimbra (IG)	280.69	-0.653	374.38	-0.647	436.65	-0.644	496.49	-0.643	574.03	-0.641	632.17	-0.640	766.63	-0.639	824.45	-0.638
Gralhas	229.22	-0.561	361.34	-0.604	453.73	-0.623	544.85	-0.637	665.47	-0.651	757.34	-0.660	973.15	-0.675	1067.00	-0.680
Lisboa (IGIDL)	251.82	-0.628	345.32	-0.634	407.36	-0.637	466.92	-0.639	544.07	-0.641	601.92	-0.642	735.65	-0.644	793.16	-0.645
Lisboa (Portela)	359.15	-0.711	417.04	-0.665	461.54	-0.647	506.26	-0.634	565.82	-0.623	611.24	-0.616	717.68	-0.605	763.86	-0.602
S. Julião do Tojal	205.93	-0.596	238.70	-0.544	265.17	-0.525	292.01	-0.512	327.90	-0.500	355.32	-0.493	419.64	-0.482	447.56	-0.479
Setúbal																
Barragem de Castelo de Bode																
Portalegre	229.15	-0.622	389.81	-0.674	504.10	-0.697	617.67	-0.713	768.83	-0.729	884.39	-0.739	1156.70	-0.756	1275.50	-0.761
Barragem de Magos																
Pavia	237.28	-0.659	306.77	-0.647	353.20	-0.642	397.89	-0.639	455.90	-0.635	499.43	-0.633	600.18	-0.630	643.53	-0.629
Evora-Cemitério	366.51	-0.713	571.47	-0.735	709.63	-0.744	843.21	-0.751	1017.00	-0.757	1147.90	-0.761	1451.30	-0.767	1582.10	-0.769
Beja	303.85	-0.692	468.63	-0.727	581.81	-0.743	692.32	-0.754	837.37	-0.765	947.16	-0.772	1203.30	-0.783	1314.20	-0.787
Pêgo do Altar																
Sines	316.67	-0.719	416.93	-0.713	483.30	-0.711	546.97	-0.709	629.39	-0.707	691.15	-0.706	833.87	-0.705	895.23	-0.704
Reliquias	285.02	-0.658	484.95	-0.683	619.29	-0.691	748.90	-0.697	917.30	-0.702	1043.80	-0.705	1336.80	-0.710	1462.90	-0.712
Catraia *					358.73	-0.583			600.18	-0.595	745.31	-0.600	1225.90	-0.611	1519.50	-0.616
S. Brás de Alportel *					342.70	-0.575			569.56	-0.576	709.50	-0.577	1174.90	-0.580	1459.40	-0.581
Figueirais *					373.03	-0.579			/48./0	-0.692	1006.60	-0.698	1980.80	-0.610	3323.50	-0.666
Praia da Rocha	254.91	-0.684	366.91	-0.700	441.75	-0.706	613.84	-0.711	607.46	-0.715	677.76	-0.718	840.56	-0.723	910.65	-0.724
Monchique	245.74	-0.566	312.01	-0.509	361.22	-0.491	409.85	-0.479	473.87	-0.469	522.31	-0.463	635.09	-0.454	683.80	-0.451
Sagres			175 10		500.07				004.00		004 54		4450.00		1050.00	
Haro	312.50	-0.679	4/5.42	-0.686	583.37	-0.688	686.94	-0.690	821.02	-0.691	921.51	-0.692	1153.80	-0.693	1253.60	-0.694
Vila Real de Sto António	342.68	-0.690	483.64	-0.694	577.01	-0.696	666.52	-0.697	782.29	-0.698	869.17	-0.699	1069.70	-0.700	1155.90	-0.700
* Digitalização não sistemática (DN	4S)															

Quadro A3.3 - Parâmetros das curvas IDF, para duração entre 30 minutos e 6 horas (retirado de Brandão, et al., 2001).

								Pe	eríodos de r	retorno (and	is)						
		2	2	6	5	1	0	2	0	5	0	10)0	50	0	10	00
						Parâr	netros (l _{(mn}	, h)=aD _(min) b))		IDF (válida	as dos 6 às	48 h)				
Códigos	Posto udográfico	а	b	а	b	а	b	а	b	а	b	а	b	а	b	а	b
02G/09	Casal Soeiro	292.29	-0.589	287.00	-0.545	293.03	-0.527	302.25	-0.513	317.15	-0.499	329.73	-0.491	361.60	-0.477	376.10	-0.472
03J/05	Vila da Ponte																
03Q/01	Bragança																
05T/01	Miranda do Douro	255.40	-0.701	269.27	-0.669	283.58	-0.656	299.23	-0.646	321.19	-0.636	338.48	-0.630	380.08	-0.620	398.44	-0.617
	Vile Deel																
06K/07	vila Real																
03M/01	Chaves	171.15	-0.654	189.58	-0.635	203.14	-0.627	216.72	-0.621	234.84	-0.614	248.70	-0.610	281.34	-0.603	295.54	-0.601
061/01	Amarante																
06P/01	Cerejais																
08P/02	Escalhão																
03E/03	Viana do Castelo	325.76	-0.652	317.36	-0.616	320.05	-0.599	325.96	-0.586	336.65	-0.574	346.17	-0.566	371.29	-0.552	383.00	-0.547
07F/01	Porto (Serra do Pilar)																
10F/01	Aveiro (Universidade)	278.52	-0.669	360.93	-0.677	415.45	-0.681	467.72	-0.684	535.37	-0.687	586.04	-0.689	703.13	-0.693	753.46	-0.694
10J/01	Viseu																
10H/01	Caramulo	208.61	-0.504	235.18	-0.496	253.03	-0.492	270.27	-0.488	292.72	-0.485	309.62	-0.482	348.84	-0.478	365.76	-0.477
111/01	Sta Comba Dão	239.96	-0.639	347.38	-0.651	419.30	-0.656	488.63	-0.660	578.72	-0.663	646.41	-0.666	803.21	-0.669	870.74	-0.671
11L/05	Penhas Douradas	223.11	-0.559	246.16	-0.542	262.85	-0.534	279.48	-0.528	301.63	-0.522	318.54	-0.518	358.34	-0.511	375.66	-0.508
12L/03	Covilhã	153.40	-0.505	168.42	-0.488	179.26	-0.480	190.07	-0.473	204.45	-0.467	215.44	-0.463	241.30	-0.455	252.57	-0.453
12G/01	Coimbra (IG)	271.67	-0.653	485.15	-0.695	639.05	-0.712	792.84	-0.725	998.29	-0.738	1155.70	-0.745	1527.60	-0.758	1689.90	-0.762
13L/02	Gralhas	201.11	-0.5287	213.87	-0.5023	224.77	-0.4901	236.26	-0.4809	252.11	-0.4715	264.47	-0.4658	294.1	-0.4556	307.14	-0.4521
21C/06	Lisboa (IGIDL)	362.78	-0.698	545.58	-0.721	670.81	-0.732	792.97	-0.739	953.23	-0.747	1074.50	-0.752	1357.30	-0.760	1479.80	-0.762
21C/02	Lisboa (Portela)	474.64	-0.756	763.29	-0.764	955.11	-0.767	1139.40	-0.769	1378.10	-0.771	1557.10	-0.772	1970.90	-0.773	2148.80	-0.774
20C/01	S. Julião do Tojal	381.00	-0.705	812.46	-0.753	1122.70	-0.770	1430.30	-0.781	1837.50	-0.792	2147.20	-0.797	2872.40	-0.807	3186.90	-0.810
22D/01	Setúbal																
16H/01	Barragem de Castelo de Bode																
18M/01	Portalegre	252.46	-0.639	287.90	-0.624	312.55	-0.617	336.72	-0.612	368.50	-0.606	392.58	-0.603	448.78	-0.597	473.11	-0.596
20E/01	Barragem de Magos																
201/01	Pavia	262.93	-0.680	395.64	-0.689	483.85	-0.692	568.61	-0.695	678.44	-0.697	760.81	-0.698	951.27	-0.700	1033.20	-0.701
22J/02	Évora-Cemitério	354.04	-0.712	532.50	-0.732	654.02	-0.741	772.17	-0.747	926.70	-0.753	1043.40	-0.757	1314.90	-0.764	1432.20	-0.766
25J/02	Beja	368.82	-0.725	511.80	-0.742	608.92	-0.750	703.36	-0.756	826.97	-0.762	920.38	-0.766	1138.10	-0.773	1232.00	-0.776
23G/01	Pêgo do Altar																
26D/01	Sines	293.59	-0.709	455.06	-0.733	566.36	-0.744	675.25	-0.752	818.37	-0.759	926.80	-0.764	1180.00	-0.772	1289.80	-0.775
27G/01	Reliquias	489.17	-0.750	839.99	-0.778	1082.00	-0.790	1318.40	-0.797	1628.20	-0.805	1862.50	-0.809	2408.20	-0.816	2644.10	-0.819
30J/02	Catraia *					359.74	-0.583			609.66	-0.597	745.65	-0.600	1227.00	-0.611	1520.90	-0.616
31J/01	S. Brás de Alportel *					509.07	-0.634			923.58	-0.648	1219.40	-0.658	2210.20	-0.675	2858.60	-0.682
30M/01	Figueirais *					758.40	-0.685			1666.50	-0.712	2324.80	-0.724	5081.90	-0.752	6999.60	-0.761
31F/01	Praia da Rocha	420.21	-0.773	481.99	-0.749	527.23	-0.739	572.27	-0.732	632.04	-0.725	677.55	-0.721	784.16	-0.714	830.42	-0.711
30F/01	Monchique	593.83	-0.710	1587.20	-0.785	2342.80	-0.810	3107.90	-0.825	4135.30	-0.840	4923.70	-0.848	6783.50	-0.860	7594.20	-0.864
32D/01	Sagres																
31J/02	Faro	405.67	-0.726	594.84	-0.724	720.14	-0.724	840.34	-0.723	995.95	-0.723	1112.60	-0.723	1382.10	-0.722	1497.90	-0.722
30M/02	Vila Real de Sto António	432.64	-0.735	535.23	-0.718	605.53	-0.711	674.11	-0.706	763.99	-0.701	831.45	-0.699	988.58	-0.694	1056.30	-0.693
	* Digitalização não sistemática (DI	NS)															

Quadro A3.4 - Parâmetros das curvas IDF, para duração entre 6 e 48 horas (retirado de Brandão, et al., 2001).

ANEXO A

ANEXO B – CURVAS IDF

B1 – Parâmetros a e b

										Per	ríodo de r	etorno	(anos)												
ligo	ıçã o	ário	Doníodo		2	:	5	1	0	2	20	4	50	1	00	5	00	10	00						
Cóč	Esta	Cen	Periodo						Pa	râmetro	s válidos	dos 5 m	in aos 30	min											
		•		a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b						
		Obs	2003-2010	208.4	-0.694	247.5	-0.694	273.5	-0.694	298.4	-0.694	330.6	-0.694	354.7	-0.694	410.5	-0.694	434.5	-0.694						
	ca		2011-2040	295.4	-0.693	342.8	-0.693	374.2	-0.693	404.3	-0.693	443.3	-0.693	472.6	-0.693	540.1	-0.693	569.1	-0.693						
2C	Bar	A1B	2041-2070	223.9	-0.694	274.5	-0.694	308.1	-0.694	340.2	-0.694	381.8	-0.694	413.0	-0.694	485.1	-0.694	516.1	-0.694						
G/0	Da		2071-2100	307.6	-0.693	358.2	-0.694	391.7	-0.694	423.8	-0.694	465.4	-0.694	496.6	-0.694	568.6	-0.694	599.5	-0.694						
03	onte		2011-2040	292.6	-0.694	358.3	-0.694	401.7	-0.694	443.4	-0.694	497.4	-0.694	537.8	-0.694	631.3	-0.694	671.5	-0.694						
	Pc	B1	2041-2070	300.0	-0.694	370.8	-0.694	417.6	-0.694	462.6	-0.694	520.8	-0.694	564.4	-0.694	665.1	-0.694	708.4	-0.694						
K/01UG Manços		Obs	2071-2100	304.9	-0.694	361.5	-0.694	399.1	-0.694	435.0	-0.694	481.6	-0.693	516.5	-0.693	597.2	-0.693	631.8	-0.693						
			2001-2011	153.8	-0.540	221.2	-0.540	265.8	-0.540	308.5	-0.540	363.9	-0.540	405.4	-0.540	501.3	-0.540	542.5	-0.540						
			2011-2040	218.6	-0.539	344.9	-0.541	428.5	-0.541	508.7	-0.541	612.5	-0.542	690.2	-0.542	870.0	-0.542	947.3	-0.542						
	soóu	A1B	2041-2070	227.7	-0.540	351.9	-0.540	434.0	-0.540	512.9	-0.540	614.9	-0.540	691.3	-0.540	868.0	-0.540	944.0	-0.540						
	Ma		2071-2100	243.4	-0.540	386.5	-0.541	481.2	-0.541	572.0	-0.541	689.6	-0.541	777.7	-0.541	981.4	-0.541	1068.9	-0.541						
23k	São		2011-2040	232.7	-0.539	375.3	-0.539	469.7	-0.539	560.2	-0.539	677.4	-0.539	765.2	-0.539	968.1	-0.539	1055.3	-0.539						
		B1	2041-2070	199.0	-0.540	320.3	-0.540	400.5	-0.540	477.5	-0.541	577.2	-0.541	651.8	-0.541	824.4	-0.541	898.6	-0.541						
		BI	DI	2071-2100	194.1	-0.540	291.7	-0.540	356.3	-0.540	418.3	-0.540	498.6	-0.540	558.7	-0.540	697.6	-0.540	757.4	-0.541					
		Obs	2001-2010	167.4	-0.508	229.3	-0.508	270.3	-0.508	309.6	-0.508	360.4	-0.508	398.5	-0.508	486.6	-0.508	524.4	-0.508						
		A1B	A1B	A1B					2011-2040	215.2	-0.508	315.0	-0.507	381.0	-0.507	444.3	-0.507	526.3	-0.507	587.7	-0.507	729.7	-0.506	790.7	-0.506
UG	а				2041-2070	198.0	-0.508	271.6	-0.508	320.4	-0.509	367.1	-0.509	427.6	-0.509	473.0	-0.509	577.8	-0.509	622.8	-0.509				
/01	serp		2071-2100	245.3	-0.508	351.8	-0.508	422.3	-0.508	489.9	-0.508	577.5	-0.508	643.1	-0.508	794.7	-0.508	859.8	-0.508						
26I	01		2011-2040	200.2	-0.508	280.7	-0.507	334.1	-0.507	385.2	-0.507	451.5	-0.507	501.1	-0.507	615.8	-0.507	665.1	-0.507						
		B1	2041-2070	198.9	-0.507	277.2	-0.507	329.1	-0.508	378.8	-0.508	443.2	-0.508	491.4	-0.508	602.9	-0.508	650.9	-0.508						
			2071-2100	204.7	-0.508	295.6	-0.508	355.8	-0.508	413.6	-0.508	488.3	-0.508	544.3	-0.508	673.8	-0.508	729.4	-0.508						

Quadro B1.1 – Parâmetros das curvas IDF para o 1º trecho (válido dos 5 aos 30min) para dados observados e simulados para cenários futuros, para as estações da região A.

										Peri	íodo de re	etorno (a	anos)														
ligo	ıçã o	ário	Daníada		2	;	5	1	0	2	20	4	50	1	00	5	00	10	00								
Cóc	Esta	Cen	Periodo						Par	âmetros	válidos o	dos 5 mi	n aos 30 i	min													
				a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b								
		Obs	2002-2008	102.2	-0.535	129.4	-0.535	147.4	-0.535	164.6	-0.535	187.0	-0.535	203.7	-0.535	242.4	-0.535	259.1	-0.535								
	or		2011-2040	127.0	-0.534	165.2	-0.534	190.5	-0.534	214.8	-0.534	246.2	-0.534	269.7	-0.534	324.1	-0.534	347.5	-0.534								
UG	ſelh	A1B	2041-2070	102.3	-0.536	135.9	-0.535	158.1	-0.535	179.4	-0.535	207.0	-0.534	227.6	-0.534	275.4	-0.534	295.9	-0.534								
070/05UC	lo N		2071-2100	150.2	-0.534	208.7	-0.535	247.5	-0.535	284.6	-0.535	332.7	-0.536	368.8	-0.536	452.1	-0.536	487.9	-0.536								
	aste		2011-2040	123.0	-0.536	164.7	-0.536	192.2	-0.535	218.7	-0.535	253.0	-0.535	278.7	-0.535	338.0	-0.535	363.5	-0.535								
	Ü	B1	2041-2070	104.6	-0.534	142.7	-0.535	167.9	-0.535	192.0	-0.535	223.3	-0.535	246.7	-0.536	300.9	-0.536	324.2	-0.536								
			2071-2100	142.3	-0.535	183.9	-0.535	211.5	-0.535	237.9	-0.535	272.1	-0.535	297.8	-0.535	357.0	-0.534	382.5	-0.534								
	0	Obs	2003-2011	123.3	-0.564	152.1	-0.564	171.1	-0.564	189.4	-0.564	213.0	-0.564	230.7	-0.564	271.7	-0.564	289.3	-0.564								
			2011-2040	131.3	-0.564	150.7	-0.564	163.5	-0.563	175.8	-0.563	191.7	-0.563	203.6	-0.563	231.1	-0.562	243.0	-0.562								
2G		A1B	2041-2070	132.6	-0.565	160.0	-0.565	178.0	-0.565	195.4	-0.564	217.8	-0.564	234.7	-0.564	273.5	-0.564	290.2	-0.564								
R/0.	inel		2071-2100	182.4	-0.564	219.8	-0.564	244.6	-0.564	268.4	-0.564	299.2	-0.564	322.2	-0.564	375.5	-0.564	398.4	-0.564								
04	Ч		2011-2040	138.7	-0.564	168.0	-0.564	187.3	-0.565	205.9	-0.565	229.9	-0.565	248.0	-0.565	289.6	-0.565	307.5	-0.565								
		B1	2041-2070	133.7	-0.564	163.7	-0.564	183.6	-0.564	202.7	-0.565	227.4	-0.565	245.8	-0.565	288.6	-0.565	307.0	-0.565								
			2071-2100	154.5	-0.564	188.3	-0.564	210.8	-0.564	232.2	-0.563	260.1	-0.563	280.9	-0.563	329.1	-0.563	349.8	-0.563								
		Obs	2002-2011	83.5	-0.478	115.2	-0.478	136.2	-0.478	156.4	-0.478	182.4	-0.478	202.0	-0.478	247.1	-0.478	266.5	-0.478								
		005									2011-2040	108.9	-0.478	153.2	-0.478	182.6	-0.478	210.7	-0.478	247.1	-0.478	274.4	-0.478	337.5	-0.478	364.6	-0.478
1G	5	A1B	2041-2070	82.4	-0.477	114.1	-0.477	135.1	-0.478	155.2	-0.478	181.2	-0.478	200.7	-0.478	245.8	-0.478	265.2	-0.478								
0/0	inhe		2071-2100	126.4	-0.479	187.9	-0.478	228.7	-0.478	267.8	-0.478	318.4	-0.478	356.3	-0.478	443.9	-0.478	481.6	-0.478								
60	Ч		2011-2040	92.8	-0.478	134.9	-0.478	162.8	-0.478	189.6	-0.478	224.2	-0.478	250.2	-0.478	310.2	-0.478	336.0	-0.478								
		B1	2041-2070	88.4	-0.478	129.8	-0.478	157.3	-0.477	183.6	-0.477	217.6	-0.477	243.1	-0.477	302.1	-0.477	327.4	-0.477								
			2071-2100	117.9	-0.478	163.4	-0.478	193.6	-0.478	222.5	-0.478	260.0	-0.477	288.0	-0.477	352.9	-0.477	380.8	-0.477								

Quadro B1.2 – Tal como o Quadro B1.1, mas para as estações da região B.

										Peri	odo de re	etorno (a	anos)											
ligo	ıção	ário	Dowindo		2		5	1	.0	2	20	4	50	1	00	5	00	1(000					
Cóc	Esta	Cen	reriouo						Par	âmetros	válidos o	dos 5 mi	n aos 30 i	min										
	, ,			a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b					
		Obs	2002-2009	143.2	-0.504	206.8	-0.504	248.8	-0.504	289.2	-0.504	341.4	-0.504	380.6	-0.504	471.0	-0.504	509.9	-0.504					
			2011-2040	157.9	-0.504	220.9	-0.504	262.7	-0.504	302.7	-0.504	354.5	-0.504	393.3	-0.504	483.0	-0.504	521.6	-0.504					
12L/03G Covilhã	hã	A1B	2041-2070	159.1	-0.504	228.3	-0.504	274.1	-0.504	318.0	-0.504	374.8	-0.504	417.4	-0.504	515.9	-0.504	558.2	-0.504					
	livo		2071-2100	190.7	-0.504	269.0	-0.504	320.8	-0.504	370.5	-0.503	434.8	-0.503	483.0	-0.503	594.4	-0.503	642.3	-0.503					
	Ŭ		2011-2040	155.0	-0.504	227.5	-0.505	275.5	-0.505	321.5	-0.506	381.1	-0.506	425.7	-0.506	528.9	-0.506	573.3	-0.506					
		B1	2041-2070	155.9	-0.505	236.0	-0.505	289.1	-0.505	340.0	-0.505	405.8	-0.505	455.2	-0.505	569.2	-0.506	618.3	-0.506					
		B1	2071-2100	159.5	-0.504	221.2	-0.505	262.1	-0.506	301.3	-0.506	352.1	-0.506	390.1	-0.507	478.1	-0.507	515.9	-0.507					
		Obs	2001-2012	110.0	-0.480	154.4	-0.480	183.8	-0.480	212.0	-0.480	248.5	-0.480	275.9	-0.480	339.1	-0.480	366.3	-0.480					
			2011-2040	129.8	-0.480	172.3	-0.480	200.4	-0.480	227.4	-0.481	262.3	-0.481	288.5	-0.481	348.9	-0.481	374.9	-0.481					
1G		A1B	A1B	A1B	A1B	A1B	A1B	2041-2070	128.2	-0.480	179.1	-0.479	212.8	-0.479	245.0	-0.479	286.8	-0.479	318.2	-0.479	390.5	-0.479	421.7	-0.479
0/0	Pega		2071-2100	151.3	-0.481	204.1	-0.481	239.1	-0.481	272.6	-0.482	316.0	-0.482	348.6	-0.482	423.7	-0.482	456.0	-0.482					
11			2011-2040	116.2	-0.481	161.8	-0.480	191.9	-0.480	220.8	-0.480	258.2	-0.480	286.3	-0.480	351.1	-0.480	378.9	-0.480					
		B1	2041-2070	108.9	-0.480	167.2	-0.480	205.8	-0.480	242.8	-0.480	290.7	-0.480	326.6	-0.480	409.6	-0.480	445.2	-0.480					
			2071-2100	136.6	-0.481	174.4	-0.480	199.4	-0.480	223.4	-0.480	254.5	-0.480	277.8	-0.480	331.6	-0.480	354.8	-0.480					

Quadro B1.3 – Tal como o Quadro B1.1, mas para as estações da região C.

										Pe	eríodo de	e retorno	(anos)						
ligo	ıçã o	ário	Dorrío do		2	:	5	1	10	20	0	5	0	10	0	50	0	10	00
Cóc	Esta	Cen	reriouo							Parâme	etros váli	idos dos 3	0 min a	6 h					
	[•		a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2003-2010	99.5	-0.477	112.7	-0.462	121.9	-0.455	130.7	-0.450	142.5	-0.444	151.0	-0.441	170.8	-0.434	179.4	-0.432
	ca		2011-2040	160.1	-0.510	174.7	-0.492	185.2	-0.483	195.5	-0.476	208.7	-0.468	218.7	-0.463	242.3	-0.454	252.5	-0.450
5C	Bar	A1B	2041-2070	108.8	-0.481	125.9	-0.463	137.7	-0.455	149.3	-0.450	163.9	-0.443	175.0	-0.439	200.7	-0.432	211.9	-0.429
G/0	Da		2071-2100	168.5	-0.513	183.8	-0.494	194.8	-0.484	205.6	-0.477	219.5	-0.469	230.1	-0.464	255.0	-0.454	265.8	-0.451
03	onte		2011-2040	154.9	-0.504	175.9	-0.482	190.8	-0.471	205.0	-0.463	223.7	-0.455	237.9	-0.450	271.0	-0.441	285.4	-0.438
	Pc	B1	2041-2070	160.1	-0.506	182.7	-0.482	198.5	-0.471	213.8	-0.463	233.8	-0.455	249.1	-0.450	284.7	-0.441	300.1	-0.438
			2071-2100	165.0	-0.510	182.7	-0.489	195.4	-0.480	207.5	-0.472	223.5	-0.464	235.6	-0.458	264.0	-0.449	276.3	-0.446
		Obs	2001-2011	250.7	-0.681	383.3	-0.698	471.9	-0.705	557.2	-0.709	667.9	-0.714	751.0	-0.716	943.2	-0.721	1026.0	-0.722
			2011-2040	373.8	-0.694	623.6	-0.710	790.1	-0.716	950.1	-0.720	1157.6	-0.724	1313.2	-0.726	1673.0	-0.729	1827.8	-0.730
UG	soóu	A1B	2041-2070	391.0	-0.695	638.8	-0.711	803.8	-0.716	962.4	-0.720	1168.1	-0.723	1322.3	-0.725	1678.9	-0.728	1832.4	-0.729
ζ/01	Mai		2071-2100	420.1	-0.697	704.3	-0.713	893.5	-0.718	1075.3	-0.722	1311.0	-0.725	1487.7	-0.727	1896.5	-0.730	2072.3	-0.731
23k	São		2011-2040	401.6	-0.696	687.5	-0.713	877.8	-0.718	1060.7	-0.722	1297.8	-0.725	1475.6	-0.727	1886.8	-0.730	2063.6	-0.731
		B1	2041-2070	336.5	-0.691	577.1	-0.709	737.6	-0.715	891.8	-0.720	1091.8	-0.723	1241.8	-0.725	1588.7	-0.728	1738.0	-0.730
			2071-2100	326.8	-0.690	520.5	-0.706	649.7	-0.712	774.0	-0.716	935.1	-0.720	1056.0	-0.723	1335.6	-0.726	1455.9	-0.727
		Obs	2001-2010	264.9	-0.645	418.6	-0.681	525.5	-0.696	630.4	-0.708	768.9	-0.720	874.0	-0.727	1120.2	-0.739	1227.1	-0.743
			2011-2040	365.7	-0.664	625.0	-0.702	804.6	-0.717	980.3	-0.728	1211.0	-0.738	1385.7	-0.744	1793.0	-0.755	1969.3	-0.758
UG	a	A1B	2041-2070	327.5	-0.657	513.1	-0.690	641.5	-0.705	767.3	-0.716	932.8	-0.727	1058.4	-0.733	1352.0	-0.744	1479.3	-0.748
_/01	Serp		2071-2100	428.0	-0.670	704.8	-0.705	895.5	-0.719	1081.8	-0.729	1326.4	-0.739	1511.4	-0.745	1942.7	-0.755	2129.4	-0.758
26I	01		2011-2040	333.0	-0.658	539.5	-0.694	682.6	-0.709	822.7	-0.720	1007.1	-0.731	1146.9	-0.737	1473.6	-0.748	1615.1	-0.752
		B1	2041-2070	330.8	-0.658	529.9	-0.692	667.7	-0.708	802.7	-0.718	980.4	-0.729	1115.1	-0.736	1429.8	-0.747	1566.3	-0.750
			2071-2100	343.8	-0.660	576.6	-0.698	737.9	-0.713	895.9	-0.724	1103.5	-0.735	1260.8	-0.741	1628.0	-0.752	1787.0	-0.755

Quadro B1.4 das curvas IDF para o 2º trecho (válido dos 30min a 6h) para dados observados e simulados para cenários futuros, para as estações da região A.

		_		Período de retorno (anos)															
ligo	ıçã o	ário	Dowiedo		2		5	1	.0	2	20	5	50	1	00	50	0	10	00
Cóc	Esta	Cen	reriouo							Parâme	tros válic	los dos á	30 min a	6 h					
				a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2002-2008	94.7	-0.527	112.7	-0.512	124.9	-0.506	136.8	-0.501	152.3	-0.496	164.0	-0.494	191.0	-0.489	202.7	-0.487
	or		2011-2040	126.4	-0.545	150.9	-0.524	167.9	-0.516	184.4	-0.509	206.0	-0.503	222.4	-0.500	260.3	-0.493	276.7	-0.491
UG	ſelh	A1B	2041-2070	92.6	-0.522	115.4	-0.507	130.8	-0.500	145.7	-0.496	165.1	-0.491	179.6	-0.489	213.4	-0.484	228.0	-0.483
)/05	lo N		2071-2100	153.2	-0.553	190.0	-0.525	215.8	-0.515	240.9	-0.508	273.8	-0.501	298.6	-0.497	356.3	-0.491	381.2	-0.488
070	aste		2011-2040	118.8	-0.539	145.9	-0.518	164.5	-0.510	182.6	-0.504	206.2	-0.498	224.0	-0.495	265.3	-0.489	283.2	-0.487
	Ü	B1	2041-2070	95.8	-0.524	121.3	-0.507	138.5	-0.500	155.2	-0.495	176.8	-0.490	193.1	-0.488	230.9	-0.483	247.2	-0.482
			2071-2100	145.6	-0.554	171.6	-0.531	189.8	-0.522	207.7	-0.515	231.1	-0.508	248.7	-0.504	289.9	-0.497	307.7	-0.494
		Obs	2003-2011	91.7	-0.502	113.6	-0.501	127.6	-0.500	141.1	-0.500	158.7	-0.499	171.8	-0.499	202.3	-0.498	215.3	-0.498
			2011-2040	101.4	-0.512	116.3	-0.511	126.2	-0.510	135.3	-0.509	147.2	-0.508	156.2	-0.507	176.9	-0.506	185.7	-0.505
2G	0	A1B	2041-2070	101.9	-0.511	122.6	-0.509	136.0	-0.508	148.8	-0.506	165.4	-0.505	177.9	-0.504	206.7	-0.503	219.1	-0.503
R/0	inel		2071-2100	158.4	-0.544	186.2	-0.536	204.3	-0.531	221.7	-0.528	244.3	-0.525	261.3	-0.522	300.6	-0.518	317.6	-0.517
04	ц		2011-2040	108.6	-0.516	130.7	-0.513	144.9	-0.511	158.5	-0.510	176.3	-0.508	189.6	-0.507	220.3	-0.505	233.6	-0.505
		B1	2041-2070	102.9	-0.511	125.5	-0.509	140.1	-0.507	154.1	-0.506	172.3	-0.505	186.0	-0.504	217.5	-0.503	231.1	-0.502
			2071-2100	125.8	-0.527	151.6	-0.522	168.2	-0.519	184.3	-0.517	205.1	-0.514	220.7	-0.513	256.8	-0.510	272.3	-0.509
		Obs	2002-2011	114.5	-0.579	193.4	-0.632	250.2	-0.656	307.0	-0.674	383.2	-0.692	441.8	-0.703	580.8	-0.722	641.7	-0.728
			2011-2040	164.5	-0.605	281.2	-0.656	364.4	-0.679	447.2	-0.695	557.5	-0.711	641.8	-0.720	840.7	-0.737	927.5	-0.743
1G	e.	A1B	2041-2070	112.9	-0.577	191.5	-0.632	248.1	-0.656	304.8	-0.674	380.9	-0.692	439.4	-0.703	578.1	-0.722	638.9	-0.728
0/0	inh		2071-2100	201.0	-0.619	369.8	-0.675	490.1	-0.698	609.4	-0.713	767.8	-0.729	888.5	-0.737	1172.0	-0.752	1295.2	-0.757
60	ц		2011-2040	133.6	-0.592	242.4	-0.650	320.8	-0.675	399.1	-0.692	503.8	-0.710	583.9	-0.720	773.1	-0.737	855.7	-0.743
		B1	2041-2070	125.4	-0.587	232.1	-0.649	309.3	-0.674	386.6	-0.692	489.8	-0.709	569.0	-0.720	755.8	-0.737	837.4	-0.743
			2071-2100	182.1	-0.611	303.5	-0.659	389.6	-0.681	475.2	-0.696	589.0	-0.712	676.1	-0.721	881.1	-0.737	970.6	-0.743

Quadro B1.5 - Tal como o Quadro B1.4, mas para as estações da região B.

										Peri	odo de r	etorno (a	anos)						
ligo	ıçã o	ário	Dowindo		2	;	5	1	.0	2	20	4	50	1	00	5	00	1()00
Cóc	Esta	Cen	reriodo						Р	arâmetı	os válido	os dos 30	min a 6	h					
	, ,			a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2002-2009	115.4	-0.450	181.6	-0.474	226.2	-0.484	269.2	-0.490	325.1	-0.497	367.2	-0.500	464.7	-0.507	506.7	-0.509
			2011-2040	130.5	-0.457	196.5	-0.478	240.9	-0.486	283.6	-0.492	339.2	-0.498	381.0	-0.502	477.9	-0.507	519.6	-0.509
3G	hã	A1B	2041-2070	131.6	-0.457	203.9	-0.479	252.5	-0.488	299.3	-0.494	360.2	-0.500	405.9	-0.503	511.9	-0.509	557.5	-0.511
L/0	livo		2071-2100	163.9	-0.468	247.3	-0.487	303.1	-0.494	356.8	-0.499	426.7	-0.504	479.1	-0.507	600.5	-0.512	652.7	-0.514
12L	Ũ		2011-2040	127.3	-0.455	202.6	-0.479	253.1	-0.488	301.8	-0.494	365.2	-0.500	412.8	-0.503	523.1	-0.509	570.6	-0.511
		B1	2041-2070	128.1	-0.456	211.8	-0.481	267.9	-0.490	322.1	-0.496	392.6	-0.502	445.5	-0.505	568.1	-0.511	620.9	-0.513
			2071-2100	131.5	-0.457	195.5	-0.477	238.4	-0.485	279.8	-0.491	333.6	-0.497	374.1	-0.501	467.8	-0.507	508.2	-0.509
		Obs	2001-2012	168.5	-0.605	231.6	-0.599	273.5	-0.597	313.7	-0.595	365.7	-0.594	404.7	-0.593	494.9	-0.591	533.6	-0.591
			2011-2040	208.1	-0.617	267.9	-0.609	307.5	-0.606	345.7	-0.603	395.0	-0.601	432.1	-0.599	517.7	-0.597	554.6	-0.596
1G	-	A1B	2041-2070	203.5	-0.615	276.0	-0.606	324.2	-0.603	370.5	-0.600	430.4	-0.598	475.3	-0.597	579.1	-0.595	623.8	-0.594
0/0	Pega		2071-2100	247.8	-0.624	321.5	-0.614	370.6	-0.609	417.7	-0.606	478.8	-0.603	524.6	-0.601	630.7	-0.598	676.3	-0.597
11			2011-2040	179.9	-0.609	244.8	-0.602	287.9	-0.599	329.2	-0.597	382.8	-0.595	422.9	-0.594	515.7	-0.593	555.6	-0.592
		B1	2041-2070	164.0	-0.601	247.0	-0.595	302.0	-0.593	354.7	-0.592	423.0	-0.591	474.1	-0.590	592.4	-0.589	643.2	-0.588
			2071-2100	221.2	-0.621	274.7	-0.613	310.2	-0.609	344.4	-0.607	388.7	-0.604	421.9	-0.602	498.7	-0.599	531.8	-0.598

Quadro B1.6 – Tal como o Quadro B1.4, mas para as estações da região C.

	_									Per	íodo de r	etorno (a	unos)						
ligo	ıçã o	ário	Doniodo		2	5	;	1	0	2	0	5	0	10)0	50	0	10	00
Cóč	Esta	Cen	Periodo							Parâme	tros válio	dos das 6	h às 48h	ı					
				a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2003-2010	166.8	-0.560	192.0	-0.551	209.0	-0.547	225.5	-0.544	246.9	-0.540	263.1	-0.538	300.5	-0.534	316.7	-0.533
	ca		2011-2040	181.3	-0.534	210.5	-0.528	229.8	-0.525	248.4	-0.522	272.5	-0.520	290.6	-0.518	332.6	-0.515	350.7	-0.514
2C	Bar	A1B	2041-2070	147.0	-0.531	159.7	-0.507	169.9	-0.496	180.3	-0.488	194.5	-0.480	205.6	-0.476	231.7	-0.467	243.2	-0.464
G/0	Da		2071-2100	175.5	-0.523	187.4	-0.504	196.8	-0.494	206.5	-0.487	219.5	-0.479	229.7	-0.474	253.9	-0.465	264.6	-0.462
03	onte		2011-2040	204.8	-0.552	229.6	-0.531	247.8	-0.522	266.1	-0.515	290.6	-0.508	309.2	-0.504	353.2	-0.496	372.3	-0.494
	Pc	B1	2041-2070	228.6	-0.566	257.1	-0.544	278.3	-0.534	299.6	-0.527	328.0	-0.520	349.7	-0.515	400.8	-0.508	422.9	-0.506
			2071-2100	602.0	-0.780	1007.0	-0.812	1293.3	-0.826	1578.3	-0.837	1957.6	-0.847	2247.8	-0.853	2932.0	-0.864	3230.6	-0.868
		Obs	2001-2011	224.5	-0.661	347.9	-0.678	431.7	-0.685	513.4	-0.690	620.2	-0.696	700.8	-0.699	888.2	-0.704	969.2	-0.706
7 D			2011-2040	400.0	-0.704	701.3	-0.725	908.1	-0.733	1109.2	-0.739	1372.1	-0.744	1570.3	-0.747	2031.1	-0.752	2230.0	-0.753
UG	soóu	A1B	2041-2070	440.1	-0.714	794.8	-0.742	1043.2	-0.753	1287.2	-0.760	1608.5	-0.768	1852.0	-0.772	2420.7	-0.779	2667.0	-0.781
۲/01	Ma		2071-2100	445.9	-0.707	801.4	-0.730	1046.7	-0.739	1285.7	-0.744	1598.5	-0.750	1834.6	-0.753	2383.8	-0.758	2621.0	-0.760
23k	São		2011-2040	422.7	-0.704	728.8	-0.718	935.5	-0.723	1135.2	-0.727	1395.0	-0.730	1590.2	-0.732	2042.5	-0.735	2237.3	-0.736
		B1	2041-2070	327.6	-0.686	608.8	-0.713	804.4	-0.724	995.8	-0.731	1247.0	-0.737	1436.9	-0.741	1879.2	-0.747	2070.4	-0.749
			2071-2100	398.8	-0.648	444.3	-0.621	480.7	-0.610	517.9	-0.602	568.0	-0.594	606.6	-0.589	697.5	-0.581	737.2	-0.579
		Obs	2001-2010	554.1	-0.773	739.4	-0.786	865.0	-0.792	986.9	-0.797	1146.3	-0.802	1266.4	-0.805	1544.3	-0.811	1664.2	-0.813
			2011-2040	715.7	-0.782	1050.4	-0.801	1279.4	-0.809	1502.3	-0.815	1794.2	-0.821	2014.7	-0.825	2527.0	-0.831	2748.4	-0.834
UG	g	A1B	2041-2070	677.5	-0.783	870.1	-0.789	999.4	-0.792	1122.7	-0.794	1282.9	-0.796	1403.1	-0.798	1681.1	-0.800	1800.7	-0.801
/01	serp		2071-2100	875.9	-0.797	1231.6	-0.810	1472.4	-0.816	1705.8	-0.821	2010.3	-0.826	2239.7	-0.828	2770.5	-0.833	2999.3	-0.835
26L/C	01		2011-2040	691.4	-0.786	857.1	-0.783	966.6	-0.781	1071.1	-0.780	1206.5	-0.779	1307.9	-0.779	1542.3	-0.777	1643.1	-0.777
		B1	2041-2070	691.6	-0.786	887.7	-0.790	1018.8	-0.792	1143.9	-0.793	1306.2	-0.794	1428.0	-0.795	1707.7	-0.796	1827.6	-0.797
			2071-2100	269.1	-0.690	321.1	-0.670	357.6	-0.662	393.4	-0.657	440.5	-0.651	476.1	-0.648	559.1	-0.642	595.0	-0.640

Quadro B1.7 – Parâmetros das curvas IDF para o 3º trecho (válido das 6h às 48h) para dados observados e simulados para cenários futuros, para as estações da região A.

										Per	íodo de r	etorno (a	anos)						
ligo	ıçã o	ário	Doníodo		2	5	;	1	0	2	0	5	0	1()0	50	0	10	00
Cóc	Esta	Cen	Periodo							Parâme	tros váli	dos das 6	h às 481	ı					
		•		a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2002-2008	450.7	-0.785	734.9	-0.819	939.7	-0.834	1145.3	-0.846	1421.5	-0.858	1634.4	-0.866	2140.5	-0.879	2362.8	-0.883
	or		2011-2040	472.8	-0.765	893.7	-0.816	1212.9	-0.838	1542.3	-0.854	1995.0	-0.871	2349.6	-0.881	3208.5	-0.899	3590.9	-0.904
UG	felh	A1B	2041-2070	432.0	-0.777	820.6	-0.826	1114.6	-0.848	1416.5	-0.864	1829.6	-0.880	2152.0	-0.889	2929.9	-0.906	3274.8	-0.912
)/05	lo N		2071-2100	674.4	-0.799	1343.3	-0.845	1833.5	-0.863	2325.9	-0.875	2985.8	-0.887	3493.4	-0.894	4693.5	-0.906	5217.8	-0.910
070	aste		2011-2040	611.3	-0.809	1139.9	-0.853	1529.3	-0.872	1922.7	-0.885	2453.0	-0.898	2863.1	-0.906	3838.5	-0.919	4266.7	-0.924
	Ü	B1	2041-2070	491.4	-0.793	955.3	-0.842	1304.1	-0.863	1660.0	-0.878	2143.7	-0.893	2519.8	-0.902	3420.6	-0.917	3817.8	-0.922
			2071-2100	589.7	-0.787	1033.5	-0.826	1355.2	-0.842	1678.3	-0.854	2112.2	-0.867	2446.1	-0.874	3239.2	-0.887	3587.4	-0.891
		Obs	2003-2011	302.2	-0.702	396.2	-0.710	458.8	-0.714	519.0	-0.717	597.0	-0.720	655.7	-0.722	791.3	-0.725	849.7	-0.726
			2011-2040	292.5	-0.692	335.1	-0.690	363.5	-0.689	390.7	-0.688	425.9	-0.687	452.2	-0.686	513.0	-0.685	539.1	-0.685
2G	0	A1B	2041-2070	261.9	-0.672	333.9	-0.679	382.4	-0.682	429.0	-0.685	489.1	-0.688	534.2	-0.689	638.5	-0.692	683.4	-0.693
R/0	inel		2071-2100	399.6	-0.702	509.6	-0.706	582.9	-0.708	652.8	-0.710	743.2	-0.711	810.9	-0.712	968.1	-0.714	1036.2	-0.715
04	Ч		2011-2040	309.8	-0.694	390.2	-0.697	443.3	-0.699	494.2	-0.701	560.0	-0.702	609.2	-0.703	723.7	-0.704	773.0	-0.705
		B1	2041-2070	303.2	-0.694	407.9	-0.707	479.3	-0.713	548.2	-0.718	638.2	-0.723	706.0	-0.726	863.6	-0.732	931.7	-0.734
			2071-2100	298.5	-0.698	366.9	-0.693	412.0	-0.691	455.2	-0.689	511.0	-0.687	552.7	-0.686	649.1	-0.684	690.5	-0.683
		Obs	2002-2011	220.7	-0.691	277.2	-0.693	314.5	-0.694	350.3	-0.695	396.5	-0.696	431.1	-0.696	510.9	-0.697	545.2	-0.697
			2011-2040	274.8	-0.695	349.7	-0.695	399.0	-0.694	446.1	-0.694	507.0	-0.694	552.5	-0.693	657.6	-0.693	702.7	-0.693
1G	5	A1B	2041-2070	200.5	-0.677	251.2	-0.679	284.7	-0.679	316.8	-0.680	358.2	-0.680	389.2	-0.681	460.8	-0.681	491.6	-0.681
O/0	inhe		2071-2100	346.8	-0.714	454.7	-0.710	525.7	-0.708	593.6	-0.707	681.3	-0.706	747.0	-0.705	898.4	-0.703	963.5	-0.703
60	Ч		2011-2040	255.8	-0.703	342.2	-0.708	399.5	-0.710	454.4	-0.712	525.6	-0.713	578.9	-0.714	702.1	-0.716	755.1	-0.716
		B1	2041-2070	215.4	-0.681	279.9	-0.681	322.4	-0.681	363.0	-0.680	415.5	-0.680	454.8	-0.680	545.5	-0.680	584.5	-0.679
			2071-2100	229.5	-0.566	224.8	-0.529	227.9	-0.512	233.3	-0.500	242.5	-0.487	250.5	-0.479	271.2	-0.466	280.7	-0.461

Quadro B1.8 – Tal como o Quadro B1.7, mas para as estações da região B.

										Pe	eríodo de	retorno	(anos)						
ligo	ıção	ário	Dowindo		2	:	5	1	10	2	0	5	0	10	0	50	0	10	00
Cóc	Esta	Cen	reriodo							Parân	netros vá	lidos das	6 h às 48	h					
	, ,			a	b	a	b	a	b	a	b	a	b	a	b	a	b	a	b
		Obs	2002-2009	355.5	-0.643	521.2	-0.654	632.3	-0.659	739.7	-0.662	879.0	-0.666	984.0	-0.668	1227.9	-0.671	1332.7	-0.672
			2011-2040	356.7	-0.632	429.6	-0.615	480.0	-0.608	529.2	-0.604	593.6	-0.599	642.3	-0.596	755.4	-0.591	804.2	-0.590
3G	hã	A1B	2041-2070	333.8	-0.620	440.0	-0.615	510.7	-0.612	578.5	-0.611	666.3	-0.609	732.2	-0.608	884.5	-0.607	950.0	-0.606
L/0	ovill		2071-2100	504.9	-0.662	645.7	-0.652	739.9	-0.648	830.6	-0.646	948.4	-0.643	1036.9	-0.641	1241.7	-0.639	1329.9	-0.638
121	Ũ		2011-2040	415.0	-0.658	513.8	-0.640	582.1	-0.632	648.6	-0.627	735.7	-0.623	801.4	-0.620	954.1	-0.615	1019.9	-0.614
		B1	2041-2070	393.9	-0.649	518.5	-0.636	602.5	-0.631	683.5	-0.627	788.7	-0.624	867.9	-0.622	1051.2	-0.619	1130.1	-0.618
			2071-2100	392.6	-0.718	702.2	-0.750	922.2	-0.763	1139.9	-0.772	1428.6	-0.781	1648.4	-0.786	2164.3	-0.795	2388.5	-0.798
		Obs	2001-2012	253.9	-0.684	323.3	-0.666	370.9	-0.659	417.2	-0.654	477.7	-0.649	523.2	-0.647	628.8	-0.642	674.3	-0.641
			2011-2040	258.9	-0.666	276.5	-0.628	295.3	-0.613	315.6	-0.603	343.9	-0.592	366.0	-0.587	418.7	-0.577	441.9	-0.574
1G	æ	A1B	2041-2070	228.8	-0.647	305.1	-0.636	356.1	-0.631	405.3	-0.628	469.2	-0.625	517.2	-0.624	628.1	-0.621	675.9	-0.620
0/0	Peg		2071-2100	325.9	-0.682	357.1	-0.644	386.4	-0.630	417.2	-0.620	459.3	-0.610	491.9	-0.605	569.3	-0.596	603.1	-0.593
11			2011-2040	210.5	-0.648	246.2	-0.617	273.7	-0.605	301.4	-0.597	338.3	-0.590	366.3	-0.585	432.1	-0.578	460.7	-0.576
1		B1	2041-2070	234.4	-0.671	300.6	-0.640	348.8	-0.629	396.2	-0.623	458.4	-0.617	505.5	-0.613	614.9	-0.608	662.2	-0.606
			2071-2100	311.7	-0.690	346.4	-0.664	373.7	-0.652	401.4	-0.644	438.7	-0.637	467.4	-0.632	535.0	-0.624	564.5	-0.621

Quadro B1.9 – Tal como o Quadro B1.7, mas para as estações da região C.

								Per	íodo de re	etorno (a	anos)				
ligo	ıçã o	ário	Doríodo		2		5]	10	2	20	4	50	1	00
Cóc	Esta	Cen	reriouo				Par	âmetros	s válidos o	dos 5 mi	n aos 30 i	min			
	, ,			a	b	a	b	a	b	a	b	a	b	a	b
			2011-2040	226.5	-0.577	293.5	-0.562	331.3	-0.549	364.0	-0.538	402.7	-0.524	422.7	-0.508
7)	arca	A1B	2041-2070	209.3	-0.577	278.4	-0.562	318.2	-0.549	353.1	-0.538	394.6	-0.524	416.9	-0.508
/020	a B		2071-2100	230.3	-0.577	301.0	-0.562	341.1	-0.549	375.9	-0.538	417.3	-0.524	438.9	-0.508
)3G	te D		2011-2040	230.1	-0.577	316.6	-0.562	367.6	-0.549	412.8	-0.538	467.0	-0.524	496.9	-0.508
0	Pon	B1	2041-2070	233.2	-0.577	325.3	-0.562	380.0	-0.549	428.7	-0.538	487.3	-0.524	520.0	-0.508
			2071-2100	231.1	-0.577	308.2	-0.562	352.7	-0.549	391.7	-0.537	438.2	-0.523	463.2	-0.507
			2011-2040	263.5	-0.576	367.8	-0.562	428.3	-0.550	481.4	-0.539	544.4	-0.525	578.9	-0.509
G)G ços	A1B	2041-2070	272.8	-0.577	375.5	-0.562	434.8	-0.549	486.7	-0.538	548.3	-0.524	581.6	-0.508
)1U	lanç		2071-2100	287.2	-0.577	405.2	-0.562	473.9	-0.550	534.2	-0.539	606.0	-0.525	645.5	-0.509
3K/(M O		2011-2040	276.5	-0.576	393.9	-0.561	462.6	-0.548	522.9	-0.537	594.6	-0.523	634.3	-0.507
5	Sã	B1	2041-2070	244.2	-0.577	344.2	-0.562	402.5	-0.549	453.6	-0.538	514.4	-0.524	547.8	-0.508
			2071-2100	241.0	-0.577	322.1	-0.562	368.4	-0.549	408.7	-0.538	456.3	-0.524	481.6	-0.508
			2011-2040	263.2	-0.577	357.9	-0.561	411.2	-0.548	457.3	-0.537	511.4	-0.523	540.0	-0.507
Ċ		A1B	2041-2070	242.0	-0.577	309.2	-0.562	346.6	-0.550	378.7	-0.539	416.5	-0.525	435.6	-0.509
01U	pa		2071-2100	302.0	-0.576	402.0	-0.562	458.0	-0.549	506.4	-0.538	563.3	-0.524	592.9	-0.508
9T/(Seı		2011-2040	244.5	-0.577	319.2	-0.561	360.9	-0.548	396.9	-0.537	439.2	-0.523	461.0	-0.507
5		B1	2041-2070	242.9	-0.576	315.3	-0.561	355.6	-0.549	390.4	-0.538	431.3	-0.524	452.2	-0.508
	2071-2100			249.8	-0.576	335.6	-0.562	383.8	-0.549	425.5	-0.538	474.4	-0.524	500.1	-0.508
	Região	A DR	n°23/95	202.7	-0.577	259.3	-0.562	290.7	-0.549	317.7	-0.538	349.5	-0.524	365.6	-0.508

Quadro B1.10 – Parâmetros das curvas IDF para o 1º trecho (válido dos 5 aos 30 min) estabelecidos para a região A por Matos e Silva (1986) e para os dados simulados para cenários futuros para as estações da correspondente região.

								Peri	íodo de re	etorno (a	anos)				
ligo	ıção	ário	Daníada		2		5	1	10	2	20	5	50	1	00
Cóč	Esta	Cen	Periodo				Par	âmetros	s válidos o	dos 5 mi	n aos 30 i	min			
		•		a	b	a	b	a	b	a	b	a	b	a	b
			2011-2040	184.4	-0.577	251.8	-0.562	290.0	-0.549	324.1	-0.538	363.9	-0.524	385.3	-0.508
IJ	lhor	A1B	2041-2070	175.0	-0.577	237.5	-0.562	272.9	-0.549	304.4	-0.538	341.2	-0.524	360.8	-0.508
05U	Me		2071-2100	226.8	-0.577	325.4	-0.562	382.1	-0.549	432.9	-0.538	492.4	-0.524	525.3	-0.508
)/O/	telo		2011-2040	184.4	-0.577	250.1	-0.562	287.3	-0.549	320.4	-0.538	359.0	-0.524	379.7	-0.508
,0	Cas	B1	2041-2070	171.8	-0.577	238.3	-0.562	276.1	-0.549	309.9	-0.538	349.4	-0.524	370.9	-0.508
			2071-2100	205.8	-0.577	290.3	-0.562	338.8	-0.549	382.1	-0.538	432.8	-0.524	460.6	-0.508
			2011-2040	164.4	-0.577	193.6	-0.561	208.5	-0.548	221.7	-0.537	236.6	-0.523	243.0	-0.507
/02G		A1B	2041-2070	168.1	-0.578	210.7	-0.562	233.8	-0.549	254.3	-0.538	277.9	-0.524	289.5	-0.508
	ielo		2071-2100	205.5	-0.577	264.5	-0.562	296.9	-0.549	325.7	-0.538	359.0	-0.524	376.0	-0.508
)4R	Pir		2011-2040	172.9	-0.577	218.7	-0.563	243.7	-0.550	265.8	-0.539	291.3	-0.525	304.1	-0.509
Ŭ		B1	2041-2070	169.7	-0.577	216.9	-0.563	242.8	-0.550	265.7	-0.539	292.3	-0.525	305.7	-0.509
			2071-2100	185.2	-0.577	238.6	-0.562	267.9	-0.548	294.0	-0.537	324.1	-0.523	339.5	-0.507
			2011-2040	196.1	-0.577	260.1	-0.562	295.8	-0.549	327.4	-0.538	364.2	-0.524	383.4	-0.508
۲D		A1B	2041-2070	160.8	-0.576	206.0	-0.561	230.8	-0.548	252.8	-0.537	278.2	-0.524	291.1	-0.508
/010	hel		2071-2100	220.3	-0.578	310.7	-0.562	362.0	-0.549	407.5	-0.538	460.6	-0.524	489.5	-0.508
060	Pir		2011-2040	175.2	-0.577	236.4	-0.562	270.7	-0.549	301.1	-0.538	336.5	-0.524	355.3	-0.508
		B1	2041-2070	169.5	-0.577	229.8	-0.561	263.5	-0.548	293.5	-0.537	328.5	-0.523	347.0	-0.507
			2071-2100	207.7	-0.577	273.4	-0.561	309.9	-0.548	342.2	-0.537	379.8	-0.523	399.3	-0.507
	Região B DR nº23/95		162.2	-0.577	207.4	-0.562	232.2	-0.549	254.2	-0.538	279.6	-0.524	292.5	-0.508	

Quadro B1.11 – Tal como o Quadro B1.10, mas para a região B.

	_				Período de retorno (anos) 2 5 10 20 50 100											
ligo	ıção	ário	Dowiodo		2	-	5	1	0	2	20	5	50	1	00	
Cód	Esta	Cen	reriodo				Par	âmetros	válidos d	los 5 mi	n aos 30 1	nin				
	[a	b	a	b	a	b	a	b	a	b	a	b	
			2011-2040	261.5	-0.577	328.1	-0.562	364.9	-0.549	396.4	-0.538	433.4	-0.524	451.7	-0.508	
7 5		A1B	2041-2070	262.9	-0.577	336.8	-0.562	377.9	-0.549	413.3	-0.538	454.9	-0.524	476.0	-0.508	
(03C	ilhã		2071-2100	302.0	-0.577	385.5	-0.562	431.9	-0.549	471.8	-0.538	518.7	-0.523	542.3	-0.507	
[2L/	Covi B1	2011-2040	257.8	-0.577	335.8	-0.563	379.5	-0.550	417.2	-0.540	461.5	-0.526	484.3	-0.510		
12		B1	2041-2070	258.9	-0.577	346.0	-0.563	395.1	-0.550	437.6	-0.539	487.6	-0.525	514.0	-0.509	
		2071-2100	263.4	-0.577	328.5	-0.563	364.3	-0.551	394.9	-0.540	430.9	-0.526	448.6	-0.510		
			2011-2040	270.9	-0.577	334.2	-0.562	368.9	-0.549	398.8	-0.538	433.8	-0.524	450.8	-0.508	
r٦		A1B	2041-2070	271.2	-0.577	345.3	-0.562	386.4	-0.549	421.8	-0.538	463.4	-0.524	484.3	-0.508	
/010	ga		2071-2100	307.4	-0.577	390.6	-0.562	436.7	-0.549	476.4	-0.538	523.1	-0.524	546.5	-0.508	
10/	Pe		2011-2040	252.4	-0.577	324.0	-0.562	363.9	-0.549	398.2	-0.538	438.5	-0.524	459.0	-0.508	
1		B1	2041-2070	248.7	-0.577	332.4	-0.562	379.5	-0.549	420.0	-0.538	467.7	-0.524	492.7	-0.508	
			2071-2100	281.1	-0.577	343.9	-0.562	378.2	-0.549	407.7	-0.538	442.4	-0.524	458.9	-0.508	
	Região C DR nº23/95			243.3	-0.577	311.1	-0.562	348.8	-0.549	381.3	-0.538	419.5	-0.524	438.8	-0.508	

Quadro B1.12 – Tal como o Quadro B1.10, mas para a região C.

ANEXO C – DIMENSIONAMENTO DO SISTEMA DE DRENAGEM PREDIAL PLUVIAL

C1 – Caleiras

Quadro C1.1 – Dimensionamento da caleira 2 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1B e B1)

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2003-2010	1.49	8.53E-04	0.5%	0.10	3.12
			2011-2040	2.04	1.17E-03	0.5%	0.10	3.89
		A1B	2041-2070	1.68	9.61E-04	0.5%	0.10	3.39
	Ponte Da Barca		2071-2100	2.14	1.22E-03	0.5%	0.10	4.00
			2011-2040	2.19	1.25E-03	0.5%	0.10	4.06
		B1	2041-2070	2.28	1.30E-03	0.5%	0.10	4.19
			2071-2100	2.18	1.25E-03	0.5%	0.10	4.06
		Obs	2001-2011	1.86	1.06E-03	0.5%	0.10	3.63
			2011-2040	2.99	1.71E-03	0.5%	0.10	5.07
Y		A1B	2041-2070	3.03	1.74E-03	0.5%	0.10	5.14
gião	São Manços		2071-2100	3.36	1.92E-03	0.5%	0.10	5.51
Re			2011-2040	3.29	1.88E-03	0.5%	0.10	5.43
		B1	2041-2070	2.80	1.60E-03	0.5%	0.10	4.84
			2071-2100	2.49	1.42E-03	0.5%	0.10	4.46
		Obs	2001-2010	1.99	1.14E-03	0.5%	0.10	3.80
			2011-2040	2.81	1.61E-03	0.5%	0.10	4.86
		A1B	2041-2070	2.36	1.35E-03	0.5%	0.10	4.29
	Serpa		2071-2100	3.11	1.78E-03	0.5%	0.10	5.23
			2011-2040	2.46	1.41E-03	0.5%	0.10	4.43
		B1	2041-2070	2.42	1.39E-03	0.5%	0.10	4.37
			2071-2100	2.62	1.50E-03	0.5%	0.10	4.61

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2002-2008	1.04	5.94E-04	0.5%	0.10	2.44
			2011-2040	1.35	7.70E-04	0.5%	0.10	2.91
		A1B	2041-2070	1.11	6.37E-04	0.5%	0.10	2.56
	Castelo Melhor		2071-2100	1.74	9.97E-04	0.5%	0.10	3.47
			2011-2040	1.35	7.74E-04	0.5%	0.10	2.91
		B1	2041-2070	1.18	6.76E-04	0.5%	0.10	2.67
			2071-2100	1.49	8.52E-04	0.5%	0.10	3.12
		Obs	2003-2011	1.15	6.58E-04	0.5%	0.10	2.62
			2011-2040	1.10	6.29E-04	0.5%	0.10	2.54
В		A1B	2041-2070	1.20	6.84E-04	0.5%	0.10	2.69
gião	Pinelo		2071-2100	1.65	9.41E-04	0.5%	0.10	3.34
Re			2011-2040	1.26	7.20E-04	0.5%	0.10	2.78
		B1	2041-2070	1.23	7.06E-04	0.5%	0.10	2.74
			2071-2100	1.42	8.11E-04	0.5%	0.10	3.01
		Obs	2002-2011	1.05	6.01E-04	0.5%	0.10	2.46
			2011-2040	1.41	8.06E-04	0.5%	0.10	3.00
		A1B	2041-2070	1.04	5.97E-04	0.5%	0.10	2.45
	Pinhel		2071-2100	1.76	1.01E-03	0.5%	0.10	3.50
			2011-2040	1.26	7.19E-04	0.5%	0.10	2.78
		B1	2041-2070	1.22	6.95E-04	0.5%	0.10	2.71
			2071-2100	1.50	8.56E-04	0.5%	0.10	3.13

Quadro C1.2 – Tal como o Quadro C1.1, mas para a região B.

Quadro C1.3 – Tal como o Quadro C1.1, mas para a região C.

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2002-2009	1.84	1.05E-03	0.5%	0.10	3.60
			2011-2040	1.95	1.11E-03	0.5%	0.10	3.73
		A1B	2041-2070	2.03	1.16E-03	0.5%	0.10	3.86
	Covilhã		2071-2100	2.38	1.36E-03	0.5%	0.10	4.31
			2011-2040	2.04	1.16E-03	0.5%	0.10	3.86
7)		B1	2041-2070	2.14	1.22E-03	0.5%	0.10	4.00
ão (2071-2100	1.94	1.11E-03	0.5%	0.10	3.73
Regi		Obs	2001-2012	1.41	8.09E-04	0.5%	0.10	3.01
			2011-2040	1.54	8.82E-04	0.5%	0.10	3.19
		A1B	2041-2070	1.64	9.38E-04	0.5%	0.10	3.33
	Pega		2071-2100	1.84	1.05E-03	0.5%	0.10	3.57
			2011-2040	1.48	8.45E-04	0.5%	0.10	3.10
		B1	2041-2070	1.58	9.06E-04	0.5%	0.10	3.26
			2071-2100	1.53	8.78E-04	0.5%	0.10	3.19

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		2.00	1.15E-03	0.5%	0.10	3.83
			2011-2040	2.28	1.31E-03	0.5%	0.10	4.20
		A1B	2041-2070	2.19	1.25E-03	0.5%	0.10	4.06
	Ponte Da Barca		2071-2100	2.35	1.34E-03	0.5%	0.10	4.26
			2011-2040	2.53	1.45E-03	0.5%	0.10	4.51
		B1	2041-2070	2.62	1.50E-03	0.5%	0.10	4.63
			2071-2100	2.43	1.39E-03	0.5%	0.10	4.39
		DR n°23/95		2.00	1.15E-03	0.5%	0.10	3.83
	São Manços		2011-2040	2.95	1.69E-03	0.5%	0.10	5.04
V V		A1B	2041-2070	3.00	1.71E-03	0.5%	0.10	5.07
giãc			2071-2100	3.26	1.87E-03	0.5%	0.10	5.41
Re		B1	2011-2040	3.19	1.83E-03	0.5%	0.10	5.34
			2041-2070	2.77	1.59E-03	0.5%	0.10	4.81
			2071-2100	2.54	1.45E-03	0.5%	0.10	4.51
		DR n°23/95		2.00	1.15E-03	0.5%	0.10	3.83
			2011-2040	2.84	1.62E-03	0.5%	0.10	4.89
		A1B	2041-2070	2.38	1.36E-03	0.5%	0.10	4.31
	Serpa		2071-2100	3.15	1.80E-03	0.5%	0.10	5.27
			2011-2040	2.49	1.42E-03	0.5%	0.10	4.46
		B1	2041-2070	2.45	1.40E-03	0.5%	0.10	4.40
			2071-2100	2.64	1.51E-03	0.5%	0.10	4.64

Quadro C1.4 – Dimensionamento da caleira 2 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).

	Estação	Cenário	Período de dados	Intensidade (L/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		1.60	9.15E-04	0.5%	0.10	3.27
			2011-2040	2.00	1.14E-03	0.5%	0.10	3.81
		A1B	2041-2070	1.88	1.08E-03	0.5%	0.10	3.67
	Castelo Melhor		2071-2100	2.63	1.51E-03	0.5%	0.10	4.64
			2011-2040	1.98	1.13E-03	0.5%	0.10	3.79
		B1	2041-2070	1.90	1.09E-03	0.5%	0.10	3.70
			2071-2100	2.33	1.33E-03	0.5%	0.10	4.26
		DR nº23/95		1.60	9.15E-04	0.5%	0.10	3.27
	Pinelo		2011-2040	1.44	8.23E-04	0.5%	0.10	3.05
В		A1B	2041-2070	1.61	9.21E-04	0.5%	0.10	3.29
giãc			2071-2100	2.05	1.17E-03	0.5%	0.10	3.87
Re		B1	2011-2040	1.68	9.59E-04	0.5%	0.10	3.38
			2041-2070	1.67	9.56E-04	0.5%	0.10	3.37
			2071-2100	1.85	1.06E-03	0.5%	0.10	3.63
		DR nº23/95		1.60	9.15E-04	0.5%	0.10	3.27
			2011-2040	2.04	1.17E-03	0.5%	0.10	3.87
		A1B	2041-2070	1.59	9.10E-04	0.5%	0.10	3.26
	Pinhel		2071-2100	2.49	1.43E-03	0.5%	0.10	4.47
			2011-2040	1.86	1.07E-03	0.5%	0.10	3.64
		B1	2041-2070	1.82	1.04E-03	0.5%	0.10	3.57
			2071-2100	2.14	1.22E-03	0.5%	0.10	4.00

Quadro C1.5 – Tal como o Quadro C1.4, mas para a região B.

Quadro C1.6 – Tal como o Quadro C1.4, mas para a região C.

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		2.40	1.37E-03	0.5%	0.10	4.33
			2011-2040	2.51	1.44E-03	0.5%	0.10	4.49
		A1B	2041-2070	2.60	1.49E-03	0.5%	0.10	4.60
	Covilhã		2071-2100	2.98	1.70E-03	0.5%	0.10	5.06
			2011-2040	2.61	1.49E-03	0.5%	0.10	4.60
5)		B1	2041-2070	2.72	1.55E-03	0.5%	0.10	4.73
ão (2071-2100	2.50	1.43E-03	0.5%	0.10	4.47
Regi		DR nº23/95		2.40	1.37E-03	0.5%	0.10	4.34
			2011-2040	2.54	1.45E-03	0.5%	0.10	4.51
		A1B	2041-2070	2.66	1.52E-03	0.5%	0.10	4.67
	Pega		2071-2100	3.01	1.72E-03	0.5%	0.10	5.10
			2011-2040	2.51	1.43E-03	0.5%	0.10	4.49
		B1	2041-2070	2.61	1.50E-03	0.5%	0.10	4.63
			2071-2100	2.61	1.49E-03	0.5%	0.10	4.60

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2003-2010	1.49	5.28E-04	0.5%	0.10	2.26
			2011-2040	2.04	7.23E-04	0.5%	0.10	2.79
		A1B	2041-2070	1.68	5.95E-04	0.5%	0.10	2.45
	Ponte Da Barca		2071-2100	2.14	7.56E-04	0.5%	0.10	2.87
			2011-2040	2.19	7.75E-04	0.5%	0.10	2.92
		B1	2041-2070	2.28	8.06E-04	0.5%	0.10	3.00
			2071-2100	2.18	7.71E-04	0.5%	0.10	2.91
		Obs	2001-2011	1.86	6.57E-04	0.5%	0.10	2.61
			2011-2040	2.99	1.06E-03	0.5%	0.10	3.61
¥ (São Manços	A1B	2041-2070	3.03	1.07E-03	0.5%	0.10	3.64
giãc			2071-2100	3.36	1.19E-03	19E-03 0.5% 0. 16E-03 0.5% 0	0.10	3.93
Re		B1	2011-2040	3.29	1.16E-03	0.5%	0.10	3.86
			2041-2070	2.80	9.90E-04	0.5%	0.10	3.46
			2071-2100	2.49	8.81E-04	0.5%	0.10	3.19
		Obs	2001-2010	1.99	7.04E-04	0.5%	0.10	2.74
			2011-2040	2.81	9.93E-04	0.5%	0.10	3.46
	Ponte Da Barca São Manços	A1B	2041-2070	2.36	8.33E-04	0.5%	0.10	3.07
	Serpa		2071-2100	3.11	1.10E-03	0.5%	0.10	3.71
			2011-2040	2.46	8.71E-04	0.5%	0.10	3.17
		B1	2041-2070	2.42	8.57E-04	0.5%	0.10	3.13
			2071-2100	2.62	9.26E-04	0.5%	0.10	3.30

Quadro C1.7 – Dimensionamento da caleira 3 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1B e B1)

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2002-2008	1.04	3.68E-04	0.5%	0.10	1.79
			2011-2040	1.35	4.76E-04	0.5%	0.10	2.11
		A1B	2041-2070	1.11	3.94E-04	0.5%	0.10	1.86
	Castelo Melhor		2071-2100	1.74	6.17E-04	0.5%	0.10	2.51
			2011-2040	1.35	4.79E-04	0.5%	0.10	2.12
		B1	2041-2070	1.18	4.18E-04	0.5%	0.10	1.94
		Obs	2071-2100	1.49	5.27E-04	0.5%	0.10	2.26
		Obs	2003-2011	1.15	4.07E-04	0.5%	0.10	1.91
			2011-2040	1.10	3.89E-04	0.5%	0.10	1.86
В		A1B	2041-2070	1.20	4.23E-04	0.5%	0.10	1.95
giãc	Pinelo		2071-2100	1.65	5.82E-04	0.5%	5% 0.10 .5% 0.10 .5% 0.10	2.41
Re		B1	2011-2040	1.26	4.45E-04	0.5%	0.10	2.02
			2041-2070	1.23	4.37E-04	0.5%	0.10	2.00
			2071-2100	1.42	5.02E-04	0.5%	0.10	2.19
		Obs	2002-2011	1.05	3.72E-04	0.5%	0.10	1.80
			2011-2040	1.41	4.99E-04	0.5%	0.10	2.18
		A1B	2041-2070	1.04	3.69E-04	0.5%	0.10	1.79
	Pinhel		2071-2100	1.76	6.25E-04	0.5%	0.10	2.53
			2011-2040	1.26	4.45E-04	0.5%	0.10	2.02
		B1	2041-2070	1.22	4.30E-04	0.5%	0.10	1.97
			2071-2100	1.50	5.29E-04	0.5%	0.10	2.26

Quadro C1.8 – Tal como o Quadro C1.7, mas para a região B.

Quadro C1.9 – Tal como o Quadro C1.7, mas para a região C.

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		Obs	2002-2009	1.84	6.52E-04	0.5%	0.10	2.60
			2011-2040	1.95	6.89E-04	0.5%	0.10	2.70
		A1B	2041-2070	2.03	7.18E-04	0.5%	0.10	2.77
	Covilhã		2071-2100	2.38	8.41E-04	0.5%	0.10	3.09
			2011-2040	2.04	7.20E-04	0.5%	0.10	2.78
C)		B1	2041-2070	2.14	7.56E-04	0.5%	0.10	2.87
ão (2071-2100	1.94	6.85E-04	0.5%	0.10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Regi		Obs	2001-2012	1.41	5.00E-04	0.5%	0.10	2.18
			2011-2040	1.54	5.45E-04	0.5%	0.10	2.31
		A1B	2041-2070	1.64	in.m²) Dim. (m³/s) Inc. (%) .84 6.52E-04 0.5% .95 6.89E-04 0.5% .03 7.18E-04 0.5% .38 8.41E-04 0.5% .04 7.20E-04 0.5% .14 7.56E-04 0.5% .94 6.85E-04 0.5% .54 5.45E-04 0.5% .64 5.80E-04 0.5% .84 6.50E-04 0.5% .58 5.60E-04 0.5% .53 5.43E-04 0.5%	0.5%	0.10	2.41
	Pega		2071-2100	1.84	6.50E-04	0.5%	0.10	2.60
			2011-2040	1.48	5.23E-04	0.5%	0.10	2.24
		B1	2041-2070	1.58	5.60E-04	0.5%	0.10	2.35
			2071-2100	1.53	5.43E-04	0.5%	0.10	2.30

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		2.00	7.08E-04	0.5%	0.10	2.75
			2011-2040	2.28	8.08E-04	0.5%	0.10	3.01
		A1B	2041-2070	2.19	7.76E-04	0.5%	0.10	2.93
	Ponte Da Barca		2071-2100	2.35	8.31E-04	0.5%	0.10	3.06
			2011-2040	2.53	8.96E-04	0.5%	0.10	3.23
		B1	2041-2070	2.62	9.26E-04	0.5%	0.10	3.30
			2071-2100	2.43	8.60E-04	0.5%	0.10	3.14
		DR nº23/95		2.00	7.08E-04	0.5%	0.10	2.75
			2011-2040	2.95	1.04E-03	0.5%	0.10	3.57
V V	São Manços	A1B	2041-2070	3.00	1.06E-03	0.5%	0.10	3.61
giãc			2071-2100	3.26	1.15E-03	0.5%	0.10	3.84
Re		B1	2011-2040	3.19	1.13E-03	0.5%	0.10	3.79
			2041-2070	2.77	9.81E-04	0.5%	0.10	3.44
			2071-2100	2.54	8.98E-04	0.5%	0.10	3.23
		DR n°23/95		2.00	7.08E-04	0.5%	0.10	2.75
			2011-2040	2.84	1.00E-03	0.5%	0.10	3.49
		A1B	2041-2070	2.38	8.44E-04	0.5%	0.10	3.10
	Serpa		2071-2100	3.15	1.12E-03	0.5%	0.10	3.76
			2011-2040	2.49	8.81E-04	0.5%	0.10	3.19
		B1	2041-2070	2.45	8.67E-04	0.5%	0.10	3.16
			2071-2100	2.64	9.35E-04	0.5%	0.10	3.32

Quadro C1.10 – Dimensionamento da caleira 3 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1).

	Estação	Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		1.60	5.66E-04	0.5%	0.10	2.37
			2011-2040	2.00	7.07E-04	0.5%	0.10	2.75
		A1B	2041-2070	1.88	6.65E-04	0.5%	0.10	2.64
	Castelo Melhor		2071-2100	2.63	9.31E-04	0.5%	0.10	3.31
			2011-2040	1.98	7.00E-04	0.5%	0.10	2.73
		B1	2041-2070	1.90	6.73E-04	0.5%	0.10	2.66
			2071-2100	2.33	8.26E-04	0.5%	0.10	3.05
		DR nº23/95		1.60	5.66E-04	0.5%	0.10	2.37
			2011-2040	1.44	5.09E-04	0.5%	0.10	2.21
В	Pinelo	A1B	2041-2070	1.61	5.70E-04	0.5%	0.10	2.38
gião			2071-2100	2.05	7.24E-04	0.5%	0.10	2.79
Re		B1	2011-2040	1.68	5.93E-04	0.5%	0.10	2.44
			2041-2070	1.67	5.91E-04	0.5%	0.10	2.44
			2071-2100	1.85	6.54E-04	0.5%	0.10	2.61
		DR nº23/95		1.60	5.66E-04	0.5%	0.10	2.37
			2011-2040	2.04	7.21E-04	0.5%	0.10	2.79
		A1B	2041-2070	1.59	5.63E-04	0.5%	0.10	2.36
	Pinhel		2071-2100	2.49	8.82E-04	0.5%	0.10	3.19
			2011-2040	1.86	6.60E-04	0.5%	0.10	2.62
		B1	2041-2070	1.82	6.43E-04	0.5%	0.10	2.58
			2071-2100	2.14	7.56E-04	0.5%	0.10	2.87

Quadro C1.11 - Tal como o Quadro C1.10, mas para a região B.

Quadro C1. 12 – Tal como o Quadro C1.10, mas para a região C.

	Estação	Cenário	Período de dados	Intensidade (l/min.m ²)	Caudal Dim. (m³/s)	Inc. (%)	b (m)	H Dim. (cm)
		DR nº23/95		2.40	8.50E-04	0.5%	0.10	3.11
			2011-2040	2.51	8.90E-04	0.5%	0.10	3.21
		A1B	2041-2070	2.60	9.21E-04	0.5%	0.10	3.29
	Covilhã		2071-2100	2.98	1.05E-03	0.5%	0.10	3.60
			2011-2040	2.61	9.23E-04	0.5%	0.10	3.29
5		B1	2041-2070	2.72	9.61E-04	0.5%	0.10	3.39
ão (2071-2100	2.50	8.85E-04	0.5%	0.10	3.20
Regi		DR nº23/95		2.40	8.50E-04	0.5%	0.10	3.11
			2011-2040	2.54	8.99E-04	0.5%	0.10	3.24
		A1B	2041-2070	2.66	9.42E-04	0.5%	0.10	3.34
	Pega		2071-2100	3.01	1.06E-03	0.5%	0.10	3.61
			2011-2040	2.51	8.87E-04	0.5%	0.10	3.21
		B1	2041-2070	2.61	9.25E-04	0.5%	0.10	3.30
			2071-2100	2.61	9.22E-04	0.5%	0.10	3.29

C2 – Tubos de queda

Quadro C2.1 – Dimensionamento do tubo de queda 2 para a região A, recorrendo à intensidade de
precipitação estimada com dados observados no período (2001 - 2012) e com dados simulados em três
períodos de trinta anos para dois cenários futuros (A1B e B1)

			Poríodo	Intonsidada	Caudal	Carga na	Cali	bres
Estação		Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		Obs	2003-2010	1.49	51.20	21.85	25.06	50
			2011-2040	2.04	70.14	27.20	20.36	50
		A1B	2041-2070	1.68	57.67	23.70	23.51	50
	Ponte Da Barca		2071-2100	2.14	73.37	28.00	19.81	50
			2011-2040	2.19	75.19	28.40	19.63	50
		B1	2041-2070	2.28	78.19	29.30	18.62	50
			2071-2100	2.18	74.74	28.40	19.38	50
		Obs	2001-2011	1.86	63.76	25.40	22.05	50
			2011-2040	2.99	102.58	35.50	Dim. (mm) N 25.06 20.36 23.51 19.81 19.63 18.62 19.38 22.05 13.16 12.53 10.39 10.95 14.51 16.92 21.08 14.40 17.98 12.03 16.99 17.47 16.00 17.47	50
¥ (São Manços	A1B	2041-2070	3.03	104.15	36.00	12.53	50
giãc			2071-2100	3.36	115.25	38.60	10.39	50
Re		B1	2011-2040	3.29	112.84	38.00	10.95	50
			2041-2070	2.80	96.00	33.90	14.51	50
			2071-2100	2.49	85.44	31.20	16.92	50
		Obs	2001-2010	1.99	68.26	26.60	21.08	50
			2011-2040	2.81	96.36	34.00	14.40	50
		A1B	2041-2070	2.36	80.82	dual (l/min)Coluna (mm)Dir (mm) $(.20)$ 21.85 $25.$ 0.14 27.20 $20.$ 7.67 23.70 $23.$ 3.37 28.00 $19.$ 5.19 28.40 $19.$ 5.19 28.40 $19.$ 3.19 29.30 $18.$ 4.74 28.40 $19.$ 3.76 25.40 $22.$ 2.58 35.50 $13.$ 4.15 36.00 $12.$ 5.25 38.60 $10.$ 2.84 38.00 $10.$ 5.00 33.90 $14.$ 5.44 31.20 $16.$ 3.26 26.60 $21.$ 6.64 36.60 $12.$ 4.45 31.00 $16.$ 3.17 30.60 $17.$ 9.84 32.30 $16.$	17.98	50
	Serpa		2071-2100	3.11	106.64	36.60	12.03	50
			2011-2040	2.46	84.45	31.00	16.99	50
		B1	2041-2070	2.42	83.17	30.60	17.47	50
			2071-2100	2.62	89.84	32.30	16.00	50

			Poríodo	Intonsidada	Candal	Carga na	Cali	bres
Estação		Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		Obs	2002-2008	1.04	35.66	17.10	28.99	50
			2011-2040	1.35	46.18	20.40	26.18	50
		A1B	2041-2070	1.11	38.22	17.90	28.41	50
	Castelo Melhor		2071-2100	1.74	59.82	24.30	23.02	50
			2011-2040	1.35	46.45	20.40	26.42	50
		B1	2041-2070	1.18	40.59	18.70	27.55	50
			2071-2100	1.49	51.15	21.82	25.13	50
		Obs	2003-2011	1.15	39.49	18.32	27.99	50
		A1B	2011-2040	1.10	37.77	17.77	28.46	50
В	Pinelo		2041-2070	1.20	41.05	18.80	27.62	50
giãc			2071-2100	1.65	56.48	23.36	23.81	50
Re		B1	2011-2040	1.26	43.19	19.46	27.07	50
			2041-2070	1.23	42.34	19.21	27.24	50
			2071-2100	1.42	48.66	21.10	25.71	50
		Obs	2002-2011	1.05	36.09	17.25	28.82	50
			2011-2040	1.41	48.38	21.02	25.77	50
		A1B	2041-2070	1.04	nsidade pin.m²)Caudal Dim. (l/min)Coluna Coluna (mm) 1.04 35.66 17.10 1.35 46.18 20.40 1.11 38.22 17.90 1.74 59.82 24.30 1.35 46.45 20.40 1.18 40.59 18.70 1.49 51.15 21.82 1.15 39.49 18.32 1.10 37.77 17.77 1.20 41.05 18.80 1.65 56.48 23.36 1.26 43.19 19.46 1.23 42.34 19.21 1.42 48.66 21.10 1.04 35.82 17.16 1.76 60.57 24.50 1.26 43.14 19.45 1.22 41.72 19.00 1.50 51.34 21.89	17.16	28.91	50
	Pinhel		2071-2100	1.76	60.57	24.50	22.87	50
			2011-2040	1.26	43.14	19.45	27.06	50
		B1	2041-2070	1.22	41.72	19.00	27.47	50
			2071-2100	1.50	51.34	21.89	25.03	50

Quadro C2.2 – Tal como o Quadro C2.1, mas para a região B.

Quadro C2.3 – Tal como o Quadro C2.1, mas para a região C.

Estação		Cenário	Período de dados	Intensidade (l/min.m²)	Caudal Dim. (l/min)	Carga na Coluna (mm)	Calibres	
							Dim. (mm)	Nominal (mm)
Região C	Covilhã	Obs	2002-2009	1.84	63.24	25.20	22.36	50
		A1B	2011-2040	1.95	66.79	26.11	21.72	50
			2041-2070	2.03	69.63	27.00	20.67	50
			2071-2100	2.38	81.59	30.20	17.80	50
		B1	2011-2040	2.04	69.85	27.00	20.80	50
			2041-2070	2.14	73.33	28.00	19.79	50
			2071-2100	1.94	66.42	26.11	21.49	50
	Pega	Obs	2001-2012	1.41	48.54	21.10	25.61	50
		A1B	2011-2040	1.54	52.90	22.35	24.62	50
			2041-2070	1.64	56.26	23.30	23.86	50
			2071-2100	1.84	63.02	25.00	22.87	50
		B1	2011-2040	1.48	50.68	21.70	25.19	50
			2041-2070	1.58	54.34	22.80	24.15	50
			2071-2100	1.53	52.65	22.30	24.61	50
Estação			Período Intensidade Caudal		Carga na Ca		bres	
---------	----------------	------------	----------------------------	-------------------------	--------------	----------------	--------------	-----------------
		Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		DR nº23/95		2.00	68.72	26.80	20.74	50
			2011-2040	2.28	78.37	29.40	18.42	50
		A1B	2041-2070	2.19	75.22	28.40	19.65	50
	Ponte Da Barca		2071-2100	2.35	80.63	29.85	18.31	50
			2011-2040	2.53	86.91	31.60	16.53	50
		B1	2041-2070	2.62	89.82	32.40	15.72	50
			2071-2100	2.43	83.43	30.70	17.33	50
		DR nº23/95		2.00	68.72	26.80	20.74	50
	São Manços		2011-2040	2.95	101.14	35.30	13.08	50
¥ (A1B	2041-2070	3.00	102.85	35.50	13.26	50
giãc			2071-2100	3.26	111.93	37.90	10.86	50
Re			2011-2040	3.19	109.53	37.40	11.18	50
		B1	2041-2070	2.77	95.11	33.70	14.64	50
			2071-2100	2.54	87.07	31.60	16.60	50
		DR nº23/95		2.00	68.72	26.80	20.74	50
			2011-2040	2.84	97.35	34.20	14.31	50
		A1B	2041-2070	2.38	81.84	30.20	17.93	50
	Serpa		2071-2100	3.15	108.28	36.90	11.91	50
			2011-2040	2.49	85.41	31.20	16.91	50
		B1	2041-2070	2.45	84.14	30.80	17.39	50
			2071-2100	2.64	90.72	32.50	15.87	50

Quadro C2.4 – Dimensionamento do tubo de queda 2 para a região A, recorrendo à intensidade de
precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para
períodos de trinta anos dos dois cenários futuros (A1B e B1)

			Período	Intensidado	Intensidade Caudal Carga na			Calibres		
Estação		Cenário	de dados	(l/min.m ²)	dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)		
		DR n°23/95		1.60	54.90	22.91	24.19	50		
			2011-2040	2.00	68.56	26.70	20.95	50		
		A1B	2041-2070	1.88	64.51	25.70	21.57	50		
	Castelo Melhor		2071-2100	2.63	90.34	32.50	15.69	50		
			2011-2040	1.98	67.91	26.50	21.18	50		
		B1	2041-2070	1.90	65.27	25.90	21.43	50		
			2071-2100	2.33	80.09	29.80	18.17	50		
		DR n°23/95		1.60	54.90	22.91	24.19	50		
	Pinelo		2011-2040	1.44	49.37	21.32	25.49	50		
В		A1B	2041-2070	1.61	55.24	23.02	24.07	50		
giãc			2071-2100	2.05	70.20	27.10	20.70	50		
Re			2011-2040	1.68	57.54	23.67	23.52	50		
		B1	2041-2070	1.67	57.33	23.62	23.54	50		
			2071-2100	1.85	63.42	25.40	21.83	50		
		DR n°23/95		1.60	54.90	22.91	24.19	50		
			2011-2040	2.04	69.95	27.10	20.55	50		
		A1B	2041-2070	1.59	54.61	22.83	24.25	50		
	Pinhel		2071-2100	2.49	85.58	31.30	16.71	50		
			2011-2040	1.86	64.00	25.50	21.89	50		
		B1	2041-2070	1.82	62.39	25.00	22.45	50		
			2071-2100	2.14	73.34	28.00	19.79	50		

Quadro C2.5 – Tal como o Quadro C2.4, mas para a região B.

Quadro C2.6 – Tal como o Quadro C2.4, mas para a região C.

Estação			Período	Intensidade	Caudal	Carga na	Calibres	
		Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		DR nº23/95		2.40	82.46	30.30	17.96	50
			2011-2040	2.51	86.30	31.40	16.78	50
		A1B	2041-2070	2.60	89.31	32.20	16.03	50
	Covilhã		2071-2100	2.98	102.16	35.40	13.24	50
			2011-2040	2.61	89.53	32.20	16.12	50
0		B1	2041-2070	2.72	93.24	33.10	15.40	50
ão (2071-2100	2.50	85.89	31.30	16.86	50
Regi		DR nº23/95		2.40	82.46	30.40	17.68	50
[2011-2040	2.54	87.22	31.60	16.67	50
		A1B	2041-2070	2.66	91.34	32.70	15.61	50
	Pega		2071-2100	3.01	103.24	35.70	12.92	50
			2011-2040	2.51	86.02	31.40	16.65	50
		B1	2041-2070	2.61	89.71	32.40	15.67	50
			2071-2100	2.61	89.42	32.20	16.07	50

			Paríodo	Intensidado	Candal	Carga na	Cali	bres
Estação		Cenário	de dados	(l/min.m ²) Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)	
		Obs	2003-2010	1.49	31.67	15.84	29.80	50
			2011-2040	2.04	43.39	19.53	26.98	50
		A1B	2041-2070	1.68	35.67	17.13	28.87	50
	Ponte Da Barca		2071-2100	2.14	45.39	20.12	26.54	50
			2011-2040	2.19	46.51	20.46	26.25	50
		B1	2041-2070	2.28	48.37	21.02	25.76	50
			2071-2100	2.18	46.23	20.39	26.27	50
		Obs	2001-2011	1.86	39.44	18.30	28.02	50
	São Manços		2011-2040	2.99	63.46	25.30	22.18	50
V V		A1B	2041-2070	3.03	64.43	25.50	22.17	50
giãc			2071-2100	3.36	71.29	27.50	20.12	50
Re			2011-2040	3.29	69.80	27.00	20.77	50
		B1	2041-2070	2.80	59.38	24.20	23.04	50
			2071-2100	2.49	52.85	22.33	24.66	50
		Obs	2001-2010	1.99	42.23	19.17	27.29	50
			2011-2040	2.81	59.61	24.24	23.07	50
		A1B	2041-2070	2.36	50.00	21.50	25.36	50
	Serpa		2071-2100	3.11	65.97	26.00	21.55	50
			2011-2040	2.46	52.24	22.16	24.79	50
		B1	2041-2070	2.42	51.45	21.91	25.05	50
			2071-2100	2.62	55.57	23.10	24.04	50

Quadro C2.7 – Dimensionamento do tubo de queda 3 para a região A, recorrendo à intensidade de precipitação estimada com dados observados no período (2001 – 2012) e com dados simulados em três períodos de trinta anos para dois cenários futuros (A1B e B1)

			Período	Intensidado	Candal	Carga na	Calibres	
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		Obs	2002-2008	1.04	22.06	12.50	32.11	50
			2011-2040	1.35	28.56	14.77	30.70	50
		A1B	2041-2070	1.11	23.65	13.00	32.17	50
	Castelo Melhor		2071-2100	1.74	37.01	17.54	28.60	50
			2011-2040	1.35	28.73	14.83	30.64	50
		B1	2041-2070	1.18	25.11	13.55	31.65	50
			2071-2100	1.49	31.64	15.80	29.95	50
	Pinelo	Obs	2003-2011	1.15	24.43	13.35	31.60	50
			2011-2040	1.10	23.36	13.00	31.67	50
В		A1B	2041-2070	1.20	25.39	13.67	31.48	50
giãc			2071-2100	1.65	34.94	16.90	29.02	50
Re			2011-2040	1.26	26.72	14.13	31.17	50
		B1	2041-2070	1.23	26.19	14.00	31.03	50
			2071-2100	1.42	30.10	15.30	30.27	50
		Obs	2002-2011	1.05	22.32	12.60	32.03	50
			2011-2040	1.41	29.93	15.24	30.32	50
		A1B	2041-2070	1.04	22.16	12.50	32.30	50
	Pinhel		2071-2100	1.76	37.47	17.70	28.43	50
			2011-2040	1.26	26.69	14.13	31.12	50
		B1	2041-2070	1.22	25.81	13.82	31.36	50
			2071-2100	1.50	31.76	15.84	29.92	50

Quadro C2.8 – Tal como o Quadro C2.7, mas para a região B.

Quadro C2.9 – Tal como o Quadro C2.7, mas para a região C.

			Período	Intensidade	Caudal	Carga na	Cali	bres
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		Obs	2002-2009	1.84	39.12	18.20	28.10	50
			2011-2040	1.95	41.32	18.90	27.48	50
		A1B	2041-2070	2.03	43.07	19.40	27.19	50
	Covilhã		2071-2100	2.38	50.47	21.64	25.23	50
			2011-2040	2.04	43.21	19.46	27.08	50
7)		B1	2041-2070	2.14	45.36	20.12	26.52	50
ão (2071-2100	1.94	41.09	18.80	27.65	50
Regi		Obs	2001-2012	1.41	30.03	15.25	30.41	50
			2011-2040	1.54	32.72	16.15	29.71	50
		A1B	2041-2070	1.64	34.80	16.84	29.13	50
	Pega		2071-2100	1.84	38.98	18.17	28.08	50
			2011-2040	1.48	31.35	15.71	29.99	50
		B1	2041-2070	1.58	33.61	16.45	29.45	50
			2071-2100	1.53	32.57	16.11	29.70	50

			Período I		e Caudal	Carga na	Calibres	
Estação		Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		DR nº23/95		2.00	42.51	19.25	27.24	50
			2011-2040	2.28	48.48	21.05	25.74	50
		A1B	2041-2070	2.19	46.53	20.48	26.19	50
	Ponte Da Barca		2071-2100	2.35	49.88	21.45	25.44	50
			2011-2040	2.53	53.76	22.60	24.41	50
		B1	2041-2070	2.62	55.56	23.10	24.03	50
			2071-2100	2.43	51.61	21.96	25.00	50
		DR nº23/95		2.00	42.51	19.25	27.24	50
	São Manços		2011-2040	2.95	62.57	25.00	22.57	50
V V		A1B	2041-2070	3.00	63.62	25.30	22.29	50
giãc			2071-2100	3.26	69.24	26.90	20.74	50
Re			2011-2040	3.19	67.76	26.50	21.09	50
		B1	2041-2070	2.77	58.83	24.05	23.16	50
			2071-2100	2.54	53.86	22.62	24.42	50
		DR nº23/95		2.00	42.51	19.25	27.24	50
			2011-2040	2.84	60.22	24.40	22.96	50
		A1B	2041-2070	2.38	50.63	21.70	25.15	50
	Serpa		2071-2100	3.15	66.98	26.30	21.24	50
			2011-2040	2.49	52.83	22.33	24.65	50
		B1	2041-2070	2.45	52.05	22.09	24.88	50
			2071-2100	2.64	56.12	23.26	23.89	50

Quadro C2.10 – Dimensionamento do tubo de queda 3 para a região A, recorrendo à intensidade de precipitação estimada com o Decreto Regulamentar nº23/95 de 23 de Agosto e com os dados simulados para períodos de trinta anos dos dois cenários futuros (A1B e B1)

			Período	Intensidado	Caudal	Carga na	Calibres	
	Estação	Cenário	de dados	(l/min.m ²)	dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		DR nº23/95		1.60	33.96	16.57	29.33	50
			2011-2040	2.00	42.41	19.23	27.23	50
		A1B	2041-2070	1.88	39.90	18.45	27.88	50
	Castelo Melhor		2071-2100	2.63	55.88	23.20	23.92	50
			2011-2040	1.98	42.01	19.10	27.36	50
		B1	2041-2070	1.90	40.38	18.60	27.75	50
			2071-2100	2.33	49.54	21.36	25.49	50
		DR nº23/95		1.60	33.96	16.57	29.33	50
	Pinelo		2011-2040	1.44	30.54	15.44	30.19	50
В		A1B	2041-2070	1.61	34.17	16.64	29.27	50
giãc			2071-2100	2.05	43.43	19.54	26.98	50
Re			2011-2040	1.68	35.59	17.09	28.95	50
		B1	2041-2070	1.67	35.47	17.05	28.98	50
			2071-2100	1.85	39.23	18.24	28.05	50
		DR nº23/95		1.60	33.96	16.57	29.33	50
			2011-2040	2.04	43.27	19.50	26.99	50
		A1B	2041-2070	1.59	33.78	16.50	29.43	50
	Pinhel		2071-2100	2.49	52.94	22.35	24.66	50
			2011-2040	1.86	39.59	18.35	27.97	50
		B1	2041-2070	1.82	38.60	18.04	28.21	50
			2071-2100	2.14	45.37	20.10	26.60	50

Quadro C2.11 - Tal como o Quadro C2.10, mas para a região B.

Quadro C2.12 – Tal como o Quadro C2.10, mas para a região C.

			Período	Intensidade	Caudal	Carga na	Calibres	
	Estação	Cenário	de dados	(l/min.m ²)	Dim. (l/min)	Coluna (mm)	Dim. (mm)	Nominal (mm)
		DR nº23/95		2.40	51.01	21.80	25.09	50
			2011-2040	2.51	53.38	22.50	24.47	50
		A1B	2041-2070	2.60	55.25	23.00	24.14	50
	Covilhã		2071-2100	2.98	63.20	25.20	22.33	50
			2011-2040	2.61	55.38	23.05	24.07	50
5		B1	2041-2070	2.72	57.68	23.70	23.52	50
ão (2071-2100	2.50	53.13	22.40	24.63	50
Regi		DR nº23/95		2.40	51.01	21.80	25.09	50
			2011-2040	2.54	53.95	22.65	24.38	50
		A1B	2041-2070	2.66	56.50	23.40	23.69	50
	Pega		2071-2100	3.01	63.86	25.30	22.45	50
			2011-2040	2.51	53.21	22.44	24.55	50
		B1	2041-2070	2.61	55.49	23.09	24.01	50
			2071-2100	2.61	55.31	23.04	24.05	50