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Resumo

O trabalho apresentado nesta Tese de Doutorameotoséituido por uma parte
experimental, uma parte numérica e uma parte maalttom o propdsito de estudar o
comportamento evidenciado pelo desenvolvimento rda gurva deResisténciae 0
efeito de escala em estruturas de madeira prérantad, sujeitas a fractura em Modo .
Os resultados providenciados pelos ensaios me&s@&on combinados com anélises
numeéricas realizadas por Elementos Finitos (EFkemido de avaliar propriedades de
fractura, recorrendo a um procedimento equivaldat&eoria da Mecanica da Fractura
Linear Elastica (LEFM), baseado na flexibilidade estrutura, e a um Algoritmo
Genético. A curva de Resisténcia (cuR)a- determinada a partir dos ensaios
mecanicos, evidencia o desenvolvimento da ZonardeeBso de Fractura (FPZ), que
ocorre na frente de fenda, durante o processo @fgagacéo. A taxa de libertacdo de
energia de fractura, dada pela cuRjaexibe, numa primeira fase, uma tendéncia
crescente, convergindo continuamente para uma pisgamhorizontal (patamar), a
medida que o comprimento de fenda aumenta. Estanpatdefine a taxa critica de
libertacdo de energia de fractura (modo |), questitoh uma propriedade coesiva Util
para reproduzir numericamente (modelacdo por Hifpoesso de propagacado da fenda.
Assim, escolhida que seja a geometria da estratanaalisar, bem como o modelo de
dano a utilizar na simulacdo do processo de pragdagda fenda, torna-se possivel
monitorizar o desenvolvimento da zona coesiva,vadgmte & dimensdo da FPZ (real),
em funcdo do comprimento de fenda equivalente. €siltados decorrentes da
modelacdo por EF da propagacdo da fenda, para @deependerem do material
simulado, revelam que a dimensao critica da zoeaiwa esta associada ao inicio do
patamar da curvk: Esta observacdo permite especular quanto a ddaatia medicédo
da taxa critica de libertacédo de energia de fracem qualquer material quase-fragil, na
medida em que a avaliacdo desta propriedade deriaequer a constatacdo prévia de
gue a dimensao critica evidenciada pela zona agsirmanece inalterada ao longo de
um comprimento de fenda (equivalente) suficientdmertenso (estado de propagacgéao
auto-semelhante). Decorre deste ponto, a necessidadobservar atentamente a
dependéncia da extensdo da zona coesiva com agdimearacteristica da estrutura,
vulgo extensao do ligamento, na medida em que alagdb por EF revela a existéncia

de uma dimenséo critica, abaixo da qual é impdssbter taxas criticas de libertagéo



de energia. A modelacao da fenda por EF pbe enémsi@ que a curvR-ndo depende

da dimenséo caracteristica da estrutura, para adegeometria.

Surge a este propésito, o estudo do efeito de aseal contexto de uma analise
assimptética, recorrendo a um procedimento analitjae tem por base a constatacao
de que a curv& é Unica. Discute-se se o comprimento de fendavalguite associado a
carga maxima depende ou ndo da dimensdo cardcteréist estrutura. Da mesma
forma, analisa-se a evolucao da taxa de libertde&nergia associada a carga maxima,
quando a dimenséo da estrutura aumenta. Atendegde a lei de efeito de escala de
Bazant (SEL), determina a evolucao da resistéramaimal para estruturas de dimenséo
intermédia, a partir do ajuste assimptotico efedua partir dos regimes previstos pela
Teoria da Resisténcia de Materiais e pela LEFMgedpyestionar-se se nao seria mais
exacto deduzir, para o regime intermédio, um regex@nensional assimptético

baseado na cuni/&-determinada experimentalmente.

O conjunto de questdes levantadas no paragrafori@ntaespeitantes ao
comportamento evidenciado pelo material, suscitoeiaizacdo de ensaios mecanicos
em estruturas geometricamente semelhantes, de shmatiferente. Este estudo de
efeito de escala envolveu a realizacéo de ensagamtos em estruturas de dimensao
nao desprezivel, pelo que se justificou o desemmelnto de um procedimento que
visasse a compensacao do peso proprio.

O tratamento estatistico, envolvendo os resultagkg®erimentais obtidos nos
ensaios de fractura (Modo 1), providencia a infogéta necessaria para confirmar a
existéncia de uma cunR-nica, para uma espécie de madeira correntemélizada
em construcéo civil. Assim, o efeito de escala evathdo pela resisténcia nominal da
estrutura, em particular aquele que cobre a gamadideensbes caracteristicas
intermédias, pode entdo possibilitar a avaliacdoedime adimensional assimptotico
baseado na cunR- (Unica) experimental. Este regime assimptoticorasgnta a
transicdo exacta entre os regimes previstos padaalrda Resisténcia de Materiais, e
pela LEFM, quando analisado de um ponto de vistargético. A evolucdo da
resisténcia nominal da estrutura, baseada em iafgia experimental, constituir-se-a
sob a forma de um dominio (ou envelope de tendgeraia funcdo da dimensao

caracteristica da estrutura (grafico bi-logaritrpico



Abstract

This Thesis concerns the mechanical testing, nwaleanalysis and cohesive
modelling of fracture (Mode I) on the purpose todst theResistance-curve behaviour
and the size effect in wooden notched structurés mnmodified form. The mechanical
testing is combined with the numerical analysisvaluate fracture properties by means
of an equivalent LEFM approach based on the streatompliance. Th&esistance-
curve being revealed from the experiments puts ewmlence that a non-negligible
damaged domain (Fracture Process Zone) is undezlgpewent in the crack front
during the loading process. Additionally, it is piide to investigate if the raise of the
energy release rate, necessary to initiate thek gpempagation, is likely to reveal an
asymptotic behaviour (plateau). This being the casgong other fracture parameters
issued from theResistance-curve, the critical (asymptotic) energy releasée r&s
determined, turning possible to use it in comboratwith other cohesive crack
properties in the crack modelling (in Mode 1). Thi a given geometry it is feasible
to monitor the critical dimension being revealedthg Fracture Process Zone (FPZ)
during the crack propagation. Furthermore, the yemasl may reveal that this critical
extent depend on the material used in the numeseaulation. Thus, one can
speculates that the accurate evaluation of thigarignergy release rate in any material
Is subjected to the condition that the FPZ extéayssunaffected during a sufficiently
large crack extension. Another subject which meaitention concerns the dependence
of the FPZ extent with the structure size beindyamaal in the cohesive modelling, since
a lower characteristic dimension ought to outcommenfthe numerical study, thus
permitting to define a critical ligament length idador a given geometry. The cohesive
crack modelling is also likely to provide the evide that theResistance-curve is not

dependent of the structure size being considerétkianalysis.

The foreknowledge developments just described ageishat thdresistance-curve
IS unique, turning consequent the analysis of tize &ffect on an energy based
asymptotic analysis, thus making use of an analytidevelopment procedure.
Accordingly, one can argue whether the relativelclangth at the peak load depends
or not on the characteristic structure size. Iika manner, a similar query might be
addressed concerning the trend exhibited by enetggse rate at the peak load with the
increase in the structure size. As the predictiposided by the Bazant's size effect law



(SEL) are accomplished on the fitting basis of hibi Strength Theory and the Linear
Elastic Fracture Mechanics (LEFM) asymptotic reggmene might wonder if the
nominal strength in the intermediate size range ldvawt be defined through an

additional dimensionless asymptotic regime basethervaluate&Resi stance-curve.

The above cited predictions involving the matebehaviour somehow rouse the
inevitable mechanical testing on geometrically Eamstructures of different sizes. With
the required size effect study bringing about theclmanical testing of structures
exhibiting non-negligible sizes, the self-weighwery likely to induce the results. This
being observed, a self-weight compensation methots tcrucial in the treatment of the

experimental data.

The statistical handling issued by the fracture di®ld) experiments, involving
geometrically structures of different sizes, mightvide the essentials to conclude for
the unigueResistance-curve in a given wood species used in timber cangon. The
scaling of the nominal strength is then possiblepform for a set of tested
characteristic sizes, spanning the predictionslyigl the Strength Theory and LEFM.
The accurate definition of the intermediate sizgime is thus possible to achieve,

sufficing that theR-curve is known for a given specimen geometry.



Résumé

Le travail détaillé de cette Thése de Doctorat,cesiposé en partie par un travail
expérimental, numérique et analytique. La dernipegtie est présentée avec la
proposition d’étudier le comportement qui met emdénce le développement d’'une
courbe deRésistanceet I'effet d’échelle, en charpentes de bois niasdiaillé (Mode |
de rupture). Les résultats, fournis par des egsa@isaniques, sont combinés avec les
analyses numériques réalisées par la Méthode deselts Finis (MEF), dans le but
d’évaluer les propriétés mécaniques de rupture.i E€st réalisé par une approche
équivalente de la Mécanique de la Rupture Linéaiastique (Linear Elastic Fracture
Mechanics : LEFM), basée par la flexibilité de teusture. Pour ceci, un Algorithme
Génétigue a été implémenté et testé. La courbiRédestancgcourbeR), déterminée a
partir des essais mécaniques expérimentaux, mévidance le développement de la
Zone de Rupture (Fracture Process Zone : FPZ)s@tend en fonde de fissure au
cours du processus de propagation. Dans une peerpl@ase, le taux de restitution
d’énergie de rupture montre une tendance croissanbgressant vers une asymptote
horizontale flatea) avec la longueur de fissure. (Qdateau détermine la valeur
critigue du taux de restitution d’énergie de ruptyMode 1) utilisée comme une
propriété cohésive nécessaire a la modélisatiorengoe (MEF) d’une fissure. Ainsi,
une fois la géométrie de structure a analyser achtdsie, bien que le modele
d’endommagement pour traduire le comportement duénmaa, il sera possible
d’estimer la taille de la zone cohésive, équivaeatla dimension de la FPZ (donc
réelle), en fonction de la longueur équivalente laefissure. Les résultats de la
propagation de la fissure obtenus par modélisail&f, au dela d’étre dépendants des
matériaux simulés, ils montrent que la dimensioitiqcre de la zone cohésive est
associée au début duateaude la courbdR. Cette observation permet d’évaluer la
précision de mesure de la valeur critique du taux mstitution d’énergie
indépendamment du matériau considéré. Cette éimlude la propriété de rupture
nécessite la constatation, au préalable, que l&rmimn critique de la zone cohésive

reste inaltérée le long d’'une grande longueur skufe (équivalente).

En conséquence, il devient impératif d’examineerattement la dépendance de
I'extension de la zone cohésive avec la taille d&restique de la structure. Par
conséquence la modélisation par MEF montre I'ertsted’'une dimension critique en

dessous de laguelle est impossible de déterminertalex de restitution d’énergie
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critiques de rupture. La modélisation de la fisquae MEF montre que la courliene

dépend pas de la dimension de la structure elleepgaur une géométrie en particulier.

A la suite de ces observations, il devient pertinde réaliser I'étude d'effet
d’échelle dans le contexte d’'une analyse asymptetigasée sur le faite que la courbe-
R est effectivement unique. L'importance d’évaluar la longueur de fissure
équivalente, associée a la charge ultime, dépeada dimension caractéristique de la
structure. De méme, I'analyse de I'évolution duxtde restitution d’énergie associée a
la charge ultime, quand la dimension de la striecaugmente, est aussi tres pertinente.
Il est connue que pour le régime de taille interiaiéel la loi d’effet d’échelle de
Bazant (Size Effect Law: SEL), estime la résistanmominale par ajustement
asymptotique, réalisée a partir des petites taflibgorie de Résistance des Matériaux)
et des grandes (LEFM). Par conséquent, il devipptaprié de proposer un régime
adimensionnel asymptotique basé sur la co®Rhmsique, sur la base d’'une approche
analytique. Ce régime asymptotique additionnel a@iévidonc, étre en fonction de
l'information acquise dans les données expérimestale rupture, notamment la

courbeR.

L'ensemble de questions et suppositions antérieemeér@dnumérés, notamment a
propos du comportement exhibé par le matériaufiprat bien la réalisation des essaies
meécaniques en structures geomeétriquement simildeegifférentes dimensions. Cette
étude d’effet d’échelle comporte ainsi la réalsatdes essais en structures de taille
importante. La conséquence inévitable, c’est donffdence du poids propre dans les
résultats expérimentaux, surtout pour les granddes de structures testées. Cette
constatation justifie donc bien le développemenid’ procédure qui considere I'effet

du poids propre de la structure analysée (doncarrection).

Le traitement statistique réalisé sur les résultatsdépouillement expérimental,
fourni I'information nécessaire pour confirmer listence d'une courbB- unique,
lorsque une essence de bois est utilisée commeimatie teste. Ainsi, I'effet d’échelle
sur la résistance nominale de la structure, enicpéer celui qui couvre le régime de
taille intermédiaire, rend possible I'évaluation kigime asymptotique adimensionnel
basé dans la courlieexpérimentale (unique). L’évolution de la résisnominale de
la structure, basée sur l'information expérimentast montrée sur la forme d'une
enveloppe (domaine) de transition entre les peditdss grandes tailles de structure (en

représentation bi-logarithmique).
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| ntroduction

Fracture of quasibrittle materials, such as coeg¢retortar, rocks, sea ice, dental
cements, fibre composites, bone, wood, among qtleecharacterised by the existence
of a non-negligible Fracture Process Zone (FPZxlkievelops ahead of the crack-tip
(Bazant ZP and Planas J, 1998). In these matetia¢s,FPZ undergoes softening
damage such as microcracking, crack-branchingamkebridging, which may represent
almost the entire nonlinear zone at the crackuipph normal stresses progressively
declining along the FPZ domain (Bazant ZP, 2004 @&xperimental praxis in notched
structures involving fracture reveals that the kramnitoring in these materials is very
difficult to accomplish with accuracy, due to theed fracture phenomena taking place
ahead of the crack-tip. Due to the developmenhisfEPZ, these materials typically fail
only after a large crack has grown in a stable rearfBazant ZP, 1997 c). As this
softening zone attends a non-negligible dimensiothe structure scale, Linear Elastic
Fracture Mechanics (LEFM) cannot be directly applieut rather Non-Linear Elastic
Fracture Mechanics (NLFM). Nevertheless, an admptabf LEFM is possible to
execute, known agquivalent LEFM, which provides a useful approximation of

quasibrittle fracture.

The main consequence of the FPZ development istikervation of the so-called
Resistance-curve R-curve), in which the resistance to crack growtlpedels on this
equivalent linear elastic crack lengts,(a). The resistance to crack grow@(a) has
firstly been regarded as a fixed material propeasydefended by Irwin GR (1960) and
more assumedly by Kraft et al. (1961). More regeritbwever, it has been found that
the shape of th&-curve is considerably influenced by the structgeemetry (Bazant
ZP and Li Y-N, 1997; Morel et al., 2003), as wedl lay the structure size (Bazant ZP
and Planas J, 1998). This raises the issue regatdenrelation which seems to exist
between the energetic fracture properties, estuniaten theR-curve, and the specimen

geometry.

Conceptually, the most straightforward and efficiemethod to typify the
quasibrittle failure in notched structures is tluhesive crack model (Elices M et al.,
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Introduction

2002; Planas et al., 2003). According to this NLRMdel the entire FPZ is gathered into
the crack line being characterized on the base stfess-displacement law which exhibits
softening. In most of the analyses which involve tiohesive crack modelling (CCM), the
structural model in a whole remains elastic, tugnihus possible to get the mechanical
response on each side of the crack on the linaatigty basis, with the nonlinearity being
included through boundary conditions along the lciate. Among the different possible
softening behaviours used to characterize thisimeatity, the bilinear softening function is
well known to describe accurately the quasibriditure, since it reproduces well the most
important phenomena taking place under crack prtpay §.e., microcracking and crack-
bridging). Regardless of the success revealeddwefficiency shown by the cohesive crack
models to typify the quasibrittle failure in notchstructures, the estimate of the cohesive
properties with respect to a given experimentald-Daflection response is yet a tiring task
(Wang J, 2006; Dourado et al., 2008). Since thisnase provides a way to measure the
development of the FPZ, as well as possible intenas with the structure boundaries, it
turns that the issue deserves attention, also éacas the context of tHe-curve behaviour.
Therefore, the bilinear softening function (Peters®E, 1981) has recently been used to
estimate the connections betweenRheurve and the cohesive crack properties in the one
to-one correspondence which seems to exist bet#=R-curve and the softening curve
pointed out by Planas et al. (2003), using diffesgprecimen geometries (DCB, TDCB and
SENB) (Lespine C 2007, Morel S et al. 2008). Howgedespite the efficiency of the CCM
to describe the quasibrittle failure, the cohesivack properties (as well as the R-curve

properties) appear dependent on the specimen ggomet

One of the main consequences of the behaviour estad through thB-curve is the
effect of the structure size on its nominal strandhe size effect on the structural strength
may be defined as the deviation, engendered bygltihage of structure size, of the actual
load capacity of a structure from the load capapidicted by plastic limit analysis (or
any theory based on critical stresses or straBafgnt ZP and Planas J, 1998). In a unlike
manner as previewed by the weakest link model (\WeM/, 1939) the size effect in
notched structures is related to existence ofRiweirve, through what it is referred as a
energetic size effect rather than a statistical (Bezant ZP, 1984; Bazant ZP, 1997 a;
Bazant ZP c).
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Since 1984, the Bazant’s size effect law (SEL) @aZP, 1997 c) provides the alone
efficient description of the size effect phenomenangeometrically similar notched
structures of different sizeB . In its most recent development, Bazant’'s SELb&ined
from an asymptotic analysis performed for small &arde structure sizes and leads to a
size effect expected to be transitional between d¢amesponding asymptotic behaviours :
Strength Theory (or plastic limit analysis) for ainstructure sizes and LEFM for large
structure sizes. As a consequence, the size dffethe intermediate structure sizes is not
accurately defined, since it is obtained from ayngstotic matching procedure, performed
from both extreme asymptotic regimes. Since therimédiate structure sizes correspond to
the range of the experimental data usually avaalaitlturns that the issue ought to be
analysed in detail. In addition, the size effeatdigton the intermediate size range might be
supported on credible experimental data, thus allenfying its adequacy to predict the

evolution of the nominal stress in a given geometry

After an overview of the quasibrittle failure artd main consequences in Chapter I,
the second Chapter is devoted to an experimenidly stonsisting in fracture tests in a
guasibrittle material. The consequences motivatethe development of a non-negligible
non-linear domain are discussed in the contextrokquivalent Linear Elastic Fracture
Mechanics approach, with the resistance to craolily being evaluated as a function of
the equivalent crack lengthiR{curve). The experimental results are then simdldétem
CCM and it is shown that the developed cohesives zoight interact with the structure
boundaries, leading to corresponding underestimatid energetic properties. This
interaction between the cohesive zone and thetateiboundaries emphasizes the required
minimum specimen dimension necessary to perfornurate estimate of the energetic

properties and leads naturally to the introductibthe size effect phenomenon.

The third Chapter is focused in the size effectnoineenon in quasibrittle fracture. In
this chapter, an evaluation of the size effectr@nrelative crack length at the peak load, on
the corresponding resistance to crack growth, anthe nominal strength, is proposed. An
analytical development procedure is presented, aancdditional asymptotic regime is

detailed for the intermediate size range. The ptigis of this size effect model are
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validated from CCM simulations performed on geomatty similar notched structures of
different sizes.

The ending Chapter presents the experiments onsittee effect. TheR-curve is
estimated through a compensation procedure whigstamto account the specimen self-
weight. The size effect on the nominal strengtpresented revealing the intermediate size

regime estimated by means of experimental data.
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Chapter |

Overview of the cohesive faillure and
main consequences



Chapter |

1.1 Introduction

The first Chapter of the present Thesis startg@ying the reader to the quasibrittle
behaviour when a notched structure is subjectedartoexternal load. The main
consequences originated by the development of enaghgible non-linear domain are
discussed in the framework of an equivalent Lin&dastic Fracture Mechanics
approach. The estimate of the resistance to cremkth is made as a function of the
equivalent crack length, revealing a risifgsistance-curve, with turned out stress
redistributions and stored energy release in thelim@ar domain. On the other hand,
cohesive crack models are referred as a very usefylto mimic damage development
in materials which exhibit this non-linear domalmaugh Finite Element Analysis. A
first mention is made to the Size Effect on the mahstrength, since it comes out as
the main consequence of the noticRecurve behaviour observed in quasibrittle

materials.

1.2 Quasibrittle behaviour

In notched structures, the fracture behaviour afasibrittle materials is
characterized by the existence of a large Fradwoeess Zone (FPZ) where various
toughening mechanisms take place such as micranggckrack branching or crack
bridging (Morel S 2008). This domaing,, the FPZ) is composed by a softening zone
enclosed by a non-softening nonlinear zone whicbetgoes hardening or perfect
plasticity (Fig. 1.1), with stress increase at @aging deformation, or held unchanged as

the material deformation develops (Bazant ZP arahdd J 1998). As fracture in
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quasibrittle materials is characterized by thetexrise of this large FPZ, Linear Elastic
Fracture Mechanics (LEFM) can not be applied, bather Non-Linear Fracture
Mechanics. Nevertheless, an adaptation of LEFM \{knoas equivalent LEFM)
provides a useful approximation of the quasibrittiéure, attributing the increase in the
structure compliance, owing to the developmenthef EPZ, to the propagation of an
effective crack,i.e., a sharp traction-free crack of lengéh (called equivalent linear
elastic crack length) which gives, according to MEEhe same compliance as the one
of the actual crack with its FPZ (Bazant ZP andéfazMT 1990, Bazant ZP 2002).

In quasibrittle materials the relative size of this nonlineiae.( softening) zone and
the characteristic structure dimensi@n is considerably higher than in materials
characterized by a very brittle behaviour, or st materials in which a ductile
behaviour is observed. Indeed, as for the veryldditehaviour, this ratio is practically
neglected, while as to the materials exhibiting wectide behaviour the ratio is not
sufficiently small so that LEFM may be fully apali€mostly treated by the elasto-
plastic fracture mechanics).

In most of the FPZ (Fig. 1.1) the material undegypeogressive damage with

corresponding material softening, due tocrogracking, void coalescence, crack-

T

Linear-elastic
FPz
f—/%
i
Softening
Nonlinear
plastic hardening

o)

Figure 1.1 Fracture Process Zone (FPZ) at the crack tip apfiasibrittle
material and stress distribution along the cracie.liAdapted from
BazZant ZP (1985).
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bridging, frictional slips, and other analogous mtmena. In the envelope of the
softening zone the nonlinear plastic hardening donraquasibrittle materials, being
negligible in volume, represents barely the tramsibetween the elastic response and
the material damaged volume. Materials as diffeasntoncrete, rock, cement mortars,
sea-ice, tough fibre composites, ceramics, stdiyg| dental cements, bone and wood
belong to this category (Bazant ZP 2004

The denomination ofjuasibrittle is used to classify these materials since it is
noticed that even when the plastic deformatemesfound irrelevant, the extent of the
FPZ islarge enough to have to be taken into account in theuéations, in total contrast
with the genuine brittle materials in whi¢lEFM is fully applied (Bazant ZP and
Planas J 1998).

In quasibrittle failure of notched structures (irod& 1) the increase in the applied
load at the early stage of the loading processsleathe development of a FPZ (Fig. 1.2
a) with the material undergoing progressive dam@gth the equivalent crack length

increment:Aa< Aa. ). In sufficiently large specimens, for which theftening zone is

not affected by boundary effects, as the loadiraggss progresses the FPZ reaches a
critical size (Fig. 1.2 b), for whiciha=Aa.. This means that, at stable crack growth
FPZ is compelled to move forward (Fig. 1.2 c), wiatln corresponding increase in size.

In such a case, one sustains that crack growsétf-gimilar way.

Due to their heterogeneity and to the developméatlarge FPZ, these quasibrittle
materials usually fail only after a large crack lgaswn in a stable manner, contrasting
with metallic materials that fail before crack reas macroscopic dimensions. Due note
should be taken to the meaning of a so cdlege FPZ, as it indicates that the distance

between the tip of the actual crack traction-fegeand the tip of the equivalent LEFM

crack when the FPZ is fully developed (criticalegizs equal to a given characteristic

length Aa,, as shown in Fig. 1.2 (b). This leads to non-myiglie macroscopic stress
redistribution with a non negligible amount of eyperelease from the structure.
Regarding the fracture lengty shown in Figs. 1.2 (b-c), two basic situationstdug
to be distinguished: (i)a,= 0which conforms an un-notched structure, with the
ultimate loadP, occurring at the onset of the fracture propagatsomd (ii) a, > O not

negligible in size compared @, for which the ultimate (or peak) lod®, occurs after a

33



Overview of the cohesive failure and main consegegn Chapter |

actual crack @

3 ‘ | Aa<Ag
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\
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\
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Figure 1.2 Propagation of the main crack with its Fracturedess Zone (FPZ):
(a) FPZ development, (b) critical size of the FP£, (fully developed) and (c)
FPZ under crack propagation. Parametegg, initial crack length (actual
traction-free crack lengthyAa=a—a,, equivalent crack length incremerda,
infinitesimal crack propagation extensidpp,, extent of the FPZ. Adapted from
Bazant ZP and Kazemi MT (1990).

given crack propagation has been monitored. InTthissis only the later is a subject of
concern, with corresponding failure types regardedio exhibit a strong size effect
(Gettu R et al. 1990).
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1.3 Equivalent LEFM: Resistance-curve

Fracture of quasibrittle materials can be descrilvgth success through an
equivalent linear elastic approach. According tes thtandard, acquainted with as
‘equivalent LEFM’, the compliance increase causgdthie FPZ development and by the
propagation of the main crack is attributed to pin@pagation of an elastic equivalent
crack length (Bazant ZP and Kazemi MT 1990), wipobduces (on the framework of

LEFM) the same structure compliance as the actaakcwith its FPZ. Therefore, the

complementary energW* might be used as a way to characterize the seagmgy

stored in the structure,
p2
W* = ——f(a 1.1
in which P is the applied loadE’ is the effective elastic modulu€(=E for plane
stress andE'=E/(l-v2) for plane strain;E =Young modulus and’ the Poisson’s
ratio), b is the width of the structure cross sectien,the relative equivalent crack

length (.e., a=a/D), and f (@) a dimensionless function characterising the gegmet
of the structure. Actually,f (@ )is a function of the specimen compliandda )

defined asf (a)=E'bA(a)/2.

According to LEFM, during crack propagation thestilaenergy release ra@(a )
(either under loadP or displacement control) must equal the resistance to crack

growth Gi (),

ooy L[]

| F e 9@ =G @ (L.2)

with the dimensionless energy release rate functéa) defined as a function of the
structure compliancd (a as followsg(a)= E'b[a/l (a)/aa]/z.

When the resistance to crack grovi@h is estimated as a function of the equivalent
crack lengtha (or in other terms, the relative crack lengtt=a/D ), the quasibrittle

failure leads to eResistance-curve (orR-curve as first pointed by Lawn BR 1993),
which emphasizes the stress redistributions antedtenergy release taking place
during the crack growth before failure (Morel S 8d(Hence, as shown in Figs. 1.3 a-b
for a Single-Edge-Notched Beam loaded in Threet®&mding (SEN-TPB), th&k-
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curve in wood obtained from the load-displacememive is characterised by the
existence of a rising part, for which the resiseate crack growth increases with the
crack length, followed by a plateau which denotest the influence of the toughening
mechanisms is not indefinite (Morel et al. 2005gnkke, the rising portion of the-
curve (@<a. in Fig. 1.3-b) might be interpreted as the enécgeisponse of the FPZ
development observed in Fig. 1.2-a (wila< Aa_) up to the attainment of the critical
size of the FPZife., Aa=Aa.in Fig. 1.2-b), with a fully developed FPZ. The ced
part of theR-curve (@=a, in Fig. 1.3-b) might correspond to the crack pggien

with non-corresponding increase in volume of th& FRig. 1.2-c), with the resistance

to crack growthGg becoming independent of the equivalent crack leijgig. 1.3-b).
The reported behaviour observed in the secondgbdite R-curve (for a=a, in Fig.
1.3-b), defines an horizontal asymptote (knownheplateau of the R-curve) with the
retrieved critical resistance value noted @g.. The onset of thdr-curve plateau
defines the so called critical energy release &g, with the corresponding abscissa
a. (Fig. 1.3-b) referred to as the critical (or cledeaistic) relative (equivalent) LEFM
crack length. The extent af, provides an approximation of the effective lengttihe
FPZ (Morel et al. 2008), sincer.=a,+6 =a,/D+Aa,/D. Accordingly, 8 is
designated the relative length of the FPZ &ad the equivalent length of the FPZ.
Though Gg. is regarded as an intrinsic material property ifinrGR 1960, and

Krafft et al. 1961), experimental evidences on aeurve however revealed that the
assumption is only valid in a very narrow rangespécimen geometries and structure
sizes. These dependences in wood were firstly tigaged by Morel S et al. (2002 a,
2002 b and 2003) and Morel S (2007).

Experiments performed with the SEN-TPB in sprucggqF1.3 a-b) also revealed
that theR-curve develops both in the pre and in the posk pegime {(.e., turning

Gk (a,)<Gg.)- Indeed, as shown in Fig. 1.3-b the (equivalegigtive crack lengtlw,
corresponding to the peak-lo&] is smaller than the critical relative crack length.

This behaviour is observed in specimens currer$yett on the lab’s scale, except in

certain geometries for which' (a)=0 as noticed by Morel et al. (2005), as the TDCB

(i.e., the Tapered Double Cantilever Beam).
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Figure 1.3 Typical (a) load-displacement curve and correspand
(b) R-curve obtained in spruce for the SEN-TPB testhe TL
system (Appendix A2.1). Adapted from Morekgal. (2005).

1.4 Cohesive crack models

Linear Elastic Fracture Mechanics (LEFM) theoryemKor granted that a sharp
crack tip does exist in a solid body for which sgréelds may be determined. Although
the elastic solutions envisage infinite stresseghat crack tip,authentic materials
experience damage and yielding phenomena providigainst this from actually

occurring. Although linear elastic stress-relatieiisplacement relationships are
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considered to describe rupture in materials suataasiron or glass, they can barely be
well thought-out in materials which exhibit toughmmechanisms such as wood.

The degree to which toughening mechanisms influérazgture behaviour dictates
whether LEFM can be applied to a certain matekighging into the discussion how
relevant are the dimensions of the fracture prozess (FPZ) compared to the structure
size (Fig. 1.2). Usually, FPZ can be describedviy basic approaches. One sustains
that (a) the whole FPZ is lumped into the crack-lamd is characterised in the form of a
stress relative-displacement law which exhibitdesohg; whereas in the other (b) the
inelastic deformations in the FPZ are smeared avwmand of a definite width, supposed
to exist ahead of the main crack. Only the firgbrapch will be in the limelight in this
Thesis, which may be found in the literature unaerariety of names, e.g., cohesive
crack model, fictitious crack model, Dugdale-Badatttmodel, and crack with bridging
stresses (Bazant ZP and Planas J 1998, MatebE 2002 and 2005).

The cohesive crack is the simplest model that gerno describe in full the
progressive fracture process, taking into accobethasic aspects of the non-linear
behaviour of the material ahead of the tip of a-gstent crack. The fundamental
assumption of the cohesive crack modsd.( in Mode 1), is that FPZ of a finite length

can be described by a fabricated chink able tstemmormal stresg (x) by means of

a function (monotonically decreasing) of the opgnindth w, of the types = f (W)

The most important feature of the cohesive crackehs the softening curve of the
material, which in a certain sense replaces thesststrain curve in theories such as
plasticity. In this context, every material hasatgn softening curve which ought to be

determined by means of experiments on this pagiauiterial.

First reported studies on cohesive crack modelsiréuted to Dugdale DS (1960)
and Barenblatt Gl (1962). These researchers depateeated a crack with a plastic
zone as a slightly larger fictitious crack with gilog stresses applied at the tips.
Subsequently, cohesive cracks have largely beahtosgescribéhe material behaviour
close to the near-tip non-linear zone for cracks imultiplicity of materials such as
metals, ceramics, geomaterials and polymers. Irséventies, Hillerborg et al. (1976)
applied an alike approach to Dugdale and Barentdattmulate the effects of the FPZ
in concrete, accounting for observed mechanismsnimio-cracking and bridging.

According to the proposed model, the crack-tip wesdaced by an equivalent crack
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containing closing stresses. Instead of remainiogst@ant during fracture alike
Dugdale’s model, stress rather follows a measurdbtection of crack opening.
Nonlinear fracture mechanics modelling in wood Hseen preferably performed
through the application of fictitious or cohesiveack models, which in essential
comprise variations of a model proposed by Hillegbet al. (1976) and Hillerborg
(1991). A cohesive zone is typically modelled ushig calculations through a made up
line crack transmitting tractiong as a function of the crack opening, by means of
interface (finite) elements (Rice JR 1972, de Mow&SF et al. 1997) with
predetermined stress-softening properties along dfaek path. Pioneering works
involving the elaboration of fictitious crack modedpplied to wood are attributed to
Bostrom L (1992). Since then the bilinear stredtestng model (Fig. 1.4), initially
proposed by Petersson PE (1981) to simulate cremktly in concrete, was used by
Stanzl-Tschegg et al. (1995) to obtain wood loaskldcement curves in a developed

wedge-splitting test protocol.

A recent method involving the single edge notchednb loaded in three-point
bending (SEN-TPB) was developed (Dourado et al.8206 identify the material
cohesive properties in two wood species, combiexgerimental data and a developed
Genetic Algorithm (GA). The work revealed the eaiste of a non-negligible damaged
zone as well as the growth perturbation of thisezafong crack propagation in the
SEN-TPB shape.

In regards to the cohesive zone modelling schemalbticepresented in Fig. 1.4 (for
the bilinear softening law), the FEM simulationgrpi to estimate the extent of the

cohesive zonel_, as the distance (measured along the crack patiebe the

numerical crack tip and the position of the intéigrapoint in the interface, for which

the stress is equal to the tensile strendith(providing that the crack is already in
progress). The numerical crack lengd,,, on its turn is defined by the distance

measured from the axis of the applied load (hiddenin Figs. 1.4 a-c) up to the first
integration point of the interface for which thermal stress is non-null. Therefore, as

long as the equivalent crack lenggh(i.e., aD) does not reach the critical exteat
(i.e, a<a, shown in Fig. 1.3-b and Figs. 1.4 a-b) the siz¢hef cohesive zong,,

does not attain its critical dimensidgy, . In such a case, establishing a relation with
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Figure 1.4 Sketch of the cohesive zone behaviour: comparigdhe numerical
crack lengtha,,,,, with the equivalent LEFM crack length for different stages
of the numerical crack propagation. Stages: cokemive (a) under development,
(b) once attained its critical size and (c) fullgveéloped at the crack tip (under
crack propagation). Additional parametesg;, initial crack length;l ., extent
of the cohesive zone w, crack opening;Aa;, equivalent length of the FPZ
(Aa, =a, — a,). The vertical hidden line represents the axithefapplied load.
In: Morel S et al. (2008).
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the evolution of the resistance to crack growah (Section 1.3), the actual regimes(,
leon<lcon, ) COrresponds to the ascending part of feurve. As the local stress
increases (provided that crack progresses irsed-similar way) the size of the
cohesive zone attains its critical dimension, s in Fig. 1.4 (b)i(e., lcon=lcon, )-
Indeed, as will be discussed in Chapters Il andttié progress of the exteht,, (Fig.
1.4) is drastically influenced by the ligament léng.e., D—a,). With the attainment
of a fully developed cohesive zonee( size of the FPZ), the equivalent LEFM crack
length turns outa=a, (Fig. 1.4 b) and the crack opening reaches tlieariextent (.e.,

w =w,). In an energetic point of view, the actual stzaeresponds to the onset of the
plateau of theResistance-curve shown in Fig. 1.3-b, with the energy releaste
Gg =Gg.. Since the toughening mechanism is not indefimtequasibrittle failure
(Section 1.3), the extent of the cohesive zQge in the course of the loading process
remains|,, = 1., . (Fig. 1.4 c). In such a case, the local crack omemw is kept

unchangedi(e., w = w,) while the equivalent crack length propagates.

As observed by Morel et al. (2008) and Lespine Q0{2, when the equivalent
LEFM crack lengtha=a_ (or in other termsa=a, as illustrated in Fig. 1.3 b), then (i)
the length of the cohesive zone remains constagt {F c) and (ii) the stress profile at
the crack frontg =f(w) remains unchanged (Fig. 1.4 c). As a consequethee,
cohesive zone can be considered in an energetidysttate, in the sense that it does not
require more energy involved in the modification it length and/or in its stress

distribution. Therefore, the propagation of the euical crack lengtha, ., of an extent

num
oa, with its critical cohesive zone, is expected fwegrise to the energy release
dW=G; (bda); where G; corresponds to the energy required to separatpletety

the crack faces at a given loading step, @mda coryesponds to the cracked surface

originated during the incremeia.

1.5 Size effect

The change of the mechanical response due to sityiieserving modifications of
the dimension of a physical system is one of thetnfiondamental aspects of every
physical theory, generally referred to as Size &ffSE). Unlike other branches of

Physics, scaling in Solid Mechanics has been lgrgelglected until recent times. A
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plausible reason for this probably lies on the thet theories of structural failure that
have succeeded for a long period of time, exhibideterministic Size Effect (Bazant
ZP 1993). That is the case of (a) Plasticity asl aelother theories founded on the
concept of a critical stress (strength) or a ailtistrain, and (b) Fracture Mechanics
applied to a critical crack which size at incipiéadure is independent of the structure
size D and negligible when compared@q as is typical of most metal structures
embrittled by fatigue (Bazant ZP 1997 a). As a ltegxperimental evidences showing
size effects were commonly explained on the contéxthe randomness phenomena
affecting the material strength, as proposed bybwkiwW (1939). Size Effect is

considered a key issue particularly in the casguakibrittle materials which are known

to exhibit a large FPZ where a variety of toughgnmimechanisms take place.

Within the framework of BaZzant's theory (Bazant Z¥97 b and Bazant ZP 1997 c)
the size effect for geometrically similar notchedustures of different size® can be
described by means of the nominal stress

_ P
ONn =Cy b_D (13)

with P standing for the external loat, for the width of the structure cross secti@n,
for the characteristic structure dimension, ang a coefficient introduced for
convenience. Ever since the analysis regards timaté load P, (i.e., P =P,), the
nominal stress is called the nominal strength efdtiucture. For the test involving the
simply supported beam in three-point-bending, tbeffecient cy, may be chosen in
order to makeo,, to coincide with the maximum normal stress. Inhsaccase, it is
the beam height @=h), and L the beam span, therry =3/2(PL)/bh2
=cy (P/bD), with ¢y =3/2(L/h). It turns thus out that, depends on the span-to-

depth ratio, which obviously varies according te team size selection. This draws to
the important conclusion that size effect is firndgfined only when geometrically
similar specimens (or structures) with geometrjcaimilar notches are analysed under
similar loading conditions (Bazant ZP and Pland®998). Indeed, if this is not taken
into account shape dissimilarities in size effexdults may some-how be erroneous.

Doing so, c, Yyields to a constant, since the ratitn is kept unchanged by definition

(Bazant ZP and Kazemi TK 1990).
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A variety of possible plots showing particular agpeof the size effect do exist in
the literature, however the most widely divulgedhs bilogarithmic plot exhibited in
Fig. 1.5, according which the nominal strengthy is represented against the
characteristic specimen siZ2. This plotting is performed using the original rfoiof
the size effect law (SEL) (Bazant ZP 1984),

1+

o\ = (1.4)

ki

according whichf is an arbitrary measure of the material strengths the relative
structure size ¥ = D/Dg) and B an empirical constant. The relative structure gizie
also called the brittleness number becausg as « the material turns more worthy of
a fully brittle behaviour, whereas when - 0 the material turns fully non-brittle, or
plastic (Bazant ZP 1997 c). Hence, the size ef{&t) curve shown in Fig. 1.5
represents the transition from an horizontal aspteptdomain of the Strength Theory),
to a descending asymptote which corresponds to veempdaw of exponent-1/2
(characterising LEFM). The point of interception lwfth asymptotes is identified by
Dy (Fig. 1.5).

Sze effect law (SEL)

@
N

=z
(o)

Strength
or Yield Criterion Nonlinear Fracture Mechanics LEFM
01 I [ R | I L1l I [ A | I
0.01 0.1 1 10

y=D/D,

Figure 1.5 Size effect on the nominal strength (Adapted fRedant ZP and
Kazemi TK 1990).
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Therefore, if D<< D, (i.e., on the micro-scale) the brittles number— 0, and
oy UBf, =constan{Eqg. 1.4). Thus, no size effect is expected to pocuthe micro-

scale. Moreover, in structures of this size the k& 2xpected to occupy the whole
volume of the structure, inducing no stress corredioh (energy release is negligible),

with failure occurring with no crack propagation.

For large structure size®>> D, (i.e, on the macro-scale) the brittles number
y - o, leading to g, = D¥2 (Eg. 1.4). On the macro-scale, the size effaote

follows a power law which coincides in the log-lpipt of Fig. 1.5 with the leant
straight line of slope-1/2 expected from LEFM. Indeed, in large structureesjzhe

FPZ is expected to lie within an infinitesimal vola fraction of the structure, with
corresponding stress and displacement fields sadiog the FPZ being estimated from
LEFM.

The Bazant’s size effect law (SEL) in Eg4{lapplies to several geometries tested
in Labs all over the world. It was verified expeentally and justified theoretically for a
broad range of many different materials and stmestJirasek M and Bazant ZP 2002).
The law was derived from asymptotic analysis penkxt both on small (Strength
Theory) and on large (LEFM) structure sizBs This means that the estimate of the

nominal strengthoy over the range0.1l<y< 10n Fig. 1.5 {.e, in the crossover

regime) is the consequence of the asymptotic magcbi the other two regimes. As a
consequence, the regime proposed for the interteediructure sizes does not appear
accurately defined, deserving thus some more thigkmnainly because this is usually
the range of the experimental data. Bearing thidtenan mind, the numerical
simulation of the quasibrittle fracture turns a kegue, since one can dispose of a

method to validate any proposed law to describeemodetail the progress afy with

the structure siz® , over thecrossover regime.

Hence, as exposed in Chapter Il the study firsblwved the evaluation of the
Resistance-curve in two wood species commonly used in tim@x@mstruction (for the
SEN-TPB). The cohesive crack modelling has them lpgaformed, revealing that the
energetic state is not stationary for both woodcsseduring crack propagation. This

behaviour clearly unfolded the problematic intei@attof the cohesive zone with the
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structure boundaries, which turns crucial whendize effect study is to be conducted
on the energetic basis.

Then, Chapter Il is presented on the basis ofrevakion of the energetic size effect
law based on the equivalent LEFM and on the asytigpémalysis. Since one of the
main consequences of tRecurve behaviour in quasibrittle materials is tffee of the
structure size on its nominal strength (Morel S &0Ghe energetic size-effect is
essential to characterise an additional asymptetjane which stands in theeossover
regime. The additional asymptotic behaviour is datied by means of the cohesive

crack modelling.

Chapter IV is presented much to the purpose ofibe effect study revealing the
results obtained in the experiments. Since testinglved the examination of structures
of different sizes, the self-weight plays an impattrole, turning thus vital to introduce
corrections to take it into account. The resulsuésl from size effect on the nominal
strength, were found quite in accordance with tdditeonal asymptotic behaviour
defined in Chapter IlI.
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Quasibrittle Fracture



Chapter 11

2.1 Introduction

The present Chapter aims at simulate the quasgbfdilure in two wood species
frequently used in timber construction: Maritim@&ifinus pinaster Ait.) and Norway
spruce Picea abies L.). With such a purpose, experiments were perfarimgolving
the single-edge-notched beam loaded in three-p@nding (SEN-TPB) and
corresponding Resistance-curves determined by means of an equivalent LEFM
approach based on the compliance. An inverse maghtten detailed to identify the
cohesive properties of a bilinear stress-softeniag, combining the obtained
experimental data with a developed Genetic AlgarnitfGA). Quasibrittle failure is
simulated using the identified cohesive propertredoth wood species. Performed
(FEM) computations revealed that a non-negligilwaasive zone do exist interacting
(in different scales) with the structure boundariBased on the confinement of the
cohesive zone, concerns are revealed regardingreafjgired specimen (critical)
dimension necessary to perform size effect stuiiesood, ever since the SEN-TPB
shape is used. ldentical concerns are addressethéo specimen geometries (and/or
sizes) which may induce compressive stress fields thhe ligament length.

2.2 Experiments
2.2.1Material and specimens

Maritime pine Pinus pinaster Ait., 647 kgm®) and Norway spruceP{cea abiesL.;
420 kgm®) were used in this study as testing material prditey each from one single
stem with a diameter approximately equal to 400 raquilibrium Moisture Content
(EMC) in wood has been found in 12%, after had bemditioned in a climate of 20°C
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and 65 RH (Relative Humidity) until equilibrium. Wd (see Appendix 2.1) was
machined far enough away from the stem pith to dpmpith anatomic axis
orientations and nominal dimensions representdeign2.1, and clear parts (free from
knots and material defects) bonded with a suiteplexy adhesive (geometry adapted
from Gustafsson PJ 1988). Starter notches were ralaig the composite beam mid-
section using a band saw (1 mm thick) and initiatk notches sharpened using a razor
blade (depth of sharp notch: 1-1.5 mm) ugd (i.e. ap = 35 mm), just a little while

before conducting experimental tests.

2.2.2Fracturetests

Twelve single-edge-notched beams with the same (§igp 2.1) were tested to
determine load-displacement curves up to complegiture, for each wood species. The

initial crack/depth ratica, /h was set to 0.5 (Fig. 2.1) and the span/depth sgiido 6

(Fig. 2.2). A mechanical spindle-driven tension-poession machine (20 kN total
capacity) was used to induce fracture in mode load cell with the capacity of 1 kN
has been installed and crosshead displacementeaitated to reach the peak lo&d,

in 3+ 1 minute during fracture tests, thusnimizing possible viscoelastic effects
in wood. Measurement of load-point absolute disgpiaent valuesis, has been attained
setting one LVDT (range = 2.5 mm) in contact withegerence surface rigidly attached
to the load application device (Fig. 2.2). Two nhdlars were set on metal pins
previously bonded to each side of the compositenbem alignment with the beam
supporting plans. Displacement valde§i = 1, 2) were continually measured by means

of LVDTs (2: range: £ 1.0 mm) positioned inntact with each metal bar mid-span

| 3h | h . 3h .

7] |

| |
hIM R N At
S e

R T
b !
Initial crack notch

Figure 2.1 Parts set up before bonding £ 70 mm,b = 40 mm anda, =h/2).
Wood anatomic axis: (L) Longitudinal, (R) Radial dafT) Tangential. (In:
Dourado Net al. 2008).
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Figure 2.2 Sketch of TPB test set-ufi=: Load-point displacemend;: Metal bar mid-
span displacement-points in both sidés =1, 2) of the specimen. Recorded
displacements d=0¢ —(51 +0, )/2. (In: Dourado Net al. 2008)
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Figure 2.3 Typical load-displacement curves (Mode |) obtainedvood fracture: (a)
Maritime pine Pinus pinaster Ait.) and (b) Norway spruceP(cea abies L.). Fine thread
shows the agreement between numerical and expddmdata obtained through the
Inverse Method (Section 2.5). Printed black squabels correspond to the end of the
Resistance-curve: @, = ac +2 mm in pine; a,, =a +2 mm in spruce). (In:
Dourado Net al. 2008,

points. Recording acquisition frequency during tfuae tests was set to 5 Hz. Recorded
load-displacement valuesif] were subsequently corrected accounting for piatient
specimen’s rotation movement during bending, thhougthe equation:

0=0¢ —(51+52 )/2. Figure 2.3 illustrates typical load-displacemenirves P-o

curves) obtained for both wood species. A divergefiom the linearity is observed
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before the ultimate load attainment in both wooelcggs. This phenomenon is attributed
to the development of the FPZ at the crack-tip had been shown by Vasic S and
Smith | (2002), making use ah situ scanning electron microscopy, that crack bridging
is the main toughening mechanism mobilised in wivadture. Though recognised as a
local phenomenon at the specimen scale, a mechafidms type is itself at the source
of the impossibility to apply LEFM directly to estate failure in quasi-brittle materials,
requiring the application of nonlinear fracture dhes. However, an adaptation of
LEFM referred to as arequivalent linear elastic approach can provide a useful

approximation of the quasi-brittle behaviour.

2.3 Equivalent LEFM

In order to validate the applicability of an equerg LEFM approach specimens
taken from tested wood were submitted to cycliciong until final fracture (Morel S et
al. 2005). It has been proved that quasi-brittidavéour of tested wood can be
described in the frame of an equivalent linear telaanalysis, where observed
compliance increase can be attributed to the extertd an equivalent elastic cradle.

a sharp traction-free crack of lengthin the sense of LEFM (Bazant ZP 2002, Bazant
ZP and Kazemi MT 1990). Accordingly, as reportedattion 1.2 the tip of the elastic
equivalent crack is neither at the beginning of BRZ nor at the end of it. It is
considered to be given bg=a,+Aa(Fig. 1.2 c), beinga, the actual traction free
initial crack length and\a the equivalent crack length increment.

Compliance evolution as a function of the numermalck lengthA(a) is firstly
computed through linear elastic FE analyses (Fi4). @sing the set of elastic properties
presented in Table 2.1a{<a<h). To account for scattering of wood mechanical

properties, compliance evolutioni(a s corrected for each specimen using a

multiplicative correction factory = A, (ao)//i (ay), with A, () standing for the

compliance value obtained experimentally in theeadng linear domain, andi (a, )

the compliance value resulting from FEM calculasidor the initial crack notch extent.

The correction factory is thus evaluated no more than once per specisiece the
only known value ofa in the experiments is the initial crack notch exta,. Indeed,

for values ofa>a, the damage extent which develops ahead of Hukdip leads to
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Figure 2.4 FE-modelling used in ABAQUS 6.5-1 compliance computations
performed using 352 isoparametric 8-node planenseiements i = 70 mm).(In:

Dourado Net al. 2008).

Table 2.1 Elastic properties of Maritime pin®ifus pinaster Ait.) (Xavier J et al.
2004) and Norway sprucPitea abies L.) (Guitard D 1987)

: EL Er TV Ve Ve Cr  Ger - G
Wood Species (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)

Maritime pine 15133 1912 1010 0.034 0.060 0.3@9042 286 1115

Norway spruce 9 900 730 410 0.018 0.032 0.306 610 22 500

equivalent crack length extents (evaluated fromekgerimental compliance) different
of the actual crack length. A corrected numericampliance functionA,, (a )is
therefore requiredA,,, (a) =¢ x A (a .)References found in the literature (Ferreira LET

et al. 2002, Ebrahimi et al. 2003, and Morel et2802, 2003) sustain the idea that a
multiplicative correction factor can be appliedthmse cases for which the specimen
compliance is essentially found as a function airgyle elastic modulus. Thus, if one
examines the specimen constitutive parts dispdsafahe axial orientation (Fig. 2.1),

and observes that in wood the Tangential elastidulus E; is much lower than the
Longitudinal modulus g, , then it turns that the specimen compliance.,(the

numerical complianced,,,) is mainly a function of the central modulus; (i.e,

Anum :f(ET_l) when the shearing forces are neglected) (Morehlgt2005). This

observation enables to establish the comparisorthenmodulus basis considering

another beam of identical dimensions, for whichelestic modulus (unknown) iE7,
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doing ¢ =E; /E} . Consequently, as" OE; *, it turns A*/A OE;/E} =¢ . In other
terms, this equivalence may be established seiingE,,,,/Ecy, . With E,, standing
for the numerical modulus, whilé&,,; represents the experimental modulus (both

attributed to the specimen central part). As a ltesti this compliance correction
procedure, it is possible to determine the equntalaear elastic crack lengtla,

corresponding to any point of the experimental {deghlacement curve (Fig. 2.3).
Hence, for a given point of this load-displacementve (Fig. 2.5) the compliance,

Aexp (@), is determined and the corresponding equivalergali elastic crack length

computed through a process of dichotomy appliedthe corrected numerical
compliance functiond., (a )previously evaluated. This corrected function éesto
perform continuous computations of the elastic gpearlease rate for each load-
displacement values recorded all along fracturestegsually the energy release rate is
determined through analytical expressions geneoditgined from FE analysis (Ferreira
LET et al. 2002, Ebrahimi ME et al. 2003, TanakaeKal. 2003), or by means of
analytical procedures (Fett T et al. 2000). Inahernative method (Morel S et al. 2005)
the energy release rate is directly evaluated fthenexperimental load-displacement
curve using only the compliance function (Morelt&le 2002, 2003), obtained from FE
analysis.

As shown in Fig. 2.5, for a given experimental @gilent crack lengtla, the elastic
energy release rat&, is calculated dividing the elastic strain enekyya) released
during a small crack exterda (dashed area) by the corresponding crack sutbake
(b: specimen width). The small crack exteda was set to 1% of the initial notch
extent (.e.,, da = 0.3mm), since it has been found to be the averages\faluwhich the
estimatedR-curves converges to a single curve. The straimggné/(a) is evaluated
using the experimental load-displacement curveviEWR-0) and the straight lines

passing through the points corresponding to egeitatrack lengthsa-dJda/2 and
a+da/2 (both deduced by a process of dichotomy from tbeected compliance

values: A, (a-9da/2) and A (a+Ja/2), respectively).

Typical R-curves obtained by means of the described proeeaher presented in Fig.

2.6.a and 2.6.b for pine and spruce, respectivdbgr a characteristic crack lengty,

the resistance does not evolve with respeitta@rack lengtla but exhibits a plateau
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Figure 2.5 Procedure used to assess the elastic energy eeclets
Gg(2)=W(a)/(bd) in wood.P,: ultimate load;a,: equivalent crack
length corresponding t&,, . (Adapted from Morel S et al. 2002).

value, denoted a&g, (Fig. 2.6.a). This phenomenon indicates that tfleence of the
toughening mechanism is not infinite at langeack lengths, thus far tending to a

stationary regime for crack lengths a. .

Unlike pine wood,R-curves obtained for Norway spruce did not exhshith an
undoubted plateau, revealing instead an inflexiomtpor a short segment of nil slope
before a new increase of the resistance (Fig. Rt been obtained. In the absence of
an unquestionable plateau of the resistance fetbod species, it has been decided to

report the value of the resistan€&; (a, t9 the referred inflexion point, or to the
beginning of the short segment of nil sloge depending on the cases.

Both wood species revealed resistances at thelpadksg(a,) less significant than
that which is attained at the plate@y. (Fig. 2.6.a for pine) ang () (Fig. 2.6.b for

spruce). This indicates that tlecurve develops in the post peak regime of the-load

displacement curve (Figs 2.3.a and b) (Morel S.e2@05), resultinga, < a. (in pine)
and a,<a; (in spruce). Tables 2.2 and 2.3 both report medunes obtained for the
multiplicative correction factory/, compliance in the ascending linear domain

Aexp (89), Ultimate loadP,, corresponding equivalent crack length and the energy
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Figure 2.6 R-curves obtained in wood frof-9J curves presented in Figure 2.3.a and
2.3.b: (a) Maritime pine and (b) Norway spruce.eHihread shows obtain&dcurves by
means of the Inverse Problerfsg.: Critical energy release ratey,: Characteristic
equivalent crack length, (a,) : Energy release rate corresponding to ultimate lga

a, : Equivalent crack length correspondingRq. (In: Dourado Net al. 2008).

Table 2.2 Mean values obtained in TPB fracture tests foeRwod Pinus pinaster Ait.).

{ : Multiplicative correction fr:xctor'ﬂexp (ay) : Experimental compliance obtained for the
initial notch a,; P,: Ultimate load;a,: Elastic equivalent crack length corresponding to
P,; Gg(a,): Energy release rate correspondind?q a: Characteristic value of elastic
equivalent crack length corresponding to the plateslue of theR-curve; Gy, : Plateau
value of theR-curve. (Consult Appendix A2.3 for complete recaeghibition). (In:
Dourado Net al. 2008)

' P| nus . Aexp ( a'O ) Pu au GR (au) aC GRC

pinaster Ait. (10° mmi/N) (N) (mm)  @/mf)  (mm)  (@/nT)
(12’2’§é§?nfens) 1.21 2.21 3304  36.9 2016  37.6 2092
St. Dev. 0.09 0.15 26.1 0.6 24.8 0.6 275

Table 2.3 Mean values obtained in TPB fracture tests forvidgr spruce Picea abies L.).
Gg () : Energy release rate at the slender rising tregdhent of theR-curve. Remaining
parameters are as defined in Table 2.2. (ConsufieAgix A2.3 for complete record
exhibition). (In: Dourado Nt al. 2008)

Picea Aexp (a) R, a, Gq(a,) a; Gr(&)
abiesL. (10°mm/N)  (N) (mm) @)  (mm)  (I/nf)
(12As"pe£?rﬁens) 1.25 5.48 1458  37.3 101.6  47.0 1446

St. Dev. 0.09 0.37 6.1 0.6 7.7 2.6 17.8
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release rate associated to the ultimate I8gada, , for)each wood species. In addition,
for Maritime pine, Table 2.8xhibits mean valuesf the resistance at the plate@y, and
corresponding critical crack lengtlas. Table 2.3 reports the mean values of the energy

release rate at the slender rising trend segmetiieoR-curve obtained for Norway

spruceGg (a ) and corresponding equivalent crack length

2.4 Cohesive crack modelling

A bilinear stress-softening model was used to sateuinode | crack propagation in
wood using the finite element code ABAQU$.5-1 through a programmed user

subroutine.

2.4 . 1Interface finite e ement

The interface finite element used in this work étailed in de Moura MFSEt al.
(1997). It is compatible with used 2D solid elemehthe ABAQUS library, and its
formulation is based on the penalty function meti&tdesses in interpolation points, for
an undamaged material, are determined from thdivelalisplacementss=Dw,.
Accordingly, w, represents the vector of the relative displacesdigtween two

homologous points and can be determined from thplatements field of both crack

7t~ o)
w, = = - 2.1)
Wh Wh 1 Wh 2

and indexess andn stand for local tangential and normal directiofighe interface

faces (face 1 and 2),

element, respectively. Matrik establishes the relation between stresses aniiveela

displacements,

D—ds 0 2.2
“lo d (2.2)

Matrix components are the shedg) (and the normaldy) interface stiffnesses defined

by the user. Since the thickness of the interfd€esFull, thends and d, in matrixD
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must be set to a very high value, thus preventirg ihterpenetration of the finite
element faces, too. In this context, it has beeirced that small values induce large
interpenetrations, incompatible with the physicaality, while large values lead to
numerical problems. Thus, the optimum interfacEr&ss parameters are the largest

values that do not produce numerical problemsrfimte stiffness valuetd_,d, were

set t010° N/mm® (de Moura MFS[et al. 1997).

2.4.2Bilinear stress-softening model

According to this model, after the peak-point,( f,) the stress-softening zone is

defined by two descending lines (Fig. 2.7). Thetfone spans the peak-point and the
break-point (v,, f,), and the corresponding amount of energy (reptedeny the first
triangle) is attributed to “micro-cracking” phenonom (Stanzl-Tschegg SE et al. 1995).
Resulting energy is defined as the cohesive mietoeg energyGy,.. The second branch
is drawn from the break-point towarde/(, 0), and the amount of energy represented
by the dashed triangle is attributed to the “fibredging” phenomenon (Stanzl-Tschegg
SE et al. 1995). Resulting energy is defined ascttesive fibre-bridging enerdgs,.
The total area under the bilinear softening-stmsglel corresponds to the cohesive
fracture energys , i.e., the energy required to completely separate twidesmf the

interface, and is equal to the sum of both citedrges,i.e, G; =G, +G;,. The

cohesive fracture energy can also be written as,

G, =W, oV (2.3)
2 2

Since the energy associated to the elastic donsanegligible when compared to the

other regimesd, andd,, in Section 2.4.1)G¢ in Eq. (2.3) is not defined as function of

w, . Accordingly, the softening relation is given etequation,
o=(1-E)Dw, (2.4)

with | representing the identity matrix akdthe diagonal matrix containing the damage

parameter
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e= Wh (W, _Wo)(l_y) ’ W, S W, W, (2'5)
W, (Wb _Wo)

e=1 be(Wc Wr) ’ WS W, < W, (2_6)

Wr (Wc Wb)

with

f

y=— Wo (2.7)
fy W

The stress-softening model is thus defined by tdependent parametersy,, f,, f,

and G.

2.4.3FEM calculations

In the built up bi-dimensional FE model the SEN-TPBcmen was divided into
352 8-node anisotropic plane elements accordinbegonesh sketch shown in Fig. 2.4.
A total of 64 interface plane elements (IPE) wersijpaned all through an upright
central line sited ahead of the initial crack no@h=35mm(01IPE/055mm). In-
plane strain analyses were performed modelling tviagi Pine Pinus pinaster Ait.) and
Norway spruceRicea abies L.) as linear elastic orthotropic materials with engiireg
constants presented in Table 2.1. Boundary conditmwere imposed according to

performed TPB tests.

Owing to the symmetry of the FE model (Fig. 2.4)rioly the simulations the
displacement values were monitored considering rtbelal displacements at the
specimen middle-height (I) in alignment with oneaitme supporting pland, (e.g.,
position of left metal pin according to Fig. 2.2)da(ll) close to one sideaf., left) of
the crack plang, , at a distanca below the top prescribed displacement line (Fig).2
At this distanceA the compression stresses perpendicular to thetlahgal direction
(see specimen orientation in Fig. 2.1) were fourgfligible during the crack
propagation, avoiding thus the indentation pnegimon. Displacement values in FEM

calculations were obtained computin= 9, - 9, .
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Gf,u (Component: "micro-cracking")

Stress

Gfb (Component: "fibre-bridging")

Crack opening

Figure 2.7 Bilinear Petersson’s softening stress-softeningehased to describe
the natural phenomena occurring in the cohesivee uring wood fracture
(Mode 1): micro-cracking and fibre-bridging (wit; =Gy, +Gy,). (Adapted
from Stanzl-Tschegg SE et al. 1995).

A potential way to estimate the cohesive propertiesld lie in the one-to-one
correspondence which seems to exist betweenRtberve and the softening curve
(Planas et al., 1993). In addition, it has beergeatgd by Planas et al. 2003, that, for a
given specimen geometry and size, the relation dmtwtheR-curve and the softening
curve is unique (though recognized that tReurve is itself geometry and size
dependent).

A recent study already mentioned in Chapter I, $eclon the relation between the
R-curve and the cohesive crack properties (Morelt &le 2008) demonstrated the
equality between the plateau value of Rieurve Gg. and the cohesive fracture energy

Gt (.e, G; =Gg., with G; representing the energy corresponding to the &t

under the cohesive function as represented inZ1g. On this basis, for each specimen
of Maritime pine, the cohesive fracture ene@yvas fixed to the estimated value of the
resistance at the plateau of Reurve G, (Table 2.2), whereas in the case of Normay
spruce, for which th&-curves did not exhibit undoubted plateaus of #sstance, the
cohesive fracture energ$: was fixed, in a first approximation, to the valugfsthe

resistance denoted & (g) (Table 2.3).
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In regard to the set of four independent parametgired to define the bilinear
stress-softening model (Section 2.3.2), the colkeBacture energ®; being fixed to
the plateau value of the resistanGg, for Maritime pine, and tdGg(g;) for Norway
spruce, the other cohesive crack properdgsf,, and f, (Fig. 2.7) were estimated by
means of a developed Genetic Algorithm, in the exintof the inverse problem,
performed for each specimen. For both wood spethesgohesive fracture energy was

fixed to the value ofGg, for pine andGg(g;) for spruce (in a first approximation, to be

modified if necessary).

2.5 Formulation of theinverse problem

The formulation of the inverse problem (IP) dewilen Appendix A2.2 is
established on the basis of the minimization ofabjective function y(b), which
quantifies the agreement between #6 curves. Thus, for a given specimen tested in
the experiments (Appendix A2.3), the right sethaf tohesive properties of the bilinear
Petersson’s softening law (Fig. 2.7) is identifiedhen the corresponding numerical
load-displacement curve generated in the FEM coatjous, provides a fine agreement
with the experimentalP-6 curve (Fig. 2.3 a-b). The numerical procedure useseek
the independent cohesive crack propertigs (w,, f, and f, in Fig. 2.7) is based on a
developed Genetic Algorithm (detailed in Appendi®.2). The method mimics the
evolutionary natural systems on the seeking taskleatify the most fitting solution
which satisfies a given purpose (in this particudase, a fine agreement between the

numerical and the experimentabRurve).

2.6 Results and discussion

Figures 2.3.a and 2.3.b both exhibit the achievg@ement between numerical
and experimental data regarding @ curves, by means of the developed IP for both
wood species. The objective functigri(b) defined in Appendix A2.2 (Eq. A2.2.1) has
been delineated to concern the set of points ih boimerical and experimentBlo
curves up to the limit-point (black square labelnfmd in Figs 2.3.a and 2.3.b)

corresponding toa,, = a; + 2mm, since this limit value matches the endhef

Resistance-curves obtained for both wood species. Numefizélcurves thus obtained
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were subsequently treated taking place of expetiahelata using the method described
in Section 2.3. A fine agreement has been achiémeédach tested specimen (Figs 2.6.a
and 2.6.b) whicldemonstrates the accuracy of the proposed methgydbodetermine
the cohesive parameters. Tables 2.4 and 2.5, turitspermit to establish a comparison
between numerical and experimental mean valuesingotafor pine and spruce,

respectively. Corresponding mean values obtain¢demplateau of thR-curve Gy, for

pine, and in the short segment of nil sloBg(g;) for spruce, retrieved the cohesive

fracture energys: used in the IP. On the other hand, calculatedgeeeattributed both
to micro-cracking and fibre-bridging (Eq. 2.3) haveen plotted in Fig. 2.8 for each
specimen.

Table 2.4 Comparison between numerical and experimental nve&res obtained for
Maritime pine. (Consult Appendix A2.3 for complegzord exhibition)

Numerical results Experimental results Error (%)
12 I::’u GR(aU) PU GR(aU) GRC P G (au)
Specimens  (N) (J/nf) (N) (J/nf) (I/nf) u R
Avg. 330.8 198.4 330.4 201.6 209.2 0.15 -1.67
St. Dev. 25.7 26.0 26.1 24.8 27.5

Table 2.5 Comparison between numerical and experimental maares obtained for
Norway spruce. (Consult Appendix A2.3 for complegteord exhibition)

Numerical results Experimental results Error (%)
12 Pu GR(au) Pu GR(aU) GRC P G (au)
Specimens  (N) (J/n?) (N) (J/n?) (J/n?) v R
Avg. 148.9 102.3 145.8 101.6 144.6 2.13 0.76
St. Dev. 6.5 9.1 6.1 7.7 17.8

300 150

&3 Micro-cracking 8 Micro-cracking
O Fibre-bridging 120 O Fibre-bridging

250

200

Gt (I

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Specimens reference Specimens reference

(a) (b)
Figure 2.8 Energies attributed to micro-crackingsfﬂ and fibre-bridging Gy,
phenomena for both sets of tested wood (a) Maritpime and (b) Norway spruce,
according to Eqg. (2.3) and Table 2.6. (In: Dourddet al. 2008).
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Mean values of the cohesive crack properties amegoonding fracture energies
obtained for each wood species are reported ineTalB. Making use of the mean

values: f;, f, and w,, together with the energy release rate resultiognfvalues
Gt =Gy, +Gy, =Gg, (Table 2.6), two stress-softening diagrams hawea tpdotted (Fig.

2.9). Although a non-negligible scattering (Tabl€)zhas been registered for stress

parameter f,,, the procedure enables to settle a legitimate eoisgn between both
wood species regarding the ultimate strégs(Fig. 2.7). Ahead of the statement that

Maritime pine in the experiments has been foun@werage stiffer than Norway spruce

(ratio of 2.48 in Tables 2.2 and 2.3), mean vabifethe ultimate stres$; found by the

IP revealed a ratio of 2.81 favourable to pinett$ purpose, it has been noticed that

mean values of soughtt (Table 2.6) have been found close to the bulkiessength

(4.20 MPa) obtained by the experiments on un-notdpecimens for Maritime pine
(Pereira JL. 2004), revealing that local and gldbangths may be considered as similar
for this studied wood. As a consequence of theketsults obtained in the performed

simulations, fracture energy attributed to micraeking G,, is on average considerably

higher in Maritime pine than in spruce. A ratio 2fl0 has been found in fracture
energies comparing micro-cracking with fibre-briggifor Maritime pine (Fig. 2.10). A

non-remarkable difference has however been nofmedpruce. Based on these results
(namely Fig. 2.9) it is foreknowable that the tot¢akent of the fracture process zone

(FPZ) in Norway spruce is higher than imepwood. Consequently, a numerical

Table 2.6 Summary of mean values (12 specimens of each wpedes) obtained by
the inverse problem regarding the bilinear constiéumodel (Figure 2.7) f; : ultimate
stress valueif, and w, : coordinates of the break-poir,: fracture energy attributed
to micro-cracking; Gy, : fracture energy ascribed to fibre-bridging pheeaon; G; :

cohesive fracture energy. (Consult Appendix A213cfamplete record exhibition)

fy fy Wh Gy, G G,
(MPa) (MPa) (mm) (/) (d/n?) (d/n?)
Pine

Average 4.66 0.72 0.06 141.83 67.39 209.22
St. Dev. 0.65 0.33 0.01 20.87 21.00 27.49
Spruce

Average 1.66 0.30 0.09 70.91 73.91 144.81
St. Dev. 0.13 0.05 0.01 6.12 14.38 17.97
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Figure 2.9 Superposition of bilinear diagrams Figure 2.10 Results of the IP for both

showing obtained mean values of achievedvood tested species, regarding mean
independent damage parameters using thealues of energy ascribed to phenomena of
proposed IP, for both wood tested species. (Inmicro-cracking Gy, and fibre-bridging
Dourado Net al. 2008). Gy - (In: Dourado Net al. 2008).

evaluation of the total extent of the damagetent developed ahead of the

numerical crack-tip i(e., the critical extent of the cohesive zohg, .), has been
conducted using the set of parameters identifiedhay IP for each specimen, and
obtained results plotted against the numericalkctawgth a, ,. As sketched in Fig.
2.11, the material localised ahead of the craclexiperiences damage subsequent to the
attainment of the ultimate stress (point A). Furthrerease in the crack opening,
leads gradually to a state of progressively momaatge, up to fracture (cross-section
B). The critical extent of the cohesive zohg,. was continually computed during the
performed FEM simulations, and corresponds to getpoints undergoing softening
sited ahead of the crack-tip. As illustrated in.F2gl2, thel,. in Norway spruce
attains the available specimen ligament extentKtlaentre-line) since the instant of
numerical propagation onset, unlike Maritime pi&absequent trend in Norway Spruce
shows a remarkable decrease in tQg . with numerical crack size, revealing a
cohesive zone markedly perturbed by the specimamdsry. In fact, the normal
compressive stresses developed above the neutsalfag. 2.2) avoid a self-similar

propagation process. Note that this phenomenonoisistent with the some-how
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continuous trend revealed in the risiRgurves observed in Norway spruce (Fig. 2.6.b),
resulting in the reported slight extent in the @t of this curve. As a result of this
behaviour, it is worthwhile to use a higher specirheight (.e.,, h in Fig. 2.1) in order

to avoid this phenomenon. In regards to the seirmtilations performed for Maritime
pine, though affected by scattering in results .(Rid.2), a mean critical value of the
cohesive zone exterl . [115 mm) seems to be revealed, since a plateau appears to

take shape in the early stage of the crack propmayat
The trend revealed by the set of FEM results ptesein Fig. 2.12 indicates that for

most of the cases, the cohesive zone developy fredaritime pine in the early stages
of the crack propagation leading to the appeararicae corresponding plateau value

Gk On theR-curve (Fig. 2.6.a) for this wood species.

Taking into account the set of results regarding c¢htical extent of the cohesive

zonel 4, ., One can conclude that a strong perturbationefifimaged zone (FPZ) does

exist in Norway spruce. A reasonable surveillarscalso legitimate since the specimen
height h (Fig. 2.1) used in the experiments may be limit ii® pine wood. This

numerical report draws to the important concluglaat a careful size effect study has to
be put into practice if fracture properties arebeaccurately evaluated in these wood
species involving the SEN-TPB shape (or other ebayghich may lead to compressive

stress fields in the ligament length).

Stress,f

% R4
XX RR LSS
R R R R R RS s L
SESESIEISIEESS
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7777777777777 Crack openingw
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|
Figure 211 Bilinear Petersson’'s lawa,,, numerical crack

length; |, : critical extent of the cohesive zone. (Adaptemirfr
Dourado Net al. 2008).
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Figure. 2.14 Results of FEA showing the evolution of the exteinthe cohesive
zone with the numerical crack length for both teésteod (Norway spruce and
Maritime pine), using the cohesive crack propergsesight by the developed

Inverse Problem. The Ligament extent is evaluamuputing h — a,,,,. (In:
Dourado Net al. 2008).

The numerical simulations revealed that if Besistance-curve is to be used on the
basis of an accurate assessment of the size effaoiely on the nominal strength

(Section 1.5), one must observe two important arstances:

(a) The Fracture Process Zone must be fully deeeldection 1.2) and keep its
critical size over a reasonable crack extent duiregoading process;

(b) The plateau of thResistance-curve must be undoubtedly revealed.

Taking into account the set of results obtainethen FEM-computations (using the
IP outcome) one may conclude that both above otteaditions were reasonable
satisfied for pine wood. On the other hand, thaitd data clearly revealed that the
experiments (and the numerical analysis) in sproogght to be carried out with

specimen dimensions of higher sizes

These important remarks some-how dictated the reflsepath reported in the
subsequent Chapters, since barely wood spruce des Used in the size effect study
detailed therein. Indeed, since the results obthaifoe spruce seem to be strongly
perturbed by the effect of the specimen size (amasethis study), further analysis
involving the size effect both on the numerical &Bter 111) and on the experimental
(Chapter 1V) standpoints were all performed forusgr.
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Chapter 111

3.1 Introduction

The present Chapter is focused on the evaluatidheokize effect on the relative

crack length at the peak loar,, the corresponding resistance to crack gro@ftr,, )
and the nominal strengtry defined in Section 1.5. Making use of an analytica

development procedure, it is shown that an additidimensionless asymptotic regime
exists for the intermediate size range. A numer{E&M) validation procedure is put

into practice using a given set of cohesive propert

Hence, the effect of the structure siZe on the ultimate fracture properties is
studied, performing an energy based asymptoticyaisafor which the resistance to
crack growth R-curve) in a notched structure (Mode 1) is consderas a size
independent property and described according taarsadytical expression. Scaling
evaluations involving the relative crack length ethger with the resistance to crack
growth are performed when the ultimate load actinghe structure is attained. For the

intermediate size range, the relative crack lerggththe peak loadr, is found to

decrease with the structure size, whereas the spwneling resistance to crack growth

G(a,) shows an increasing trend.

Results of FEM computations involving geometricalynilar notched orthotropic
structures (SEN-TPB) of different sizes performedhwhe same combination of
cohesive crack properties are presented. The brkbgnic plot of the nominal strength

versus the characteristic structure size is ineagent with the Bazant's size effect law
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(SEL) for most of the size spectrum, with the eximepof the intermediate sizes, for
which an additional asymptotic regime is identifi€bnsiderations regarding the extent
together with the slope of this additional asymiptoegime are made, based on the

exponent characterizing the curvature of Resistanceurve.

3.2 Derivation of the energetic Size Effect Law based on the equivalent
LEFM and the asymptotic analysis

Let us consider aR-curve independent of the structure slze defined through an

analytical single expression, evolving as a poaer(Morel S 2008),

pha’ if Na<la,

pha? it Na=Na, (31)

Gg(Aa) = {

with Aa = a — a, standing for the equivalent crack length incremém exponenis
selected to reproduce the negative curvature ofiiieg portion of theR-curve (.e,
0<f<1), and the equivalent length of the FPZ is given by, =a_, —a,. The
remainder termg¢ is the pre-factor of the power law which does depend on the

structure sizeD. Though theR-curve is recognized as geometry-dependent, the

proposed formulation is based on the assumptiontiigaexponeni does not change

significantly with the structure siz®, when geometrically similar notched structures
are analysed (different characteristic siZ®2¥ This assumption is to be verified in the

following.

It should be noted that the analytical expressimvided by Eq. (3.1) defines two
different regimes observed during the crack propaggFig. 1.3). By this means, no
accurate account of the smooth transition obseirvélde R-curve is possible to capture

between the ascending pare( Aa<Aa.) and the stationary regimeg, Aa>Aa, ),

with an angulate point being thus possible to beated through Eqg. (3.1).

In quasibrittle fracture the characteristic equivdlcrack length incremema, is
proportional to the ratioAa, 0 Gg./G, , with G4 representing the energy associated
to the damage dissipation rate defined per unitimel of the damaged material (in
J/m3 ), i.e., per unit volume of the FPZ. Indeed, as shownign E.2(b), once the FPZ

attains its critical sizé.,,=2Aa, (Bazant ZP and Kazemi MT, 1990), then the height
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of the FPZ turns a fraction (independent of the structure size) of the charastic

equivalent crack length incremeta_, i.e, hg,=nlAa,, where n is a constant

whatever the structure siz2. As mentioned in Chapter I, during the propagatibthe
main crack (with its critical FPZ), the FPZ can d@nsidered in an energetic steady
state. Hence, the FPZ does not consume more eadrgythan to be displaced. Hence,

if the crack propagates by the infinitesimal extéxt, then the new damage volume

generated by the crack advance corresponds toafteedarea printed in Fig. 1.2 (c),
with the revealed volume approximately estimatedubh,

Veps(38) = bdhep, = bdanha, (3.2)

with b representing the width of the structure crossiksectHence, the energy required

during the infinitesimal crack advandge can be expressed by

Wi =Gy Vepz(0a) (3.3)

with the energy released at the macroscopic legtimated through

w; =Gg.bda (3.4)

The productbda in Eq. (3.4) represents the elastic equivalentkad surface. Thus,

combining Egs. (3.3) and (3.4) with Eq. (3.2), ocen obtain the characteristic
equivalent crack length increment (or in other &rthe equivalent LEFM length of the
FPZ), through,

- GRC

A
% nGy

(3.5)

As long as crack evolves in a self-similar way tharacteristic equivalent crack length

incrementAa, should be considered as an internal length ottmsidered quasibrittle

material, andn a corresponding extent (constant) used to quathtéy=PZ height.

Equations (3.2) and (3.3) establish that the affediength of the FPZAa; is a

constant, and thus it turns independent of thecttra sizeD. The relative critical

crack length of the FPZ.€., & = Aa./D) by definition evolves as a power law of the

structure sizeD: & O D1, It means that for small structure siZ@s(i.e, D - 0), the

relative critical crack length of the FPZ tendsrtfnity (i.e.,8 — o), with the resulting
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structure ligament length being entirely occupigdtire FPZ (Fig. 1.1). On the other
hand, for large structure siz&s (i.e, D - o) resultingd - 0, with the FPZ lying in

an infinitesimal volume fraction of the ligamensg, @xpected from the SEL (Bazant ZP
1984)

3.2.1Size effect on the relative crack length and resist at the peak load

Let us consider the case of geometrically similanctures characterized by the
dimensionless energy release rate functige défined in Section 1.5i.¢,
g(a)=E'bA(a)/2] and the estimate of the scaling of the relative&ck length at the
peak loada, (D ) The well known condition verified at the peakdo@azant ZP and

Cedolin L 1991, Morel S et al. 2005) whenRugurve behaviour is observed, provides
the relative crack length at the peak laggl from the equality,

Gr(@) _g'(@)
Gr(a) g(a) (3:6)

with G, (a)=0Gg (a)/0a and g'(a)=0g(a)/da . Equation (3.6) is valid for both load
and displacement-controlled fracture tests, anéaisvthat the relative crack length at

the peak loadr,, does not necessarily correspond to the critieltive crack length

a. (Fig. 1.3) (Morel S et al. 2005).

Combining both Egs. (3.6) and (3.1) for the risipgyrt of theR-curve (.e. for
Aa<Aa.), it turns

Segy=~

3.7
Gr a - ag (3-7)

with a denoting the relative crack length.e( a =a/D =a,/D + Aa/D =
a,+Aa/D), andag the relative length of the initial notch (Fig. ). Equation (3.7)
shows thatGg /Gg (@) is independent of the structure siBe and the consequence of
this is that Eq. (3.6) leads to a unique solutipp for the relative crack length at the

peak load (Fig. 3.1),e., a solution independent of the structure sixe It should be
noticed that Eq. (3.7) would have been reacheddtleer R-curve shape had been

considered (Morel S., 2007). It is also worth-white notice that the increase in the
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characteristic structure sizeé leads to the decrease in the relative crack leagthe

peak loada,, as exemplified in Fig. 3.2 using two geometrigaiimilar structure sizes

(with D, > D;) (Morel S 2008).

The achieved solutiomr ;= (constant) is revealed providing that. <a,+8 as
shown in Fig. 3.2 for the structure sif® (with 6 standing for the relative length of
the FPZ, defined througl® = Aa./D). Hence, asD increases in size, the relative

length of the FPZ, decrease® ( 0).

Let us consider a characteristic structure sie quantified by D, =
Na,/(a, —a,), for which the unique solutionr,. = a,+8. For a structure of such a
size (e, D.) one assumes that the peak loggd is reached at the onset of the
R-curve plateau (Section 1.3). This means thatstiarctures of sizé >D, the relative
crack length at the peak loaxg,, is no longer equal to the unique solutiap , but
rather toa, +8 (as shown in Fig. 3.2 fob=D,). Indeed, the characteristic structure

size D, (Fig. 3.3) plays the role of the upper bound @f $ingle solutionz . regime.

30

% ¢ LG@ . B

15 |

10 B gr(a) '\\_\’\-\

g(a) ﬁ

G'r(a)/Gr(a) and g'(a)/g(a)

0.50 0.51 0.52 0.53 0.54 0.55
a=alD

Figure 3.1 Plotting of Eq. (3.6) used to estimaig,« in a positive
specimen geometry.¢. g'(a) > 0) : the SEN-TPB.
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G'r(a)/Gr(a) and g'(a)/g(a)

Figure 3.2 Size effect on the ratiocGy /Gg (@) revealing the
decrease ofa, with the structure size for the SEN-TPB.

On the other hand, there exists a lower boured, (D,,,) for this regime (Fig. 3.3),
which corresponds to the case for which the FR&sected to occupy the entire crack
ligament, such thafa, =(1-a,) D, Therefore, for structure sizes smaller tHap,,,
the FPZ occupies the whole crack ligament, withufai occurring with no crack
propagation. This is the domain characterized &y $Strength Theory (Section 1.5),
with the R-curve turning irrelevant to describe the failur@amanisms which takes

place.

The centreline represented under the scaling la®ign3.3 mimics the plotting of
the experimental data, showing that no angulatetpisi expected to exist in the
crossover regime but rather a smooth transitioguréi 3.3 clearly shows that ever since
the structure size tends to infinitee( D — o), the relative crack length at the peak
load vanishesi.e.,a, - ag), which reveals that in large structure sizesRR& lies
within an infinitesimal volume of the structure, pastulated through the BaZzant's SEL
(Bazant ZP 1997 b). As a consequence, one can surenthe scaling ofa, as
follows,

‘Strengtitheory if D<D,

a,(D) =4 a, if  Dpin <D<D, (3.8)
a,+6 if D>D,
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with,
Aag
Dmin = 3.9
min 1'0’0 ( )
A
D, = 2% (3.10)
O'u* - 0’0

Once evaluated thR-curve (Eq. 3.1) and performed the scalingagf at the peak load
(Eq. 3.8), it is possible to assess the size effiedhe corresponding resistance to crack

propagation at the peak lo&sk, (a,,D . As referred above, the relative crack length at
the peak load in the intervalD,, <D <D,, is the single solution .

Consequently, combining Egs. (3.1) and (3.9), &éststance at the peak load yields,
Gg (@, Dyin <D<Dy) = ¢[(a,. —a,) D] # (3.11)

Equation (3.11) indicates that the regime relatethe single solutionr« leads to a

resistance at the peak load, regarding thectare sizeD, evolving as a power law

0.15
0191
2 23]
S
3
(o)) -0.27
o
—
0311
0.35 ‘ ‘
16 11 06 0.1 0.4 0.9 14 1.9

Logio( D )
Figure 3.3 Plotting of the scaling of the relative crack léngt the
peak loada against the structure sizB according to Eq. (3.8).

Parameterd,;, and D, are the lower and upper bounds of the single

min
solution a+, respectively defined through Egs. (3.9) and (B.10
6 = Aa./D is the relative length of the FPZ. The centrelmienics

the trend expected for the experimental data.
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governed by the exponeit. As reported in Eq. (3.8) for structure sizBs> D, the
relative crack length at the peak loadag=agy+6 (with 8 =Aa./D), leading to a

constant resistance at the peak l&d(a, , D) = Gg. (i.e. the horizontal asymptote of

the R-curve shown in Fig. 1.3-b). Accordingly, threetolist asymptotic regimes are

observed regarding the size effect on the resisttmcrack growth,

'Strengththeory if D<D,
Gg(a,, D)4 D# if Dy, <D<D, (3.12)
G, =constant if D>D,

A plotting of the size effect on the resistanceéhat peak load is illustrated in Fig. 3.4.
Equation (3.12) indicates that the increasethe structure sizéd is followed by a

resistance raise up tGg.. Hence, once attained the peak logd the resistance to
crack growth ite., G (a,)) increases with the specimen si@g whereas the relative

crack length at the peak load decreases fogm to ag (as illustrated in Fig. 3.3). In a

like manner as performed for Fig. 3.3, the cemieeliepresented in Fig. 3.4 imitates the

trend expected for the experimental data in thesoeer regime.

1.10
102}
o
5 0oy

a4

o

= 086

S

(@)

(@]

-
0.78 |
0.70

2.1 -1.6 -1.1 -0.6 -0.1 0.4 0.9 1.4 1.9

LOglo( D )

Figure 3.4 Size effect on the resistance at the peak loadrdicg to
Egs. (3.11) and (3.12). Parametddg,, and D, are the lower and

upper bounds of the single solutioa s, respectively defined

through Egs. (3.9) and (3.10). The centreline mémibe trend
expected for the experimental data.
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3.2.2Size effecbn the nominal strength

As mentioned in Section 1.5 the strength concepeigerally revealed by the value
of the nominal stress at the ultimate loRgd. Consequently, once the lodl reaches
P,, Eq. (1.3) yields the nominal strength,. The scaling assessment of both relative
crack lengtha (D )and the corresponding resistanGg(a,, D at)the peak load

renders likely to estimate the resulting size effem the nominal strength.
Consequently, combining Eqgs. (1.3) and (1.2) nsur

— E'GR (au ’ D)
oy (D) =cy 1/—D ol (D)] (3.13)

with E' standing for the effective elastic modulug'€E for plane stress and
E'=E/(@-v?2) for plane strain;E = Young modulus ana’ the Poisson’s ratio) as first
defined in Section 1.3. The coefficiemt, =3/2(L/h) is in accordance with the

assumption referred to in Section 1.5.

In the following a discussion involving the threffetent regimes for the size effect

on the nominal strengtlr,, is made, from the analysis of Egs. (3.8) and (3.12

3.2.2.1Asymptotic regime at large sizes

According to Eq. (3.12), for large structure sizes,D > D, the energy release rate
remains unchangedie., G (a,,D) = Gg., Whereas the relative crack length at the
peak load (Eq. 3.8) is given by, =a,+8, with §=Aa,/D. In this expression the
relative length of the FP& - 0 as the structure increases in sigee, D - o . )
Hence, expanding in Taylor series the dimensiordessgy release rate functicg(au)

arounda, =a,, reported in Eq. (3.13), yields

E'Ggc

2
o, (D) = ¢, a . 92(ao) (Aacj N

{g(ao) +g,(ay) AD ol D
1
9 3(ao) (Aacjs } 2
+ + ..
3! D
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1
D Dy Dye ) ?
=UM{1+D—NC+b2( DN ]+b3( DN J +] (3.14)
with,
i i-1
g (ag) =290 gng b =9@) "G@) j_4, 5 )
oa' il gy(ap)!
and

E'G
Opve = Cn — — “Rc (3.15)
g(ao) DNc

_ g:(ao)
g(ay)

(3.16)

Aa,

Nc

The asymptotic regime at large sizes provided by &mu#3.14) leads to,

E'G
oy (D) =cy  |—2¢ D Y2 3.17
n (D) =cy | o(@.) (3.17)

with both the critical energy release rddg. and the dimensionless energy release rate
function for the initial crack notclg(a, jAppendix A3.1) assuming constant values
whatever the structure sid@.

It should be noted that the asymptotic behaviduame sizes estimated through
Eqg. (3.14) is attained for a relative crack lendttha peak load equal @, (Fig. 3.3),

whereas for intermediate sizes it is accomplisioedrf,. .

3.2.2.2Asymptotic regime at intermediate sizes

This is the field of structure sizes lying in theeirval D, < D <D, (Fig. 3.4).

Recovering Eq. (3.11) one observes that the resistanthe peak load progresses (Fig.

3.4) according to a power la@ (a,,D,,, <D<D,)OD#. According to Eq. (3.8) the
relative crack lengtla, at the peak load is supposed to remain unchangeegual to

a, (Fig. 3.3). Applying Eq. (3.13) to this regime ls&ad
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Elw(au* B ao)’g
g(au*) Dl_ﬂ

oy (D)=cy \/ (3.18)

with the coefficienty = GRC/AaCﬁ. Therefore, it turns out that the nominal strerath
intermediate sizes evolves in an asymptotic marserording to a power law
oy (D)OD ¥2%42_ This regime is in disagreement with LEFM, sir@g evolves as a

power law as a function of the structure sl2ze Unlike LEFM (Fig. 1.5) the resistance

at the peak load raises with the structure €da,, D) OD# as is revealed by Eq.
(3.11). Since the exponenf must lie in the intervalo<f<1l (Section 3.2), the
outcome is that the exponent of the power lawogf must vary betweer-1/2 (size
effect described by LEFM) and 0 (no size effect).

The asymptotic regime at intermediate sizes. (in the crossoverregion) is
delimited by D, (Eq. 3.9) and the characteristic size noteddaswhich is defined as

the crossover size between the asymptotic regime3BR7) and Eq. (3.18),

YB
* g(a*)
D! = u Dc (3.19)
' {g(ao)}

It gives thus rise to the clearing up that thisrgitg does not coincide witD, defined
as the crossover size (Eq. 3.10) on the relatigekclength and on the resistance at the
peak load (Fig. 3.4). Indeed, each one of the asytioregimes is not obtained for the

same relative crack length at the peak load. Hetheesingle solutiornzr + is used to
define the asymptotic regime in the intermediatee siange, whilea, is used to

characterize the asymptotic regime at large sizes.

3.2.2.3Asymptotic regime at small sizes

As referred in Section 3.2.1, in small structureesi{.e., D < D,,) the ligament

min
length is fully occupied by the FPZ. In these anstiances, failure arises with no crack
propagation, with th&-curve turning irrelevant to describe the failuregess. This is
the field of the Strength Theory (Bazant ZP 19971397 b) (Fig. 1.5) with the failure

load evolving proportionally to the strength of tmaterial, o (D< D,,) = constant.
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Hence, this strength corresponds to the maximumimarstrengthoy, ., Which may

me computed according to Eq. (3.18), considefdgD,.,, ,

E'¢(au* B aO)'B
g =cC 3.20
N max N \/ g(GU*) Dminl_'g ( )

In other terms, the maximum nominal strengtfy,,.. is estimated from the asymptotic

behaviour at intermediate structure sizes, consigehe value of the nominal strength

obtained for the lower bounD® =D, .

The bi-logarithmic plotting shown in Fig. 3.5 illmates the progress of the nominal

strength o, with the structure sizeD, presenting the three different asymptotic
regimes,
ON max O D<D,,, (strengththeory)

oy (D)O{D-¥2+#2 O D, <D<D; (3.21)
D -¥2 0 D>D;

It turns thus clear that the actual size effectveuagrees with both the horizontal
(Strength theory) and the leant (LEFM) asymptottting (slope —1/2). The major
divergence is observed in the regime expectedhieriritermediate size, for which an

additional asymptotic regime develops.

A more convenient way to express the range of mtibermediate size consistes to
combine Eqgs. (3.19) with (3.9) and (3.10),

B 9(a,)

* vB
Dmin ay —ag

Equation (3.22) noticeably makes the rabg /D, independent of the extent of the
R-curve, Aa,. As a consequencd); and D, are expected to be dependent of the

structure geometry. This means that it is pdssto express the range of sizes in the

crossoverregion as a function of the curvature of Reurve £, not relying it on the

extent of theResistanceurve (.e., on the equivalent LEFM length of the FPZ). The

asymptotic regime expected for the relativack length and for the resistance at the
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Figure 3.5 Size effect on the nominal strength.

peak loadi(e., a,(D) and Gg(a,, D), respectively) turns also possible to express the

ratio D, /D, independently ofAa, .

As the R-curve evolves in a progressive way from the ristamain up to the
plateau (Fig. 1.3 b) it is unexpected to turn tgudate points in the bi-logarithmic

plotting of o versusD shown in Fig. 3.5 D,,, and D}). Therefore, one might

expect to obtain smooth transitionse( crossover) between the two successive
asymptotic regimes: (i) Strength Theory and themegat intermediate sizes, and (i)

the intermediate sizes regime and LEFM.

The comparison of the asymptotic behaviours forrtbminal strength (Eq. 3.21)
with the Bazant's SEL (Eq. 1.3) has been made tpkwo different values of the
exponent used to characterize the curvature of Resistanceurve (8 = 08 and
0.2), thus reproducing respectively the effect gfight and a very strong curvature of
the R-curve. Hence, as shown in Fig. 3.6 (a-b) for tEMFcomputation of the SEN-

TPB on the Lab’s (or experimental) scale (usingueer as testing material,
Deyp =140mm, b=40mm, as well asGg,=01N.mm'* and Aa, =25 mny), the fitting

of the SEL has been achieved establishing thesitran between the horizontal
asymptote provided by the Strength Theory and ldent asymptote previewed by

LEFM. In both plotting representations (Fi86 a-b) one can conclude that in the
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Figure 3.6 Comparison of the asymptotic behaviours estimaie&q. (3.20) and
the fitting of BaZzant's SEL (Eq. 1.3) for two distt values of the exponenf

which characterize the curvature of tReurve. (a) =08 for a slight curvature
of theR-curve and (b)B= 0.Zor a very strong curvature of tiecurve.

intermediate domairi.¢., Dy, < D, < D}) the agreement between the fitted SEL and

the estimate performed by means of Eq. (3.21) iampletely satisfactory. Indeed, it
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is an evidence that the curvature of the fittedcfiom of the SEL (Eqg. 1.4) stays
unaffected if the parameter®, f, and D, are modified, thus proving that it is not
possible to change the curvature of the SEL inrotaldit the plotting provided by Eq.
(3.21). It ought to be noticed as well that the mdifferences between the two
asymptotic behaviours (SEL and the one estimatexigin Eq. 3.21) arise when tRe
curve curvature is too slight (Fig. 3.6 a), ior the case that a strong curvature is
reported for theR-curve (Fig. 3.6 b). In such circumstances, thanmotn structure
design (.e., less conservative) inclines towards the solugmvided by Eg. (3.21). On
the other hand, it is revealed that the asympteiijtme expected at intermediate sizes
can extend from 1 decade, for slight curvaturetheR-curve (Fig. 3.6 a), up to more

than 3 decades, for very strong curvatures (F&b3.

Thus, in conclusion one should put in relief thibol@ing aspects:

- For small structure sizesd., D < D,,;,) it makes no sense to perform the size
effect study since the ligamenblumeis often small when compared to the
characteristic volume of material required to depebh full damaged domain.
Consequently, the failure process arises as vemyordtical, with the
corresponding results being used cautiously.

- In intermediate structure sizese( D, < D <D.), one also notices that as
according to the energy release rate at the uléineatd G (a,,,D ) increases, the
relative crack length at the peak load,(D dgcreases, tending thus to the
relative crack length value of the initial notefy [i.e, a,(D) - a,]. This makes
the ratioGg (a,,,D)/gla,(D)] to increase wittD , which establishes by evidence
that the size effect on the nominal strengtfi(D , egtimated through Eq. (3.13),

develops in a less pronounced way than that pestlisy LEFM (.e., O D72),

This leads to the asymptotic plotting estimatedLEFM more rightwards than
such which is estimated through Eqg. (3.1Bg. according to a power law

oy (D)OD ¥2+A2,

- For very large structure sizeise(, with D — ) the accurate positioning of the
leant asymptote given by LEFM, is barely driventbg horizontal asymptote of

theR-curve (.e, Gg.). Indeed, in such cases the analysis of Eq. (3ehks to,
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E'Gg.
g(ay)

D-v2

oy (D) =cy

The available FEM data has been used to perforncdghgutation ofD] through Eq.
(3.19), providing the definition of the intermediatize domaini€., D, < D, < D})
represented in Fig. 3.7. The intermediate dimenisiballed asD,,, in Fig. 3.7 (for the

structure sizeD,,, =140 mmmentioned above), has been represented for comamie

exp
since this is usually the structure size of avd@dadxperimental data. In this range of
structural sizes, as previously reported in thistie, the relative crack length at the

peak loada, (D, )is higher tharnz, (Fig. 3.3). It has also been shown that the energy
release rate at the peak lo&k[a (D, i3 smaller thanGg, (Fig. 3.4). As a
consequence, if one considers the descendinglstreegtreline (slope=1/2) passing
through D, (Fig. 3.7) it turns out that the predictedmioal strengthoy (Dey, )

thus provided is visibly underestimatace( is more likely to correspond to tisafety
design. A more convenient way to quantify this undervadu may be achieved

through,

E’ GR [au (Dexp)]

g [au (DeXp)]

oy (D) =cy D -v2 (3.23)

with the corresponding position in the bilogaritiemgraph being influenced by the ratio
Gr (@) Dexp)/9[a, (Deyp)], setting D = Dy,,. Thus, the relative position of this
descending centreline (more leftwards in Fig. 3s7nhot surprising, since the ratio
Grla, (Deyp)l/9la, (Deyp)] in Eq. (3.23) is smaller thafGg./g(a,) defined in Eq.
(3.17). The fact that Eq. (3.23) leads to an urstemate of the nominal strength
oy (D), unquestionably brings about to the overestirétle structure dimensiob .

The corresponding solution provided by LEFM’s destieg asymptote is more likely
to match the optimal solution. However, this resatjuires the estimate of tRecurve,
together with the critical energy release ré&tg.. Notwithstanding this, one can notice
that the estimate of the required experimeatddd is possible to achieve from a single

structure sizeD = D,,. In such a case, an approximate size effect (F8).i8likely to
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be obtained fitting the SEL (Bazant ZP 1984; Edt) from the nominal strength
O\ (Deyp) Up to the asymptote of LEFM defined by Eq. (3.17).

In the following Section a numerical (FEM) validati procedure is put into

practice using a given set (constant) of cohesigpgrties (bilinear softening model), in
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Figure 3.7 Underestimated design (more leftwards centrelme) nominal
strength given by LEFM (Eq. 3.17).
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Figure 3.8 Approximate size effect generated by fitting oé thominal
strength (Eg. 1.4) and the asymptote of LEFM (E4j7B
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geometrically similar specimens (SEN-TPB) of diffiet sizes. The purpose of doing so
Is to validate the just exposed derivation of tiee &Effect Law, relying on the one-to-
one correspondence referred by Planas etl33) (Section 2.4.3) which seems to
exist between th&-curve and the softening curve. Hence, the saméiration of the
cohesive crack properties is to be used in the evR&@M analyses, with the additional

intent of verifying if a uniqué-curve is revealed.

3.3 Validation procedure from numerical analysis. discussion

This Section presents results of the Cohesive Qvémdelling (CCM) of the Single-
Edge Notched Beam loaded in Three-Point-Bending N(SEB) involving
geometrically similar specimens (Fig 3.9) of diffet sizesD (Table 3.1), setting the
size range 1:128. The FE-modelling presented inenumtail in Appendix A3.2 has
been performed using the set of wood engineerimgteots exhibited in Table A3.2.1
(Appendix A3.2), with the crack propagation modedpgosed by Petersson PE (1981)
(Fig. 2.7) being governed by the same combinatfaobesive properties (Table A3.2.2
of Appendix A3.2) for whole specimen siz€s. In regards to the FE-model used in the
numerical simulations, the mesh has been implerdetaieprovide a ligament length

uniformly divided in every 0.5 mm for the totality the performed analyses.

Figures 3.10(a) and (b) together illustrate theegopsition of load-deflection

(P-0) curves obtained under displacement control, thinahe CCM for the series set

presented in Table 3.1.

Figure 3.9 Sketch of the SEN-TPB showing the wood anatomiections in the
front plane: Longitudinal (L) and Tangential (T)iniensions shown in Table 3.1.
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Table 3.1 Series identification with corresponding dimensiaccording to Fig. 3.9

Series label D=h (mm) b (mm) Series label D=h (mm) b (mm)
D, 17.5 5 D, 280 80
D, 35 10 Ds 560 160
D, 70 20 Dg 1120 320
D, 140 40 D, 2240 640

18000
15000
—~ 12000+
£
o
<  9000-
©
o
-
6000
3000
0 ‘ -
0 1 2 3 4 5 6 7 8
Displacementd (mm)
(a)
700
z
(a
=
©
o
—

O T T T 1 T T T T
0 \ 1 2 3 4 5 6 7 8
Do Displacementg (mm)

(b)

Figure 3.10 Load-deflection curves obtained in the CCM under
displacement control. Curves labelling is in agreenwith Table 3.1.
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3.3.1R-curve estimate

Making use of the numericd® -0 curves (Figs. 3.10 a-b), correspondRgurves
have been estimated using the method detailed apt€h Il (Section 2.3). Since the
ligament length varies with the specimen sizehe equivalent crack length has been

normalized by the specimen heighe{ a=a/h) to render possible a more convenient

way to compare the whokR-curves, as illustrated in Fig. 3.11.

Though the present study had not been carried simgua determined (right-
purpose) set of wood cohesive crack propertiem(&hapter 1l), one can anyway look
to the achieved results and legitimately concluidat the choice of the SEN-TPB

specimen dimensions used to perform a size effedyn the energy release rdig,
might be preceded by the definition of a critertonchoose the suitable specimen size
range. Indeed, as reported in neither Fig. 3.1%1,atlothe specimen sizes exhibit an
undoubted plateau on tiiecurve, with a clear rise in the energy release @& as the

specimen decreases in sige. A clearer emphasis on this issue is possiblettina
representing the influence of the specimen $izen the evolution of the normalized

extent of the cohesive zonk,,, as has been plotted in Fig. 3.12. Thus, it is

unquestionable that specimen sizes smaller thagn(i.e, D< 280mm according to

Table 3.1) ought not to be used in a size effaadysbn the energy release rasg,,
since an increasingly steeper trend in the (nomed) extent of the cohesive zohg,

is revealed for those sizes, with no subsequesteall on theR-curve being thus
observed. This hinders a self-similar crack profiagavhich is fundamental to perform

accurate measurements G.. Reminding what has been written in Section 1.4 in

regards to the self-similar crack propagationuihs out that under crack growth, the

cohesive zond,, is compelled to move forward (Fig.1.4.c), withautreasing in size
(i.e, l,ne), and is associated to an equivalent LEFM staldekcgrowth in the post

peak regime (as reported in Figs. 1.4 a-b).

The numerical simulations also show that the extétihe cohesive zone (Fig. 3.12)
becomes progressively negligible when comparedhw dtructure sizeD (LEFM

domain).
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a=alD

Figure 3.11 Normalised R-curves (by G; =Gg.=0.1 N/mm)
obtained in the numerical analyses. Labelling isagneement with
Table 3.1.
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Figure 3.12 Influence of the specimen (SEN-TPB) sike on the
normalized extent of the cohesive zone (consultleldhl for
labelling identification).
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An important conclusion drawn from the numericahlgais has to do with the fact
that if the extent of the cohesive zone (Fig. 3.4@¢s not configure plateauover a
considerable (wide) range during the fracture pgecéhen the correspondifycurve
does not show an undoubtpldteay as it is clearly observed comparing Fig. 3.1lhwit
Fig. 3.12. Another issue of major importance, robhgeghe CCM just exposed, is the
numerical confirmation that thB-curve is uniqueife., independent of the structure
characteristic sizeD), as is illustrated in Fig. 3.13. It is thus vexif what has
constituted one of the most important aims of tres@nt numerical study, as evoked in

precedent Sections.

The resume of the main results obtained in the mgalestudy presented in Table
3.2, shows that the relative crack length corredpanto the peak load,, tends toa,
as the specimen increases in sfze, D — «). As a consequence, the achieved energy

release rate associated to the ultimate |I&adalso evolves towards the value of the

critical energy release ratéd,, Ggr(a,) - Gr.=01N.mm 1] as D increases in size.
Accordingly, the relative length of the FPiZe., 8 = Aa_./D, decreases in size.d,

6 - 0)asD - o, as previewed with the plotting shown in Fig. 3.3.

0.12

Gre _.Fitting
0.10 1 e

0.08

GRr, (N/mm)

0.06

0.04

Aac = 18.5
0.02 T T T

0 10 20 30 40

Aa =a - ao, (mm)
Figure 3.13 Unique R-curve revealed through the CCM (consult
Table 3.1 for labelling identification).
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On the other hand, the dimensionless energy release function g(a) (i.e,
g(a):E’b[aA (a)/aa]/Z) has been plotted for a specimen direh (Appendix

3.1)and the corresponding polynomial function evalddig means of the best fit of
the set of points obtained for each relative crieigth a, as shown in Fig. A3.1.2
(Appendix A3.1). The fitting represented in Figl8.has been made gathering the data

obtained from the rising part of the numericalR-curves [e,
Gg (ay)/Gre < Gg (a)/Gg. <1] represented in Fig. 3.11, corresponding to those

curves which exhibit an undoubted plateaa.(series:D,, D, Dy and D). The

curvature exponent of tiecurve S used in the size effect formulation (Section 3s2)
obtained from the slope of the linear regressiat plhich passes through the origin,
revealing S = 027 In such a circumstance, the energy release tdteeanset of the
R-curve Gy (Aa,) is the critical value given by the horizontal agyote j.e,

Gg (Aa,) = Gg.]-

The R-curve shown in Fig. 3.15 has been outlined plgttime energy release rate
Gk as a function of the crack length incremévat (similarly to Fig. 3.13), by means of
Eq. (3.1), using the curvature exponghtobtained in the linear regression plotting of

Fig. 3.14 Both axis have been normalized to render ptesghe comparison between

Table 3.2 Resume of parameters obtained in the numericallation of SEN-TPB.
ParametersA(a,) is the initial compliancegr, the relative crack length at the peak

load P,; Gg(a,) the energy release rate Bi; 8 = Aa./D the relative length of the
FPZ.

Series D=h Alay) a, Gg(ay) 6
label (mm) (mm/N x 10~3) (N/mm)
Doy 17.5 37.19 0.60 0.053 -
D, 35 18.41 0.57 0.059 0.265
D, 70 9.21 0.54 0.062 0.213
D, 140 4.53 0.55 0.077 0.126
D, 280 2.26 0.54 0.087 0.085
Dg 560 1.12 0.53 0.094 0.045
Dg 1120 0.56 0.52 0.099 0.024
D, 2240 0.28 0.51 0.100 0.013
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Figure 3.14 Linear regression plot performed on the rising parthe R-
curves which exhibit an undoubted plateaa. (series D,, Dg, Dg
and D, according to Fig. 3.12), used to define the cumeagxponent of
theR-curve {e, B = 027).

1.2

Numerical result
0.8

0.6

GR/GRe

0.4

0.2 1

AalAac

Figure 3.15 Plotting of the normalize®-curve according to Eq. (3.1)
(¢=1 and B=027) and the numerical results plotted in Fig. 3.14 fo
those series which exhibit an undoubted plateéay ¢eries D,, Dg,
D¢ andD, as plotting of Fig. 3.12)Gg, =G =01 N/mm.
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the theoretical and the numerical results obtaineBig. 3.11 forGg /Gr.< 10. The

numerical results are barely those which exhib#edundoubted plateau.d., series
D,,Dg, DgandD5).

3.3.2Relative crack length at the peak load

The CCM detailed in the previous Section broughth® important conclusion that
the R-curve is uniqueife., independent of the structure characteristic dxg as
illustrated through the superposition of the set Rs€urves which exhibited an
undoubted plateau on the extent of the cohesive gbigy. 3.13). This being revealed,
the fitting of thoseR-curves by a power law (centreline shown in Fig.33.rendered
possible to estimate the equivalent length of tR&,FAa, =185 mm. Following on,
the linear regression plot executed on the risiag pf the same set &t-curves (Fig.
3.14), brought about the curvature exponent oluthigueR-curve S = 027. Then, the
plotting of the uniqueR-curve was performed according to Eq. (3.1), raagathe
accuracy of the obtained fitting operation, whee ttomparison is made with the

numerical data obtained through the CCBL(=G; =0.1 N/mm) (i.e., the numerical

results printed in Fig. 3.15). Therefore, the tramsal regime ie., thecrossoverzone

in Fig. 3.15:Aa = Aa,) between the ascending part of Reurve and the plateaud,
Gg =GR, =Gy ) is not described by the analytical analysis whigtbeing followed.

Indeed, the observation of Fig. 3.15 permits teckean angulate point in the referred

crossoverzone.

The plotting of Eq. (3.6) exhibited in Figs. 3.18:20, for most of the series shown
in Table 3.1, provide the estimate of the singleitsan a . = 054, revealed by the
interception betweerg'/g(a) and Gr/Gg (a) . Therefore, computing the size limits

D, and D, (Egs. 3.9 and 3.10),

Aa.
D .
min 1'0’0
A
D, = ——x
O'U* = 0’0
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which characterize the domain ofr,. (Fig. 3.3), yield D.;, =37 mm and
D.=4625mm, taking a, = 05 (Fig. 3.9) andAa, =185 mn{ Fig. 3.13). The
estimate of the size limit®,;,, and D, rendered possible to classify the series3sgt
D;, and D, as eligible tofigure in the intermediate size range (Table 3uiith
a, Oa,. Increasing in the specimen siBg, it turns clear that the relative crack length
at the peak loadr, becomes quite unlike the single solutiag+, since the ultimate
load P, is attended closer and closer the onset of Rlmirve plateau. Indeed, as

reported in Table 3.2 the current numerical stuelyealed that a® - o, thend - 0
(i.e, with the FPZ turning irrelevant when comparedhwihe structure sizeD).
Therefore, since Eq. (3.8) establishes thatD) = a,+8, for D > D, then it seems
quite reasonable that the trend revealed by theenioai results (Figs. 3.19-3.20), lean

towardsa, - a,, as appears in specimens of larger sizes for seriesD, D and

D-, in Figures 3.18, 3.19 and 3.20).

The poor agreement revealed by the plotting of B¢f) and Gy /Gg (a) directly
obtained from theR-curve (Fig. 3.11), shown in Figs. 3.16 (ovalf the range) is
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Figure 3.16 Plotting of Eq. (3.6) used to estimatg,x . Comparison

with the plotting of Eq. (3.79btained from th&-curve computed for
seriesD ; (see Fig. 3.11).
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Figure 3.17 Plotting of Eq. (3.6) used to estimadg,» . Comparison
with the plotting of Eq. (3.7¢btained from th&-curve computed for
seriesD , (see Fig. 3.11).
30 o ,
i\ '
|
25 |
|
|
—~ , |
S Gr(a)_ B :
> 20 k - |
= \ Gr(a) a-a, !
2 , : I
S 15 Gr(a) !
o]
= Gr(a) :
S 10 '
1 T aU*
© g'/g(a) .
L =
51 rS o !
[ .~ |
I ‘.. i
Ia’U -~ o |
0 T T T T T I\ T T .\- ==

0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545500

a=alD

Figure 3.18 Plotting of Eq. (3.6) used to estimatg+ . Comparison
with the plotting of Eq. (3.79btained from thé&-curve computed for

seriesD¢ (see Fig. 3.11).
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Figure 3.19 Plotting of Eq. (3.6) used to estimatig+ . Comparison
with the plotting of Eq. (3.7pbtained from thér-curve computed for
seriesD g(see Fig. 3.11).
30 .
' I
Y
25 Co\
~ Vo)
S Yoo
o 20 Lo Gr(@)_ B
o ' b ! Ca-
o Cg(a) . | ! Gr(a) a-a,
S50 Grla) y !
) Lo
x v
2 101 L
o v | a %
© glg(a) i :
51 } :
[
Iy
O T a\UI l T T T T T

0.500 0.505 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545500

a=alD

Figure 3.20 Plotting of Eq. (3.6) used to estimatg,» . Comparison
with the plotting of Eq. (3.7pbtained from thdr-curve computed for

seriesD-, (see Fig. 3.11).
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justified by the inexistence of a clear (an undedbtplateau for serieD,, as

mentioned above (Figs. 3.11 and 3.12). As accorthritpe specimen increases in size
D, the interception ofGy (a)/Gg (a) with the axis of the abscissas outlined in Figs.
3.16 — 3.20 (descending thicker hidden line), gétiser and closer the relative crack

length at the peak load (which, it turn, gets closer and closerdg). This trend is
not surprising, bearing in mind that, is obtained closer and closer the plateau of the
R-curve (e, a, - a,) as may be confirmed from analysis of the setsetilts reported

in Table 3.2.

The scaling of the relative crack length at thekpead a, (D ) has been plotted in

Figure 3.21, for the available data provided by HEieM computations (structure sizes
D as in Table 3.1). As previously performed for B¢, the plotting shows the minor

and the upper size boundB (,, and D.) which set out the intermediate size range. In
regards to the included sizes printed in Fig. i1, labelsD,, D, ,...,D;), it is clear

that the revealed FEM data follows a trend whichinisfine agreement with both

predictions established for the intermediate semege (e, D,;,,<D<D,.) and for
large sizesi(e., D > D,: seriesDg, Dy and D, ). Hence, in the former regime one
observes that the relative crack length at the pea#t o, is set equal to the single
solution a+, whereas for the later regime.e( for large sizesD), the FEM-
computations revealed a trend evolving close toldéhe a,+8. It is worth-while to

notice that the plotted circles in Fig. 3.21 follole tendency outlined by the centreline
plotted under the scaling law in Fig. 3.3, maimthe neighbourhood of the transitional

regimes,i.e, from the intermediate size rangee( D,,, <D< D,) to the large size

regime (.e, D > D,).

The size effect results (Eg. 3.12) on the resigtadhe peak loatGg (a,,D have

been plotted in Fig. 3.22, together with the twgnagtotic regimes both for small and
for large structure size® . Accordingly, the available data generated by raearthe

FEM computations turned out values®f (a, eyolving with the structure sizB in
agreement both with the power la@k (a,,,D) O D#, in the intermediate regimeg,

Dpin < D< D,: seriesD; andD,), and withGg, (with Gg. =G;), in the regime of
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Figure 3.21 Scaling of the relative crack length at the pesdla, as a function of
the characteristic siz® . Parameterd,_,, and D, represent the lower and upper

bounds of a, (Egs. 3.9 and 3.10). Plotted circles indicate #wailable data
provided by the FEM computations (Table 3.1).

large structure sizeB (i.e, D >D.:Ds, Dy and D). The asymptotic behaviour put

into evidence by the sizb ; in Fig. 3.22, confirms the outlined trend showrfig. 3.4.

3.3.3Size effect on the nominal strength

Taking into account the crossover size vallig £ 4625 )nime estimate of the
single solution &, = 054 and the curvature exponent of the unigBeurve

(B = 027), obtained in the last two Sections, together it dimensionless energy

release rate functiory(a dleduced in Appendix A3.1, it is possible to estanthe

characteristic size through Eqg. (3.19),

VB
D] = {g(a“*)} D,
g(ay)

leading toD’ = 680 mm for the initial relative crack lengthog = 05
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Figure 3.22 Size effect on the resistance at the peak loadrdicy to Egs. (3.11 and
3.12). Parameter®,,,, and D, represent the lower and upper boundsrgf (Egs.

3.9 and 3.10). Plotted circles indicate the avéelattata provided by the FEM
computations.

The nominal strengtlor, (D ¢xpected for the three asymptotic regimes, conmgyis

(i) the large, (ii) the intermediate and (iii) temall sizesD are to be evaluated through
Egs. (3.17), (3.18) and (3.20), listed below:

E'Gg.
g(ay)

oy (D) =cy D V2

E'ga, -0 )?
UN(D):CN\/ g(O’ ) Dl—;

E'op(a, —ay)?
ONmax ™= CN s 133
g(au*) Dmin

Hence, bearing in mind that, =3/2(L/h) =9 as deduced in Section 3.2.2.2, the
effective Young modulusE'=7098 MPa and the dimensionless energy release rate

function g(a) estimated in Appendix A3.1, together with theicak energy release
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rate G, =0.1 N.mm™, the initial relative crack lengtr,= 0.8he equivalent length
of the FPZAa, =185 mm the curvature exponent of the unigieurve 5 = 027,
the pre-factorqo=GRC/AaC/3 =270Jm2*# defined through Eq. (3.1), the single
solution a, = 054 and the size limitsD,;, =37mm and Dj =680mm, it is

possible to estimate the nominal strengt(D exXpected for the three asymptotic

regimes, setting® according to Eq. (3.21),

ON max O D<D,,, (strengththeory)
oy (D)O<D¥2+A2 O D, <D <D}
D -1/2 O D>D;

Figure 3.23 shows the plotting of these Equatidtns fproviding the necessary data to

accomplish the size effect on the nominal strengt{D) . Figure 3.23 also shows the

fine agreement obtained by the inclusion of the cfetircles corresponding to the

0.00 T T T

-0.25 Strength theory Do

-0.50

-0.75

Log, [ oy(D)]

-1.00

-1.25

-3.0 2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
\Log, (D)
Figure 3.23 Size effect on the nominal strength (Eq. 3.178 &dd 3.20). Included

circles are labelled according to specimen sizésdiin Table 3.1.
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It should be noted that sized3,, D; and D, were not included in Fig. 3.23

because the CCM revealed the absence of an undopllateau on th&-curve for these
specimen sizes (Figs. 3.11 and 3.12). On the dthed, it turns quite dubious to
describe accurately the cracking phenomenon tagiage in such a narrow ligament

volume.

Notwithstanding the even more massive time consgmecessary to perform the
CCM, the inclusion of a specimen of larger size.,(D>D,) among the set of

dimensions of Table 3.1 is well worth-while, to pide a more convincing trend
revealed in the domain estimated by LEFM (Fig. B.23

Summing up, the CCM presented in this Section hesiamhstrated that the
derivation of the energetic Size Effect Law basadle equivalent LEFM, as detailed
in Section 3.2, is valid.

Still focused on the evaluation of the Size effestthe nominal strengtlr, (D ,)
once determined the position of the experimentt (f&g. 3.23), the LEFM asymptotic

regime might be plotted using the Bazant’s Size&ff.aw (SEL) through Eq. (1.4).

Following the procedure issued from the derivatiaw exposed in Section 3.2,
based on reliable experimental data, one can préugcSize Effect of a quasibrittle
material of a given structure geometry. This isgbbject of main concern treated in the

ending Chapter of this Thesis.
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Chapter 1V

4.1 Introduction

In this Chapter a description of the experimentssme effect in wood is made
involving the Single-Edge-Notched beam loaded ime€HPoint-Bending (SEN-TPB). A
method is proposed on the regards of the evaluatiathe Resistance&urve taking into
account the correction needed to take into accihnspecimen self-weight. A verification
of the attained accurateness in the evaluatiorhefctitical energy release rate is made
through cohesive crack modelling. Size effect rssw@re revealed arising from the

experiments performed in wood spruce SEN-TPB spstsn

4.2 Experiments

Norway spruce Ricea abiesL.; 405 kgm® on average: ANNEXE) was used in this
study as testing material. Moisture content in waad found in 11-13% after conditioning
at 20°C and 65 RH until equilibrium. Wood was maeii far enough away from the stem
pith complying with anatomic axis orientations amominal dimensions represented in
Figure 4.1 and clear parts (free from knots andenwtdefects) bonded with a suitable
epoxy adhesive (ARALDITE AW106/953U). Starter notches were madealthe

composite beam central-section using a band saan{thick) and initial crack notches

100



Experiments on Size Effect Chapter IV

Sh

Figure 4.1 SEN-TPB geometry used in the experime showing
the initial crack lengtha,=h/2. Triad indexes L , R and T

represent the Longitudinal, Radial and Tangentiabdvanatomic
directions. Values ofh andb are listed in Table 4.1.

sharpened using a fine cutter blade (depth of shatph: 1.0 - 1.5 mm) up tb/2 just a
little while before conducting experimental tes@aking due note of the reference

characteristic structure sizd regarding the dimensiorD=70mm (Table 4.1), five

additional homothetic series were machined frors dime, composing a size rangeldf2.

Geometrically similar SEN-TPB were tested to deteenfoad-displacement curves up
to complete rupture under displacement control. infi@l crack/depth ratio was set to 0.5
and the span/depth ratio was fixed to 6 (Figureadadd b). A mechanical spindle-driven
tension-compression machine (20 kN total capaw®s used to induce fracture in Mode |.
A load cell with the capacity of 1 kN was installadd the crosshead displacement rate
regulated to reach the peak ldagin 3 + 1 minute during fracture tests, thus mirzimg
possible viscoelastic effects in wood. An opticateesometer was used to monitor two

displacement values during the experimedXsregarding the mid-span target bonded on a

long light-weight rigid bar supported on two smaletal pins previously stuck onto the

specimen in alignment with the supports (Figu&a); andd,, referring to another target
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Table 4.1 Specimen sizes used in the experiments accordikigt 4.1

Quantity h=D (mm) b (mm)
11 280 80
18 210 60
19 140 40
16 70 20
19 35 10
12 23.3 6.7
Load cell

Figure4.2 Sketch of the TPB test set-up showing tligplacement monitoring
in the mid-span of the : (ad;: long light-weight rigid bar and (bp,: short light-
weight rigid bar supported on tiny metal pins ddsmded to the specimen surface.

bonded onto the mid-span of a short light rigid bhaid on two additional tiny metal pins,

firmly fixed to the central span, positioned 2ti/3, at h/10 apart from the central section
(Figure 4.2.b). Displacement values were monitarechputing 0=(J, -9, ) exerting no
mechanical contact with the specimen during theeergents.

The superposition of typicaP-J curves shown in Figure 4.3 reveals the obvious
decrease of the initial compliancg, (a,) with the increase in the structure sife,
together with the natural increase in the ultimatel P, (ANNEXE). The configuration

revealed by theP-0 curves (Appendix A4.1) also indicates that crackppgation

occurred in a stable way.
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500

Load,P (N)

D=233 Displacementd (mm)

Figure 4.3 Superposition of typical lo-deflectioncurves obtaine
for each series according to dimensions shown eT4. 1.

4.3 Self-weight compensation

In fracture testing involving Single-Edge-Notche@gams loaded in Three-Point-
Bending (SEN-TPB) as well as in other specimen ahatne specimen weight contributes
to the overall loading of the system. Unless spemiathods are put into practice, the
contribution of the specimen weight is not compé&daleading thus to misevaluations of

fracture parameters obtained in the experiments.

4.3.1 Load equivalent to the specimen self-weigtattic approach

As illustrated in Fig. 4.4 for the simple test dgafation, the load cell has been zeroed
(point O) when the self-weight was already acting on thecspen Bazant Z and Planas J,
1998) This means that at zero applied lod&=0), a bending momeniL?/8 already exists
at the central cross section (with standing for the distributed load correspondinghi®
specimen self-weight antd for the beam span). Consequently, if one considestsitically
equivalent load acting on the mid-sp&y, which gives the same bending moment as the
one obtained from the distributed load corresponding to the specimen self-weight, the

resultant bending moment will turhl , =P, L /4. Thus, establishing the equality between

the former bending moments, it is possible to getdonstant central loa, =q L/2, with
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Load,P &

1
/
|
a
O’ - — — — — — — — —_—
9y (@)
Figure 4.4 Load-displacement curve for the uncompensated 2B Adapted from
Bazant Z and Planas J (1998).

gL=mg (beingm the specimen mass angl the acceleration of gravity). In a strictly
theoretical point of view, if this statically egaient loadP, could act alone in the

system, it would produce the load-deflection eurspresented by the dashed line in Fig.
4.4 (origin atO'). Nevertheless, in the experiments the recordedecis simply the one
illustrated by the full line, which obviously iséhresult of the applied loa@ and its own-
weight. It should be emphasized however that tleerdéng provides the external applied
load P (given by the load cell) while the displacements due to the combined action of

P and the specimen self-weight.

In the following, two methods are proposed to puioipractice the self-weight
compensation in the context of tRecurve evaluation using the SEN-TPB geometry. The
first one is an approximate method based on thenkatic approach, whereas the second is

the Exact method, which provides the accurate evial of the self-weight compensation.

4.3.2 Load equivalent to the specimen self-weigimematic approach

Consider the testing notched beam in TPB repredeant€ig. 4.5, subjected both to an
external loadP acting on the half-span and the beam weightasented by the linear
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L/2 L/2

(@) (b)

Figure 4.5 Schematization of the simply supported beam stdgedo the
superposition of (a) the central lo&[N] and (b) the distributed loadq [N/m].

Parametersdp, displacement due ®; Js, displacement due tp Both displacement
values are read in the central load d@isvith 0=0pp + Opy,.

distributed load q. The displacement of poir€ is given by the contribution of the central
load P and the linear distributed loag,

0 = 3pp + Opq= App P + Apyq (4.1)
where App and Ap, represent the compliance due o and g, respectively (withlpp

expressed in [m/N] andp, in [m?%N]) measured in the axis ¢¥ .

The initial complianced,,,(a,) is evaluated considering the recorded values @&).

got hold of the experiments, computing

_ A (39)
Aexp(ao) - APeXp(ao) (4.2)
with .y, (ay) defined in Fig. 4.6 as
Gurp (@) = [Gop (80) + B (80)] — G (35) (4.9
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P+R Ro=P
/
/
AP (a Linear elastic
o@,) 1 behaviour 4= g)
6exp: [6PP + 6Pq] (a) - 6"‘1(3‘0)
// | |
| -
Pq // Y, Aéexp (ao) = Adpp (ao)
// 0= [6PP + 6F’q]
y — — o N B
Lﬂ,

Figure 4.6 Load—deflection curve in the elastic domaar(a, ).

In Eq. (4.3) 9p (3 ) is the only quantity which varies. Indeed, the rgitg Jp, (),

though impossible to measure in the experiment&e up unchanged (providing that

a=a,), thus leading to,

Jexp (ao) = 5PP (ao) (4.4)
Hence, rearranging Eq. (4.2), it may be establishatl(Fig. 4.6),
Adpp (89)
P AI:)exp(ao) PPexp

The second term of Eq. (4.1) may be rearrangedrderao incorporate an external

central loadF, , which in practice produces the same displaceiwettte beam weighdp,
in point C (kinematic equivalence) (Fig. 4.5), so that

0=App(P+PR,) (4.6)

Thus, eliminatingé among Egs. (4.1) and (4.6), it turns

- APq (a)

4.7
‘ App () *.9
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which is valid if the ratio

Apq (@) /App () O constant Dal[ay, aexp,] (4.8)

with the range of validit)[ao, a ] to be estimated numerically.

expl

Therefore, using the recorded load—deflection cutiined in the experiments (Fig.
4.7), and providing that thequality settled through Eq. (4.8) is verified, Eq. (4.Rpkles
to establish

APq(aO) q= /]PPexp(aO) I:)q = JPqexp (ao) (4-9)

with A (ay) as defined through Eq. (4.5),

PP exp

/]PP exp(aO) = Aexp(ao)

Hence, for a given poinM of the load-deflection curve (Fig. 4.7), for whiem
equivalent crack lengtla is to be computed, the compensation due to tHenséght is
performed setting

o
Aexpcomp(@ = 5P (4.10)
q

which, according to Egs. (4.1) and (4.6), results

Opp + 0 Asp(@) (P+P,)
Aexp comp (&) = F:+PPq === 51 == 2pp(a) (4.11)
q q

Resulting values ofl (a) are subsequently used to perform computationfien t

eXPcomp
equivalent crack lengtla and resultant energy release r@g(a) quantities by means of
the equivalent LEFM approach proposed by Moredt&l. (2005) (also detailed in Section
2.3). It should be noted that both tervhs, () and Ap, (a ) in Egs. (4.6) - (4.8) and (4.11)
represent corrected values of the compliance patyalo functions which result,
respectively, from the best fit of FEM computatidos the centralP and distributedq
loads acting on the specimen for different cracigthsa,

App () = A (3) (4.12)
Apq(8) = Ay (a) (4.13)
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I:)comp Pe)(p =P

P+Pq7____ ______ M

Aexpeomd(@ = App(@)
[ 6exp=[6pp+ 6Pq ]a)- 6Pq(a0)

r i }
q // | 6expcomp: 6PP+ 6Pq

5
o] Poexp(ao) =A PPexp(ao) Py

Figure 4.7 Self-weight compensation of the load—deflectiorveu

The purpose of this correction, as proposed by Méret al. (2005), is to take into account

the scattering of mechanical properties observetienmaterial. The parametgr in Eqs.

(4.12) and (4.13) stands for the multiplicative rection factor estimated once per

specimen as,

Aexp(ao)
App (ap)

As observed in Section 2.3, in view of the fact than-plane analysis the quantityE is

Y= (4.14)

essentially proportional to the compliandg,(a) (with E = E; according to specimen

sketch of Fig. 4.1), as detailed in Morel S et(2005), the multiplicative correction factor
defined in Eq. (4.14) turns,
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E
/40 ﬁ (4.15)

exp

The kinematic approach detailed in the presenti@edught to be compared on the
energetic point of view, in regards to the evalatof the Resistance&urve. This idea

rouse up the development of an alternative methbithwis presented as the Exact self-

weight compensation method presented in detallemext Section.

4.3.3 Exact self-weight compensation method

Regarding once more the testing beam loaded in M&B represented in Fig. 4.8,
subjected to the superposition of an external I@adcting on the half-span and to the
beam self-weight represented by the linear distedbload g, the displacemend of a
given point localised in the specimen central secfi.e., in the axis of the central load) is
the result of the contribution of both loading syss (.e., P and q). Since the resuld (a)

is conditioned by the extent of the crack lengtin the mid-section (Fig. 4.4), the former

L/2 L/2

Gua(X, @) |Gpqe(@)
(b)

Figure 4.8 Simply supported beam subjected to the superpaoditi (a) the central loa® [N]
and (b) the distributed load [N/m]. Parametersd, and O_iq represent respectively the

displacements due ®and toq measured in axis.
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displacement will be designated in the following By, (a), though the later will be

referred to a®dp, (@), leading, in a like manner as through Eq. (4d), t

Op (8) = Ipp(a) + Ipy(a) (4.16)
with the second index (i) being used to designate the applied loading sy$f or q),
while the first onei(e., P) is used to refer to the axis used to estimateligi@acemen® .
An alternative notation may be preferred to expréss displacement), (a pn the

compliance basis for a given crack length

Op (&) = App () P + /]Pq (@q (4.17)
(with A, expressed in [m/N] and, in [m%N], since P and q are stated in [N] and
[N/m], respectively).

On the other hand, it is possible to define theldisementfield obtained along the
specimen axis (middle-axis denoted»asn Fig. 4.8), with respect to the abscissaand
for a given crack lengtla, as

9, (%,8) = 9p(X,a) + 94 (%,a) (4.18)
which, on the compliance basis is expressed through
04 (x,a) = Agp(xa) P + A,4(X,2)q (4.19)

The set of functionsipp (2 )and A (a) in Eq. (4.17), as well asip(x,a pand

Agq(x,@) in Eq. (4.19) represent, respectively, correctednmliances and corrected

compliancdields (Fig. 4.8) estimated through,

Aep (@) = ¢ A (3) (4.20)
Apq (8) =4 Aq (3) (4.21)
A (%8) =@ A (x,0) (4.22)
A (X8) =0 Ay, (x,@) (4.23)

In Egs. (4.20) and (4.21) the compliance functidns(a) and XPq (a) are obtained from

the best fit of in-plane FEM computations (elasti@in analyses) performed for different
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values of a, in the interval[h/2, h] (Fig. 4.1). As to Egs. (4.22) and (4.23), the
compliancefields )I;P (x,a) and /1*qq (x,a)are achieved by means of the best fit of in-plane

strain FEM computations performed along the a®ig of Fig. 4.8 (e, along the

centreline) for each crack length Indeed, the calculation is made in the integragioints

sited along the mid-height of the FEM mesh used¢dmpute the displacement values.
Hence, A, (a) and A, (x,a) are expressed in [m/N], whered$, (a and A, (x,a)are
defined in [M/N], since P and q are stated in [N] and [N/m], respectively. In redgato
the multiplicative correction factay defined by Eq. (4.14),

/]exp(ao)
A;P (a)

in a like manner as has been seen in Section 4t Zxtentd,,,(a,) represents the initial

[p:

compliance (fora=a,) obtained in the experiments (Fig. 4.9),

Adey, (29)

Aexp(ao ) = Apexp(ao )

(4.24)

with Je,, (3) given by Eq. (4.3),

Gurp (B0) = [0p0 (30) + Bpq (80)] = Bq (@0)
Therefore, regarding that the structure (Fig. 4d@s not undergo damage (at least) before
the central loadP has been applied one can observe that(a,) in the above Equation
(i.e, Eq. 4.3) is the single quantity which actuallyiga. Indeed, the displacemedy, (a, )

though impossible to measure in the experimentsgps unchanged, leading to
Jexp (ao) = JPP (ao) (4-25)
In fact, the quantityA,,,(a, )in Eq. (4.14) should be reformulated to fit wittetnotation

Appexp(89) Of Fig. 4.9. Hence, introducing the modificatidroace in Eq. (4.24), yields,

Adpp (29) _

Aexp(aO) ) AI:)exp(ao) B

APPexp(aO) (426)
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~ P Experiments

Y. FEM

Linear elastic

""" behaviour 4=a)

AR(@,)

0 =0

exp

T
_‘ A6e><p (aD) = A6PP exp(ao)
>

Figure 4.9 Superposition of load—-displacement curves obtairied the
experiments and through FE analysis in the linkestie domain (fora=a,).

4.3.3.1Estimate of the equivalent crack length

In the course of the fracture test illustrated ig. .4 the displacement monitoring
provides the result associated to both loadingesystacting on the specimere( P and

g). In such a circumstance, one gets

Boro(@) = [5p(8) + 85 ()] = Spq(@0) (4.27)

The self-weight compensation however, implies thedification of the displacements

recording schematized in Fig. 4.10,

5mod(a) = 5exp(a) + 5Pq (aO) (428)
with Jp,(38y) standing for the displacement which result frbra structure self-weight

prior to the load-cell zeroing operation (poidt Fig. 4.4). The second term of Eq. (4.28)
may be defined as follows

Opq(@9) = Apq(ay)d (4.29)
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&P /‘exp(ao)
1V
Aexp(ao) —
1V / \
/
/ \
/ \
/ \
/ \
M
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) Aee® PN
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| | \\
Amod(a) : : ™
/ | |
| |
| o)
6Pq(a0) T mod(a)

Figure 4.10 Modified load—deflection curve due to the compéingeaof
the specimen self-weight (dashed line).

which is established as a function of the correatethpliance A,,(a,), possible to be

obtained from the computation of Eq. (4.21) &ora,=h/2 (Fig. 4.1).

Still focused on the modification of the displacenserecording schematically shown in

Fig. 4.10, one can rewrite Eq. (4.28) on the coamge basis for a given crack length

Jmod (a) = /]PP (a) P+ APq (a) q-= Amod(a) P (430)

with the corresponding modified compliandge ,(a dgfined as,

Arod (@) = App (@) + Ang(@) 2 (4.31)
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with both functions 4., (a) and A, (a) being corrected by means of Egs. (4.20) and
(4.21), respectively 4=a,). Hence, combining Eq. (4.31) with Egs. (4.20) q4d1),
yields

Do (8) = {A*P.xa) + (@) %} (@.32)

Therefore, the first step consists to obtaining thedified load-displacement curve

(Egs. 4.14, 4.21 and 4.28) making use of the canpé calibration functiond ,,(a) and

/1*Pq(a) previously evaluated in the intervalll[h/2, h]. Subsequently, for a given point

M’ (Fig. 4.10) of the modified load-displacement @ifwhich corresponds to amknown

equivalent crack lengtha) the corresponding compliancé, ,(a i3 calculated i(e.
J,04 (@)/ P as thefirst membeof Eq. 4.32). Then, making use of the correspantbad P
quantity, together with the scalar constagitsand q evaluated once per specimen, a given
(i.e, taken by hazard) crack lengéh= a, extent is used, to evaluate second membeof

Eqg. (4.32). The equivalent crack lengéh is the used value of which provides the

equality between both members of Eq. (4.32). Theedtion method (Chapra SC and
Canale RP 1985) has been applied as the seekitigadar the equivalent crack length

tracking.

In the following, the method used to evaluateRheurve is detailed, using the modified
load-displacement curve, together with correspandadues of the equivalent crack length
a(.e, P,o,a).

4.3.3.2R-curve estimate

Consider two consecutive points of the modifieddldgsplacement curve (Fig. 4.10)
with the coordinatds . ,(a,), P,] and [5,.,(a,), P,], as sketched in Fig. 4.11, with

corresponding compliances representedihy,(a, and A, ,(a, ) respectively.

The elastic strain energy releade associated to the corresponding infinitesimaticra
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6mod

émod (al) é‘mod (a2)

Figure 4.11 Partial strain energy associated to the exteosd P in
two consecutive points of the modified load-displaent curve.

propagationda (with da=a, —a,), is generically given by

E=W-A (4.33)
with AW and AJ denoting, respectively, the work of the externgpleed load and the
corresponding system complementary energy. Asdlieveight counts, Eq. (4.33) may be
rewritten in a more detailed form, taking into aaebthe contribution of both centrdt
and distributedy loads,

dE:(dNP"'qu)_(dJP +qu) (4.34)
The computation of the work of the external appleatl (Fig. 4.11) in Eq. (4.34) leads to

P +P,
2
The work due to the distributed load\;, in Eq. (4.34), is computed in the integral

oW = [Ormoa(B2) ~ Fmoa(@s)] (4.35)

form through,

L
aNy = [ alo, (x.a,) - 5,(x ap)] dx (4.36)
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Both displacement fieldg, (x,a,) and J,(x,a, )in Eq. (4.36) are estimated through FEM

computations along the middle-axig£h/2) of the FE model (Appendix A3.2), following

the resulting trend sketch depicted in Fig. 4.12s thus quite accountable that each of the
above displacement field includes a term associatdtie central load®, plus a second

one coupled with the distributed load in such a way that,

8y (%8) = Op (x,8) + Oq (%,8) (i=12) (4.37)
= A (X@)R +Aq(xa)a  ,(i=12) (4.38)

with both quantitiesd  (x,a )and A, (x,a ) denoting normalized compliance functions

(O<x< L) computed for crack lengths>a,, as performed through Egs. (4.22) and (4.23),

for a given equivalent crack length

The termdU; in Eq. (4.34) refers to the complementary eneffg$he applied loadP?
(Fig. 4.11), which is computed through,

1 1
ey p= E I:)2 5mod(a2) - E P1 Jmod(al) (4.39)

while the complementary energy of the distributead dU,, corresponding to the

specimen self-weight (the last term of Eq. 4.349valuated as follows,

1,L
0q=Uq,~ U, =], al, (x.a,) - 8, (x.a)]dx (4.40)

0 L/2 L

Figure 4.12 Schematic representation of the vertical displaadrfields (absolute
values) obtained for the SEN-TPB specimen alongrtiulle-axis corresponding
to two consecutive points of the load-displacenoeinte (L =6h).
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Consequently, one can demonstrate the equalityn(Eq. 4.36),
ou, = 1dN
U, = W, (4.41)
The quantity(JW, — oU) reported in Eq. (4.34) can be estimated combirigg.

(4.35) and (4.39),

P-P
OWp = 8Up = == [Sraq() + Onoa(@,)] (4.42)

which corresponds to the filled area representdélgn4.11 for the equivalent crack length

a,, as proposed by Morel S et al. (2005).

Additionally, according to the Maxwell's reciprocdheorem {; =A;;) one can

establish the equality (Datoo MH 1991),

[ Aqp (@) dx = Ap, (@) (4.43)

which visibly gives rise to the simplification ofié problem since it is not required to
estimate the four compliance functions definedugtoEqgs. 4.20 - 4.23, but only three of

them.
On the other hand, Eq. (4.34) establishes
E = (MW, - ) + (MW, - AJ,) = Fp + &, (4.44)
wheredp = M, — U andd, = W, - .

Therefore, for a given elastic crack length, the energy released during an

infinitesimal crack extensioma, is obtained dividing both terms of Eq. (4.44%( J&p

and &, ) by the infinitesimal crack surfaceg, bda), such that

N _
G(a) = boa + hoa Gp(a) + G4(a) = R(a) (4.45)

Through Eq. (4.45) it is stated that the energgase rates (a) equalizes th&®esistancéo
crack growthR(a) .
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An ordering of the whole Formulary has been typedAppendix A4.2 to provide a
more comprehensive way to follow the main stepthefproposed algorithm (based on the

Exact self-weight compensation method).

The validation of the proposed method used to tak® account the structure self-
weight in specimens of non-negligible sizBsis well worth doing, to prove the adequacy
of the proposed method to measure accurate frapauemetersi.g., given by theR-curve)
in quasibrittle materials. With such a purpose,gék-weight compensation method may be
applied to a set of load-displacement curves obththrough the cohesive crack modelling

for a givenG; (Fig. 2.7). The validation might be settled in thesis ofG,. =G, , since

this is the only valid worth noticed fact. Additmlty, a comparison might be made
regarding the evaluatd®-curve provided by each method used to perforns#ieweight

compensation (Sections 4.3.2 and 4.3.3). The uneosgted method used in Section 2.3
might be used for comparison. This correspondstlxaxwhat is reported and discussed

in the following Section.

4.3.3.3 Cohesive crack modelling validation

In the following a description of the proposBecurve validation procedure is made
using the FE-mesh exhibited in Fig. A3.2.1 (AppendB.2), settingh to 210mm. The
distributed loadg has been chosen to correspond to several deraditgs/o contained in
the interval [300,700 kg/m3. Hence, a cohesive zone has been modelled by nwans
interface finite elements (de Moura MFSF 1997) tigto a made up line-crack disposed
along the central section, in the specimen liganesrgth. As previously carried out in this
Thesis, the bilinear stress-softening model propdse Petersson PE (1981) was used to
simulate crack growth in spruce. A set of cohegixaperties has been chosen (following

Fig. 2.7,w, =0.045mm, f, =063MPa, f, =21MPa andG; =0.1 N/mm) to assure the self-

similar crack propagation in a given range, as diibcussed in Chapter Il. The elastic
properties used in the in-plane strain FE analgsés exhibited in Appendix A3.2. The
loading process was planned in two independentsstég the first one, through a

distributed loadq corresponding to the specimen own-weight (agrewiitiy the material
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density p); while (b) the second one, has been performeoutfir a prescribed vertical

displacement , with the first solicitationi(e., q) constantly applied on the specimen.

Accordingly, load-displacement curves were obtaifredn numerical simulations of
the SEN-TPB test using the set of material derssitielisted in Fig. 4.13. This plotting

shows that increasing values of the material dgngitgive rise to higher displacement
values which resulted from the accommodation of gpecimen to the structure own-

weight, i.e., g, (a,), prior to the second loading€,, displacement) step (b). The FEM
computations revealed that the initial compliantg,(a, is ot affected by the material

density p used in the cohesive modeling (as expected fromdE$). Another conclusion

arising from this study is related to the fact that just the ultimate load decreases with the

material density, but also the energy corresponttirtje area under the load-displacement

350
300-

3

— 300 kg/m

250- N

— 400 kg/m

— 500 kg/m

Z 200 — 600 kg/m

) _ 3

5 700 kg/m

©

S 150

100+

50

O T T T T T T
0 0.5 1 15 2 2.5 3 35

J %@y Displacementg (mm)

Figure 4.13 Load-displacement curves obtained through FEM cdaijwns
(Appendix A3.2) for densities in the interve{BOO, 70(ﬂ kg/m? using
h =210andb = 60 (mm), according to Fig. 4.1.
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. 3, . :
curve j.e, the mtegraljd @) P(0)do] required to conduct the total rupture, decreagts

p . Figure 4.14 reports the trend of the extent efdbhesive zong,,, as a function of the
numerical {.e., the real) crack length obtained for the simulagetl of material densities.
According to these results a critical extent of dohesive zond_, . is clearly revealed
when the material density is set to 3@0R (I, ~ 19 mm). One may also

observe that simulations performed with higher miaitelensities provide the same critical

extent (e, |.y.) before the crack propagation onset.(for a=a,=105mm), whereas

the amplitude of the interval of the numerical &#&ength for which this extent remains
unchanged, radically decreases with the materiasidewhen crack propagateise(, for

a > a,). This behaviour signs the confinement of the soleezone with the increase p.

20

19 —— 300 kg/mt
\ \ \ — 400 kg/nt
3
18 — 500 kg/m
3 \\\ \ \ — 600 kg/mi
3
E 1 — 700 kg/m
N
o
_LJ—
N
o 16-
L
©
+—
S 15-
=
"
14 -
13
12 T T T T
100 120 140 160 180 200

Numerical crack-\lengtng ()

Figure 4.14 Evolution of the numerical FPZ extent with the rarival crack
length for densities in the interveiBOO, 70d kg/m? using h =210 and
b = 60 (mm), according to Fig. 4.1.
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The set of load-displacement curves exhibited o #i13 has firstly been used in the
context of the self-weight compensation by meanshef methodology based on the
evaluation of the load equivalent to the specimelfrvgeight (Section 4.3.2) to evaluate
correspondingR-curves. The method requires the previous verifioabf the condition

established by Eq. (4.8), namely the constancyhef ratio /1*Pq (a)//l*PP (@) over an

interval ad [ao, aexpl] , together with the reset (Fig. 4.7) of the loagpthcement curve

after the equivalent loa&, evaluation, as properly reported in Appendix AdrBregards

to the numerical compliance functionsﬂl*PP(a) and A}q(a ), the FEM computations
provided the set of polynomial functions exhibitedd Appendix A4.4. Subsequent
evaluations of the numericalg, for ¢ = 1.0) R-curve associated to each densityhe
interval [300,70@ kg/m? led to the plotting shown in Fig. 4.15, usimg tequivalent
LEFM approach proposed by Morel & al. (2005) (also detailed in Section 2.3). It is

noticed that the horizontal asymptote revealedhaydet ofResistanceurves (Fig. 4.15)

overestimates the critical energy release 1@tg in 2.3%. This surplus inG;, once
compared with the value d&; used as input in the CCM, is naturally found exeint.

Nevertheless, one can not exclude the possibiidy higher differences might be obtained
if one would have used higher values of the mdtetensity p, as well as different
combinations of Young moduluB (namely E;). One also observes that the evaluded
curve does not depend on the modeled material tie=nsi

Figure 4.16 on its turn, shows the evolution ofhbquantities reported in Eq. (4.45)
against the equivalent crack lengsh for each material density using the exact self-

weight compensation method (Section 4.3.3). Asntedo(Fig. 4.16), both energy release
rate functions evolve monotonically towards a homial asymptotic value. Indeed, in the

early stage of the crack propagatioe.(for alla,) it is noticed that the strong reduction in
the amount of energy due to the distributed loadgivedent to the self-weighG,(a), is

compensatetly an equivalent increase in the energy assoctatédte external central load

acting on the specime@,(a). Hence, according to Eq. (4.45) the resulting gyeelease

rate G(a) in this extenti(e. for alla,) is essentially that which elapses from the materi
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Energy release raté r(a) (N/mm)
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Figure 4.15 R-curves obtained for material densities in the ride
[300,70Ci kg/m3 with h=210 and b =60 (mm), according to the
method of thd.oad equivalent to the specimen self-weight (Sectic3.1).

own-weight, as intuitively expected. As the equawvdlcrack lengtha progresses the term

G,(a) nearly vanishes in an initial phase, turning iasiegly higher again with the

reduction of the crack ligament. The trend exhibitg the energetic terr®,(a), in turn,

somehow compensates the laiez.(G,(a)), leading toG(a) = Gz, =01 N/mm, used as

input value as one of the cohesive properties.

At last, executing the sum of both functio@s(a) and G,(a) reported in Eq. (4.45)

one gets the plotting exhibited in Fig. 4.17. Itn clear from the estimation of the

exhibited plotting that th&-curve is independent of the (simulated) materaisities p .

Furthermore, the energy release raig(a bging obtained under self-similar crack

propagation revealed an undoubted horizontal asytepor 0.1 N/mm, i.e., corresponding

precisely

to the value of5; used as inputin the cohesive model,(the softening

diagram shown in Fig. 2.7).
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Figure 4.16 Evolution of Gp (a) and G,(a)using material densities in the
interval [300, 70d kg/m3 with h =210 and b = 60 (mm), following the
exact self-weight compensation method (Sectior84.3.
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Figure 4.17 R-curves obtained for material densities in the ride
[300,700 kg/m3 with h =210 and b = 60 (mm), following the Exact
self-weight compensation method (Section 4.3.3).

123

Chapter IV



Experiments on Size Effect Chapter IV

In short, in view of the results revealed in thegant Section, it is possible to conclude
for the adequacy of thExact self-weight compensation methaetailed in Section 4.3.3
to evaluate th&-curve, when the specimen self-weight plays an itamd role in the SEN-
TPB structure. Consequently, barely this methodendes attention in the following

Sections of this Thesis in what regards the evalnaif theR-curve in wood.

It should be emphasized that the purpose of theseencal simulations was barely to

test for the accuracy of the developed algorithmietoieve the right value 065, (i.e.
Gr. =Gy ), together with the accurate progress of the spordingR-curve, taking into

account the effect of the specimen self-weight.réfoee, no concern has been devoted into
the seeking of th&ue set of cohesive properties which would retrievprapriate fittings

of a given set of experimentd-J curves (as duly discussed in Chapter Il and inrBdol

N et al. 2008).

The evaluation of thdr-curve, with no regard to the self-weight compeiosatby
means of the equivalent LEFM approach (Section 2&) also been conducted with the set
of load-displacement curves obtained in the coleesrack modelling (Fig. 4.13) after the
zeroing operation. The obtained plotting shown iig. &4.18 emphasises the great
importance of the proposed (numerical) correctamthe evaluateR-curves are far from

revealing the right value o6; used as one of the input cohesive properties $hown

that as the material used in the simulations irsgean densityp, the retrieved plateau is

less distinct and the obtained asymptotic valug il@portant.

Bearing in mind the main aspects issued from thes@uittle Fracture modelling
discussed in Chapter Il regarding the developmeétiieFPZ, together with the derivation
of the energetic size effect law, based on thevadgmt LEFM and the asymptotic analysis,
treated in Chapter lll, as well as the methodolpgy detailed (and validated) to take into
account the structure self-weight when Rieurve is to be evaluated, one can consider that
the indispensable conditions (numerical tools) hlagen gathered to put into practice the
Size Effect Study on the experimental data. Thategisely the aim of the next Section.
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Figure 4.18 R-curves obtained for material densities in the rirgk
[300, 70@ kg/m3 with h =210 and b = 60 (mm), for the uncompensated
approach presented in Section 2.3.

4.4 Results of the Size Effect experiments: discussion

4.4.1 Variability and sampling

With the purpose tceliminate the size effect among the specimens used in the
experiments, an evaluation of the unitary compksnd.e, bA.,(a,)] has been
performed, thus providing a way to compare the @isplecimens in regards to the material
elastic response. Hence, observing the plottintheinitary initial compliances obtained in
the experiments (ANNEXE) for the set of specimeihsctv exhibited an undoubted plateau
on theResistanceurve, shown in Fig. 4.19, it is clearly put irggidence that a strong

scattering does exist in the tested material.
Though a careful selection of the raw material basn carried out in the specimens
preparation, revealed by the material density spactexhibited in Appendix A4.5 (Fig.

A4.5.1), as well as with watchful machining opesat (wood dully aligned, free from
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notches and natural imperfections), and adequatehwmasing in every stages of the

specimens preparation, the results will certaielyder the dispersion shown in Fig. 4.19.

A possible cause for the noticed scattering isvielt known spontaneous micro-crack
propagation which occurs during the drying procéesswood. Indeed, the humidity
concentration gradients which occur in the matediaing the drying process lead to the
internal stress field formation with the micro-dtaog phenomenon being the most serious
consequence of this natural phenomenon. Conseguantlamaged domain is very likely
to exist due to the natural drying process of wpites during the sequence of machining
operations. This phenomenon is particularly noticedhe selected specimen orientation
(Fig. 4.1) according which fracture is induced lie {TL system, since the micro-cracking
phenomenon during wood natural drying processesreqreferably along the longitudinal
(L) axis. Hence, in addition to the Size Effecturince which is expected to arise from the
experiments, it is necessary to account for theeriadtit-self, since the initial damage state
is not the same for the whole specimens. This biegase, different and unknowrying
stories may have occurred with the raw material, leadingstto a sampling problem

among the specimens selected for testing.

0.40
O
0.35
= 080 e (AVgr20%) |
=z
Ng 025  _ . _ X Do 8____ ¥ ___ (Average) |
= 0.20 ﬂ 8 $ (Avg - 20%)
2 g 6 0 D=280
= 0151 S g +D=210
() O —
~ 010l D=140
AD=T70
0.05 - X D=35
©D=233
0.00 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

D (mm)

Figure 4.19 Unitary initial compliances obtained in the expsnts
showing the huge scattering of the tested matd?rahted labelling is in
accordance to Table 4.1
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The wooden boards selected for the specimens’ gpa presented at the origin
different sizes (cross-sectional dimensions) adgogrtb the final dimension required by the
series for which they were intended for. Accordyngboards presenting smaller cross
sectional areas were chosen for those sehe&hwequired the preparation of specimens
with smaller dimensionse(g, D=35mm and smaller in Fig. 4.1 and Table 4.1),

while specimens with higher cross-sectional are@=210mm and bigger) were

machined from those beams which presented extreamendions (commercially available).

Measurements performed on wood boards’ surfacegltine raw material provisioning
revealed values between 11 and 13% for the RH.eSinwas necessary to reduce the
original cross-sectional dimensions in every wooleards selected to prepare the testing
specimens, the whole material involved in the expents had to undergo a natural drying
process (conditioning at 20°C and 65 RH until aquiim as referred in Section 4.2)

during the specimens preparation.

4.4.2 Estimate of thB-curves (Exact self-weight compensation)

The load-displacement curves obtained (under dispi@nt control) in the experiments
have been printed in Appendix A4.1. Figure 4.20vshohe plotting of theResistance

curves which exhibit an undoubted plateau, by meahsthe Exact self-weight

compensation method (Section 4.3.3) with the ccanpk calibration functions;]*PP (@)

and /1*Pq (a) shown in Appendix A4.4. In order to dispose ofemeral view of thdR-curve
evolution with the specimen characteristic size(yet in homothetic SEN-TPB structures),
the mean values oz have been plotted in Fig. 4.21 as a function ef rddative crack
length o = a/D, suggesting that a non-negligible difference it of Gz may exist
when similar structures of different siz& are compared. Figure 4.22, on its turn, shows
the influence of the specimen sie on the mean critical energy release ratg obtained

in the experiments for those specimens which etddban undoubted plateau on tRe
curve (consult the ANNEXE). Hence, though a hugstedng is recognized to arise from
the evaluatedR-curves (Fig. 4.20 a-f), also confirmed by a nogtutble coefficient of

variation (COV) of the energy release rate asdedito the ultimate loaGg (a,), as well
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Figure 4.20 Resistanceurves obtained in the experiments after appbeadf the Exact
self-weight compensation method (Section 4.3.3f plotting shows the curves which
exhibit an irrefutable plateau. Exhibited graphitsrespond to specimen characteristic
dimensions: (a)D=280mm, (b) D=210mm, (c¢) D=140mm, (d) D=70mm, (e)
D=35mm and (f)D=23.3mm, as listed in Table 4.1.

as the critical energy release rakg, (Table 4.2), one observes that the relative crack
lengths associated to these energy release raesy(, and a.) however, are significantly

less perturbed by the scattering. This ultinexigerimental observation seems to suggest
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Figure 4.21 Mean R-curves obtained in the experiments. Labelling is in

accordance with Table 4.1. Series labelled in ghesis has no statistic
meaning since only orie-curve has been obtained for this size.
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Figure 4.22 Mean values of the critical energy release @fg obtained in
the experiments (see ANNEXE) for the specimens wheghibited an
undoubted plateau on tiecurve.

that both parameterg, and a, slightly increase with the raise of the specimiee © .

Nevertheless, this observation is in complete desmmgent with the conclusions drawn
from the Cohesive Crack Modelling presented in i8ac3.3 (namely Table 3.2). Indeed,
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those computations indicated the opposite trenah viboth a, and a. (with
a, =60+ a,) decreasing with the raise @f. One should notice however that the

suspicions regarding the evolution of both paramsete, and a. (Appendix A4.5),

ought to be confirmed through additional expental data provided with specimens

Table 4.2 Resume of mean values obtained in the experimartsrding to structure sizes
printed in Table 4.1. Values in parenthesis repre€®©V in percentage (consult the ANNEXE
and Appendix A4.5 for more details). Listed pararetepresentyy , multiplicative correction
factor; ey, (8p) , initial experimental compliance?,, ultimate load;a,,, relative crack length
corresponding toP, ; Gg (a,), energy release rate associated?q a., relative crack length
associated to the critical energy release réig;, critical energy release raté, relative critical

crack length of the FPZf, curvature exponent of the raising portion of fheurve; a ., single
solution of a, (as in Figure 3.1)8 = Aa./D andAa, =a, —a,

D W Aexp(89) P (12%MC) P, a Gg(ay)
(mm) 10*mmNY (kg m?) (N) v (Nmm?)
280 1.01 3.69 453.45 464.7 0593 0156

(20.4) (21.9) (21.4) (18.8)
210 1.06 4.37 405.18 397.6 0.570 0.198
(17.3) (17.3) (11.7) (31.2) (4.2) (56.4)
140 1.07 6.68 418.35 210.5 0.541 0.189
(26.3) (20.1) (12.5) (19.6) (2.2) (12.3)
70 1.01 8.63 425.80 93.9 0.544 0.141
(22.1) (22.1) (10.0) (15.2) (2.2) (21.6)
35 1.02 21.31 369.49 30.8 0.537 0.140
(15.9) (15.9) (4.7) (9.5) (2.0) (27.4)
3.3 0.95 22.11 415.62 18.5 0.540 0.117
' (16.7) (16.7) (10.1) (9.6) (4.0) (20.7)
D Aa, Gg
a ¢ a
(mm) ¢ 6 (mm) (Nmm'™) P !
280 0.744 0.244 68.3 0.341 0.64 0.582
210 0.731 0.231 48.5 0.336 0.40 0.557
(5.3) (5.3) (63.7)
140 0-665 0.166 23.2 0.195 0.23 0.535
(11.4) (11.4) (36.4)
70 0.683 0.183 12.8 0.182 0.19 0.528
(9.4) (9.4) (19.9)
35 0.641 0.141 4.9 0.171 021 0537
(9.2) (9.2) (22.9)
23.3 0.661 0.161 3.8 0.154 0.24 0.525
(5.6) (5.6) (17.8)
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with higer sizesD . Hence, no absolutely conclusive remark can beenradegards to the

evolution of a, and a, with the characteristic siz® obtained in the experimentse,

sampling problem among the specimens selecte@$ting as reported in Section 4.4.1).

A description regarding the details of the mearuesal evaluation of the curvature

exponent of th&-curve 8, the single solution of, (i.e., a»), and corresponding limits
(i.e,, D, and D.) necessary to outline the log-log plotting in tlatext of the Size Effect

study, is made in Appendix A4.4. As to the energigase rate associated to the ultimate
load Gg (a,), though strongly affected by scattering (valuepanenthesis in Table 4.2),
the experimental data seems to indicate the inicrgdisend with the raise of the structure
size D. This being the case, the results issued fronctdhesive crack modelling (Section

3.3, namely Table 3.2) are in agreement with thEeaments.

The plotting of the size effect on the nominal sgth o (D) represented in Fig. 4.23
has been made using the mean values represerifattim4.2 and Table A4.4.2 (Appendix
A4.4), for each tested siz®. The outlined envelop circumscribed by the hidtdees
corresponds to what can be estimated for the $ieeten the nominal strengtlr (D i
wood (spruce), when the-curve is known. Indeed, this is the pattern shapwhat is
expected for a material such as wood. The inflesteape revealed by the circumscribed
domain is not surprising, since it integrates thermediate size range estimated through
the derivation of the energetic Size Effect Lawcfem 3.2), and the domain of LEFM.
Table 4.3 reports the set of results which permijustify the progress verified in the

nominal strengtho (D) through the bilogarithmic plot of Fig. 4.23, naj#éhose which
are estimated through Egs. (3.17) and (3.18) fer domain of LEFM and for the

intermediate size range, respectively.

E'G
oy(D)=c Re D2
N "V g(a,)
oy (D)= cy [ E 2@~ 0)
N "\ g(a,) DA
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Accordingly, both ratios:\/[E'(o(au* - ao)ﬂ] /g(au*) and \/(E'GRC)/g(aO) were
calculated in Table 4.3 and outlined in graph a@f. Bi.24.

It should be noted that the envelop outlined in Big@3 renders possible to estimate the

approximately ratio of 0.13 in thivg,, o, (D Between the highest and the smallest

value estimated for the LEFM regime. Thereforeutitoaffected by the noticed sampling
problem (Section 4.4.1), the evaluated ratio yietnsgghly 35%, which is quite acceptable

in view of the scattering normally associated te #stimate of elastic and fracture
parameters in wood.
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Figure 4.23 Envelop (hidden lineestimated for the size effect on the nominal
strength in wood sprucgsing the mean values obtained for each testégss@rable
4.2 and Table A4.4.2 in Appendix A4.4).
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Table 4.3 Results obtained in the size effect study for éxperimental data. Parameters!,

Longitudinal elastic modulusE'=E" as defined in Appendix A3.1)5g., Critical energy release

rate; a,, Single solution of a; g9(a,), Dimensionless energy release rate function;

J(E'Ggre)/0(a,), Ratio of Eq. (3.17) characterized by LEFI\(}/{E’go(au* -a,)”] a(a ),

Ratio of Eq. (3.19) used to estimate the nomirahgjth in the intermediate size range

E' Gre \/ Eg(a, —a,)?

. E’ Gg
Series (MPa) (Jm_g) ay  9(ae) 9(ay) g(ay) g(ay)
(Nzlm?’)l/2 [NZ/(m3+[?)] 1/2
D =280 476.17 341 0.582 305.94 455.23 23038 15390
D=210 552.9 336 0.557 291.00 380.19 25266 20826
D =140 526.0 195 0.535 294.39 302.61 18666 19366
D=70 710.1 182 0.528 273.87 267.59 21723 24245
D=35 583.0 171 0.537 255.07 292.43 19770 22750
D=233 709.6 154 0.525 227.16 231.93 21933 28484
30000 30000
25000 - 25000
~ 20000 - 20000 §
— &
s “E
z ; o
15000 | E' Gg. + 15000 Z.
g(ag)
10000 \/ E'o(a, -a,)? 1 10000
g(au* )
5000 : : : : : : 5000
1.8 -1.6 1.4 1.2 1 0.8 0.6 0.4

log 10(D) (m)

Figure 4.24 Progress of ratios used to estimate the nomimahgth according to Eq.
(3.17) and Eqg. (3.18), showing the calculated Bnfiir each ratio, according to the
estimate performed for the structure sifzs210- D =233 (mm) in Table 4.3.
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Hence, taking notice of the sketched out envelopigf 4.23, as well as of the set of

parameters used to characterize in full Reeurve in wood sprucd.g., Gy, =G, +AGg,;

Aa, :A_ac + A(Aa,) and 8 =Z?i AS], together with the dimensionless energy releate r
function g(a), it turns possible to estimate the single solutbrr,, and thus estimate

accurately the intermediate size regime, from glsigizeD .

In short, the analysis of the experimental dateeatad the existence of a sampling
problem denoted by the scattering of the initiaitany compliance, concluding for the
existence of different initial damage state in the material used to carry out the testing.
This being observed, the estimate of the asymptbgbaviour previewed for the
intermediate size range, has been performed thrtlwghenergetic size effect approach,
based on the medResistanceurve estimated for each experimental series.slteeffect
on the nominal strength (in spruce) rendered ptessd estimate an envelop on the bi-
logarithmic scale, issuing a strength ratio esteanat approximately 35% between the
highest and smallest value previewed for the atrecsize of major siz® (according to

the size effect regime previewed for LEFM).

As a final remark, it should be emphasised thattrabthe observations issued from the
exposed approach (namely in Chapters Il and I\Mjhihbe viewed in the context of any

other material which exhibits a quasibrittle beloavi
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The quasibrittle behaviour of notched structures lteen brought into the discussion in
the opening Chapter of this Thesis, focussed orobservation of different stages of the
development of a large Fracture Process Zone (RBRldpg place during the crack
propagation. It has been seen that the main corsequof the development of this large
FPZ is the increase in the resistance to crack tyraluring failure, rousing from stress
redistributions and stored energy release, thudingato what came to be known as the
Resistance-curve R-curve). Focussed on the revealed curve shapesitbeen seen that
following the ascending branch, for which the riesise to crack growth increases with the
crack length, theR-curve reaches a plateau, which denotes that tfieente of the

toughening mechanisms is not indefinite.

Finite Element simulations involving the cohesiveaak modelling were then
mentioned as a suitable method to mimic the quisisibiracture. The simulations gave rise
to the establishment of the relation between thairahent of the critical extent of the
cohesive zone and the plateau value ofRkmurve. This being verified in the following
Chapter, it has been underlined the importancaefigament length to estimate accurately
the plateau value of thB-curve. The consequence of tResistance-curve behaviour of

guasibrittle materials has then been addressetieteffect of the structure size on the
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structure nominal strength. Particular attentionuae from the observation that in the
intermediate size ranges, the size effect on timeimal strength is obtained from the fitting
of two asymptotic regimes (provided by the Bazargize Effect Law on the Strength
Theory and LEFM), giving thus rise to the studytlaé regime in a subsequent Chapter of
this Thesis.

In Chapter Il fracture (Mode I) has been inducesbulgh three-point-bending (TPB:
under displacement control) in two wood speciesdusetimber construction: Maritime
pine Pinus pinaster Ait.) and Norway spruceP{cea abies L.). Load-displacement curves
were experimentally obtained and tRecurve has been estimated through a recently
proposed LEFM equivalent approach. A bilinear coleesaw based on characteristic

material (stresses and crack opening) as well asggr(G, ) parameters has been adopted

to simulate damage in the studied wood throughfete FE disposed along the crack path.
A developed inverse method based on Genetic Algost was employed to seek the
parameters of the chosen cohesive law and a fireeagent between both numerical and
experimental load-displacement (aResistance) curves was achieved, thus demonstrating
the soundness of the proposed model to evaluatesn@hcrack properties. Further FEM
simulations were performed using identified constie law parameters to evaluate the
extent of the cohesive zone in TPB, for both wopeécges. Superposition of bilinear
diagrams relied on gathered mean values taken fineninverse analysis revealed that the
ultimate stress in Maritime pine is twice as bigradlorway spruce, and arouse suspicions
that the critical cohesive zone extent in sprucghtnbe more important than in pine. Both
wood species were compared referring to releaseryms during crack propagation, with
pine turning out to release twice as more energyicro-cracking than in fibre-bridging.
Performed FEM simulations in Norway spruce confidntkee later suspicion revealing a
cohesive zone extent largely greater to the onaimdd for pine. Consequently, it was
observed that FPZ development in pine is less taffieby boundary effects than spruce.
Based on the mean trend revealed by the FEM datati@l value of the cohesive zone

extent has been approximately quantified for pimkich led to convincingGg, results.

Contrarily, the FPZ extent in spruce was founddaffected by boundary conditions since
the early stage of crack propagation. As a redhis leads to the non-self similar

propagation process, which may explain the sleridigrg trend observed in tHecurve of
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spruce i.e., practically an absence of plateau value on thistance to crack growth for the
tested specimen size). This remark addressed toefirdtion of an adequate ligament size

(i.e., critical size) to avoid spurious boundary effeststhe measure®,, values, if size

effect studies are to be carried out in spruces Thia general conclusion which may be

drawn to other quasi-brittle materials, presensrgignificant FPZ length.

In the third Chapter, the size effect study onuhinate fracture properties of notched
structures has been performed on an energy bagatptidic analysis. Once verified that
the R-curve is unique an analytical expression has lsed to characterize the resistance
growth {.e., theR-curve) the investigations have been focussedearstaling on both the
relative crack length at the peak load and theesponding resistance to crack growth.
Among the conclusions emerged from the study inaghintermediate structure sizes, one
may detach the observed decreasing in the relatiaek length at the peak load with
respect to the structure size, and correspondisg im the resistance growth. These
observations led to the reported statement ofiteeedfect on the nominal strength for both
small and large structure sizes in agreement with Bazant's Size Effect Law (SEL),
though contrasting with the simple crossover regpneviewed by the SEL, since an
additional asymptotic regime is developed for imtediate sizes. In regards to this
observed asymptotic regime, the evolution of theinal strength with the structure size
D has been quantified as a function of Bieurve curvature. As yet to the intermediate
structure sizes, the performed cohesive crack ringelCCM) involving geometrically
similar structures of different sizes (single-edgeched beam loaded in three-point-
bending: SEN-TPB) put into evidence that the dgwetbasymptotic regime can widen
from 1 decade, if th®-curve curvature is found slight, up to more thashe8ades, if th&-
curve exhibits a very pronounced curvature. Thestgaflesign of structures has been
addressed with the optimal solution being provitdgdthe SEL, given that the fitting is
performed using the evaluated nominal strength elt ag the critical energy release rate
values, for accurate positioning of the LEFM’s apyote. Both later extents were
estimated by means of a fracture test involvingirgle structure size. The proposed
method appears thus more suitable to predict tisgipo of the LEFM’'s asymptote than
the one which is based on the maximum nominal gthrerestimated for structures of small

size, in the domain of the strength theory.
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The ending Chapter has been reserved for the pgeadenof the experimental results
obtained in the size effect study in wooden notcsiedctures (SEN-TPB) following the
proposed methodology exposed in preceding Sectidmes self-weight compensation, first
emerging as a crucial standard to the accurateuattah of fracture parameters in
structures of non-negligible size (mass), motivatezl proposal of two methods based on
FEM computations and the recorded experimental dédta first method was presented on
the kinematic approach basis of a load equivalerthé specimen-self-weight (LSSW),
defined as a function of compliance polynomialsaot#d with the distributed load acting
on the specimen, and with the central load actingtlle mid-span. The evaluated
compliances, being determined through FEM computati were used to perform the

numerical zeroingife., shifting) operation of the load-displaceme®—) curve, setting

the new origin along the experimental linear etadtmain. A recently proposed equivalent
LEFM approach was then applied to estimate theespondindR-curve making use of the

previously modifiedi(e., shifted) P-J curve. In regards to the second method, expressly

designated Exact self-weight compensation meth&W\EM), the numerical zeroing.€.,

shifting) operation of theP-J curve occurred subsequently to the evaluationhef t

displacement elapsed from the specimen accommadatiahe supports, due to the self-
weight, prior to the fracture test. This correctibextent, being estimated through FEM
computations for the distributed load correspondimghe specimen self weight (SSW),
was performed prior to the material damage onsdtitionally, the elastic strain energy
release was assessed from the complementary energee the work attributed to the
distributed load associated to the SSW and to xkerreal applied load. The corresponding
R-curve was estimated dividing the resulting elassicain energy release by the
corresponding infinitesimal crack surface extemtlBSSW compensation methods.(
the LSSW and the ESWCM) were compared through CGMgupredefined cohesive
crack properties, with merely the ESWCM to retri¢hve exact critical energy release rate

Gk, used as input. The noticed outcome has been Iwlthe validity prove that the

ESWCM is adequate to evaluate exact fracture pdeamén quasibrittle fracture, with

subsequent computations of tReurve being carried out by means of this method.
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A sampling problem has been detected in regarddhdoexperimental results, first
revealed by the scattering of the initial unitargmpliance, thus concluding for the
existence of different initial damage state in tlaev material used to carry out the
experiments. Applying the (validated) exact selfglhe compensation method to the whole
experimental P-J curves obtained in the context of the size effdgody, it has been
noticed the slight rise in the mean value of tHatnee critical crack length of the FPZ,
with the increase in the structure sixe The relative mean length associated to the peak

load a, in the experiments came into sight as followingdentical increasing trend with

D. The reported tenuous trends observed in the Empetal data however, were not

wholly followed by the cohesive crack modellingated in Chapter 1ll, since both, and

6 had shown a consistent contrary tendency in thB1A@ any case, considering just the
data issuing from specimens which exhibited undedipplateaux on th&-curve, the

revealed mean trends shown in the experimentsafprand 6, were not absolutely

convincing, since barely the biggest specimen direseemed to force the mentioned
performance. Thus, though affected by the matclgrapblem, it has been decided to
execute the numerical protocol proposed in Chalbteill the end, using the available

experimental data.
The raising portion observed in the estimaRdurves which presented undoubted
plateaux obtained in the experiments revealed areasing coefficient of curvatured,

) with the structure siz® . This behaviour made possible to take notice efitisreasing
range of G, (a, )with the structure sizé, thus confirming the predictions issued from
the CCM (Chapter Ill). Consequently, the size dffdgady on the nominal strength, (D)

has been performed for each tested structure Bizeevealing an envelop configuring a
pattern shape composed by the superposition ofibtgimediate and LEFM regimes. The
accurate definition of the intermediate size registhus possible to achieve, sufficing that

theR-curve is known for a given specimen geometry.

In short, it is assumed that the size effect mastatetermined. Notwithstanding this,
the remaining difficulty seems to prevail assoddtethe dependence of the cohesive crack
properties on the structure geometry.
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A2.1 Material

Wood is a natural polymeric composite material which is heterogeneous, hygroscopic,
porous and anisotropic, being its microstructure reflected on the macro-scale in its grain.
Cells are formed of a series of layers made up of three organic components. cellulose,
hemicelulose and lignin. The cell wall components are the structural members of the wood
cell, and largely govern the physical properties of wood. Cdlulose is the primary
component of the cell wall. Structurally cellulose is a linear chain polymer forming long
glucose units structurally composed by long threadlike elements known as microfibrils
periodically arranged over the length into crystalline and non-crystalline portions, forming
the basic structural elements of cell walls. Hemicellulose is a modified form of cellulose
(Bodig J and Jayne BA 1982). Unlike cellulose, which is exclusively composed of long
chains of glucose units, hemicellulose includes a variety of monosaccharide (Tsoumis G
1991), appearing as individual molecules. Lignin is basically the adhesive that binds other
components together and is the most hydrophobic component in the cell wall (Smith | et d.
2003). Wood is regarded as a two-phase material with crystalline cellulose constituting the
fibre while an arrangement of non-crystalline cellulose, hemicellulose and lignin isfound to
constitute the matrix (Bodig J and Jayne BA 1982). Compression and bending loads
withstanding lead to interfacial coupling between wood cells inhibiting fibres from sliding
past one another (Atkins AG and Mai YW 1985). In an undamaged state and once
subjected to fairly low levels of stress during short duration room temperature, wood is
markedly an elastic material (Smith | et al. 2003). With regard to time dependency wood is
considered physically and mechanically as a non-linear material. Once sufficiently distant
from the tree pith (Fig. A2.1.1) wood is found to exhibit an orthotropic behaviour, since the
curvature in growth rings is neglected (Smith | and Vasic S 2003). Wood as a biological
material has the ability to deliberately change loca mechanical properties in growing
structures ever since changesin load patterns are detected (Atkins AG and Mai YW 1985).
Though mechanica properties can vary considerably both along the longitudinal (L) and
radia (R) directions (Fig. A2.1.1), for the sake of simplicity in engineering design wood is
assumed as transversally isotropic (plane RT). Harvesting and drying (Stanzl-Tschegg SE
et al. 1995) processes may influence wood mechanical properties more than those of most

other materials. Although drying stiffens and strengthens the material, it also makes it more
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brittle, i.e. prone to fracture. Thus, it seems obvious that a deep understanding of
fracture mechanisms is key to understanding the mechanica behaviour of wood. Very
much to the purpose of the wood axis directions shown in Fig. A2.1.1, it is worth while
to identify the fracture systems in wood, through the schematic representation of Fig.
A2.1.2.

Longitudinal
direction
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Q\ .Mlmmuu“””‘”””‘
| ml‘w" ‘
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Figure A2.1.1 Axisdirectionsin wood: Longitudinal (L), Radial (R) and Tangential (T).
Adapted from Smith | et al. (2003).
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Figure A2.1.2 Identification of wood fracture systems: (a) possible to obtain and (b) studied
inthisThesis.

(b)
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A2.2 Formulation of the inver se problem

An inverse problem (IP) has been established a®ptmisation Strategy (OS)

where the objective is to determine the bilinearapeetersw,, f, and f, (design

variabled) which provide a numericd-o curve agreeing with the experimenkib

curve (state variables). The OS was established by means of the
Minimisation y(b)=(z—z*)T(z—z*) with zOD, (A2.2.1)

subject to 9, (b)<o0, j=1.., Ng . b<bs<b (A2.2.2)

in the domain D.. The vector of prescribed values &, Ng the number of

constraints,b and b are the lower and upper bounds of the design blasa(Table

A2.2.1), respectively. A population of solutiori@(t):{xtl,...,xtn} was randomly

generated constituted byit (i=1..,k) potential solutions, encoded according to a

predefined data structu® A fitness evaluation was performed according to how well

each solutionxit fulfils the objective functiony(b) defined in the problem. The binary
format (stringz) was chosen to encode in the domainD, :[a1. b ] O R. According

to the precisiorp of each design variable required to determipg), the length

m attributed to each variable is evaluated considerthe smallest integer

(Michalewicz Z 1999) such thafh —a, ) (10P <2™ -1.

Table A2.2.1 Lower and upper limits of the search domain atteld to each design variable

Parameter Maritime pine — I\!or'way Spruce Unities
Lower limit Upper limit Lower limit Upper limit
ft 1.500 8.000 0.500 4.000 (MPa)
fp 0.005 3.000 0.005 2.000 (MPa)
W, 0.005 1.500 0.005 1.500 (mm)
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Each variablexit from each chromosome, (i =1.., Pop(t)) is decoded as follows

| . Db-a
t [}
X' =a +decimal (strlngz) X om _1

(A2.2.3)

with decimal (stringz) representing the hexa-decimal value sfing,. Estimate of

y(b)is

y(), :%{Z‘Nﬂu z - zitH 2} (A2.2.4)

with N representing the total number of points composiegriumericaP-o curve, z?
a given point in the experimentBd curve (specimenj), and ;t the P-0 curve

generated in the analysisFitness was estimated in order toMaximize

fi(b) = Fmax - y(b)j , with F oo chosen to avoid negative values.

Regarding theselection operator, &anking involving the totality of chromosomes

v,(i=1..,Pop(t)) was then performed based on the evaluation of Bg.2(4),

followed by aScaling operation used to improve the sensitivity (Michatz Z 1999)

of the algorithm,

y (b)j =y(b)j +(§/(b)j - Cx a) (A2.2.5)

with ¢ chosen as a small integer, is the standard deviation of the current

populationP(t);, andY/(b)j the mean value of/(b) in the current population. A new

Ranking of solutions was then performed and three sul{s®tsS,,, S;) arranged into
ny (t), n, (t) and ng(t) solutions (Fig. A2.2.1). In a first phase, lesolution of
St mated with a selected solution of the same groupetonging toS,,. In a second
phase, S,, was divided into two equal subset§,(,Syg) with ny; (t) = nyg (t)
solutions (Conceicdo Anténio CA and Dourado N 2003ubsequently, each solution
of S,; mated another solution frong,;, thus resulting a total ofy, (t)/2

couples (Fig. A2.2.2).
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t, 1 1
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Figure A2.2.1 Ranking of solutions in generationshowing subsets dispositid®;, Sy
and$; after theRanking operation. Data represented 1&1}}’ ! (i=1,..,k) are potential
solutions composed by a combination lofdesign variables of the optimisation
problem, in positionl of the actual performedRanking operation. The centreline
divides the whole data in two equal halves. (Inu2alo N.et al. 2008).

Solutions belonging to subs&, were not approved to generate offspring. According

the Crossover operator, generg(offspring) is selected on a biased manner according

which, geneug is chosen from chromosom‘é with a probability of p,

K
s=1..m=>m (A2.2.6

_{usm ! if Unif (0)< pe
=1

vsOYy; if Unif (0,1)> p.

xt and y! are the chromosomes defined in Fig. A2.M2ttation operator is used to

perform transformations among the offspring witbredefined probability,, .
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Figure A2.2.2 Couples resulting frorSelection with the chromosomes display.
(In: Dourado Net al. 2008).

Offspring is formed by ni(t)=n; (t)+n,, (t )/2 solutions (Fig. A2.2.3.a),
amounting tong(t) x m bits, and a consequent numble;(t)xmx p,, of potential
equiprobable mutation occurrences per generdtiofor each bitfg constituting the
lot n(t), a random number is firstly generated in the intervs}lo,l], and a gene

substitution is performed ever since p,,, .

The Elimination operator comprises the evaluation of the latedutisos
(offspring) according toy(b) defined in Eq. (A2.2.4), and the reordination (new
Ranking) of the entire population in the present generatigFig. A2.2.3 a). Remainder
solutions occupying the half-bottom positions ie tist shown in Fig. A2.2.3(b) are
eliminated, and the population size restored geingrdoy chance a fitting number of
solutions. Fig. A2.2.4 resumes the main steps ef developed IP. The stopping
criterion is based on the relative variation of biestfitness value along a given number
a of generations. Table A2.2.2 resumes the set aktge parameters used in the

developed IP.
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Figure A2.2.3 Arrangement of solutions performed by Elimination:
(a) before and (b) after Ranking. (In: DouradceNal. 2008).
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State variables definition
Genetic input data
FEM input data

t=1 >
v

{ Reference solution H Experimental P-o

v Specimen

{ Bits number evaluation }
Initial population | R
(Random generation) "

>

t=t+1

T FEA | ABAQUS® 6.5-1

Genetic operators:
Selection , Crossover, Mutation
Elimination, Implicit mutation {

\ 4
Fitness evaluation J

A

Convergence ?

Figure A2.2.4 Sketch of the Inverse Problem. (In: Douradaial. 2008).

Table A2.2.2 Resume of genetic parametePap (t) : Population sizeny (t), ny (t) and
Ng (t): Number of solutions of subseSS;, S, and S;; p,, and p,: probability of
Mutation and Crossover; p (i=1, 2, 3): Precision of each design variable required to
determine the objective functioy(b); a: Generations counter used in the stopping

criterion

Parameter Value Parameter Value
Pop(t) 10 c 3
n (1) 2 P(i=1) 3
ny ® 6 Pii=2) 2
ng ® 2 Pi=3 3
Pm 0.005 a 50
Pe 0.65
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A2.3 Fracture parameters

In the following a complete record of the main fracture parameters is presented
regarding Tables 2.2, 2.3, 2.4, 2.5 and 2.6 exhibited in Chapter II.

Table A2.3.1 (Complete recording of Table 2.2) Resume of main values obtained in TPB for
Pine wood. ¢ Multiplicative correction factor; Ag, (8): Initial compliance obtained in

experiments; P,: ultimate load; a,: elastic equivalent crack length at P,; G, (a,) : energy
release rate corresponding to P,; a.: characteristic value of elastic equivalent crack length
corresponding to the plateau value of the R-curve; Gg,. : plateau value of the R-curve

SpeCI men w Aexp ( a0 ) I:)u au GR (au) ac GRC
(10 mm/N) (N) (mm) @Gmd  (mm)  @md
1 1.07 1.97 336.3 36.5 180.0 375 186.5
2 1.23 2.24 367.9 36.0 233.6 36.8 240.2
3 1.15 211 335.7 36.8 195.2 37.3 199.9
4 1.25 2.29 342.5 37.3 233.4 38.1 245.9
5 1.03 1.89 378.5 36.2 212.1 36.4 216.7
6 1.27 2.31 353.0 36.8 240.3 38.4 257.6
7 124 2.26 307.2 37.6 1914 38.6 206.0
8 1.26 2.29 314.4 36.9 189.9 37.9 199.9
9 1.30 2.37 322.5 37.7 221.7 37.9 224.8
10 1.17 2.12 301.4 375 170.8 37.8 173.0
11 1.28 2.31 317.7 36.3 186.6 36.9 194.4
12 1.28 2.34 287.1 37.1 164.3 37.3 165.7
Average 121 2.21 330.4 36.9 201.6 37.6 209.2
St Dev. 0.09 0.15 26.1 0.6 24.8 0.6 275

Table A2.3.2 (Complete recording of Table 2.3) Resume of main values obtained in TPB for
Norway spruce. G (8;): Energy release rate at the slender rising trend segment of the R-
curve

SpeCI men w /]exp ( aO ) I:)u au GR (au) a-| GR (a2| )
(10 mm/N) (N) (mm) @m?  (mm) (I
1 1.25 5.42 150.3 378 112.2 48.9 169.9
2 1.33 5.79 138.1 36.9 93.2 46.0 124.9
3 1.27 5.55 154.7 371 1135 46.8 171.3
4 1.26 5.52 138.7 36.7 87.5 43.4 1185
5 1.27 5.55 140.6 37.7 99.7 46.7 1375
6 1.01 4.38 156.1 37.8 98.2 50.0 150.8
7 1.34 5.9 138.8 38.2 106.3 45.7 136.8
8 1.29 5.65 150.3 37.3 110.2 45.6 165.1
9 1.31 5.72 143.8 36.3 93.7 43.9 124.8
10 1.26 5.51 148.0 36.9 101.1 44.9 141.6
11 1.23 5.42 148.3 37.3 103.5 51.1 161.1
12 1.21 5.29 142.2 38.1 100.1 51.3 132.5
Average 1.25 5.48 145.8 373 101.6 47.0 144.6
St. Dev. 0.09 0.37 6.1 0.6 7.7 2.6 17.8
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Table A2.3.3 (Complete recording of Table 2.4) Comparison between numerica and
experimental mean values obtained for Maritime pine

Numerical results Experimental results Error (%)
: I:)u GR(au) I:)u GR(au) GRc
PeaMN ) @m) N @) @m v %)

1 335.5 178.6 336.3 180.0 186.5 -0.24 -0.78
2 368.3 234.5 367.9 233.6 240.2 0.11 0.39
3 335.2 186.1 335.6 195.2 199.9 -0.12 -4.66
4 344.8 237.3 342.5 2334 245.9 0.67 1.67
5 378.5 217.5 378.5 212.1 216.7 0.00 2.55
6 351.9 234.3 353.0 240.3 257.6 -0.31 -2.50
7 307.7 182.2 307.2 191.4 206.0 0.16 -4.81
8 315.6 188.9 314.4 189.9 199.9 0.38 -0.53
9 323.2 209.1 322.5 221.7 224.8 0.22 -5.68

10 301.3 166.7 301.4 170.8 173.0 -0.03 -2.40
11 318.2 185.1 317.7 186.6 194.4 0.16 -0.80
12 289.4 160.3 287.1 164.3 165.7 0.80 -2.43
Avg. 330.8 198.4 330.4 201.6 209.2 0.15 -1.67
St. Dev. 25.7 26.0 26.1 24.8 275

Table A2.3.4 (Complete recording of Table 2.5) Comparison between numerical and
experimental mean values obtained for Norway spruce

Numerical results Experimental results Error (%)
. P, Gr(ay) Py Gr(ay) Cre
Sedmen gy @m) N @M gmy v &K@

1 152.5 110.3 150.3 112.2 169.9 1.46 -1.69
2 138.0 94.4 138.1 93.2 124.9 -0.07 1.29
3 157.2 118.7 154.7 1135 171.3 1.62 4.58
4 143.6 90.4 138.7 87.5 1185 3.53 331
5 144.5 89.5 140.6 99.7 137.5 2.77 -10.23
6 161.3 97.3 156.1 98.2 150.8 3.33 -0.92
7 142.3 101.9 138.8 106.3 136.8 2.52 -4.14
8 152.7 111.3 150.3 110.2 165.1 1.60 1.00
9 148.4 104.0 143.8 93.7 124.8 3.20 10.99

10 152.6 110.2 148.0 101.1 141.6 311 9.00
11 150.8 107.5 148.3 103.5 161.1 1.69 3.86
12 143.3 92.2 142.2 100.1 132.5 0.77 -7.89
Avg. 148.9 102.3 145.8 101.6 144.6 213 0.76
St. Dev. 6.5 9.1 6.1 1.7 17.8
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Table A2.3.5 (Complete recording of Table 2.6) Summary of main values (12
specimens of each wood species) obtained in the inverse problem regarding the
bilinear constitutive model (Figure 2.7). f;:
coordinates of the break-point; G,,: fracture energy attributed to micro-cracking;
Gy, : fracture energy ascribed to fibre-bridging phenomenon; G, cohesive fracture

ultimate stress value; f, and w:

energy
Specimen ft fp W, Gy, Gy G,

(Pine) (MPa) (MPa) (mm) Imd) Im?) (Im?)

1 5.03 0.83 0.05 128.18 58.33 186.51

2 5.96 0.81 0.06 163.26 76.93 240.19

3 5.14 1.00 0.05 128.41 71.52 199.93

4 4.44 1.15 0.07 146.56 99.33 245.89

5 5.57 0.10 0.07 185.58 31.08 216.66

6 4.87 0.86 0.07 165.77 91.80 25757

7 4.13 1.14 0.05 110.74 95.30 206.04

8 4.26 0.71 0.06 133.19 66.72 199.91

9 4.02 0.74 0.07 149.18 75.66 224.84

10 3.80 0.74 0.06 118.57 54.42 172.99

11 4.71 0.27 0.06 146.07 48.37 194.44

12 3.98 0.23 0.06 126.44 39.23 165.67

Average 4.66 0.72 0.06 141.83 67.39 209.22

St. Dev. 0.65 0.33 0.01 20.87 21.01 27.49

(Spruce)

1 1.62 0.34 0.09 74.83 95.06 169.89

2 151 0.27 0.08 63.86 61.03 124.89

3 1.70 0.36 0.09 78.09 93.16 171.25

4 1.79 0.30 0.07 61.42 57.04 118.46

5 1.94 0.33 0.06 59.58 77.89 137.47

6 1.72 0.29 0.09 76.43 74.41 150.84

7 151 0.29 0.09 69.40 67.38 136.78

8 1.61 0.39 0.09 73.16 93.63 166.79

9 1.70 0.22 0.09 74.69 50.10 124.79

10 1.81 0.29 0.08 73.69 69.37 143.06

11 151 0.29 0.10 77.71 83.34 161.05

12 151 0.25 0.09 68.04 64.46 132.50

Average 1.66 0.30 0.09 70.91 73.91 144.81

St. Dev. 0.13 0.05 0.01 6.12 14.38 17.97
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A3.1 Polynomial functions

The effective Young modulus for orthotropic materials is given by Sih GC et al.
(1965),

E, E ) (A3.1.1)
“Vat =

According to the disposition of the specimen anatomic axis sketched in Fig. 3.9

(with the specimen occupying the central part), the indexes correspondence: 1: T and
2: L has been established. The elastic properties presented in Table A3.1.1 were used
to compute E* =709.8 MPa.

Compliance evolution as a function of the numerical relative crack length App (@)
has been computed through linear elastic FE in in-plane strain analyses (Fig. A3.2.1)
using the set of elastic properties presented in Table A3.1.1 (for a,<a<0.85),
imposing an arbitrary vertical displacement J to the mid-section rigid body. The
unitary compliance function obtained by polynomia best fitting to the dotted curve
plotted in Fig. A3.1.1. led to

[App (@) xb] " =-76.437 05 +357.57805 - 695.093a* +
725.073a3 - 409.874a2 +95.589q +3.163 (A3.1.2)

In order to fit with the Maxwell-Betty principle (referred in Chapter 1V) the first
index exhibited in the compliance in the former equation identifies the loading type
(i.e., the concentric load P), while the second denotes the loading axis (in this case
index P again). Consequently, the dimensionless energy release rate function g(a)
defined in Section 1.3 [i.e,, g(a)=E'bA(a)/2] has been evaluated for a given specimen
size D of Table 3.1 (Fig. A3.1.2) considering the in-plane strain analysis, i.e,
E'=E*/(1-v?2), with E* asdefined in Eq. (A3.1.1). The resulting expression has been

Table A3.1.1 Elastic properties of Norway spruce (Picea abies L.) Guitard D (1987)

B Er Er y y y Gr.  Grr G
Wood Species T RL TR
Sp (MPaQ) (MPaQ) (MPa) (MPa) (MPa) (MPa)
Norway spruce 9900 730 410 0.018 0.032 0.306 610 22 500

151



Appendix A3.1

obtained through the polynomial best fit of the set of results exhibited in Fig. A3.1.2,
leading to

g(a)=7.126x107 a® - 2.736x10%a® + 4.364x10% 0 -

A3.1.3
3.700x108 a3 +1.758x108 a2 - 4.434x107 a + 4.641x106 ( )

U(Aep xb) (N.mm?)
w

0 T T T T T
0.4 0.5 0.6 0.7 0.8 0.9 10

Relative crack length, o
Figure A3.1.1 Siffness calibration curve for the SEN-TPB.

10000

8000 - o

6000

g(a)

2000 -

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Relative crack length, a
Figure A3.1.2 Dimensionless energy release rate g(a)=

E'bA(a)/2.
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A3.2 FE-modelling

The FE-modelling is presented in more detail irs tAppendix, referring to the
numerical simulations performed with the SEN-TPBm#hshown in Fig. 3.9.

Due to the model symmetry only a half-specimemalyzed. The FE-mesh density

shown in Fig. A3.2.1 corresponds to the seriesll@bg (Table 3.1, forh = 70 mm)

and is composed of 488 8-node and 248 6-node amysotin plane strain elements
from ABAQUS® 6.5-1 library. A reasonably fine mesh, necessarghtain a smooth
load versus crack length relation is used to mathel material domain in the
neighbourhood of the bottom support, and in whiblh track propagation occurs.
Furthermore, interface plane elements (Sectionlpwere positioned all through an
upright central line sited ahead of the initialadraotcha, =h/2 (Fig. A3.2.1) dividing
the specimen ligament length in every 0.5 mm. Mgkise of FE rigid bodies included
in ABAQUS® 6.5-1 library, two non-friction pairs were empldy¢o simulate the
contact with the bottom support (left-bottom regi@nin Fig. A3.2.1) and with the
loading device acting on the specimen (right-tagiaregle drawn in Fig. A3.2.1).

In-plane strain analyses were performed modelliogwdy spruceHicea abies L.)

as a linear elastic orthotropic material with emginng constants exhibited in Table
A3.2.1. As sketched in Fig. 3.9 the model is didida two material domains (Fig.
A3.2.1), with the left portion §/2h) oriented along the orthotropic Longitudinal
direction (material aligned with axig) while the remaining portion has been oriented
along the Tangential direction (material alignedhwaxis x). This provides a way to
perform fracture simulations in the wood TL fraetsystem, as referred in Chapter Il
and Appendix A2.1.

The cohesive crack properties (Fig. 2.7) presemdable A3.2.2 have been chosen

in order to provide an equal energy distributiorthia bilinear diagram;, = Gy, ), for

G; = 01N/mm (Section 2.4.2), endowing with the ratiof;/ f, O w,/w, O 0.3.

During the simulations both load and displacemeaiies were monitored in the

top-right rigid body acting on the specimen midsiéstion.

Cohesive crack modelling of the remaining speciraes D presented in Table
3.1 were all performed according to the same nurakrmprotocol, implementing
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homothetic FE-meshes, with further mesh densificatat the middle-section (crack

plane) to keep the ligament length equally dividedvery 0.5 mm.

y
5 1
2h zh
W
72
h S O /
h
2 [T
NN X
'\" AVEEE
Figure A3.2.1 Symmetric FE-mesh used in ABAQUS$.5-1 simulations (Table
3.1 contains the nominal dimensions used in thepcbations).
Table A3.2.1 Elastic properties of Norway sprud@¢ea abies L.) Guitard D (1987)
E Er Er Y Y y G Ggr Gge
Wood Speci TL RL TR
000 SPECIES - (Mpa)  (MPa)  (MPa) (MPa) (MPa) (MPa)
Norway spruce 9 900 730 410 0.018 0.032 0.306 610 2 2 500

Table A3.2.2 Petersson’s model softening properties used irsitinelations
(according to Fig. 2.7)

fi (MPa) fp (MPa) W, (mm) G; (N/mm)

1.75 0.49 0.06 0.1
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A4.1 Experimental load-displacement curves

Appendix A4.1

The plotting of the load-displacement curves obtained in the experiments is

exhibited in this Appendix for complete view of the achieved results.

700

525

700

Z 350 — £ 350
a
175 — 175
o ! ! \ o
0 2 8 10
3 (mm)
@
320 ‘ 120
240 - _
£ 160 b
a
80— —
0 ! ‘
n 2 A R Q
50 25
. |
30— |
z | i z
o o
20 —
10+ —
0 ! ! !
0 05 1 15 2 25 3
3 (mm)
(e)

®

Figure A4.1.1 Load-displacement curves obtained in the experiments (displacement
control). Graphics (a) to (f) correspond to sizes D =280 to D=23.33mm (Table 4.1).
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A4.2 Formulary steps of the exact self-weight compensation method
In the following a summary of the main steps detailed in Section 4.3.3 is presented
according to the format which was found handier to implement in the computer code.
1. Numerical compliances (FEM-computation and polynomial fitting) :
Aoy (@), Ao (@) and Ay, (x,@) for afag, hl
2. Multiplicative correction factor (evaluated once per specimen):
W = Aop e (30) [ A e (89) (Eq. 4.14)

3. Correction of compliances:

App (8) =W App (@) and Apy (8) = Ay () (Egs. 4.20, 4.21)

4. Displacement prior to the load-cell zeroing operation :

5Pq (ao) = /1Pq (ao) q (Eqg. 4.29)
5. Shifting of the original P-0 curve (Fig. 4.9): (R -0; )med

For each point (B - ;) : 0,,04(8) = 9, (8) + Iy (1) (Eq. 4.28)
6. Equivaent crack length a :
Do : For each point i :
(a) Experimental (B - J; )moa (i 2 Yield — point : Fig. 4.10):
Amod i (8) = e (a)/PI
(b) Modified compliance :
Amod (8§) = App (8)) + Apq (8) 0/ P; (Eq. 4.31)
(c) Tracking of a: (through the Bisection method) such that
Amod i (@) =Amoq (&)
End Do
7. Energy releaserate:

Uniformly pacing ( B - J; )mod (Fig. 4.11), with &, , @, as consecutive equivalent crack-lengths,
Do: For each point i : (B -0 )moa (Fig. 4.11) :
(@) Work of the external applied load :

MWp =(P, +P2)/2 [Oneq(A2) = Onoa (31)] (Eq. 4.35)
(b) Work of the internal body forces :

I, = jOL [5(xa,) - 3(xa,)]qdx (Egs. 4.36)
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with: 0 (X&) =Ap (X, )R + A, (X & )q ,(i =1, 2) (Eq. 4.38)
(c) Complementary energy of the distributed load :
Np=Y2(P 0, ~Rdy ) (Eq. 4.39)
(d) Complementary energy of the applied load :
dU, =1/2dW, (Eq. 4.41)
(€) Elastic strain energy release :
E = (W, —dp) + (W, - A,) (Eq. 4.44)

(f) Energy release rate (associated to &, ) :

G(a) = (W, —dJp)/(bdm) + (AW, - ;)/(bJm) (Eq. 4.45)
End do
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A4.3 CCM using theload equivalent to the specimen self-weight

The plotting exhibited in Fig. A4.3.1 has been made with the data recorded in the
cohesive crack modeling presented in Section 4.3.3.3. As stated in condition established
through Eq. (4.8) for the self-weight compensation by means of the load equivalent to

the specimen self-weight, the ratio A *Pq (@) / A *PP (a) is kept invariable over the range

al[D/2,0.85D].

0.8
0.7 : -
numm:mmm:mm:mmm:mm:ﬂi:ﬂ“ﬂ

0.6
0.5 1
0.4
0.3

0.2

Aa(a)! Ap (a), (mm)

0.1

0 T T T T : T
0.4 0.5 0.6 0.7 0.8 0.9 1

Relative crack length, @ =a/D

Figure A4.3.1 Plotting of the ratio /1*Pq (@) / A *Pp (o) obtained in the cohesive

crack modeling conditions referred in Section 4.3.3.3. The dashed line establishes
the range of validity of the condition stated through (Eq. 4.8), with a,, [10.85

(i.e, [D/2,0.85D]).

Table A4.3.1 exhibits the load equivalent to the specimen self-weight R, evaluated

through Eq. (4.7) for the specimen dimensions presented in the cohesive crack modeling
(Section 4.3.3.3).

Table A4.3.1 Load equivalent to the specimen self-weight according to Eq. (4.7)

Densty ~ Weight A, (a)/5 () q P,

(kgm) (N () N ()
300 46.72 0.65 37082 2422
400 62.30 4944 3229
500 77.90 6180  40.37
600 93.45 7416 4844
700 109.02 86.52 56.52
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Figure A4.3.2 exhibits the set of load-displacement curves first presented in Fig.
4.13 after the zeroing operation together with the compensation proposed in Section
4.3.2 (Fig. 4.7) such that dggmp = O + Ape(89) Py and Peyry =P + R

400
Comp. SW
350 - Comp. SW
Comp. SW
300 %{.{1\‘\ Comp. SW
\ Comp. SW
Reset
250 1
= Reset
Reset
% 200 1 Reset
3 Reset
150 A
100
50
O T T T T T LW:»‘ \*-\
0.0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

Displacement, o (mm)

Figure A4.3.2. Load-displacement curves obtained in the cohesive crack modelling
(Section 4.3.3.3) after reset and corresponding compensation as detailed in Section 4.3.3.1
(Fig. 4.7).
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A4.4 Results of the exact self-weight compensation method

The compliance functiondpp(a and Apy(a ) referred to in Section 4.3.3r(= a/D)

were obtained through the best polynomial fittirfigcalculated in-plane strain elastic FE

analysis (details of thelastic analysisn Appendix A3.2) for the intervaD< a < 085

(Egs. A4.4.1-12). The set of elastic propertieslusgehe FEM model (Table A4.4.1) were

chosen in order to provide the mean value of théiphicative correction factoyy C 1.0
(Eq. 4.14) (see ANNEXE). Figures A4.4.1 and A4.4libw the plotting of the unitary
compliancesd pp . (@) and/1*F>q unit (@ ) obtained for each series.

As to the dimensionless energy release rate fumdi@r) defined in Section 1.4i.g.,
g(a):E’b[aA (a)/aa]/Z}, the plane strain conditioni.¢., E'=E*/(1-v2)] has been
considered with th&ffective YoungmodulusE" evaluated using Eq. (A3.1.1) presented in
Appendix A3.1. The compliance used to defig@ (Ejjs. A4.13-A4.18 and Fig. A4.4.3)

is determined through the derivation df-(a . )

[A;P(a)]DZZSO =9.5967x10% a6 -3.6634&10* a5 +5.8169K10* a* -

A4.4.1
4.91200<10% a3 + 2.32520x10% a2 —5.84743< 103 a + 6.10288x 102 ( )
Aop(@)|. . =8.3549x10% a6 -3.1913%10* a5 +5.07026x10% a* -
PP/ ip=210 (A4.4.2)
4.28383«10% @3 +2.02891x10* a2 —5.10483< 103 ¢ + 5.33023<102 o
Aop(@)| . =8.43458<10°% a6 -3.21856<10* a5 +5.10862x10% a* -
PPA*/lp=140 (A4.4.3)
4.31244x10% a3 +2.04078x10* a2 —=5.13072¢ 103 o +5.35342¢102 o
Aop(@)|. . =6.03281x10% ' - 2.3031810% a5 +3.6571&10% a* -
=0 (A4.4.4)
3.08827%10% a3 +1.46190x10% a2 —3.67628<103 g + 3.8365%102 o
Aop(@)| . . =8.10340x10° @8 -3.1552%10% @5 +5.11064x10% a4 -
PR /lp=ss (A4.4.5)
4.40235¢10% a3 +2.12550x10% a2 —5.4498 7% 102 g +5.79596x10? o
[)l* (a)] . =4.8885510° 0 -1.8600410% a5 + 2.9439710% a4 -
PP /lp=233 (A4.4.6)
24783104 a3 +1.1697X10% a2 - 2.93333« 108 a +3.05335¢10?2 o
[)l* (a)] . =9.69787%10% a® -3.6795%105 a5 +5.80815¢10° a* -
PaY"Ip=260 (A4.4.7)

4.87690x10° a3 +2.29604x10° a? -5.7437810* a + 596453« 103
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b ’;q(a)]D:210 =8.06985¢10% a® -3.0608%10° a5 + 4.8304%10° a'* -

A4.4.8
4.05505¢10% a3 +1.90876x102 a2 — 4.77415<10% a + 4.95682%103 ( )
[)l* (a)] _=8.08082¢10% a6 -3.0626X%105 a5 + 4.8296 %105 a4 -
Pt ip=140 (A4.4.9)
4.051666<10° a3 +1.90594x10° a2 — 4.76416<10* a + 494362103 o
Ao (a)|. . =5.48090x10* a® - 2.0767%105 a5 +3.2741%10° a* -
Pt ip=T0 (A4.4.10)
2.74606¢10° @3 +1.2914&10° a2 —-3.2274% 10% a +3.3482Kk103 o
Ao (@), . =6.2403%10% a® -2.3634%10° a5 +3.7247%10° a* -
Pt lp=35 (Ad4.4.11)
3.12286¢10° @3 +1.46820<10° a2 —3.66800¢< 10* a +3.8042k103 o
Apq(@) D —pas = 3:2548710% a® -1.5877K10° a® +2.10025¢10° a'* -
2.01148<10° @3 +0.90221x105 a2 — 2.00258<10* a + 2.70889% 103 (A4.4.12)
z
=
3
2

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
a
Figure A4.4.1 Plotting of unitary compliances.§., b/1*pp(a)] obtained

through in-plane FEM computations (elastic straimalgses) for different
values ofa=a/D with the set of elastic properties duly chosemetmieve,
for each series (Table 4.1 and ANNEXE), the meduevaf the experimental
initial complianceite., ¢ L 1.0 according to Eq. 4.14).
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Figure A4.4.2 Plotting of unitary compliances.§., b)l;q(a)] obtained

through in-plane FEM computations (elastic stramalgses) for different
values ofa =a/D with the set of elastic properties duly choseretdeve,
for each series (Table 4.1 and ANNEXE), the meaftuevaof the
experimental initial compliance.€., ¢ [ 1.0 according to Eq. 4.14).

Table A4.4.1 Elastic properties of Norway spruce (based ondsaiD, 1987) used in the FEA for
each seriesE" : Effective Young modulus for orthotropic materigdiefined in Appendix 3.1)

E Er Er Vi VaL V1r G Grr Gr F
(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)
D=280 9900 730 1742 0.008 0.032 0.130 610 22 500476.17
D=210 9900 730 221.7 0.010 0.032 0.166 610 22 500  552.9
D=140 9900 730 2045 0.009 0.032 0.153 610 22 500 526.0

D=70 9900 730 3342 0.015 0.032 0.250 610 22 500  710.1
D=35 9900 730 2417 0.011 0.032 0.180 610 22 500  583.0
D=233 9900 730 333.8 0.015 0.032 0.249 610 22 500  709.6

Series

[9(@)] -5 =6.68553513x107 a'® - 2.56002094x108 a5 +

4.07427868x10° ar* - 3.44749108x10° a3 +1.63515677x10° a2 - (A4.4.13)
4.12069368x 107 g +4.30970266x10°

[9(@)] =10 =7.34301958x107 a6 - 2.81859663x10° a5 +

4.49497458x108 a4 -3.80987613x108 a3 +1.8094398Ax108 a2 — (Ad4.4.14)
4.56434498x107  +4.7766487Tx106
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[9(0)] 52140 =6.85953044%107 a'® - 2.63219632x10° a5 +

4.19749898x10° @ -3.55841392x108 0% +1.69071868x10° a2 - (A4.4.15)
4.26758528x 107 a +4.46987158x108

[9(@)] =70 =6.4952972Tx107 a'® - 2.48975313x108 a5 +

3.96590312x108 o -3.35818648x 108 a3 +1.59368446x10° a2 - (A4.4.16)
4.01775667x107 a +4.20297013x10°

[9(@)] -5 =6.98117262x107 a'® - 2.69399869x108 a5 +

4.31491936x10° ar* -3.66931039x10F @3 +1.74652858x10° a2 - (A4.4.17)
4.41058083x 107 o +4.61601748x10°

[9(0)] =55 =3.78819768x107 a'® -1.43500298x108 a5 +

2.26179994x10P a4 -1.8972435Zx10° a3 +8.92851578x107 a2 - (A4.4.18)
2.23426672x107 a +2.32204517x10°

12000
10000 —o— [9(a)]p=280
—=— [g(a)]p=210
8000 —a— [9(a)]p =140
—— [g(a)]p =70
—x— [g(a)lp=3s5
g@) %P1 e Ig(a)p=2ss

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
a

Figure A4.4.3 Plotting of the dimensionless energy releaseftatetion for
each series first presented in Table 4.1.

It should be emphasised that the evaluation ofdihgensionless energy release rate

function g(a) for each specimen sizB, is barely justified by the fact that it has been
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noticed that a strong scattering on the unitary gleances A, . (8p) does exist in the

experimental data (Fig. 4.19). Ag(a) is a function of the material elastic properties
(through theEffective Youngmodulus E*), this procedure aims at introducing the required

correction necessary for the present size effedyst

As previously described in Section 3.3, the nunariprotocol establishes the
polynomial fitting through the rising part of thexperimental R-curves |.e,
Gg (00)/Gre < Gg (a)/Gge <1] which exhibit an undoubted plateau (Fig. 4.20peT

curvature exponengs (of each seriesR-curve) is thus revealed from the slope of the

linear regression plot which passes through thehgrarigin (on the left side of Fig.

A4.4.4). Table 4.2 resumes the set of curvatureoeepts £ obtained for each
experimental series. Pursuing the protocol, a ipiptof the energy release ra@®; as a
function of the crack length incremefAa (Eq. 3.1) has consequently been performed for
each series, using the corresponding curvaturerexyosalugs shown in Fig. A4.4.4 (on

the right side).

The interception betweeg'/g(a) and Gy /Gg (a) shown in Figs. A4.4.5-10 provides
the estimate of the single solutien. (Section 3.2.1) shown in Table 4.2. If one exckuide
the series of the largest sizee( D=280mm, for non-statistical meaning) and calculate

the average value taking the remaining five sene$able 4.2, the resulting solution is
yields a, = 0.536 (COV = 2.33%). One should recognise that the vahiained for the

single solutiona . (in each series) is strongly influenced by théaal energy release rate
G, Obtained for each series (through in Eq. 3.7). Therefore, iy, in the (considered)
greatest series.€¢., D=210mm) had been less affected by scattering, themetience in
the obtained valud.é., a ) would have been higher. Accordingly, working ¢t size
limits characterizing the domain af,. attained for each experimental series.( D,
and D, through Egs. 3.9 and 3.10), one obtains the vathesvn in Table A4.4.2. This

values are to be used in the scaling study of ét&tive crack length at the peak load

a,(D) and in the size effect on the nominal strengff(D , presented in Section 4.4.
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Figure A4.4.4 Linear regression plot performed on the rising p&rthe R-curve (as in
Section 3.3) and corresponding normaligdurve (through Eq. 3.1) for the data got in
the experiments (with undoubted plateau onRkmirve). Graphics (a) to (f) correspond
to characteristic sizes @ =280 to D =23 .33mm printed in Table 4.1.
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Figure A4.4.5 Plotting of Eq. (3.6) used to estimatg+ . Comparison

with the plotting of Eq. (3.7pbtained from thdR-curve computed for
specimen sized =280mm (see Fig. 4.20 a).
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Figure A4.4.6 Plotting of Eq. (3.6) used to estimatg+ . Comparison

with the plotting of Eq. (3.7pbtained from thdr-curve computed for
specimen sizdb = 21@m (see Fig. 4.20 b).
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Figure A4.4.7 Plotting of Eq. (3.6) used to estimatg+ . Comparison

with the plotting of Eq. (3.7pbtained from thdR-curve computed for
specimen sized =140mm (see Fig. 4.20 c).
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Figure A4.4.8 Plotting of Eq. (3.6) used to estimatg+ . Comparison

with the plotting of Eq. (3.7) obtained from thecRrve computed for
specimen sized = 7#m (see Fig. 4.20 d).
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Figure A4.4.9 Plotting of Eq. (3.6) used to estimatg+ . Comparison

with the plotting of Eq. (3.7pbtained from thdR-curve computed for
specimen sized =35mm (see Fig. 4.20 e).
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Figure A4.4.10 Plotting of Eqg. (3.6) used to estimate .

Comparison with the plotting of Eq. (3.@ptained from theR-curve
computed for specimen siZz2=23 n8n (see Fig. 4.20 f).
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Appendix A4.4

Table A4.4.2 Parameters obtained in the size effect studyHerexperimental data first shown in
Table 4.1. Exhibited parameters, characteristic equivalent crack length (mean valusg,:

characteristic equivalent crack length incremek(=a, —a,) , £ : Curvature exponent of the

curve ¢=GRC/AaC/3 as in Eq. (3.1);a,+: single solution ofa,; D, and D,: limits
characterizing the domain aof . (Egs. 3.9 and 3.10)31* :[g(a; )/g(ao)]w D. asinEq. (3.19)

*

Series % o2, ¢ u* Prin O o1
(mm)  (mm) Ym=7) (mm)  (mm)  (mm)

D=280 208.23 6826 0.64 190059 0582  136.52 828.40 B4l
D=210 15350 4850 040 112731 0557  97.00 850.88  1660.1
D=140 9319 2319 0.23 46346 0535  46.38  656.94  740.44
D=70 4780 12.80 019 41658 0528 2560  462.09  409.01
D=35 2243 493 021 521.79  0.537 9.86  133.24  255.44
D=233 1541 374 024 58889 0525 7.48 14960  163.11
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Appendix A4.5

A4.5 Statisticsinvolving the experiments

The plotting of Fig. A4.5.1 shows the measured densities at 12% EMC of the set of
specimens used in the experiments which provided an undoubted plateau on the R-curve
(consult ANNEXE at the end of this Thesis). In the following, graphs exhibiting the mean
values of the ultimate load, B, (Fig. A4.5.2), the relative crack length associated to P,
(Fig. A4.5.3), the energy release rate associated to P, [i.e,, Gg(a,)] (Fig. A4.5.4) and the
relative crack length associated to the critical energy release rate, Gy, [i.e, a.] (Fig.

A4.5.5) are shown.

600

(Avg + 20%)

500 f--- gy § -------------- $ ...................
400 —-—%; ------------- él ......... T f\_V?@qe_a._

: | R R 8 F  ewaw
< 3007 0 D=280
B +D=210
g 200 0 D=140
AD=70

100 - X D=35
©D=233

0 o
0 50 100 150 200 250 300
D (mm)

Figure A4.5.1 Measured densities at 12% EMC (i.e., basic densities) in the
totality of specimens (See ANNEXE) which exhibited an undoubted plateau
on the Resistance-curve.
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Figure A4.5.2 Mean values of the ultimate load P, obtained in the experiments

(See ANNEXE) for the specimens which exhibited an undoubted plateau on the
R-curve.
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Figure A4.5.3 Mean values of the relative crack length associated to the
ultimate load &, obtained in the experiments (See ANNEXE) for the specimens
which exhibited an undoubted plateau on the R-curve.
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Figure A4.5.4 Mean values of the energy rel ease rate associated to the ultimate
load Gg(a,) obtained in the experiments (See ANNEXE) for the specimens
which exhibited an undoubted plateau on the R-curve.
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Figure A4.5.5 Mean values of the relative crack length associated to the critical
energy releaserate G, (i.e., ) obtained in the experiments (See ANNEXE)
for the specimens which exhibited an undoubted plateau on the R-curve.
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6.7

ANNEXE

In this ANNEXE a complete list of the experimenptarameters is revealed organized according togéeirsens’ characteristic side first
printed in Table 4.1. As previously defined, whaitially mentioned, A,,(a,) : initial experimental unloading compliancg, : ultimate load,

¢ : multiplicative correction factorg,,: relative crack length corresponding B), Gg,: energy release rate associatedPg a.: relative
characteristic crack lengtt®, : load corresponding ta., |p.,;: extension of the plateau in tRecurve, G, : critical energy release rate.

Table A1 Parameters obtained in the experiments regareingsswith the characteristic siZ2=280 mm (according to Table 4.1)

Label D Aexp(B0) 1[;%/%,\% P, 7 a Gry Pe I plat Gre
(mm) 3 (12% MC) (N) " (N/mm) c (N)  (mm) (N/mm)
(1073 mmi/N) (kg/nT)

hl-1 280 3.21 471.79 487.00 1.19 0.583 0.140 - - - -
hl-2 280 4.57 417.31 398.45 0.88 0.628 0.210 - - - -
hi-3 280 3.80 467.66 33710 094 0564  0.080 : i ; ]
hi-4 280 5.00 419.90 469.95  1.24 0557  0.180 : i ; ]
hl-5 280 4.26 434.40 438.75 0.68 0.594 0.170 - - - -
hl-6 280 3.14 475.50 412.70 1.11 0.563 0.090 - - - -
hl-7 280 2.95 474.62 545.80 1.23 0.584 0.160 - - - -
hi-8 280 3.24 450.12 630.84  0.67 0579  0.220 i i ; ]
h1l-9 280 2.61 451.34 562.65 1.00 0.599 0.170 - - - -
h1-10 280 3.17 471.11 379.20 1.00 0.592 0.100 - - - -
h1-11 280 4.66 454.19 44875 119 0593 0200 0744 267.96 284  0.341
Qtty 11

Minimum 2.61 417.31 337.10 0.67 0.56 0.080

Maximum 5.00 475.50 630.84 124 063 0220

Average 3.69 453.45 464.65 1.01 0.58 0.156

Cov (%) 21.85 21.44 18.75 20.35 3.38 30.973




Table A2 Parameters obtained in the experiments regareingsswith the characteristic sif2=210 mm (according to Table 4.1)

08T

Label D Aexp(ao) DenSIty Pu (// GRu Pc | Plat GRC
(12% MC) ay ae
(MM) (103 mmyn) (ka/r) (N) (N/mm) N (mm) (N/mm)
h2-3 210 4.71 367.19 320.00 1.15 0.555 0.126 0.70R20.66 14.9 0.208
h2-4 210 5.20 392.34 321.79 1.27 0.560 0.144 0.72801.75 25.7 0.260
h2-5 210 3.44 466.42 622.09 0.84 0.615 0.461 0.73864.27 14.8 0.803
h2-6 210 4.86 361.27 364.45 1.18 0.549 0.157 0.69810.74 30.3 0.189
h2-7 210 3.19 502.72 543.55 0.78 0.579 0.264 0.81207.35 23.7 0.563
h2-8 210 3.34 482.58 550.79 0.81 0.565 0.257 0.75806.60 26.7 0.484
h2-9 210 3.29 466.39 637.00 0.80 0.596 0.413 0.71807.72 16.2 0.724
h2-11 210 4.39 366.22 296.90 1.07 0.565 0.109 0.71589.70 13.8 0.175
h2-13 210 5.46 393.86 313.24 1.33 0.550 0.135 0.65P38.00 30.2 0.172
h2-15 210 5.22 366.87 329.15 1.27 0.541 0.133 0.712 699.818.6 0.219
h2-17 210 4.33 369.56 329.30 1.05 0.555 0.121 0.70207.46 19.7 0.180
h2-18 210 4.30 383.28 370.40 1.05 0.559 0.153 0.71205.03 30.8 0.188
h2-19 210 4.41 369.78 341.01 1.07 0.555 0.132 0.78932.18 11.2 0.240
h2-20 210 4.97 382.15 269.48 1.21 0.560 0.100 0.76¥16.57 13.6 0.164
h2-21 210 4.24 395.42 412.50 1.03 0.600 0.244 0.74269.49 13.2 0.409
h2-22 210 4.68 379.57 307.51 1.14 0.600 0.158 0.76561.23 21.2 0.254
h2-23 210 5.22 381.86 271.05 1.27 0.540 0.094 0.73545.77 7.0 0.162
h2-27 210 3.34 465.71 556.70 0.81 0.610 0.362 0.72634.71 19.5 0.649
Qtty 18
Minimum 3.19 361.27 269.48 0.78 0.54 0.094 0.65016.370 7.0 0.162
Maximum 5.46 502.72 637.00 1.33 0.61 0.461 0.81907.®R0  30.8 0.803
Average 4.37 405.18 397.61 1.06 0.57 0.198 0.7345.5D5 195 0.336

Cov (%) 17.32 11.69 31.22 17.32 4.21 56.443 5.278  45.996 .4 36 63.713%
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Table A3 Parameters obtained in the experiments regareingsswith the characteristic siZ2=140 mm (according to Table 4.1)

Density

Ao (@
Label D erp(%) (12% MC) Py W . Gru ] P lpiat Gre
(MM) (102 mmN) (/) (N) (N/mm) () (mm) (N/mm)
h3-1 140 7.67 - 189.10 1.19 0.55 0.142 0.585 154.131.1 0.153
h3-3 140 6.03 423.44 223.27 0.94 0.52 1.142 0.615 178.11 2 16. 0.148
h3-4 140 8.02 368.17 164.93 1.88 0.53 0.099 0.714 93.82 18.40.150
h3-5 140 4.40 525.48 274.55 0.68 0.55 0.158 0.725 163.23 8.2 0.257
h3-7 140 7.92 366.29 195.55 1.23 0.54 0.143 0.560 100.99 5 34. 0.151
h3-8 140 4.29 - 297.44 0.67 0.55 0.190 0.680 214.06 17.8 66).2
h3-9 140 6.46 397.15 227.12 1.00 0.55 0.160 0.635 169.23 4 20. 0.173
h3-11 140 7.64 - 158.54 1.19 0.55 0.098 0.683 107.05 17.4 340.1
h3-13 140 7.98 372.91 155.45 1.24 0.53 0.089 0.595 143.23 3 16. 0.114
h3-17 140 7.83 - 193.74 1.22 0.53 0.132 0.595 172.29 21.7 590.1
h3-18 140 6.13 422.03 205.19 0.95 0.55 0.125 0.550 204.02 9.4 0.126
h3-21 140 5.23 436.26 238.59 0.81 0.55 0.143 0.795 102.93 1 18. 0.316
h3-23 140 6.10 435.95 243.74 0.95 0.55 0.174 0.751 134.82 3 19. 0.336
h3-25 140 8.31 - 173.52 1.29 0.53 0.114 0.604 154.74 20.8 470.1
h3-28 140 5.33 - 269.56 0.83 0.56 0.208 0.685 206.64 15.6 23.3
h3-30 140 7.65 468.07 179.61 1.19 0.53 0.109 0.796 63.30 18.20.196
h3-31 140 4,95 489.75 237.75 0.77 0.55 0.138 0.734 138.53 1 13. 0.236
h3-32 140 7.18 366.15 186.15 1.11 0.54 0.115 0.704 109.50 8.5 0.162
h3-33 140 7.78 366.96 185.61 1.21 0.53 0.123 0.636 147.15 4 18. 0.162
Qtty 19
Minimum 4.29 366.15 155.45 0.67 0.52 0.089 0.550 3.3® 8.2 0.114
Maximum 8.31 525.48 297.44 1.88 0.56 1.142 0.79614.06 345 0.336
Average 6.68 418.35 210.50 1.07 0.54 0.189 0.6645.11 18.1 0.195
Cov (%) 20.05 12.50 19.57 26.27 2.15 12.280 11.328.52% 36.2 36.364
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Table A4 Parameters obtained in the experiments regaréingsswith the characteristic siZ2=70 mm (according to Table 4.1)

Density

Ao (@
Label D erp(%) (12% MC) u W . Gru ] P lpiat Gre
(MM) (102 mmN) (/) (N) (N/mm) (N (mm) (N/mm)
h4-1 70 7.64 467.34 98.50 0.89 0.55 0.142 0.763 8%1. 6.5 0.198
h4-4 70 9.87 393.36 81.85 1.16 0.54 0.125 0.740 38.77 7.3 .1530
h4-5 70 9.14 441.14 93.38 1.07 0.54 0.144 0.685 7161. 4.4 0.218
h4-6 70 5.94 484.78 107.98 0.70 0.56 0.146 0.747 138 7.2 0.218
h4-9 70 11.91 371.93 67.35 1.39 0.54 0.099 0.659 .3661 3.9 0.141
h4-10 70 7.82 429.31 89.27 0.92 0.55 0.123 0.638 69.16 6.7 .14%0
h4-11 70 9.87 432.70 99.05 1.16 0.54 0.175 0.687 .7660 8.8 0.219
h4-12 70 7.60 407.19 98.08 0.89 0.52 0.122 0.798 9231 7.0 0.171
h4-13 70 12.62 354.06 72.66 1.48 0.55 0.129 0.7445.873 8.4 0.176
h4-17 70 9.67 388.41 78.08 1.13 0.56 0.125 0.588 72.58 7.6 .1310
h4-20 70 6.52 498.57 105.48 0.76 0.55 0.143 0.5924.70 51 0.160
h4-24 70 7.33 460.45 104.92 0.86 0.56 0.169 0.6130.6%9 7.5 0.193
h4-25 70 9.11 437.86 117.14 1.07 0.54 0.230 0.6348.998 14.7 0.267
h4-26 70 9.28 378.95 80.30 1.09 0.54 0.112 0.727 43.66 7.0 .1560
h4-28 70 7.50 404.72 101.55 0.88 0.53 0.135 0.6402.58 4.9 0.171
h4-29 70 6.28 461.94 107.15  0.74 056 0.147  0.6704.746 8.5 0.202
Qtty 16
Minimum 5.94 354.06 67.35 0.70 0.52 0.099 0.588 .931 3.9 0.131
Maximum 12.62 498.57 117.14 1.48 0.56 0.230 0.7984.70 14.7 0.267
Average 8.63 425.80 93.92 1.01 0.54 0.141 0.683 .4660 7.2 0.182
Cov (%) 22.11 9.95 15.19 22.11 2.17 21.641 9.3952.338 34.24 19.942
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Table A5 Parameters obtained in the experiments regareingsswith the characteristic sif2=35 mm (according to Table 4.1)

Density

Ao (@
Label D erp(%) (12% MC) u W . Gru ] P lpiat Gre
(MM) (102 mmN) (/) (N) (N/mm) () (mm) (N/mm)
h5-1 35 21.62 358.27 27.39 1.04 0.52 0.102 0.590 584 5.9 0.112
h5-2 35 23.63 349.06 33.22 1.13 0.55 0.201 0.574 32.29 6.2 0.201
h5-3 35 22.04 359.80 31.22 1.06 0.53 0.144 0.650 .7323 5.4 0.177
h5-5 35 25.97 387.07 33.16 1.25 0.55 0.209 0.575 .33x31 12.8 0.233
h5-6 35 21.41 371.99 31.37 1.03 0.55 0.154 0.566 5230 7.4 0.168
h5-7 35 26.91 341.03 28.92 1.29 0.54 0.157 0.608 25.60 10.70.190
h5-8 35 23.58 370.10 36.60 1.13 0.54 0.224 0.630 .4630 12.3 0.252
h5-12 35 26.49 376.10 28.19 1.27 0.54 0.126 0.5829.581 8.3 0.160
h5-13 35 17.84 400.56 33.70 0.86 0.55 0.156 0.7417.541 5.8 0.213
h5-14 35 25.74 354.69 23.84 1.24 0.54 0.100 0.668 17.51 3.5 0.144
h5-16 35 20.86 391.01 30.76 1.00 0.54 0.136 0.7546.632 2.4 0.213
h5-20 35 21.05 370.04 33.32 1.01 0.54 0.165 0.6187.862 8.4 0.190
h5-22 35 18.25 384.42 28.34 0.88 0.54 0.101 0.6957.711 2.2 0.137
h5-23 35 19.84 352.30 27.54 0.95 0.52 0.095 0.657 19.33 7.1 0.126
h5-24 35 16.63 364.01 33.40 0.80 0.53 0.124 0.6543.632 7.1 0.153
h5-25 35 15.37 394.49 31.16 0.74 0.55 0.112 0.7446.301 2.7 0.165
h5-27 35 19.53 376.25 30.37 0.94 0.53 0.117 0.6336.992 8.2 0.147
h5-28 35 18.81 342.72 30.73 0.90 0.52 0.109 0.639 21.62 6.9 0.127
h5-29 35 19.30 376.38 31.66 0.93 0.52 0.120 0.6094.78 6.3 0.136
Qtty 19
Minimum 15.37 341.03 23.84 0.74 0.52 0.095 0.566 6.30 2.2 0.112
Maximum 26.91 400.56 36.60 1.29 0.55 0.224 0.754 2.2 12.8 0.252
Average 21.31 369.49 30.78 1.02 0.54 0.140 0.641 24.10 6.8 0.171
Cov (%) 15.85 4.70 9.54 15.85 1.95 27.439 9.067 21.21 43.722.902
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Table A6 Parameters obtained in the experiments regaréingsswith the characteristic siZ2=23.3 mm (according to Table 4.1)

(MM) (103 mmyny (kg/n) (N) (N/mm) (N (mm) (N/mm)
h6-2 23.33 23.78 348.40 15.99 1.02 0.54 0.096 0.61323.28 1.5 0.114
h6-3 23.33 26.80 339.56 16.86 1.15 0.54 0.119 0.6302.58 6.5 0.130
h6-5 23.33 17.20 414.06 18.55 0.74 0.56 0.100 0.6534.61 3.6 0.137
h6-9 23.33 19.05 421.83 21.58 0.82 0.52 0.123 0.6665.45 5.1 0.176
h6-10 23.33 27.40 433.98 15.89 1.18 0.52 0.095 50.70 9.31 3.4 0.143
h6-12 23.33 17.89 408.42 20.42 0.77 0.53 0.109 40.6212.05 5.2 0.141
h6-13 23.33 21.75 396.46 17.61 0.93 0.52 0.091 80.67 7.61 4.0 0.134
h6-15 23.33 24.47 399.98 19.85 1.05 0.54 0.153 60.6115.40 5.3 0.158
h6-16 23.33 26.03 445.84 18.00 1.12 0.53 0.122 60.7310.03 2.3 0.193
h6-21 23.33 18.52 435.87 19.38 0.80 0.53 0.102 90.6714.24 1.4 0.155
h6-23 23.33 23.47 489.18 18.14 1.01 0.54 0.119 00.6712.73 1.8 0.161
h6-24 23.33 18.91 453.82 19.90 0.81 0.60 0.171 70.6518.50 3.2 0.209
Qtty 12
Minimum 17.20 339.56 15.89 0.74 0.52 0.091 0.613 .617 1.4 0.114
Maximum 27.40 489.18 21.58 1.18 0.60 0.171 0.736 8.5 6.5 0.209
Average 22.11 415.62 18.51 0.95 0.54 0.117 0.6612.981 3.6 0.154
Cov (%) 16.71 10.14 9.60 16.71 3.97 20.734 5.5883.02 46.62 17.780




