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Abstract

Forest and agriculture ecosystems are prone to disturbances caused by human action or natural
effects. For instance, climate change is projected to be a key influence on vegetation across the
globe. Regarding agriculture, primary climate vectors with a significant impact include
temperature, moisture stress, and radiation. Within this context, it is of foremost importance to
monitor crops along time, as well as to detect pests, diseases, assess and control irrigation
demands. Regular monitoring activities will enable timely measures that may trigger field
interventions that are used to preserve health status of crops, achieving both time and economic
gains, while assuring a more sustainable activity. Within this scope, precision agriculture (PA)
techniques appear as an effective aternative to the traditional agronomy practices. In fact, the
technological advances that promote PA are able to enhance support when making decisions,
resulting in agronomical processes upgraded by employing site or plant specific management
operations. In this regard, the capabilities of unmanned aerial vehicles (UAVS) to provide
flexible, efficient, non-destructive, and non-invasive means of acquiring data on agricultural
crops and the various agro-environmental factors of the parcel, can be used for PA applications.
The high- temporal, radiometric and spatial resolutions achieved by UAV -based aerial imagery
make possible to foresee new and important advancesin PA practices.

Inthisstudy it is presented the devel opment of amanagement support system for the agriculture
and forestry sectors, based on the analysis of multi-tempora data obtained through different
sensors coupled to UAV's. With acontinuous monitoring, it isintended to monitor the vegetative
development and to identify, in an early and (semi)automatic way, potential issues, allowing
their localized mitigation, through methodologies and algorithms developed for this purpose.
To meet these main objectives, two important agricultural crops from the region of Tras-os-
Montes and Alto Douro (Portugal) economy, were identified: the grapevine (Vitis vinifera L.);
and the European chestnut (Castanea Sativa Mill.). Both of these crops have a high socio-
economic relevance for the population of this region and represent an important share of
national production. Thus, the work is divided into two parts, one focuses on monitoring
chestnut stands and the other focuses on vineyards. The severa differences among these two
speciesin the planting typology and their geometry, make the approaches to each of the sectors
also different. However, this fact will allow the adaptation of the proposed methodologies to
almost al agricultura species, regardless of the type and the way they are arranged, in a grid

or in rows.




Although there are several approachesto detect and monitor vegetation through aerial imagery,
most of them remain dependent of manual extraction of vegetation parameters. This work
presents automatic methods that allow—with none or few parametrization—the individual
detection of the trees/grapevines and their multi-temporal analysis. The approach for tree
detection was applied to several chestnut stands, alowing the automatic estimation of several
parameters, such as the number of trees, the canopy coverage, tree height, and crown diameter.
A novel methodology that enables the identification of phytosanitary issues from muilti-
tempora analysis of chestnut stands, using UAV-based multispectral imagery, was also
developed and it is presented in this thesis. This approach not only allows the absence or
presence of phytosanitary issues but also the identification and the classification of biotic or
abiotic factors affecting the trees. The developed methodology proved to be effective in
automatically detecting and classifying phytosanitary issues in chestnut trees throughout the

growing season.

Likewise, methods to automatically estimate and extract grapevine vegetation parameters are
also proposed. A full pipeline for vineyards management was devel oped. First, a methodol ogy
able to differentiate grapevine canopy between inter-row vegetation cover and soil, and to
identify independent vine row was built. Then, the outputs were provided but the former
methods were used to create a multi-temporal data analysis of vineyards, enabling the
monitoring of vegetation dynamics of a given vineyard plot along the growing season. This
way, areas with canopy management operation needs, and with different vigour levels, are
identified. The approaches proposed enable to fully exploit the advantages offered from the
UAYV -based multi-sensor data (RGB, multispectral and thermal infrared), by performing multi-
tempora analysis of vineyards both at the plot and at the plant scales. Individual grapevine
detection permits the estimation of geometrical and biophysical parameters, aswell as missing

grapevine plants.

Thus, the developed methodologies proved to be very effective and can be used in a single
epoch, analyzing the data from one individual flight campaign to estimate different parameters
(depending on the used sensors), both at parcel-level and at the plant-level. In terms of
agricultura plot, the canopy coverage, the estimation of the number of trees/grapevines, and
the estimation of other vegetation and bare soil can be reached, as well as mean values of the

species under analysis. Regarding the plant-level monitoring, geometrical and biophysical




parameters as height, canopy volume, crown diameter, temperature and vegetation indices that
correlate with yield, biomass, leaf density and phytosanitary issues are also possibleto estimate.

Combining data from different flight campaigns, alows a multi-temporal analysis to be
performed. Moreover, this multi-temporal analysis can be carried out over a single vegetative
cycle and/or over different agricultural years, allowing, in any case, to obtain important
management information. Hence, the original methods presented in thiswork have shown to be
effective and have proved that their potential goes beyond vegetation detection, since they can
be employed in an operational routine for the automatic monitoring of vineyard plots and
chestnut stands. Thus, this work can be seen as an important contribution towards the
substitution of time-consuming and costly field campaigns for managing plantations in a

quicker and more sustainable way.

Keywords. multi-tempora data analysis, unmanned aerial vehicles, precision agriculture;

precision viticulture; decision support system.







Resumo

Os ecossistemas agroflorestais estéo sujeitos a distarbios causados por agdo humana ou por
efeitos naturais. Por exemplo, projeta-se que as alteragdes climéticas venham a ter grande
impacto na vegetacdo a nivel global. Em relag@o a agricultura, os pardmetros climéticos com
maior impacto sdo atemperatura, a humidade e aradiagdo. Nesse contexto, amonitorizagdo das
culturas ao longo do tempo € de primordial importancia, possibilitando a detecéo de pragas e
de doencas, assim como a avaliacd e o controlo das necessidades de irrigacdo. Uma
monitorizagdo regular permitird a adocéo atempada de medidas que podem desencadear
intervencOes para preservar o estado das culturas agricolas, obtendo-se, com isso, proveitos a
varios nivels, nomeadamente ganhos econdémicos e um aumento na eficiéncia e na
sustentabilidade. Nesse &mbito, a com vista a atingir esses desideratos, a utilizacdo de técnicas
de agricultura de precisdo (AP) surge como uma alternativa eficaz as praticas tradicionais. De
facto, os avancos tecnoldgicos que possibilitaram os recentes desenvolvimentos da AP,
permitem, simultaneamente, melhorar o apoio a tomada de decisdo, melhorando o0s processos
agricolas, através da aplicacdo de acbes localizadas ao nivel da planta ou de uma determinada
zona do terreno. Neste sentido, a capacidade dos veicul os aéreos ndo tripulados (VANT), para
adquirirem dados de culturas agricolas e outros fatores agroambientais, de forma flexivel,
eficiente, ndo destrutiva e ndo invasivafaz com que estes possam ser usados para aplicacdes de
AP. As suas elevadas resolucdes espacial, radiométrica e temporal fazem com que as imagens

aéreas obtidas por VANT gudem aatingir novos e importantes avancos nas préticas de AP.

O trabal ho apresentado neste documento, teve por finalidade o desenvolvimento de um sistema
de apoio a gestdo dos setores agricola e florestal, baseado na andlise de dados multi-temporais
obtidos por meio de diferentes sensores acoplados em VANT. Com um acompanhamento
continuo, demonstrou-se ser possivel monitorizar o desenvolvimento vegetativo e identificar,
de forma precoce e (semi)automéatica, potenciais problemas, permitindo a sua mitigagéo,
através de metodol ogias e a goritmos desenvolvidos para o efeito. Para cumprir estes objetivos
principais, foram identificadas duas culturas agricolas com forte peso naeconomiadaregido de
Traés-os-Montes e Alto Douro (Portugal): avideira (Vitis vinifera L.); e o castanheiro europeu
(Castanea Sativa Mill.). Estas culturas representam uma elevada relevancia socioeconomica
para a populagdo da regido e uma importante parcela da producéo nacional. Assim sendo, o

trabalho realizado dividiu-se em duas partes, uma centrada na monitorizag&o de soutos e outra




na monitorizagdo de vinhas. As diferencas entre estas duas espécies sdo substanciais, a varios
niveis, obrigando, necessariamente, ao recurso de abordagens distintas. No entanto, este facto
permitira a adaptacdo das metodologias propostas a quase todas as espécies agricolas,

independentemente da forma como estdo dispostas no terreno, quer sgjaem grelha ou em linha.

Embora existam varias abordagens para detetar e monitorizar a vegetacdo atravées de imagens
aéreas, amaioria permanece dependente da extragdo manual de pardmetros rel acionados com a
vegetacdo. Neste trabal ho apresentam-se métodos autométi cos que permitem—com poucas ou
nenhumas parametrizacdes—a detecdo individual de arvores/videiras e a sua andlise numa
perspetivamulti-temporal. A abordagem para detegcdo de arvores foi aplicada em varios soutos,
permitindo estimar varios parémetros de forma automética, tais como o0 nimero de &rvores, a
cobertura do solo pelo copado, a dtura das arvores e o didmetro da copa. E apresentada,
também, uma nova metodologia para a identificacdo de problemas fitossanitarios em
castanheiros, a partir da andlise multi-temporal usando imagens multiespectrais obtidas por
VANT. Esta abordagem permite ndo sO aferir a auséncia ou presenca de problemas
fitossanitarios, como também a identificacdo e a classificacdo de fatores bioticos ou abidticos
especificos que possam afetar as arvores. A aplicacdo da metodologia desenvolvida mostrou
ser eficaz nadetecdo e na classificagdo autométi ca de problemas fitossanitérios em castanheiros

ao longo do periodo vegetativo.

Propdem-se, ainda, métodos para estimar e extrair, automaticamente, parametros de videiras.
Foi desenvolvida uma pipeline especifica paraa gestdo de vinhas. Primeiro, foi construidauma
metodol ogia capaz de diferenciar o copado das videiras de vegetacdo que a envolve e do solo,
e identificar os diferentes bardos. De seguida, estes resultados foram usados para criar uma
analise multi-temporal davinha, permitindo realizar a monitorizacdo da dinamica da vegetacéo
de uma determinada parcela de vinha ao longo do periodo vegetativo. Desta forma, séo
identificadas éreas com necessidades deintervencdo no copado e com diferentes niveisdevigor.
As abordagens propostas permitem explorar as vantagens oferecidas pel os dados de diferentes
sensores acoplados em VANT (RGB, multiespectral e térmico), através da realizacdo de
andlises multi-temporais da vinha, tanto & escala da parcela como ao nivel daplanta. A detecéo
individual de videiras permite a estimativa de parametros geométricos e fisiol 6gicos, bem como

acontagem de videiras em fata

\



As metodologias desenvolvidas neste trabalho revelaram-se eficazes e podem ser utilizadas
numa unica época (data), analisando os dados de uma Unica campanha de voo para estimar
diferentes parametros (dependendo dos sensores utilizados), tanto ao nivel da parcela quanto
ao nivel de planta. Ao nivel da parcela, parametros como a cobertura do solo pelo copado, o
nimero de arvores/videiras e a segmentacdo de outro tipo de vegetacdo e do solo podem ser
obtidos, assim como valores médios da cultura em andlise. Relativamente a monitorizacgo ao
nivel daplanta, vérios parametros geomeétricos e fisiol 6gicos podem ser estimados como altura,
volume do copado, o didmetro da copa, atemperatura e diferentes indices de vegetacdo, que se
correlacionam com a produtividade, a biomassa, a densidade foliar e potenciais problemas
fitossanitarios.

A combinacéo de dados provenientes de diferentes campanhas de voo permite a realizacdo de
analises multi-temporais. Além disso, este tipo de andlises pode ser realizado ao longo do
periodo vegetativo e/ou ao longo de diferentes anos agricolas, permitindo, em qualquer caso,
obter informagBes importantes para a gestdo das parcelas. Desta forma, os métodos
apresentados neste trabal ho revel aram-se eficazes, comprovando que o seu potencial vai muito
para além da detecdo de vegetacdo, uma vez que podem ser aplicados numa rotina operacional
para a gestdo automatica de vinhas e soutos. Assim, este trabalho pode ser visto como uma
importante contribui¢do para a substituicdo de campanhas de campo, demoradas e trabal hosas,
logo muito dispendiosas, passando-se para uma gestdo de parcelas agricolas de forma mais

rapida, integrada, otimizada e sustentavel.

Palavras-chave: andlise de dados multi-temporais; veicul os aéreos néo tripulados; agricultura

de precisao; viticultura de precisao; sistemas de apoio a decisdo.
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1.1. Contextualization

The agriculture sector has considerably evolved due to technological developments achievedin
the last decades, enabling improvements in the entire production chain (Floros et al., 2010).
Despite these advances, the global context, where water scarcity will increase together with the
global population, demands for optimization of agriculture processes and, at the same time, for
environmental sustainability (United Nations, 2015). In fact, in most regions of the world, over
70% of freshwater isused for agriculture (Gilbert, 2012). By 2050, to sustain Earth’s population
an estimated 50% (at least) increase in agricultural production and a 15% increase in water
withdrawals are expected (Bruinsma, 2011; Ercin & Hoekstra, 2014). This future demand on
water will affect al sectors, requiring as much as 25 to 40% of water to be re-allocated from
lower to higher productivity and employment activities, particularly in water stressed regions
(McKinsey, 2009). Given the existing constraints, the agricultural water management sector is
currently in the process of repositioning itself towards modern and sustainable service
provision, optimized according to the crops demands (Vanham et al., 2013). On the other hand,
the adverse effect of synthetic chemicals on human health and environment can only be reduced
or eliminated by adopting new agricultural technological practices (Al-Samarrai et al., 2012).
Finally, it cannot be forgotten that the nature of agriculture and farming practices, in any
location, are strongly influenced by the long-term mean climate state. Changes in the mean
climate away from current states, may require adjustments to current practices in order to
maintain productivity, and in some cases, the optimum type of farming may change (Howden
et al., 2007).

Given these factors, it is essentia to develop new methods/approaches to better adapt to this
changing and challenging context. Precision agriculture (PA) promotes the use of technology
for the improvement of agronomical processes by means of data acquisition, processing and
analysis to support decision making and crop management operations (Gebbers & Adamchuk,
2010; Pablo J Zarco-Teada et a., 2014). With the implementation of PA approaches
environmental impacts can be mitigated while increase yields and maintaining the crop health

status, by adopting site-specific management practices (Baofeng et al., 2016).

In the Portuguese case, more specifically in the region of Tras-os-Montes and Alto Douro, the
wine and the chestnut sectors are very relevant (Luis Martins et a., 2015), and for this reason,
they are the focus crops of this work. Both chestnut trees (Castanea sativa Mill.)—wood and

chestnut production—and grapevines (Vitis vinifera L.)—for wine production—are within the
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most important species in Portugal. Those are especialy relevant in the northern region of the
country. According to the 2018 Portuguese Agricultural Statistics (Instituto Nacional de
Estatistica, 1. P., 2019), in this region, chestnut trees represent 89% of planted surface (34,504
ha) and 88% of yield (29,908 tons) while grapevines represent 47% of the planted surface
(82,850 ha) and 33% of the wine production in Portugal (778,698 tons of grapes harvested to
produce 1,918,369 hectolitres of wine). Both can be affected by several phytosanitary issues—
due to biotic or abiotic factors—which can significantly impact the plant development and its
yield (Luis Martins et al., 2014). This way, there is a need to efficiently monitor these species
with a high and spatial resolution enabling an early detection of pests, diseases and nutritional
deficiencies for a quick, site-specific and effective response, which will foster a more

sustainable and more profitable management of these crops and natural resources.

The use of remote sensed data acquired from airborne or spaceborne platforms arises as an
effective alternative for vegetation monitoring. More recently, the technological development
has led to a size reduction of unmanned aerial vehicles (UAVS), to adapt to different usage
contexts and at amore affordable cost (Padua, Vanko, et a., 2017). Indeed, UAV s have become
a highly flexible remote sensing platform to use in different areas (Jenkins & Vasigh, 2013;
Juul, 2015). These alow the dataacquisition from different sensor types, with greater versatility
and lower cost (in small to medium sized project) when compared to other remote sensing
platforms, such as satellites or manned aircrafts (Alessandro Matese et al., 2015). In the
agriculture and forestry sectorsits use extends, among others, to crop monitoring (Berni, Zarco-
Tejada, Suarez, et a., 2009; D. Turner et a., 2011), weed mapping (D. Gomez-Canddn et al.,
2013), irrigation management (Baluja et a., 2012; Bellvert et a., 2013; Bellvert & Girona,
2012; Pablo J. Zarco-Tejada et al., 2012), estimation of biomass (Bendig et a., 2014; Eija
Honkavaara et al., 2013; Polénen et a., 2013), chlorophyll (Uto et al., 2013; Pablo J. Zarco-
Tegadaet a., 2012), or nutrients (Caturegli et a., 2016; Polonen et a., 2013), vegetation height
mapping (Mathews & Jensen, 2013; Suomalainen et al., 2014), helping in the decision making

process to manage eventua problems (Yubin Lan et al., 2010).

In most of the studies found in the bibliography, the use of UAVs is not intended to acquire
data of the crops vegetative state in atemporal context. Some studies have used multi-temporal
datain different types of crops, such as barley (Bendig et a., 2013), sunflowers (Vegaet al.,
2015), silage maize (Castaldi et a., 2017), rice (Willkomm et al., 2016) and vineyards
(Ballesteros et al., 2015). In these studies, the data obtained in the different periods allowed to
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achieve results, which, in some cases, were only visible from a certain phase of the vegetative
cycle. Thus, the study of UAV-based data of the same area obtained in a multi-temporal
approach can be advantageous, as it will alow to continuously assess the vegetative
development and to identify possible problems, which will enable a more effective and

localized response, to mitigate them.

Although the UAV data acquisition processis constantly evolving, it is reasonably established.
However, concerning data processing and itsinterpretation for the extraction of valid and useful
information for farmers, it is still primarily a manual process using geographical information
systems (GIS). This thesis, presents the development of a management system for decision
support for agriculture and forest, based on the automatic analysis of the acquired data at
different periods, using different sensors aboard UAVs. Thus, in addition to the development
and in-field validation of the necessary procedures for the different phases of the system,
particular attention is given to the development of algorithms that allow automatic data
processing and the extraction of useful information. Along these lines, it is intended a box-to-
box management support system for the agriculture and forest sectors. In this context, the
scientific work presented in this thesis contributes to crop sustainability and, at the same time,
reduces chemical treatments and preserves water resources.

1.2. Objectives of the study

The main goal of this thesis is the development of a solution that can be used to support the
management of agricultural and forest crops. This solution is supported by automatic data
acquisition and analysis with high spatial and temporal resolution, using different sensors
coupled to UAVs. This solution alows the assessment of crops temporal evolution, defining
the probable causes of eventual problems—from biotic and/or abiotic origins—thus, alowing
the most appropriate measuresto betaken in order to solve or mitigate the detected issues. From
this general objective, several specific objectives might be drawn up:

e Study the relevance of multiple source data fusion/combination for the extraction of the
most relevant information on a specific crop;

e Importance of multi-temporal data for management of vineyards and chestnut
plantations;

e Development of algorithms for automatic monitoring of the vegetative status and

detection of possible crop phytosanitary and nutritional issues,
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e Validation of the algorithms in monitoring and verification of crop development, when
compared with traditional methods.

In this sense, the following research question has been formulated:

1) Canmulti-temporal datafrom multi-sources be combined to provide better management
of agricultural and forest crops, in particular in vineyards and chestnut plantations?

If the answer to the previous question isyes, it is necessary to understand if thereis any obstacle
to the development of a complete analysis process. It will then be necessary to answer the

following question:

2) Can the agriculture and forest management process be automated based on the
developed algorithms specifically for the extraction of valid information from data

acquired from different types of sensors?
1.3. Structure of the thesis

This thesis is organized in ten Chapters, eight of which (Chapters 2-9) composed of original

scientific research published in refereed international journals, subjected to blind peer reviews.

This introduction chapter is followed by a comprehensive state-of-the-art regarding the usage
of UAVs and different sensors in agriculture and forestry. This review (Chapter 2) was
published in an international scientific journal and describes the advantages of UAV s regarding
other remote sensing platforms, highlighting the existent UAV types along with the different
sensors that can be applied for data acquisition in agriculture and forestry sectors.
Considerations towards the most suitable UAV type and sensor to a specific application are
presented along with its potential costs.

Chapters 3 to 5 are mainly focused in the monitoring of chestnut trees, while Chapters 6 to 9
are related to vineyard monitoring. The main objective of Chapter 3 is to explore UAVs for
aeria imagery acquisition for preservation and prevention contexts, for this purpose two studies
were conducted, in an area were chestnut trees are predominant and in a coastal area. The
monitoring of chestnut trees health and the assessment of phytosanitary issuesfrom the acquired
multi-temporal imagery enabled the identification of the tree canopy cover decline through the

time.
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In Chapter 4 a method for automatic multi-temporal analysis of chestnut stands is proposed.
The UAV-based dataset from Chapter 3 was used. The method allows the single tree detection
enabling to estimate its height, tree crown diameter and, by means of multi-temporal analysis,
to estimate the canopy decline. The analysis of the tree canopy decline enables to estimate trees
with potential phytosanitary problems. This method poses as afaster approach for chestnut trees
monitoring and to assist in field inspections.

Chapter 5 presents a study where a chestnut stand was monitored along a growing season. The
multi-temporal dataset acquired, using a multispectral sensor coupled to a UAV, along with a
phytosanitary characterization of each individual tree, enabled to apply machine learning for
the detection of phytosanitary issues. The method presented in Chapter 4 was used for the
segmentation of each tree and severa features were extracted for training a random forest
classifier using data from each flight campaign. The results achieved in this study allow to
understand the accuracy of the presence of phytosanitary issues in chestnut trees and to predict

the specific issue affecting each one of them.

In Chapter 6 amethod for vineyard vegetation detection is presented. For this purpose, different
vineyards, mainly located in the Douro Demarcated Region, were surveyed using a low-cost
UAV. The method relies in the use of RGB and height information driven from the
photogrammetric processing of the UAV-based imagery. It alows, with high accuracy, to
estimate the number of vine rows, grapevine vegetation, inter-row vegetation, bare soil and
areas along the rows with potential missing vines. This way, new automatisms in vineyard

monitoring are achieved for a better decision support.

Chapter 7 addresses a study using multi-temporal UAV-based RGB data acquisition with nine
flight campaigns carried in two vineyard plots located at University of Tras-os-Montes e Alto
Douro (UTAD). The data covers different phenological stages of the growing season of 2017.
The vineyard vegetation segmentation method presented in Chapter 6 is applied to estimate the
vineyard vegetation and the vine rows al ong with the grapevines canopy volume. The estimated
height was validated with field measurements. This process enabled to characterize the vineyard
vegetation evolution (grapevine and inter-row vegetation area and grapevine volume)

throughout the season and allows to estimate areas were canopy management can be applied.

Chapter 8 presents a study that explores the relationship among different sensors coupled in
UAV's and analyses different approaches to generate vineyard vigour maps. A vineyard plot at




Chapter 1.
Introduction

UTAD was surveyed in the growing season of 2018 along five different flight campaigns of the
vineyard vegetative development. UAV-based data is acquired from RGB, multispectral and
thermal sensors. The vigour maps are classified in three levels (high, medium and low) using
the whole vineyard or only grapevine vegetation. This approach enables a rapid vineyard
characterization and provides knowledge to farmers and winegrowers of areas with lower and
higher vigour within avineyard plot.

Using the knowledge acquired and the methods presented in Chapters 6 and 7, a computer
vision method for individual grapevine analysis from UAV-based datais presented in Chapter
8. This method is capable to estimate potential missing grapevines with a high accuracy when
comparing to ground-truth data. A multi-temporal dataset composed of RGB, thermal infrared
and multispectral data from two vineyard plots in two different wine regionsis used to extract
different biophysical grapevine parameters. The extracted parameters allow a better
understanding of the vineyard dynamics along the growing season, possessing potential to be
used for the computation prescription maps for plant-specific applications and to estimate the

individual grapevine production.

Chapter 10 concludesthe thesiswith a synthesis of the significant achievements of thisresearch

and presents future research directions.
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2.1. Introduction

Recent years showed rapid socialization and an increased interest in unmanned aircraft system
(UAS) for civilian applications. Unmanned aerial vehicles (UAVS), often referred as drone, are
aircrafts without a human pilot on board. Instead, UAVs are controlled by a ground operator.
This was achieved due to a variety of factors, ranging from the introduction of relatively low-
cost systems and user-friendly controls to the genera technological advances and to the
miniaturization of individua components (main boards, micro-processors and motors, high-
power density batteries, cheaper airframes, communication devices, and sensors). These
advances|ed to the production of affordable off-the-shelf UAS suitablefor civilian applications,

easy to transport, mount, launch, and operate.

An UAS can be defined as a power-driven reusabl e aircraft operated without a human pilot on
board (J. M. Sullivan, 2006). It can be remotely piloted or have a programmed route to perform
an autonomous flight, using the embedded autopilot. Generally, it aso requires a ground-
control station, sensor suites and communication devices for carrying out flight missions
(Pappalardo, 2003).

Apart from military applications (Austin, 2011; Gertler, 2012; Jenks, 2009), the European
Parliamentary Research Service provided alist of potential applicationsin civil and commercial
use consisting of disaster response, earth observation, the energy sector, infrastructures,
maintenance monitoring, aerial mapping, filming, agriculture, forestry, fisheries,
telecommunications, package delivery and non-military government authorities. Also, some
concerns rose from the increased use of UASinillega activities, such as drug trafficking (Juul,
2015). The Association for Unmanned V ehicle Systems International (AUV Sl) estimates that,
among the af orementioned applications, agricultureis at the vanguard of the promising markets
for the commercial use of UAS (Jenkins & Vasigh, 2013).

In the specific area of agriculture, every farmer’s goal is to efficiently apply the available
resources to gain the maximum yield possible. To achieve this, they need afast, reliable, cost-
effective and easy method to scan their fields. The crop’s condition can be assessed by the stage
of ripening, water status, pest attacks and nutritional requirements. UAS with remote sensing
capabilities can provide this necessary data, so that the farmer is able to identify problemsin
early stages and rapidly select the appropriate interventions (George et al., 2013). Besides crop
monitoring, farmers can also benefit from UAS in precision spraying. Similarly, agriculture,
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forestry and nature preservation can also greatly benefit from the use of UAS technology.
Foresters can use them for inspection of forestry operations, wildfire detection, wildlife
tracking, legal restrictions monitoring, woodland change detection and survey sites which are

otherwise inaccessible or where trespassing is undesirable (Grenzdorffer et al., 2008).

Thereisawide range of UAS and sensorsthat can be used in agroforestry, which leaves space

for uncertainty among the professionals regarding the use of those devices and how they can
actually help to cost-effectively leverage the production. Thereby, the purpose of this study is
to help users selecting the proper UAS together with the proper imaging sensor to get the
expected and needed results. Severa authors already provided surveysregarding UAS and their
applications (Colomina & Molina, 2014; Nex & Remondino, 2013; Pgjares, 2015; Salami et
al., 2014; Watts et a., 2012; Zhang & Kovacs, 2012). However, in this study authors are
focusing on the application of low-cost mini and micro UAS and imaging sensors that meet the
interests of both farmers and foresters.

2.2. UAS as aremote sensing platform

Remote sensing platforms are useful to provide added value information for agroforestry
applications. This section presents these platforms focusing on UAS which are classified
according to their size. Emphasisis given on small, mini and micro UAS, which are divided in

two types: fixed-wing and rotor-based.

2.2.1. Traditional remote sensing technologies and UAS

Traditional remote sensing technologies encompass satellite and manned aircraft platforms.
These platforms are continuously improving in terms of spatial, spectral and temporal
resolutions. Each of these technologies has benefits and constrains regarding technological,
operational and economic factors. The high spatial and temporal resolutions, flexibility and
much lower operational costs make UAS a good alternative to traditional remote sensing
platforms for agroforestry applications (Muchiri & Kimathi, 2016; Salami et a., 2014).

The use of professiona civilian UAS isincreasing rapidly around the world and it is expected
to explode in the upcoming years. The main factors supporting this growth are related to the
increasing awareness of the benefits that thistechnology can bring to awide range of industries
and non-commercial sectors, aswell asto the introduction of relatively low-cost systems, user-
friendly controls and the general technological advancements and the miniaturization of

individual components.
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According tothe AUV S, the foreseen integration of UASin the United States national airspace,
for the decade 2015-2025, is expected to create more than 100 000 jobs and generate an
economic impact of $82 billion (Jenkins & Vasigh, 2013).

Asanew method of geo-data collection, UAS complements existing techniques, filling the gap
between large area imaging (satellites and manned aircrafts), and smaller coverage, time-
consuming, but highly accurate terrestrial techniques (Figure 2.1). Compared to high altitude
data, UAS dataisfairly low cost, with the advantage that flights can be made often and quickly.
UAS are thus very useful when portions of land must be quickly surveyed (quick response
capability for, e.g. time-sensitive deliverables, disaster situations or search and rescue
operations). Compared to laser scanning—a very good technique for most of the surveying
operations—UAS have the advantage of being above the area to be monitored, which is often
arequirement to get an accurate reading. However, and despite the aforementioned advantages
of UAS, they are not really competing against traditional aerial photography, since they are

seen as a complementary technology.
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Figure 2.1. Prosand cons of the existing remote-sensing technol ogies Unmanned aerial system (UAS) technology
complements existing techniques, filling the existing gap between large-area satellite and manned aircraft imagery
and smaller coverage, time-consuming, but highly accurate collection using terrestrial surveying instruments with
major pros and cons highlighted.
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A technical comparison between multi-rotor UAS, manned aircraft and satellites was made by
Matese et al. (2015), to evaluate their cost-effectiveness within the precision agricultural scope.
UAS were classified with the best flexibility, optimal cloud cover independence and regarding
the processing tasks, the resolution and precision were also classified as optimal. However, the
coverage range, flight endurance, mosaicking and geocoding effort were classified as poor in
comparison with the other two platforms. The case study was implemented in two different
vineyards. In heterogeneous vineyards, low-resolution images fail in presenting part of the
intra-vineyard variability. The referred study concluded that in small fields (5 hectares), rotor-
based UAS proved to be the most cost-effective solution. However, and according to the
authors’ own experience with UAS, fixed-wing small UAVs can be used up to a square
kilometre area—with a Ground Sample Distance (GSD) up to 5 cm/pixel—and up to 4 km?
areafor a GSD greater than 10 cm/pixel. Of course, these threshold values depend on the UAS
autonomy (the eBee, from SenseFly, was used as reference). It is worth noting that imaging
area-coverage is aso influenced by flight altitude (directly influences the GSD), speed,
endurance, and sensor resolution (low resolution sensor lead to lower atitude flights, which

impacts on the imaging area).

Therefore, UAS represent an evolution in gathering agricultural and forest statistics data from
small to medium areas. Commercial low-cost aerial platforms coupled with high resolution
imaging sensors alow to collect accurate data regarding crop and trees’ health at large scale

with insignificant clouds’ influence (Quiroz, 2015).

2.2.2. UAS main characteristics

The use of UAS equipped with small sensors has emerged as a promising alternative to assist
modelling, mapping and monitoring applications in rangelands, forest and agricultural
environments. UAS are also suitable to be used in dirty, dull and dangerous conditions as
wildlife monitoring, ice cover, weather phenomena and climate change (Watts et al., 2012).
However, flight regulations and legislation do not always engage technological advancements
regarding UAS. Many countries still lack the proper legislation that regulates the use of UAS
both for commercial and for leisure purposes. The sooner legislation safely integrates UAS in
the airspace—clarifying requirements and conditions under which drones can be operated—the
sooner UAS usage will increase. The legal situation with regard to flying a UAS in various
different countries is discussed extensively in the paper by Cracknell and Hayes (2007) which
is published in this special issue.
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With UAS it is possible to acquire low-cost yet high precision images since they are acquired
from lower altitudes. For agroforestry applications, such level of detail can reveal more
information about crop condition, weeds, pests and other abnormalities, leading to an earlier
detection. These advantages can help agroforestry professionals in short, medium- and long-
term operations, due to the possibility of identifying problems faster and, consequently, react
quickly, reducing losses and other economical outlays. Regarding farm management, it is
possible to gather more accurate results on how crops are reacting to different treatments,

leading to a more effective use of resources.

As previously mentioned, UAS differ in size, physical shape and operational endurance, which
limit the supported payload carrying capacity, operating altitude and range. This subsection will
address UAS of diverse dimensions but it is important to remind that the main focus of this
study aremini and micro UAS, sincethesetypes are more affordable, easier to carry and simpler
to use than the large and medium sized UAS.

Some authors classify UAS in terms of aerospace occupation, altitude and endurance (Austin,
2011; Nex & Remondino, 2013; Watts et al., 2012; Zhang & Kovacs, 2012).

The large UAS used for civilian applications are commonly adapted from military platforms.
They are intended to be used on tasks where manned aircraft deployment would be potentially
unsafe or inefficient (e.g. in forest wildfires monitoring). NASA’s Ikhana UAS (Figure 2.2a)
was used to collect and process data regarding fire detection, through a multispectral camera
(Ambrosia et al., 2011). These types of platforms require high financial funding, due to the

devel opment, deployment and ground operations compl exity.

Medium-sized UAS suffer basically from the same problems as large UAS. In comparison
medium-sized UAS feature reduced overall costs and easier take-off/landing operations. An
example of amedium-sized UAS is the NASA’s SIERRA UAS (Figure 2.2b). It was applied in
atmospheric composition, arctic surveys, land cover characterization, surface to air fluxes,
disaster response and assessment, agriculture and ecosystem assessment, biological/physica
oceanography, island and coastal remote sensing and coral reef monitoring (Watts et al., 2012).
Another NASA’s UAS, known as Pathfinder-Plus (Figure 2.2c), was applied for surveillance
operations and decision support in agriculture, to detect weeds and inconsistencies in the
fertilization delivery of coffee plantations, using image acquisition sensors, more specifically
RGB and narrow-band multispectral (Herwitz et a., 2004). Due to costs, portability and
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required knowledge for controlling purposes, these types of UAS are not suitable or even
affordable for most farmers and foresters.

{a) (h) (c)

Figure 2.2. Large and medium-sized unmanned aerial vehicles (UAVs): (a) NASA’s Ikhana; (b) NASA’s
SIERRA; and (c) NASA’s Pathfinder-Plus. Image courtesy of NASA.

The small, mini and micro UAS built for civilian usage features user-friendly platforms, present
a typical weight less than 20 kilograms with a flight time comprised between a couple of
minutes and a few hours of autonomy within limited distance range (Hardin & Jensen, 2011).
Technological advancements have enabled meaningful upgrades to these devices which are
capable of acquiring spatial data in great detail using cost-effective platforms (Watts et al.,
2012). The expansion of these devices has been facilitated by the miniaturization and the cost

reduction of sensors and embedded computers (Berni, Zarco-Tejada, Suarez, et al., 2009).

There are two main types of small, micro and mini UAVs: fixed-wing and multi-rotor. Each

type has its own advantages for different deploying environments and required tasks.

The size of the mapped area, its complexity, desired resolution, weather conditions and take-
off/landing zone space are the necessary conditions that must be considered before acquiring
an UAS. The minimal experience to program and to operate these platforms is an important

advantage, given that flight planning and management can be controlled from asingleinterface.

Fixed-wing UAS can travel severa kilometres from the launch point, being mainly suitable for
mapping with applications in land surveying, agriculture, mining and environmental
management. Thistype of UAS can achieve a high cruise atitude and speed, cover large areas
and get afew centimetres of GSD. However, they are launched by hand or use a small launch
ramp and require a large and soft corridor to land. After successful launch, the Global
Navigation Satellite System (GNSS) receiver guidesthe UAS aong a pre-defined path (Hardin
& Jensen, 2011). The market offers awide variety of commercial lightweight fixed-wing UAS.
Some of the most successful are shown in Figure 2.3.
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Figure 2.3. Some of the most representative fixed-wing UAVs:. (a) QuestUAV Q-Pod; (b) SenseFly eBeg; (c)
Trimble UX5; (d) MAVinci Sirius Pro; and (€) PrecisionHawk Lancaster. The images were obtained from the
manufacturers’ websites.

The multi-rotor UAS rely on a set of propellers arranged around its core (Figure 2.4) being the
most suitable for inspection, surveying, construction, emergency response, law enforcement
and cinematography and videography. Their low cruise atitude and speed are adequate to cover
small areas, obtaining spatial resolution up to amillimetre GSD. Moreover, their vertical take-
off and landing (VTOL) only requires a few square metres of free terrain, contrarily to fixed-
wing-based systems. The rotors can be arranged around the UAV or can be attached to a set of
fixed arms. Multi-rotors are less prone to vibrations than fixed-wing (L. O. Wallace et al.,
2011). Asmorerotors are added, the lesser isthe crash risk and heavier payl oads are supported,
although the payload size limitation remains (Anderson & Gaston, 2013).

(n)

(d)

Figure 2.4. Some of the most representative rotor-based UAVs: (a) Topcon Falcon 8; (b) DJI Phantom 4; (¢) 3DR
SOLO Quadcopter; (d) SenseFly eXom; and (€) Yuneec Typhoon. The images were obtained from the
manufacturers’ websites.
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Regarding mini and micro UAVSs, a few considerations should be made before acquiring or
deploying them. Anderson and Gaston (2013) presented the four main constraints for
consideration: (1) platform; (2) sensor; (3) operating and; (4) environmental constrains. Table

2.1 summarizes the major differences between the fixed-wing and the multi-rotor UAVs.

Table 2.1. Comparison between mini and micro fixed-wing and rotor-based UAV s regarding specific parameters
and exampl es of tasks that can be performed.

Fixed-wing M ulti-rotor
I mage resolution Up to centimetre level Up to millimetre level
Take-off Hand/small launch ramp Vertical take-off
Payload capacity Small Depending on the number of rotors
Flight time High (usualy up to 1h) Low (usually up to 30 min)
Landing surface Several meters of extension Approximately the UAV size
Coverage
Cruise speed Fixed-wing outperforms multi-rotor, most of the times
Wind resistance
Land surveying, agriculture, GIS, Inspection, video, surveying (urban

Main lications . . . .
ap mining, environmental management  scal€), construction and emergency

There are two approaches to carry out a UAS mission: by autopilot according to a predefined
flight path or manually with aremote controller operated by a pilot. An autonomous flight can
be achieved in the following main steps. (1) flight plan—most of the recent UAS are rel eased
with aflight planning software, and there are also freely available smartphone applications that
allow to specify the intended area of interest, mark the launch area (i.e. where the UAV will
gain enough altitude to start the mission) and the landing area; (2) after planning—the flight
path must be uploaded to the UAV, making it availableto start the next step, the flight execution
and data gathering. After a successful launch, the UAV will automatically capture images
triggered using the GNSS | ocation as reference. Sufficient overlap of theimages ensures enough
redundant datain case of distorted images; (3) after landing—the obtained data are downloaded
and later processed in a software that provides the desired output; and (4) the last step is to
evauate the data, for the intended purpose (e.g. field issues, irrigation issues, water stressed
crops, crop height).

As previously mentioned, lightweight UAV's have limited payload, which makes most of the
available platforms unable of carrying a multi sensor system. In some cases, to acquire data

from different sensors, the UAV must perform multiple flights over the same area.

The next section provides the different types of sensors used in UAS flight missions.
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2.3. Sensors

The critical component for carrying out remote sensing activities is the imaging or sensing
payload which defines the capabilities and the usability of the UAV (Siebert & Teizer, 2014).
The current huge market offer of imaging sensors can be quite overwhelming at first glance for
a non-expert user. To help farmers and foresters making their final decision, an overview of
imaging sensor types is provided together with their main applications in precision agriculture
and forestry. It is noteworthy that the development of UAV's and sensors occurs at arapid rate
which, expectedly should not slow down in the upcoming years (Wagner, 2015). In the near
future most of the current systems will probably be discontinued, evolve or be replaced by
entirely new systems. Therefore, potential buyers should aways find up-to-date information
about the current state of available UAV's and sensing instruments. UAV's as a remote sensing
platform are capable of carrying a large variety of sensors, from low-cost commercia Digital
Single-Lens Reflex (DSLR) cameras to expensive professional gear, such as hyperspectral
cameras or Light Detection And Ranging (LIDAR) sensors, specially designed for UAVs
(Klemas, 2015).

Each remote sensing device detects a portion of the electromagnetic radiation. Gammarays, x-
rays, ultraviolet, visible light, infrared light, microwaves and radio waves are examples of
electromagnetic radiation that differ from each other concerning wavelength. This range of
electromagnetic radiation is called the electromagnetic (EM) spectrum. Only a very small
portion of the EM spectrum is visible by the (naked) human eye. However, some sensors can
detect different parts of the EM spectrum allowing humans beings to interpret it and therefore
make the non-visible become visible. In this study, two types of imaging sensors will be

discussed: passive and active sensors.

Passive sensors are used for natural emissions detection from the Earth’s surface and its
atmosphere whereas active sensors transmit their own pulses of radiation from their own source
of energy and then detect the incoming reflected radiation. Passive sensors include RGB
cameras, near infrared (NIR) cameras, thermal cameras and their combinationsin multispectra
and hyperspectral cameras, whilst LIDAR and RADAR (radio detection and ranging) are
examples of active sensors (Richards, 2013; W. Turner et a., 2003).
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2.3.1. RGB sensors
Visible light sensors are capable of capturing imagery perceptible to the human eye. Optical

visible light cameras operate in the wavelength range, approximately, from 400 to 700 nm
(Austin, 2011). UAS can benefit from a large scale of mass-market off-the-shelf cameras to
professional grade cameras with prices varying accordingly. In their review, Colomina and
Molina (2014), present alist of small and medium format visible band cameras with their basic
parameters. In addition to this list, Figure 2.5 displays some currently used RGB cameras
suitable for mini and micro drones, for agricultural and forestry applications.

(a) (b) el )

Figure 2.5. Examples of optical cameras commonly used on UAV s for RGB image acquisition: (a) GoPro Hero 4
Black edition; (b) Canon G9X; (c) Panasonic Lumix DMC-TZ71; (d) Sony Alpha 7; and (€) Nikon D800.

RGB sensors mounted on UAVs are capable of providing high resolution imagery from a bird’s
eye perspective, as presented in Figure 2.6. These images can be processed into orthophoto
mosaics, by stitching images together (Darren Turner et al., 2012), or to build digital surface
models (DSM), using 3D reconstruction algorithms based on stereo vision or structure from
motion (SfM) agorithms (Nex & Remondino, 2013). Possible uses of orthophoto mosaics
include aerial mapping and imaging, plant counting, surveillance, emergency response,
surveying and land use applications. DSMs can be useful for 3D surveying and mapping or

volume compultation.

Figure 2.6. RGB image sample obtained with Sensefly’s eBee fixed-wing UAV over one vineyard of the
University of-Tras-os-Montes e Alto Douro (UTAD).
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Remote sensing applications also very often separate RGB channels and work with individual
red, green and blue channels. Colour reassigning is used to create false colour images to
enhance certain features that can be very useful in land analysis. While this kind of imagery
might provide valuable visual information for farmers and foresters, it is not very suitable to
assess vegetation properties due to the lack of information obtained in the NIR region, where
the high reflectance of vegetation occurs (Nebiker et al., 2008).

2.3.2. Infrared sensors

Theinfrared spectrum covers longer wavelengths than the visible light spectrum, ranging from
around 700 nm (NIR) to 1,000,000 nm (far infra-red, FIR). The boundaries between the visible
and NIR, at one end, and between the FIR and microwaves, on the other end, are not precise
and are open to different interpretations (Austin, 2011). The NIR band from 700 nm to
approximately 8,500 nm represents the region where high plant reflectance occurs, thus being

crucia for most of the agroforestry applications. A NIR image is displayed in Figure 2.7.

Figure 2.7. NIR image sample obtained with Sensefly’s eBee fixed-wing UAV corresponding to the same area
represented in Figure 2.6.

NIR sensors are frequently used in precision agriculture applications and constitute the basis
for vegetation analysis. Healthy vegetation that is actively growing and producing energy from
photosynthesis reflects more in the NIR region. When combined with RGB, it can be used for
vegetation indices (V1) calculations which are based on the fact that vegetation reflects various
wavelengths differently. Most of the common off-the-shelf cameras have filters blocking NIR.
However, it isrelatively easy to transform an RGB camerainto aNIR camera, by removing the
filter and replacing it by one that is filtering the visible red, green or blue bands. Figure 2.8
displays some of currently used cameras that were converted to NIR cameras by changing the
filters. NIR and RGB sensors are often combined in multispectral sensors, which will be
addressed |ater.
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Figure 2.8. NIR cameras commonly used in UAVs: (a) Canon S110; (b) Panasonic Lumix 7; and (c) Fujifilm X-
M1.

While the human eyeisless sensitiveto NIR, FIR isentirely invisible for us. With the intensity
increase, this radiation can be experienced as heat. Thermal cameras operate approximately in
the spectrum at wavelengths from 5,000 nm to 14,000 nm. Each pixel’s intensity can be

transformed into a temperature measurement.

When compared with conventional cameras, thermal cameras are much more expensive and the
image resolution is much lower (Mgjias et al., 2015). Thermal sensors allow to create full
thermal maps (Lagliela et al., 2015), to check irrigation management (Gonzalez-Dugo et al.,
2013), to assess the functionality of solar panels (Quater et al., 2014) and to detect wildlife or
livestock (Israel, 2011). A couple of thermal cameras developed for UAS are depicted in Figure
2.9.

{a) I":-

Figure 2.9. Common thermal cameras developed to be mounted on UAV's: (a) Workswell WIRIS and (b) FLIR
Vue.

2.3.3. Multispectral and hyperspectral sensors

Until afew years ago multispectral and hyperspectral cameras were considered too heavy for
mini and micro UAV's, whereas RGB and modified RGB cameras, for acquiring the NIR band,
were considered as astandard tool coupled with UAV sfor photogrammetric and remote sensing
applications. Apart from early prototypes (Saari et al., 2011), such cameras only became
commercially available in recent years. Just like NIR sensors, multispectral sensors are
extensively used for vegetation analysis, since NIR is one of the multiple bands they can detect
(usualy R, G, B, NIR, Red Edge and sometimes ultra violet light and thermal bands are
included in multispectral sensors). Red edge refers to the EM region between visible light
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spectrum and NIR. Some of the most used multispectral sensors are shown in Figure 2.10.
Nebiker et al. (2016) made a comparison between a high-end multispectral camera and a low-
cost off-the-shelf NIR camera showing significant differences. As expected, the multispectral
sensor provided good results, consistent with the reference values obtained by a hyperspectral
spectrometer whilst the low-cost camera showed a reasonabl e correlation with the multispectral
system with some significant biases. However, the use of high spatia resolution low-cost

cameras proved to be useful for qualitative monitoring of crops, including diseases detection.

While multispectral cameras sense broadbands, usually 4 to 12, hyperspectral cameras (Figure
2.11) are capable of sensing hundreds of narrow bands, up to 2 nm in wavelength (Bendig et
a., 2015).

> -
(1) (b (¢}

Figure 2.10. Some of the most commonly used multispectral cameras: (a) Parrot Sequoia; (b) multiSPEC 4C; (c)
Tetracam ADC; and (d) MicaSense RedEdge.
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Figure 2.11. Some of the most common used hyperspectral cameras. () the Headwall Photonics Micro-Hyperspec;
(b) the Rikola Hyperspectral camera; and (c) the Surface Optics Corp. SOC710-GX.

Hyperspectral sensors produce images in which each pixel contains the whole spectrum of the
sensed wavelengths. This means that hyperspectral outcomes provide much more information
than the imagery produced by the previously referred devices. A simplified representation of a
hyperspectral data cubeis shown in Figure 2.12. A list of both multispectral and hyperspectral
sensors used in conjunction with UAVsin several published works can be found in Colomina
and Molina (2014).
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Figure 2.12. Two-dimensional projection of a hyperspectral data cube. The high number—typically, over 100—
of narrow spectral bands results in a continuous range of reflectance values for each image pixel. The front of the
cube shows a false colour image using the infrared spectral bands 1721, 2306, and 1565 nm in RGB (image from
http://org.uib.no/cipr/Project/\VV OG/hyperspectral .htm).

2.3.4. LIDAR sensors

LiDAR is an active |laser-based remote sensing technology that transmits to the surface optical

laser pulses with afast repest rate. By measuring the double path time from the emitted pulse
(transmitter-target-transmitter/receptor) it is possible to determine the distance to targets
(objects, surface). By repeating this process with a fast sequence, LiDAR generates a 3D point

cloud of the surface, as shown in Figure 2.13.

Figure 2.13. UAV-based lidar data of different agriculture features. Properly sparse surveys in time provide
valuable data to detect cropland critical areas. © RIEGL LM S, www.riegl.com

The accuracy of these 3D point clouds allows them to be used for multiple applications in
agroforestry, forest change detection (L. Wallace et a., 2014), flood mapping (Malinowski et
a., 2016) or plant height measurements (Bareth et a., 2016). Short-range LiDAR sensors were
also used on-board UAV s for obstacle detection and guidance (Ramasamy et al., 2016). In the
near future, further miniaturization and cost reduction of LiDAR sensors is expected (Poulton
& Waitts, 2016). Figure 2.14 shows some currently available LiDAR systems suitable for UAS.
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(a) (b) (c)

Figure 2.14. Examples of commonly used UAS lidar sensors:. (a) the Routescene lidar Pod; (b) the Y ellowscan
Mapper; and (c) the Velodyne PUCK.

Table 2.2 presents some examples of application areas and studies in which the described
sensorswere used. Depending on the goal of certain applications, the sensor should be properly
selected, considering the trade-off between characteristics and goals to reach. Thermal sensors
provide spectral bands that are more suitable for applications that require temperature
information invariant to light conditions as, for example, real-time animal detection. Disease
detection, in early stages, can be performed by hyperspectral sensors since many of them only
present slightly noticeable visible characteristics. On the other hand, and despite of the fact that
some similar tasks can be achieved with thermal and hyperspectral sensors, such as water status
assessment, other aspects need to be considered (e.g. spatial and spectral resolution and
acquisition costs). These topics are addressed in Section 2.5 of this study, where the estimated
budgets of UAS bundles for different agroforestry applications are also presented (including

UAYV platform, sensors and processing software).

The amount of data collected by sensors mounted on UAV's can be huge, prompting the need
for methods able to transform them into valuable information. In the next section this topic is
addressed.

2.4. Data processing

After each flight the sensors mounted on the UAV returns a large amount of data which is not
yet suitable to extract information and to reach conclusions, since platforms are rarely designed
to interact on-the-fly with the attached sensors. Thus, the desired results must be pursued in a
post-flight processing stage (Geipel et a., 2013). This section intends to present the severa
operations that can be performed with the acquired data, in the referred post-flight processing

stage.
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Table 2.2. List of potential application areas with examples of scientific studies, grouped by sensor type.

Sensors Application areas References
Forest canopy gaps inspection Getzin et d, (2012)
Biomass monitoring Bendig et a. (2014)

RGB Volume characterization Ballesteros et al. (2015)
V egetation segmentation Nolan et al. (2015)
I Torres-Sanchez et a. (2014); Gomez-Candon et al.
Early-season crop monitoring
(2013)

Land-use classification Laglelaet a. (2015)
Water Status et Zal(tg c:;11e5t)al. (2012); Zarco-Tejada et al. (2012); Park et

Thermal i dlife detection Israel, (2011); Ward et al. (2016)
I rrigation management Bellvert and Girona (2012); Bellvert et al. (2013)
Fire detection Merino et a. (2011)
Vigour maps production based on Primicerio et a. (2012); Candiago et a. (2015);
vegetation indices Nebiker et al. (2008); Naviaet a. (2016)

. Image segmentation Combaet a. (2015)
Multispectra Weed mapping Pefla et al. (2013)
Nitrogen status estimation Caturegli et al. (2016)
Biomass estimation Bendig et a. (2015)
Biomass estimation Honkavaara et al. (2012); Polonen et a. (2013)
Chlorophyll estimation Uto et a. (2013)
Hyperspectral Nitrogen status estimation P6lonen et al. (2013)

Water status assessment Zarco-Tejadaet a. (2012)
Early detection of plant disease Calderon et al. (2015)
Bellow forest canopy mapping Chisholm et a. (2013)

LiDAR  Forest inventory and structural properties z/;/glllg)c eetal. (2012); Wallace (2013); Wallace et al.
Assessment of tree parameters Park et al. (2015)

2.4.1. Image pre-processing

Numerous issues may affect data quality. To enhance the data, a pre-processing stage is
commonly used. Issues such as atmospheric distortions, spectral variability of the surface
materials, altitude, wind turbulence, camerafocal length and viewing angle are external factors
that may contribute to image degradation. For these reasons, to detect changes as revealed by
modificationsin surface reflectance and to be able to compare acquired datain different epochs
(time series analysis), it is necessary to carry out radiometric corrections. Two approaches to
radiometric calibration are possible: (1) ground measurements at the time of data acquisition
for atmospheric correction and sensor calibration; and (2) radiometric calibration target that
allows the user to calibrate and correct the images’ reflectance, considering the illumination
and some of the sensor’s characteristics. It is recommended to use such a target when generating
index maps. Practically, the radiometric calibration target is a white balance card. The
radiometric calibration target should cover enough pixelsto get good statistics.
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In most use cases a single image cannot cover the entire area of interest, which makes it
necessary to capture severa overlapping images of the area (Figure 2.15a). These images have
to be stitched together into a single orthophoto mosaic (Figure 2.15b). Jiaet a. (2016) describe
the mosai cking process based on the Scale-Invariant Feature Transform (SIFT) algorithm. The
process can be subdivided into the following steps: (1) image pre-processing; (2) image
registration (feature extraction, feature matching, model transformation and parameter
estimation); and (3) image fusion. Also, the correction of the image’s geolocation can be
achieved with Ground Control Points (GCP).

It should be noticed that the most common UAS limit the sensor payload in weight and
dimension, imposing the selection of standard small format sensors for imaging. The sensor‘s
characteristics (focal length changes, principal point offset, lens optical distortion, etc.) along
with external factors produce image deformations. The cause of resolving the above parameters
is called geometric calibration, which is critical to ensure UAS‘s data geol ocation precision and

significant for UAS quantitative remote sensing application.

(a) (b)

Figure 2.15. Orthophoto mosaic generation example. (a) Images gathered in a UAV flight over UTAD’s campus.
(b) Orthorectified image mosaic which is the result of the processing operations (involving homographic
corrections and stitching) upon the acquired images.

2.4.2. Spectra indices

To easily extract information from the mosaic, there are different spectral indices that can be
applied. These indices are calculated through the use of information about the surface’s
reflectance from two or more wavelengths or spectral bands. The results provide a relative
abundance of certain features. The most used indices are V1. However other available types of

indices can be useful for agroforestry professionals, e.g. burned areas and water or snow indices.
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Vegetation indices are not recent and were used in the evaluation of data gathered by other
remote sensing platforms (e.g. satellites) before being applied to UAS data. Its use extendsfrom

crop and vegetation monitoring to estimation of plant parameters.

There are broad and narrowband indices, both designed to measure the overall amount and
quality of photosynthetic material, which is crucial for understanding vegetation’s state.
Broadband greenness VI are the simplest way to measure the general quantity and vigour of
green vegetation. Narrowband greenness V1 are intended for use with imaging spectrometers,
making them suitable for precision agriculture since these can be used to identify, analyse and
manage. Comparing both types, narrowband VI are more sensitive to smaller changes in
vegetation health, mainly in areas with dense vegetation where broadband measures can
saturate.

V egetation detection through images is possible due to the absorption of red and blue channels
and a higher reflectance of the green and NIR channels. Different spectral signatures are
obtained from different vegetation types concerning size, shape and colour of leaves (Salami et
al., 2014).

Vegetation indices can also be used to calculate biomass, Leaf Area Index (LAI), disease
detection, water stress presence and nitrogen content, assisting farmers and foresters in crop
management, yield forecasting and environmental protection (Zhang & Kovacs, 2012). Series
of used Vs can be found in (Baluja et a., 2012; Gnyp et al., 2014; Lopez-Lopez et d., 2016;
Salami et a., 2014; P. J. Zarco-Tejada, Ustin, et a., 2005). NIR vegetation indices are reported
to have agood correlation with biomassand LAI (Thenkabail et al., 2000). Lopez-L 6pez (2016)
have separated some vegetation indices in different categories. structural indices, pigment
indices or chlorophyll a+b indices, carotenoid indices, xanthophyll indices, R/G/B indices,
chlorophyll fluorescence and plant disease index. Table 2.3 provides the necessary information
about the most commonly used VI, including the formula allowing their calculation and their
main applications. Theoretical basis regarding the VI are provided by Galiano (2012) mostly
related to water stress vegetation indices.

Indices based on NIR and visible spectrum combine NIR and red bands for biomass estimation,
canopy structure, and LAI. Among them, the most commonly used index is the Normalized
Difference Vegetation Index (NDVI) (Zhang & Kovacs, 2012) proposed by Rouse et a.,
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(1974). Figure 2.16 presents a false colour image obtained after NDVI calculation from a
vineyard.

th s ) 't
y "
-_i," Y

Figure 2.16. False-colour representation of a normalized difference vegetation index (NDV 1) image composed of
red and near-infrared (NIR) bands corresponding to Figure 2.6-Figure 2.7.

Wehrhan et a., (2016) compared different VI (NDVI, TSAVI and EVI) to the plant-related
carbon dynamics in agricultura soils using a fixed-wing UAV with a multispectral camera
array. EVI was pointed out as the best correlation index between ground-based measurements
of fresh phytomass.

With the use of visible band indices, it is al so possible to acquire vegetation parameters. Bendig
et a., (2015) showed that the visible band indices (GRVI, MGRV I, RGBVI) presented a better
ability to model biomassin early growth stages rather than later ones, achieving a cost-effective
alternative for ground-based reflectance measurements.

Torres-Sanchez et a., (2014) compared different visible spectrum vegetation indices. ExG
(Woebbecke et al., 1995), EXGR, Woebbecke Index (Woebbecke et a., 1995), Normalized
Green-Red Difference Index (NGRDI) (Gitelson et a., 2002), Vegetativen (VEG) (Hague et
al., 2006) and two VI combinations in two different flight altitudes (30 and 60 metres) using
multiple flights during the early-season in a wheat field, among them ExG and VEG achieved
the best performance.

The need to identify diseases in early stage is crucia to provide a proper crop protection.
Regarding this topic, Salami et al., (2014) concluded that indices based on crown temperature
(CWSI) and visible ratio indices proved to be effective. Caderon et a. (2015) used
classification methods (linear discriminant analysis—LDA—and support vector machine—
SVM—to classify the verticillium wilt severity on olives through hyperspectral and thermal
imagery data. SVM achieved better overall resultsthan LDA. However, LDA is more effective

for initial and low severity disease levels. The type of indices that suited better for verticillium
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wilt identification were normalized canopy temperature, chlorophyll fluorescence, structural,
xanthophyll, chlorophyll, carotenoid and disease indices. A similar study was conducted by
Lopez-Lopez et a. (2016) to evaluate disease incidence and severity in amond orchards
affected by thered leaf blotch fungal. Several indiceswhere described and used to detect disease
symptoms: the better results were achieved by pigment indices (chlorophyll atb indices) and
chlorophyll fluorescence in disease and severity detection, making them appropriate for
decision support and implementation of precision crop protection techniques. Thermal imagery

can be used to detect low transpiration rates caused by root diseases.

Burn indices have been useful for forestry professionals, land resource managers and fire
officials to estimate areas of potentia fire hazards, fire perimeter mapping and study and
measure post-fire burn and vegetation regrowth areas. In this type of indices, a pre-processing
stage is needed in order to mask water presencein the images. Chuvieco et al. (2002) compared
different spectral indices, including NDVI, SAVI and BAI to distinguish burned land. They
have demonstrated that BAI provided a better discrimination than the other tested indices, with

aconsistent behaviour along a considerable variability of scorched areas.

Table 2.3 sums up the presented indices, bands needed for their computation, formulas and
references. Regarding the symbology, NIR, Red, Green, Blue, SWIR are related with the
spectral broadband and R, stands for the reflectance value, in nanometres, on a certain
narrowband. Broadband indices can a so be computed with narrowband reflectance values from
each spectral band. In thermal indices there are different formulas that use temperature as T.
There are dlso variables (e.g. L, G, a) representing parameterized features. Some authors use
normalization schemes (J. Torres-Sanchez et a., 2014) as a pre-processing step before the use
of values in the indices (e.g. green = Green/Red+Green+Blue; red = Red/ Red+Green+Blue;
blue = Blue/ Red+Green+Blue).
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2.4.3. Segmentation

Image processing techniques are frequently used as a complement to the vegetation indices
calculation. In this topic, segmentation is particularly important for agroforestry, agriculture
and related areasinasmuch asit isresponsible for the simplification of imagery datainto subsets
that enable an easier analysis regarding features of interest. Thresholding is a common
segmentation method that can be applied to mask certain features and/or to highlight the desired
information. Within this category, there is a noteworthy algorithm that relies in the Otsu’s
method (Otsu, 1979) and which can be applied to obtain two classes of pixels(e.g. to distinguish
bare soil from vegetation). Summing up, this method cal culates an optimal threshold requiring

low computational costs.

Meyer and Neto (2008) used VI to determine a colour vegetation index with an automatic
threshold and to determine their accuracy using plant-soil-residue images. They compared the
ExG, ExG—ExR and NDV indices results with manual plant pixel extraction after applying
Otsu’s method. Among the tested indices, the ExG-ExR allow reaching the best results in the
successful discrimination of plants from the bare soil.

Regarding early season vegetation detection, Torres-Sanchez et a. (2015) used two image
acquisition sensors (RGB and Multispectral) in three different types of crops: maize; sunflower
and wheat. The developed agorithm for object-based image analysis (OBIA) was based on a
multiresol ution segmentation algorithm whilst the Otsu’s method was applied for thresholding

two vegetation indices, more specifically EXG and NDVI.

Another used method is the watershed transform: a gradient magnitude-based method that
consists in finding the pixels with the highest gradient intensity corresponding to region
boundaries. It was successfully applied in the extraction of canopy from palm orchards (Cohen
et a., 2005). Baluja et al. (2012)used watershed agorithm combined with NDVI image to
identify rows in vineyard crops.

OBIA (Blaschke, 2010) reliesin the reduction of intra-class spectral variability caused by crown
textures, gaps and shadows. Firstly, a group of spatially adjacent pixels is aggregated into
spectrally homogeneous features which are then classified using objects as the minimum
processing units (Torres-Sanchez et a. 2015). OBIA was used to identify different types of

plant canopy, in pure olive crowns detection (R. Calderdn et al., 2013), in discontinuous and
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continuous olive orchards (Diaz-Varela et al. 2015) and also for weed map generation in maize
fields (Pefiaet a. 2013).

In order to successfully detect vine rows using UAS imagery, Comba et al. (2015) used Hough
Space Clustering and total least square. Their method can be applied to different types of images
resulting from VI calculation (e.g. NDVI) or in a ssimple grayscale image, based on a single-
band (e.g. NIR). Nolan et a. (2015) used skeletisation techniques to accurately segment
vineyard rowsto produce precise vine maps. The proposed a gorithm uses asinputs single-band
images from any type of sensor with the only requirement of having a high spatial resolution to
distinguish vine rows and soil. The application of such an algorithm allowed Nolan et al. (2015)
to achieve an accuracy of 97,1% regarding the identification of vineyard rows. The 2,9% failure
rate occurred because of trees obscuring vine rows, shadows and also segmentation
discontinuities. Bobillet et al. (2003) also classified vine rows; however, their method required
manual adjustments in pre and post-processing stages to the achievement of valid results.

Moreover, problems identifying vine rows with grass in between were reported.

2.4.4. 3D reconstruction

In agroforestry applications, vegetation can be accurately virtualized using 3D scanning
methods. One of the most known of these methods involves the extraction of apoint cloud from
ground, crops and other field elements. As it was previously mentioned, LiDAR can be used

for 3D scanning. For example, Wallace (2013) used this sensor to digitalize forest’s canopy.

Another known technique is the Structure from Motion (SfM) which provides the ability to
create 3D models from 2D images. Digital Surface Models (DSMs) and Crop Surface Models
(CSMs) can be achieved using this technique. In turn, these models can be used to obtain
important data regarding the elevation models and in crop development (Flener et al., 2013).
The reconstruction process consistsin the following steps: (1) matching the overlapping images
containing the similar features; (2) extraction of geometry; (3) point cloud processing; and (4)
3D model and texture generation accordingly with the provided images. The main constraint of
this method is the high demand of computational requirements and, consequently, the
processing time. Bendig et al. (2014) conducted a study to monitor barley crops using the post-
flight generated CSM computed by images acquired form an RGB cameramounted on aUAV.
The study introduced a method to estimate biomass based on the plant height derived from
CSM, demonstrating that RGB images are highly suitable for deriving barley plant height.
Mathews and Jensen (2013) opted by applying SfM to compute a point cloud of vine canopy
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structure to estimate LAI. Figure 2.17 shows an example of a DSM obtained from 2D nadir
images. Gatziolis et al. (2015) used a multi-rotor UAV to capture images and achieve 3D
reconstructions of trees with SfM algorithms. SfM techniques are becoming increasingly used
due to their cost-effectiveness in comparison with expensive systems such as LiDAR. More
recently, Thiel and Schmullius (2017) compared point clouds from UAV images with those
created from LIiDAR systems over a forested area and showed that the photogrammetric
accuracy compares well with LiDAR, yet the density of surface points is much higher from
images, which is of particular importance for the detection of small trees. Alternatively, there
are other valid techniques for 3D reconstruction that are getting increasingly accessible, like
the ones based on stereo cameras (Frankenberger et al., 2008; Eija Honkavaara et al., 2013).

Wallace et a. (2016) carried out a comparison of airborne LiDAR scanning and SfM. Both
methods proved to be capabl e of providing useful information about canopy and terrain in areas
with low canopy closure. However, LiDAR outperformed SfM in capturing terrain under denser
canopy cover. Diaz-Varelaet a. (2015) worked with SfM-based DSMs to estimate olive crown
parameters such as tree height and crown diameter, in continuous and discontinuous canopy
cropping systems. The estimation of crown parameters presented a high compliance with the

real measurements.

Figure 2.17. Digital surface model (DSM) of a UTAD’s vineyard determined in the post-processing stage of a
flight with an UAV carrying an optical sensor.

Different applications are provided in the next section depending on the application area:
agriculture, forestry or both.
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2.5. Applications

UAS provide high-resolution aerial imagery opening new cost-effective horizons that are
capable of tackling the traditional and expansive remote sensing platforms such as manned
aircraft or satellites. In this section, some of the works that constitute the state of the art on
applicationsrelying on UASwill be reviewed to provide abetter insight of the potential of these
unmanned flight devices in agriculture, forestry and related areas, as presented in Table 2.4. In
agriculture, the main applications include crop monitoring, invasive weed mapping, water
status estimation, biomass estimation, chlorophyll estimation and nitrogen estimation. For
forestry applications, bellow forest canopy mapping, forest inventory, measuring and
monitoring structural forest properties, forest fire detection and monitoring have been explored
by the use of UAS. There are also applications common to both areas such as land-use

classification, wildlife detection and vegetation height maps.

2.5.1. Agriculture

UAS-based remote sensing can help determining plant parameters as leaf area index, canopy
cover and volume. UAV's provide flexibility to assess crop parameters as vigour, quality and
yield estimation which is needed to be measured during the whole growing season, as presented
in Ballesteros et al. (2015). For parametersthat are hard to detect with visible spectrum sensors,
hyperspectral sensors are more suitable. These sensors enable the acquisition of imagery data
with very high spectral and temporal resolutions, which is especialy adequate for disease
detection in early stages (Calderdn et al. 2015) or precision agriculture (Candiago et a. 2015),
reducing future losses. Farmers’ interests are to have healthier crops and, at a same time, to
manage resources (e.g. water and pesticides) in an efficient way. This can be provided by UAV's
data to create maps for better crop management (Ballesteros et a. 2015). These maps are
adequate to expose problems asirrigation, soil variation, fungal or pest investigation.

Usualy, NIR sensors are not used separately, but in combination with RGB sensors or as a
component in multispectral sensors. Navia et a. (2016) used multispectral imagery acquired
from a multi-rotor UAV to generate multispectra mosaics computed with NDVI, to assist
farmers in the assessment of plant health monitoring. Lukas et a. (2016) compared the basic
growth parameters obtained from a fixed-wing UAV equipped with a NIR camera and from
Landsat 8. Both methods showed a high correlation with ground spectrometer measurements
of biomass and nitrogen content but the satellite data had a coarse resolution. Kalisperakis et
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al. (2015) used different UAS imaging sources, more specifically, hyperspectral, RGB
orthophotos and 3D crop surface modelsto access LA estimation in vineyards. The comparison
between estimated LAI and ground truth LAI measurements showed that the lowest correlation
rates occurred from RGB orthophotos. On the other hand, the highest correlation was noticed
in hyperspectral data and 3D crop surface models.

Table 2.4. UAS-based remote sensing applications on agriculture, forestry and common to both areas.

Application Main objective References

(Balesteros et a., 2015; Berni, Zarco-Tejada,
Suarez, et al., 2009; Rocio Calderdn et a., 2015;
Candiago et al., 2015; Comba et a., 2015; Diaz-
Varela, de la Rosg, et al., 2015; Kalisperakis et al.,
2015; Lukas et d., 2016, 2016; Navia et a., 2016,
2016; Nebiker et a., 2008; Jacopo Primicerio et al.,
2012; Suomalainen et a., 2014; J. Torres-Sanchez et
a., 2014, 2015; D. Turner et a., 2011)

Crop monitoring

Invasive weed mapping (D. GOmez-Canddn et al., 2013; Pefia et al., 2013)
(Balujaet a., 2012; Bellvert et a., 2013; Bellvert &
Agriculture Water status estimation Girona, 2012; Park et al., 2015; Pablo J. Zarco-Tegada
eta., 2012)
. o (Bendig et d., 2014, 2015; Eija Honkavaara et al.,
Biomass estimation 2012, 2013, 2013; Pslonen et al., 2013)
Chlorophyll estimation (Uto et al., 2013; Pablo J. Zarco-Tejada et al., 2012)
Nitrogen estimation (Caturegli et a., 2016; Polénen et a., 2013)
Bellow forest canopy mapping (Chisholm et al., 2013; Getzin et d., 2012)
Forest inventory (Rokhmana, 2015; Luke Wallace et d., 2012)
Forestry Measuring and monitoring structural ~ (Gatziolis et a., 2015; L. Wallace, 2013; Luke
forest properties Wallace et al., 2016)
Forest fire detection and monitoring  (Merino et a., 2011)
Land-use classification (Laglielaet al., 2015)
Agriculture Wildlife detection (Israel, 2011; Ward et al., 2016)
&gForectr (Balesteros et al., 2015; Bendig et a., 2015;
y V egetation height maps Mathews & Jensen, 2013; Suomalainen et a., 2014,

D. Turner et a., 2011)

Another application area in agriculture is invasive weed mapping. A study to distinguish the
invasive weeds from other crops was carried out by Pefia et al. (2013). It consisted on detecting
weed in early stages of maize using a six-band multispectral camera attached to an UAV in
which the applied OBIA procedure computed multiple results and statistics that could be
exported in the form of weed maps, vectors or table file format and provide relevant
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information. Another study to distinguish crops from invasive weed was carried out by Gémez-
Candédn et a. (2013) in wheat.

Water status estimation is atask that can be performed by UAV s with quick turnaround times.
Bellvert et al. (2013) demonstrated the feasibility of using high resolution thermal imagery for
irrigation management across vineyards for precision agriculture purposes (optimal irrigation).
According to Bellvert et al. (2013) the best time of the day to acquire thermal imagesis around
noon, because there is an ailmost complete absence of shadow effects and, consequently, the
sensitiveness for the identification of water stress problemsis higher. Multispectral and thermal
imagery was applied by Balujaet a. (2012) and Bellvert and Girona (2012) to determine water
status variability in vineyards. This data can be used for better irrigation management in a
vineyard parcel scale. Zarco-Tejada et al. (2012) addressed the detection of water stressin a
citrus orchard by using fluorescence, canopy temperature and narrow-band indices, from data

acquired by a micro-hyperspectral and athermal camera.

Biomass estimation was studied by Bendig et al. (2014) with vegetation indices and plant height
maps derived from RGB imagery on barley. Three vegetation indices were computed, with the
main issue of the visible band being reliable only in early growing stages. However, combining
the vegetation indices with plant height by using multiple linear regression or non-linear

regression models, a better performance was achieved, in comparison with the indices itself.

Chlorophyll estimation was addressed in the study carried out by Uto et al. (2013) focusing on
the estimation of rice chlorophyll density, based on low altitude flights carried out by an UAV
equipped with a hyperspectral sensor. Experimental results showed that the chlorophyll density
can be estimated with high accuracy, even under unstable light conditions. Suomalainen et al.
(2014) developed a hyperspectral sensor based on low-cost components, to apply it on multiple
types of crops. Chlorophyll concentration was examined using Red Edge-based indices. Martin
et al. (2015) used hyperspectral sensing to investigate the relation between leaves chlorophyll
atb concentration and grapes composition in vineyards affected by iron chlorosis and to assess
if the leaves chlorophyll concentration acquired from hyperspectral images could be useful to
map potential quality zones in these vineyards. The results suggest a promising application for

predicting grapes’ quality in vineyards affected by the iron chlorosis.

Caturegli et a. (2016) focused on the estimation of nitrogen status in turfgrass. This kind of

knowledge can lead to both economic and environmental benefits inasmuch as it enables the
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balanced application of fertilizers. Also, pesticides are extensively applied for eliminating pests
and weeds infesting the crops. P6lonen et al. (2013) were able to estimate both biomass and

nitrogen content with a hyperspectral sensor and a machine learning approach.

2.5.2. Forestry

Getzin et al. (2012) used afixed-wing UAV to take aeria images of aforest aiming the further
examination of canopy gaps and the assessment of thefloristic biodiversity existent in the forest
understorey. The obtained images led the authors to conclude that detailed, spatialy implicit
information on gap shape metricsis sufficient to reveal strong dependency between disturbance
patterns and plant diversity. Chisholm et al. (2013) conducted a trial with a LIDAR mounted
on an UAV for mapping the forest below the canopy. The main goals were to map tree stems
and to measure the diameter of treesat breast height (DBH). The LiDAR aong with adevel oped
algorithm enabled the detection of treesin flights of 3m that took place 20cm above the DBH.

To calculate wood stock of ateak wood forest in Indonesia, Rokhmana (2015) used orthophoto
mosaics and 3D models. The main prerequisite for this task was to distinguish individual trees
so its height could be measured aswell as the canopy diameter. Asit was previously mentioned
in Section 2.4.4, LiDAR isagood tool for the accurate extraction of 3D data. The comparison
between tree canopy mapping and photogrammetric SfM was already addressed in Wallace et
al. (2012), showing that LiDAR outperforms SfM in bellow canopy mapping.

Gatzioliset a. (2015) were ableto reconstruct 3D models using RGB camerasfrom UAV aong
with SfM algorithms. This methodology can be applied to individual or to a group of trees
providing useful information related, with for instance tree growth among time.

Merino et al. (2011) developed an UAS for automatic forest fire monitoring and measurement.
It was based on multiple UAVs and a central station. The main payload consisted in infrared
and visual cameras which extract fire related features

2.5.3. Agroforestry

There are tasks that can be applied in both agriculture and forestry. The case of generation of
thermographic mosaics and thermographic DSMs from thermal sensors attached on a low-cost
multi-rotor UAV were used (Lagiela et a. 2015). Although agroforestry was not the primary
focus, the methodology can be extended to land use classification and water management

according to the thermal response of objects.
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Industrialization of agriculture brought many benefits but also an increased danger for wild
animals living in agroforestry areas. Israel (2011) presented a light weight infrared thermal
sensor attached to an UAV which is capable of preventing many fatalities among the roe deer
fawn communities on meadows and pastures, caused by machines. Ward et al. (2016) took the
concept even further and created a system that can autonomously detect animals, determine
their coordinates and generate maps displaying their locations ahead of the user. They have
proved the effectiveness of UAS over ground-based techniques like cameratraps or surveys on

foot.

Vegetation height maps can be applied in agriculture or forestry areas. Severa studies were
conducted making good use of thisinformation for creation of crop surface models (Bendig et
al., 2014; Mathews and Jensen, 2013) or even to forest canopy cover (Wallace 2013).

2.5.4. Recommendations towards UAS platform selection

Table 2.5 presents budget estimations for the acquisition of an UAS according to the coverage
area and the sensor type, which is influenced by the intended application. For large areas
(greater than 50 ha) a fixed-wing UAV is recommended due to the ability of quicker area
coverage; on the other hand, a multi-rotor UAV is more suitable for smaller area coverage.
However, the usage of a fixed-wing UAV requires a large space to perform safe landing
operations—at least an area of 20 by 100 metres (for linear landing)—which is a drawback of
thistype of UAV. A practical exampleisthe Douro wineregion in Portugal, where the vineyard
layout disposed in slopes along the river Douro makes the landing task challenging due to the
lack of secure areas to accomplish it. Complementary to Table 2.5, Figure 2.18 illustrates the
process of selecting the most appropriate UAS and sensors for the required task.

Essentially, rotor-based UAS are used to cover small areas whereas the fixed-wing UASs are
more suitable for being applied in wider aress, as detailed in Table 2.5. On the other hand, the

use of sensors is highly dependent of the application’s purpose.

On the subject of forestry applications such as inventory and canopy mapping, the usage of
LiDAR sensors represents an effective tool capable of gathering data below canopy. When it
comes to perform forest fire monitoring and wildlife detection, thermal sensors are a suitable

option, while for determining burned areas in post-fire scenario multi-spectral sensors can be

applied.
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Figure 2.18. Diagram depicting an appropriate selection of a UAS platform—including UAV and sensor—
depending on the area of application and the task.

To obtain vegetation height maps, optical sensors are a plausible choice, because of their ability
to process the acquired images using SfM a gorithms and the cost-effectiveness comparatively
to sensors like LiDAR. Crop monitoring aong the whole growth season can be performed
through multispectral sensors which seem to present the most compromise between cost and
effectiveness. In spite of it, other sensors can also be applied to do crop monitoring related
tasks. For those who are interested in biomass estimation, optical sensors might be a good
choice. Multispectral sensors can be applied to map invasive weeds and nitrogen estimation.
Whilst the first results from post-flight image processing agorithms (e.g. OBIA), the latter is
by providing fertilization maps.

Disease detection and identification have a significant importance in agricultura applications,
either for resource optimization and/or timely actions for preventive purposes. Thus, and
notwithstanding the costs, hyperspectral sensors are recommended even for early stage disease
detection. Alternatively, depending on the crop type and disease, multispectral sensors can be
used. Hyperspectral sensors are aso suitable for chlorophyll estimation through narrow-band
VI calculation on the acquired data, accordingly to the addressed studies.

Finally, water status can be estimated through a set of spectral VI that are calculated to
determine vigour, based on data acquired from multispectral or optical sensors, yet thermal
sensors can provide this type of datain afaster way, although some cautions concerning day
time must be taken due to effects of shadows, according to Bellvert et a. (2013). Thereby, itis

recommended to use these sensors when the sun heading is at, approximately, 180° (solar noon).
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Table 2.5. Recommended UAV platforms for different agroforestry applications and respective estimated budgets.
Each UAV platform considers a UAV type (fixed-wind or multi-rotor) and an attachable sensor (Optical,
Multispectral, Hyperspectral, Thermal and LiDAR).

Area of application Coverage Recommended Recommended Estimated
P area sensor (s) UAV budget (Euros)
Crop mornitorin Large Multispectral Fixed-wing 25 000
P 9 Small Multispectral Multi-rotor 10000
Disease detection and Large Hyperspectral Fixed-wing 120 000*
identification Small Multispectral Multi-rotor 10 000
. : Large Multispectral Fixed-wing 25000
Invasive weed mapping Small Multispectral Multi-rotor 10 000
N Large Thermal Fixed-wing 35000
Water status estimetion small Thermal Multi-rotor 15 000
. N Large Optical Fixed-wing 20000
Blomass estimation Small Optica Multi-rotor 2000
N Large Hyperspectral Fixed-wing 25 000
Chiorophyll estimation Small Hyperspectral Multi-rotor 10000
Bellow forest canopy Large LIDAR Fixed-wing 30000
mapping
Forest inventory Large LIDAR Fixed-wing 30000
Measuring and monitoring ) ,
structural forest properties Large LIDAR Fixed-wing 30000
Forestfire detection and Large Thermal Fixed-wing 35000
monitoring
Post-fire burn area estimation Large Multispectra Fixed-wing 25000
Wildlife detection Small Thermal Multi-rotor 8000
. N Large Multispectral Fixed-wing 25 000
Nitrogen estimtion Small Multispectral Multi-rotor 10000
V egetation height maps Small Optical Multi-rotor 3000

Small areas up to 50 ha; Large areas between 50 ha and 5km?; The estimated budged includes UAV + sensor + processing
software; * the prices have been decreasing

Table 2.6 provides an overview of the reviewed studies regarding the main objective and
conclusions, along with the used UAV types and the used sensors. It is noteworthy that fixed-
wing UAVs are widely applied to land use classification, water assessment or even to provide
data towards the optimization of agricultural tasks (e.g. crop management and pesticide
administration) through the use of optical, thermal, multi and hyperspectral sensors. Most of
the reviewed studies preferred multi-rotor UAVs that can vary the specified set of sensors to
perform fire monitoring, canopy development assessment, detection of vineyard rows, etc. and
also because they are usually cheaper and more flexible for demonstrative/scientific studies.
Notwithstanding the great number of successful approaches, there is an important aspect that
should be retained: the specifications of each platform (in terms of area covering, flight time
durability, payload capacity) should be attended along with the recommendations left on this
paper inasmuch as they intend to represent general guidelines to prevent unnecessary costs for
mission accomplishment or potential failure in performing the required surveys in demanding
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situations. In the way that a fixed-wing UAV for water status assessment in a small crop area
could be exaggerated, a regular rotor-based UAV could be time-consuming at monitoring

biodiversity in an extensive forestry area due to the lower autonomy in terms of flight time.

Regarding UAV sensors, whilst the RGB sensors are suitable to find features within a certain
area (e.g. vineyard rows detection, tree crown size estimation), to estimate LAl for green
vegetation and invasive weed mapping. The infrared, multispectral and hyperspectral sensors
are specialized in identifying the presence/absence of certain components or materials (e.g.
disease detection, water status estimation) within a scene through reflectance analysis and
processing at certain wavebands that can range out of the visible spectrum. LiDAR sensors can
provide accurate measurements through laser pulses targeting land objects (e.g. vegetation
height determination). The cost/task-effectiveness binomial has a relevant role when it comes
to select atool for dataextraction. If the precision on estimating the presence of acertain feature
in the environment (e.g. vineyard disease) is required, the use of a hyperspectral sensor should
be considered. In an alternative scenario, when alow-budget system is required, for instance to
produce 3D models of a certain culture for analysing different development stages, an RGB
camera allied to photogrammetric techniques will be sufficient (despite the probable loss of
information—e.g. soil—over the obvious, but usually expensive, LiDAR sensor).

Table 2.6. Compilation of the reviewed studies presenting their respective main objectives and conclusions and
UAYV type and sensors used in each case.

o ) . UAV type Used sensors
Reference Objective Main conclusion
FW RB O T M H L
(Laglela et . Successful land use classification (buildings, tall
Land-use classification . . ° °
al., 2015) vegetation, short vegetation).
(Jacopo . ) ) )
o Producing of vigor maps of Results highly correlated with ground truth
Primicerio et . . °
vineyards based on NDVI spectrometer.
a., 2012)
) Use canopy gapsin forests to ) o .
(Getzinet a., T ] High-resolution imagery can effectively assess
assess floristic biodiversity of S ° .
2012) biodiversity in temperate forests.
the forest understory
3 Assess the parameters that . . . .
(D. GOmez- Different altitude intervals did not show large
j affect the accuracy of . . . .
Candon et al., . differences in accuracy in generation of ) .
orthomosaics. Early weed .
2013) L orthomosaics between (30 to 100m).
mapping in wheat
(Balujaeta., Assessment of water status Both multispectral and thermal methods were
[ ] [ ] [ )
2012) variability in vineyards successful
Detection of roefawndeeron  Field campaigns confirmed reliable real-time
(Israel, 2011) ) °

meadows

manual fawn deer detection.
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o ) ) UAV type Used sensors
Reference Objective Main conclusion
FW RB O T M H L
Detection of animals and
(Ward et a., . . . . Successfully tested and development of a
displaying their location on a . . ) °
2016) smartphone app integrated with the system.
map
(Bendig et Barley biomass monitoring Optical images were highly suitable for deriving
endi
a 2034) by combining plant height barley plant height from CSM for biomass ° .
h and vegetation indices estimation
UAVs provide flexible on-demand multiple
(D. Turner et . . sensor data for the whole growing season and
Vineyard mapping . . . L . g e o o
al., 2011) especially for the critical times with high spatial
resolution.
Evaluation of multiple
(Candiago et vegetation indices for The VI were computed based on pixel values and
[ ] [ ]
al., 2015) precision agriculture delivered mainly qualitative results.
applications
(E. Combination of hyperspectral ~ Successful implementation of the use of
Honkavaara  imagery and point clouds for hyperspectral reflectance mosaics with point ) . °
etal.,2012)  biomass estimation clouds for biomass estimation.
Development of alow-cost
(Utoeta., light hyperspectral sensor for Experimental results proved that chlorophyll
[ ] [ ]
2013) chlorophyll estimationinrice  densities can be estimated with high accuracy.
paddies
Leaf areaindex, green canopy  The developed work could be useful in decision
(Ballesteros ]
etal., 2015) cover and volume support to improve crop management, and ) .
K characterization of vineyards ~ optimize usage of pesticides and fertilizer.
Comparison of basic growth . .
. Both methods showed a strong correlation with
(Lukasetal., parameters of winter wheat .
. ground spectrometer measurements but satellite o .
2016) obtained from UAV and ; ) )
. imagery provided a smaller resolution.
satellite
(Combaet . . Successful detection of winerowsin grey scale
Vineyard row detection ) ) ) ° .
a., 2015) images obtained from a multispectral sensor.
(Nebiker et Producing of vigor maps of Results highly correlated with ground truth
[ ] [ ) [ )
a., 2008) vineyards classification.
(Pefiaet al., o . The algorithm efficiently identified crop rows,
Weed mapping in maize . . .
2013) inner row weeds were successfully detected.
) ) o The knowledge of the nitrogen status can lead to
(Caturegli et Nitrogen status estimation in ) . .
both economic and environmental benefits by a ° ° °
a., 2016) turfgrass o B
reasonable application of fertilizers.
(Naviaet a Multispectral orthomosaic Calculated NDVI showed that it can determine
aviaetal.,
2016) generation and NDV | weak spotsin crop areas and also see change in ) .
calculation plant health over time.
(Rokhmana,  Teak wood forest stock o
o Successful wood stock estimation. . .
2015) estimation
. . Results showed that the radiometric uniformity
- Biomass and nitrogen content S . :
(Polonen et . amongst individual images forming the image
estimation of wheat and . ) . o . °
al., 2013) barl mosaics had impact the biomass estimation
ar
¥ quality.
A lightweight hyperspectral mapping system
) Development of a o
(Suomalainen was developed specifically for rotor-based UAV
hyperspectral sensor and . ] ° °
eta., 2014) and presented the potential for agricultural

evaluation on various types of

mapping and monitoring applications.
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R . . UAV type Used sensors
Reference Objective Main conclusion
FW RB O T M H L
crops for orthomosaics and
vegetation height maps
(Chisholmet  Bellow forest canopy The UAV-measured DBH estimates were
[ ] [ ]
a., 2013) mapping strongly correlated with the human-based ones.
(Luk Development of alow-cost Comparing with LIDAR sensors used in other
uke
UAV LIDAR sensor applied remote sensing platforms UAV-borne LiDAR
Wallaceet ) . ) . ° ®
4., 2012) in forest inventory produced point clouds with only slightly worse
h applications accuracies but with much higher point densities.
) o Airborne laser scanner got better resultsin
Measuring and monitoring . )
(Luke . penetrating the upper canopy and vertical
structural properties of forests o . -
Wallace et o distribution of vegetation. SfM lacked the ability . . .
with airborne laser scanner )
a., 2016) . to penetrate dense canopy parts, which resulted
and SfM techniques ] B ]
in a poor definition of the mid and under-store.
(Bendiget Estimating biomassin barley ~ Visible band indices showed a better ability to
endi
o 2035) using vegetation indices and model biomassin early growth stagesin ) .
b plant height information comparison to late growth stages.
(Pablo J Water stress detectionin The experiment enabled water stress detection
0J
. citrus orchards using assessment by using crown temperature, visible
Zarco-Tejada ) e ° °
etal., 2012) hyperspectral imager and and NIR narrow-band indices and chlorophyll
K thermal camera fluorescence.
(Bellvert et Generating mapsusing CWSI  Demonstration of the viability of thermal
ver
A, 2013) for precision irrigation imagery for detecting the level of water stressin ) o o
h management in vineyards vineyards.
(Roci The results demonstrated that the developed
ocio
) Automatic methods for early methods at orchard scale are validated for flights
Calderén et . ] . o . . . .
a., 2015) detection of plant diseases in large areas consisting of olive orchards with
B different characteristics.
) The vine row detection algorithm achieved
Automated detection and . e
. . average precision and sensitivity results. Some
segmentation of vine rows . .
(A. P.Nolan ) . . sections of vine rows have been falsely
using high resolution UAS . . . . d ®
eta., 2015 ) . classified as being non-vine row pixels, dueto
imagery in acommercial ) AT
. overhanging trees, shadows or initial binary
vineyard . ) Lo
segmentation discontinuities.
(Mathews&  Using SfM to model vine Measured LAI of vine canopy had good results
[ ) L]
Jensen, 2013)  canopy structure with metrics.
o . The lowest correlations against the ground truth
Estimating crop LAl using .
) ) data were derived from the calculated greenness
(Kalisperakis  hyperspectral data, 2D RGB .
. levels from the 2D RGB orthomosaics. The . ° °
eta., 2015) mosaic and 3D crop surface . . .
dd highest correlation rates were established for the
models
hyperspectral and the 3D canopy levels.
Quantification of spatial Among different tested vegetation indices, the
(Wehrhanet  patterns of fresh phytomass EVI got the highest correlation between ground-
[ ] [ )
al., 2016) and its relation to carbon based measurements of fresh phytomass of
export of lucerne Lucerne.
(Berni,
Zarco- Vegetation monitoring The obtained results make this platform suitable
Tejada, through the use of thermal for anumber of applicationsincluding precision ) o o
Suarez, eta., and multispectral sensors farming and irrigation scheduling.
2009)
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o ) ) UAV type Used sensors
Reference Objective Main conclusion
FW RB O T M H
(Belvert & Usage of multispectral and It was demonstrated the viability of high-
Girona, thermal images for irrigation resolution thermal imagery for detecting the ) )
2012) scheduling in vineyards water stress level in grapevines
(J. Torres- Early-season crop monitoring  The EXG index is most suitable to calculate
Sénchez et in wheat using vegetation early stages crops with accuracy and spatial and ° .
al., 2014) indices temporal consistency.

. . An automatic thresholding for vegetation
Detection of vegetation in

(J. Torres- classification was achieved based on OBIA
j early-season herbaceous ) o o
Sénchez et . algorithm. Demonstrating its ability to ° . .
crops (maize, sunflower and .
al., 2015) heat) automatically select a threshold from gray-level
wi
histograms.

The mapping of spatial variability of nectarine
(Park et a., Estimation of crop water appIng of y

] . water stress was proved to be effective and an ° °
2015) stress in a nectarine orchard

optimal tool to help in irrigation management.

Investigating the use of UAV- ) o )
UAV-LiDAR datais suitable for usein
borne LIDAR systemsasa

(L. Wallace, . monitoring changes in the canopy structure. The
platform to gain knowledge )
2013) T method based on alpha shapes was the most
of the canopy structure within
: stable across repeat measures.
forested environments.

Developing an affordable
o . The developed work proved to be capable of
o method for obtaining precise ) B )
(Gatziolis et J chensive 3D handling most conditions encountered in
and comprehensive ° .
., 2015 practice to deliver detailed reconstruction o
a., 20 P ice to deliver detailed ion of

models of trees and small
groups of trees

trees.

Fundamental need to devel op reliable methods
for the geometric and radiometric processing of
huge numbers of small, overlapping images as
(Eija Investigating the processing 9 . aping ‘ag
. . well as developing all-weather processing
Honkavaara  and use of UASimage datain ] ) ° °
o ) technology in order to take full advantage of this
etal., 2013)  precision agriculture .
new technology and to make this technology
operational in practical applications was
identified.
Comparison between reference field
measurements and remote sensing estimation of
Diaz-Varela  Estimating of olive crown crown parameters confirmed as a good solution
eta. (2015)  parameters in terms of performance and cost-effective
alternative for the characterization of the olive

tree crown in discontinuous canopy.

The use of compact digital

(Mathews, camerasto remotely estimate ~ There was found that the red and NIR bands
[ ) L]
2015) spectral reflectance based on were the most accurate at estimating reflectance.
UAYV imagery.
A system for fire monitoring was devel oped,

(Merino et s . based on several UAV's and a central station.

Automatic fire detection . ) . o o
al., 2011) Infrared and visual cameras were the main

payload used for the environment perception.

FW - Fixed-wing; RB - Rotor-based; O - optica; T - thermal; M - multispectral; H - Hyperspectral; L - LiDAR.
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2.6. Conclusion

This survey presents a brief comparison of remote sensing platforms, their pros and cons, and
how UASs can complement the established manned aircraft and satellite platforms. Most
common types of UAV's and sensors are also presented aside with processing methods and
applicationsin agroforestry. This study provides agroforestry professionals with information to
assist them in choosing the most suitable UAS for their remote sensing purposes. To achieve
this, recent studies were reviewed with the focus on UAV types, sensors, data processing and

applications in agroforestry.

Before selecting a proper UAS, the end-user should understand the capabilities and the
restrictions of the available systems regarding not only the kind of results that are expected, but
also what to do with them since mosaics, digital surface models, vegetation indices, etc., are
not the final products but resources for further goals. UAS-based remote sensing in precision
farming and forestry aimsto provide the adequate decision support, which hasacrucial rolefor
the management optimization of farms, woodlands and other similar territorial areas.

Nowadays, farmers and foresters are dependent on companies to perform the processing and
presentation of agroforestry-related information, sometimesin away that will not fulfil the end-
user needs. The next step of this ongoing revolution will focus in the development of user-
friendly interfaces where just a few parameters are required, releasing the user from a deeper
knowledge on data processing, allowing agroforestry professionalsto perform interpretation of
collected data by UAS in an autonomous and easy way. Our research group is already
devel oping effective solutions allowing the professional's an autonomous analysis.

Better data processing software working with different sources of tempora and spatial data
(e.g. meteorologica and environmental) for a more effective decision support regarding
agroforestry applicationswill also appear in the near future. Ideally, the future of both precision
agriculture and agroforestry remote sensing would be to have the UAV's platforms constantly
sensing the environment and sending the resulting data to intelligent entities (centralized or
distributed) that control actuators to optimally solve eventual issues such as the lack of water
or disease detection in a complete solution of Internet of Things for agroforestry. This kind of
proactivity would allow farmers and foresters to be concentrated on the fina products and

servicesinstead of being concerned with the middle-level processes.
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Summing up, UAS platforms with the addressed sensors are going mainstream and its
importance for decision support is getting increasingly relevant for researchers, farmers,
foresters and related business professionals as innovative techniques are being devel oped for a
sharpen optimization of the agroforestry underlying processes. DroneDeploy (2016) use case
statistics confirm that agriculture, including forestry, is the leading application in the UAS
market and Simelli and Tsagaris (2015) refer that by 2018, the usage of UAS will continue to
grow with increasing affordability and autonomy. In spite of the fact that the UAV can fly
autonomously, nowadays it is still required the presence of a pilot. The reasons of this are the
lack of device intelligence. Hopefully this issue will be solved in the next years due to the
expansion of UAS usage in many sectors and mainly because of the progress of the artificial
intelligence, which is capable of providing the autonomous decision support to those devices
including law awareness. The optimal scenario of using UAVs s the entire automated process
from taking off the vehicle to the processing the data and turning on the pro-active actions. In
the agricultural industry, the UAV would do theflightsin the area of interest whenever it would
be needed, based on previous flights. The collected datawould serve as information for another

automated machines like irrigation systems or intelligent pesticide sprayers.
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3.1. Introduction

Unmanned aerial systems (UASs) alow professionas, acting in different areas of society, to
capture up-to-date, high resolution, and accurate positional datathat may be used for generating
advanced data products—such as 3D point clouds, orthomosaics (orthophoto maps), digital
surface models (DSMs) and vegetation indices—which are very useful for classification and
segmentation. As occurs in many other technological fields, the number of applications is
increasing every day, causing arapid increasein UAS usage around the world, with exponential
growth expected in the coming years (Ermacoraet al., 2014; Oleire-Oltmanns et a., 2012).

The main factors supporting this growth are related to the: (1) increasing awareness about the
benefitsthat thiskind of technology can bring to awide range of industries and non-commercial
sectors; (2) introduction of relatively low-cost systems, and user-friendly controls, as well as
general technological advancements and miniaturization of individual components and; (3) the

introduction of pragmatic and business-friendly UAS legislation.

According to the Association of Unmanned Vehicle System International (AUVSI), the
integration of UASs into the United States national airspace in the decade 2015-2025 is
expected to create more than 100,000 jobs and generate an economic impact of $82 billion
(Jenkins & Vasigh, 2013).

Asanew method of geo-data collection, UASs complement existing techniques, filling the gap
between large area imaging (satellites and manned aircrafts) and smaller coverage, time-
consuming, but highly accurate terrestrial techniques (Padua, Vanko, et al., 2017). Compared
to high altitude data, UAS datais fairly low cost, with the advantage of allowing frequent and
flexible flights (Alessandro Matese et al., 2015). UASs are thus very useful when small and
medium-sized land parcels need to be frequently surveyed, allowing arapid response option for
time-sensitive deliverables, disaster situations, or search and rescue operations.

Moreover, the use of UAS brings the benefit of performing inventory analysis based on the
collection and archive of aerial imagery, allowing temporal comparison. Recently, multi-
tempora analysis has been explored by severa authors (Atzberger, 2013; Mirijovsky &
Langhammer, 2015; Tanteri et a., 2017). In contrast, traditional aerial methods of data
acquisition (e.g., satellites and manned aircrafts) may be limited for this type of analysis, due
to the high cost involved in obtaining repeated imagery (Jomaa et al., 2008).
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Giventheir very specific characteristics, UASs have been progressively used in several research
applications, covering a growing diversity of fields that range from public safety (Niethammer
et a. 2012) and infrastructures inspections (Cho et a., 2015), to environmental
conservation/preservation (Dooly et a., 2016; Funaki et al., 2014; 1. L. Turner et a., 2016),
agriculture (Candiago et al., 2015), and forestry (Lisein et al., 2013). It is precisely in the | atter
for which the greatest economic impacts are expected to occur in the next decade (Jenkins &
Vasigh, 2013). A detailed review of the different types of UA Ss and applications can be found
in the work developed by Colomina and Molina (2014).

Considering the mentioned applications there are two fields of particular interest: (1) forestry
preservation/conservation; and (2) coastal monitoring for prevention purposes. Regarding the
former, diseases and pests cause tremendous economic losses and drastically reduce the quality
of many cultivated crops, as well as wild vegetation species, which is of economic relevance
for respective exploring communities. Therefore, early detection and assessment of crop
symptoms and damage are crucia for plant health (Jiaet a., 2016). When in presence of biotic
stress, the disease’s damage mechanism influences the plants’ physiological response, which
manifests through certain symptoms (e.g., wilting, stunted growth, reduction in leaf/canopy
area, chlorosis or necrosisin some parts, leaf curling), creating some difficulties when trying to
obtain an accurate quantification of the affected plants, usualy by direct observation in the
field. Remote sensing platforms such as the UAS can provide an aternative and cost-effective
method, allowing the application of non-destructive and non-invasive methods to obtain
accurate spatial data for entire crop fields at frequent intervals (Prabhakar et al., 2012). In the
same way, this technology can aid in the prediction and prevention of occurrences related to
coastal environments wherein the water progress—for example, caused by coastal perimeter
degradation (I. L. Turner et al., 2016), may cause serious problems for local businesses and
dwellersas well.

In this paper, two case studies based on the anaysis of multi-temporal data acquired using
UASs are presented. The first study concerns the monitoring of the health status of chestnut
treesin Portugal, particularly in the Padrela region (the north-eastern part of the country). This
region generates the highest production of chestnuts in the country (Instituto Nacional de
Estatistica, I. P., 2016), representing the greatest source of income for the entire region. The
second case study is associated to one of the main chalenges for the next years. the
identification of ways to reduce/reverse the effects of climate change, which are causing
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alterations to natural resources and ecosystem dynamics. The coastal zones are some of the
most affected areas, making sand dune protection an important issue due to their rolein coastal
defense. In fact, sand dunes play a crucia role in fauna and flora protection and provide
sediment supplies to maintain the beaches that, in turn, are responsible for the protection of
coastal agriculture systems and inland areas from storms and the risein sealevel (Chen et .,
2004; Mancini et d., 2013). Therefore, the second study presented in this paper focuses on the
application of UAS multi-temporal datafor monitoring the erosion occurring in coastal zones,
particularly in the Cabedelo area where one of the most important and sensitive natural areas
of Portugal is located: the Cabedelo sandspit, located in the Douro River estuary (Porto,
Portugal). This natural structure is responsible for the preservation of ecosystems and for the
protection of the sand area. Thus, these dunes are crucial for preserving the dwellings situated
on the coastline aswell as those of the local population. In each one of the referred case studies,
flights were carried out at different times under similar conditions—light, temperature, etc. to
ensure radiometric and geometric consistency.

This paper’s main objectives are: (1) to identify the advantages and challenges associated with
the use of areliable, robust and cost-effective solution-using UAS to acquire aerial imagery
data in forestry and coastal monitoring contexts, and (2) to demonstrate this remote sensing
platform flexibility to cover such distinct environments. Moreover, the benefits of multi-
tempora analysis in change detection will also be explored. Five sections comprise this paper:
after thisintroduction, Section 3.2 presents a background on UA Ssincluding historical context,
supported sensors, achievable products, and several applications towards environmental
monitoring. In Section 3.3, the investigation methodology addressing data collection and
processing is presented. Case studies are described in Section 3.4. The paper finishes with

conclusions and future perspectivesin Section 3.5.

3.2. Background

In the last 60 years, with developments in electronics, computing, and remote sensing,
technological has advanced and platforms suitable for aerial data acquisition have been
produced. With respect to this topic, satellites have been the most used system over the past 30
years (Pettorelli et a., 2014). However, its use can represent a high cost when studying small
or medium-sized areas (Alessandro Matese et al., 2015), which occurs in many remote sensing
applications in the scope of forestry and coastal environments. Ponti (2013) suggests the
adoption of an alternative technology, such as UASs. This technology presentsitself asaviable
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aternativeto satellites (Zhang & Kovacs, 2012), mostly because of: (1) the higher temporal (up
to daily) data acquisition and the higher spatial (up to millimetric) resolution of acquired
imagery it typically offers (Lisein et a., 2013; Whitehead & Hugenholtz, 2014); (2) itseasein
terms of scheduling and programming image acquisition operations; (3) itsflexibility to operate
in different environments (often with difficult access); and (4) its versatility, since surveys can
be conducted in different contexts and extensions/heights.

Sensors coupled to unmanned aerial vehicles (UAV s) represent the most important system part,
as it is through them that data will be acquired and, therefore, valuable data products will be
generated(e.g., orthomosaics, DSMs, 3D point clouds, vegetation indices) (Fraser et al., 2016;
Gevaert et a., 2017; Suomalainen et a., 2014; Xieet al., 2008). Sensors are classified as active
or passive and a large variety can be found. Regarding passive sensors, they are used for
detecting natural emissions from both the atmosphere and the Earth’s surface (e.g., red-green-
blue (RGB), near-infrared (NIR), and thermal emissions), while active sensors transmit their
own radiation pulses through their energy sources (e.g., light detection and ranging—LIDAR,
radio detection and ranging—RADAR) (Padua, Vanko, et a., 2017).

The interest in the UAS as a form of remote sensing technology has grown because it alows
user-controlled image acquisition and fills the gap—both in scale and resolution—between
terrestrial observations and conventional manned aircrafts and satellite sensors. It is a cost-
effective solution and enables adapting acquired imagery of the observed objects’ real
dimensions to the monitored processes and to ateration speed within a given
landscape(Laliberte et al., 2011). When compared with traditional remote sensing platformsfor
imagery acquisition, UASs are considered both more effective and accurate when used in areas
up to 10 km? (Puliti et al., 2015).

Despite the many advantages of remote sensing technologies, it is necessary to consider that
there are some factors that may limit their performance, such as (Garcia-Torres et a., 2014):
frame mosaicking, band-to-band registration, natural dynamics (such as atmospheric
conditions), the Sun’s angle, and technical problems (like viewing angle definition or changes
in sensor calibration over time). However, if the best usage/operation practices are ensured at
the pre-processing stage and during image acquisition, such limitations can be mitigated. In
what concerns geographic data acquisition, UAS application is of superlative importance when
addressing areas where access is difficult or dangerous by conventional means. UASs can be

used for several purposes, such as (Jha, 2016; Waitts et al., 2012): spotting, tracking, and
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fighting fires; support in natural disaster scenarios, timely distribution of medication and aid;
air quality monitoring; wildlife surveys (e.g., survey migration flows); crime fighting,
surveillance tasks and other protection-related activities; delivering products; monitoring
natural phenomena so that preventive actions can be taken; 3D mapping; and search and rescue
actions. However, it isworth noting that when measuring and mapping activities are performed,
it isimperative to geocode and geometrically correct the acquired images (Aber et al., 2010).

The number of scientifically published case studies involving UAVs as remote sensing
platforms is growing, making the application of UASs an interesting subject, especially in the
environmental field for tasks such as: weed control monitoring (Gutiérrez et a., 2008); crop
pest management (Y. Lan et al., 2009); Artic seaice and atmosphere monitoring (Fladeland et
al., 2011); soil properties monitoring (Oleire-Oltmanns et al., 2012); vineyard vigor mapping
(Jacopo Primicerio et a., 2012); water monitoring (Gonzalez-Dugo et al., 2013); habitat
mapping (Tamminga et a., 2015); and landslide dynamics (Darren Turner et al., 2015). The
diversity of these contributions clearly shows the increasing importance of UASs for remote

environmental monitoring.

In addition to these scientific contributions, those which involve protection and preservation of
ecosystems’ dynamics in coastal zones and vegetation monitoring are considered especially
relevant to this paper. During the last years, coastal zones have suffered significant erosion,
primarily dueto therising sea action, wind, and storms, mostly triggered by climate change. As
such, beaches have experienced rapid morphologica changes, which meansthat it is even more
important to preserve natural barriers such as sand dunes (Goncalves et a., 2011).
Topographical changes in beaches and natural barriers need to be monitored and assessed on a
regular basis to build models and to simulate scenarios that can help in predicting these natural
environments evolution. Nowadays, UA Ssrepresent avaluable tool to provide datato compute
scenarios and monitor events (Gongalves & Henriques, 2015). For instance, UASswere applied
for quantifying the coastal impact before and after a storm, allowing for the monitoring of the
evolution of a rubble-mound breakwater on the mid-New South Wales Australian coast and
mapping of the vegetation in a coastal estuary entrance (Drummond et al., 2015). Messinger
and Silman (2016) investigated the suitability and application of UASs in environmentd
emergency response, in the case of coal ash spills. In Portugal, thiskind of technology was used
for surveillance and control of maritime traffic, fishing surveillance, and the detection/control
of coastal hazards (E. Pereiraet al., 2009). Hodgson et al. (2013) investigated the conservation
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and management of marine fauna through the application of UAS, to monitor mammal species
population status. Rhee et al. (2017) applied this remote sensing technology on fluvial waters,
with the objective of monitoring riparian vegetation, hazardous aguatic algae blooms and

submerged morphology, and water-surface slope, among other phenomena

Regarding vegetation monitoring, protecting and increasing food and water suppliesfor aglobal
population that is growing quickly and in an exponential manner must be a priority (Abdullahi
et a., 2015). Indeed, crop management becomes a critical factor to maximize yield while
reducing and environmental risks and impacts where UAS platforms have been playing an
important role in this context. Some of applications include tree canopy health mapping in a
macadamia orchard for plantation management purposes (Felderhof & Gillieson, 2012), early
site-specific weed detection in wheat fields (D. Gémez-Canddn et al., 2013), automated crop
lodging detection in maize (Chu et a., 2017), and vegetation filtering for river riparian zones
(Wei et a., 2017).

UAS flexibility increases its applicability for surveying of the same area over time, especially
in very dynamic environments requiring close monitoring, which is not possible—at least, in a
cost-effective manner—by means of other remote sensing platforms. This approach has already
been applied in some studies, where this remote sensing technology has been used to acquire
multi-temporal data with different purposes, in severa types of agricultural crops, such as
barley (Bendig et a., 2013), sunflowers (Vegaet a., 2015), silage maize (Castaldi et al., 2017),
rice (Willkomm et al., 2016), wheat (Du & Noguchi, 2017; Holman et al., 2016), and vineyards
(Ballesteros et d., 2015). In the aforementioned studies, multi-temporal imagery acquisition
gave results that, in some cases, were noticeable only after a certain vegetative cycle stage of
the studied crops. Moreover, this approach was already employed in coastal environments
(Long et a., 2016), assessment of landslides displacements (Lucieer et al., 2014), and in

monitoring of forest growth and biomass estimation (Guerra-Hernandez et al., 2017).

Thus, applying UA Ss can be advantageous for monitoring certain areas, sinceit allowsto assess
them and to identify potential problematic zones, and/or to evaluate implemented
mitigation/prevention measures in an effective way. The next section will address the
methodol ogy used in the two case studies presented in Section 3.4, which benefit from the usage
of multi-temporal UAS-based imagery.
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3.3. Methodol ogy

This section describes the methodology used in the presented case studies. The applied
methodology was similar for both studies and consists essentially of two phases: (1) field work-
data collection by acquiring high-resolution images using UASs and, when necessary, some
ground control points (GCPs); and (2) data processing-manipulation and analysis of the
collected data (through specific software) to produce valuable and meaningful information.
Since atmospheric influence is of minor impact while using UASs for land surveying (Padua,
Vanko, et a., 2017) and also because conditions—e.g., light and temperature—were
consistently ensured between flights, radiometric corrections were considered negligible for
both addressed case studies (monitoring of Padrela’s chestnut trees and Cabedelo’s sandspit)
and, thus, they were not performed. These stages are further described in the following

subsections.

3.3.1. Data collection

The selection of aUAYV for data acquisition isinfluenced by the specificities of each case study.
In that selection, some characteristics have to be considered: ground sample distance (GSD);
minimum coverage; ability to be deployed in rugged terrain, ability to operate from unprepared
surfaces and in constrained conditions; autonomy of at least 30 min; being easy to carry over
long distances; ease of simple field maintenance and reparability; reduced environmental
emissions and noise signature; and reliable and low cost. The UAV's used in the case studies
presented in this paper are described in Section 3.4. All flights were conducted in parallel rows
with the minimum longitudinal overlap of 75% and lateral overlap of 60% (Long et al., 2016).
The flights were planned by using specific software, wherein the user defines the area of
interest, flight direction, longitudinal and lateral overlapping, and pixel-size on the ground
(GSD) (Figure 3.1).

Theimagery used in this study was collected using the Canon IXUS 127 HS camera (16 mega-
pixels) and the Canon PowerShot ELPH 110 HS camera (12 mega-pixels). Theformer provided
the possibility of collecting imagesin the visible part of the electromagnetic spectrum, i.e., red-
green-blue (RGB) bands, while the latter allowed the collection of imagery in RedEdge (RE),
green and blue bands. RE is the spectral region where the plant’s reflectance changes from low
to high (from 680 nm to 730 nm) while RGB acquires data in the visible spectrum (from 380
nm to 700 nm).
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Figure 3.1. Planning a mission using eMotion software (senseFly SA, Lausanne, Switzerland) adjusting al the
required parameters (e.g., lateral and longitudinal overlap, ground resolution).

The used UAVs’ navigation system includes a global navigation satellite system (GNSS)
receiver, with apositional accuracy of afew meters. The direct georeferencing achieved by this
equipment does not follow the image’s pixel resolution, enabling only an approximate location.
Therefore, it is necessary to refine the external orientation through the support of tie points
included in the automatic aerial triangulation processes. Ideally, these points must be uniformly
distributed throughout the surveyed area, because parts that are not properly covered by GCPs
are prone to more significant errors (Jianghao Wang et a., 2012), since the determination of an
image’s exterior orientation will mainly rely on conjugate points between overlapping images.
In general, UAV cameras are non-metric (including moving parts), and usually require a self-
calibration in the bundle adjustment (Fryskowska et al., 2016). Correlation between exterior
and interior orientation parameters (e.g., flying height and focal distance) may lead to model
deformations (James & Robson, 2014), which in some cases may not be obviously detected.
Not only should there be good GCPs, but independent checkpoints should al so be used to verify
the quality of the extracted DSM (Martha et a., 2010). If camera pre-calibration (interior

orientation parameters) is available, it should be used.
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In an urban environment, especially when road markings are present, it isrelatively easy to find
well-defined points that can be used as GCPs. However, in the case studies presented in this
paper, it was not always possible to apply this method. As such, the option was to use panels
(approximately with 1 m? area) with centre-marked crosses, placed before the flight at selected
locations and fixed with metal studs. Figure 3.2 provides an example of atarget in use, observed
from two perspectives: one on the ground (Figure 3.2a) being surveyed by GNSS, and another
presenting an UAV aerial image result (Figure 3.2b).

Figure 3.2. Example of an artificial ground control point (GCP) measuring 100 x 65 cm: in (&) the ground being
surveyed with a global navigation satellite system (GNSS) device placed in the middle of the marker, and in (b)
an aerial image taken using an unmanned aerial system (UAS) flying at 175 m.

3.3.2. Data processing

Each performed flight generates large amounts of data that need to be contextualized, filtered,
and analysed in post-flight operations in order to extract information that will support the
creation of knowledge for decision-making processes within forestry/agriculture (e.g., disease

treatment) and preservation (e.g., natural protection) contexts.

Specific software for photogrammetric processing is required to extract information from the
collected data. Thistype of processing usually considersthe following steps. Firstly, theimages
are imported and the approximate internal and external orientation parameters (position-based
only) provided by the navigation system are identified. Secondly, conjugate points and relative
orientation blocks are generated, resulting in a 3D sparse point cloud with the approximate
georeferenced location calculated from the projection centres’ positions. Points with obvious
errors can be eliminated from this 3D sparse point cloud and therefore from the conjugate points
list. Thirdly, there is GCP insertion and refinement of the external orientation with self-
calibration. Adjustments in foca length (in the principal point position), polynomial
coefficients of theradial distortion (K1, K2, K3) and tangential deformation coefficients should

aso be considered. Moreover, other correction parameters are not especialy relevant for
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cameras with relatively small deformations and they can increase the risks of introducing new
ones due to correlations with the externa orientation parameters. Fourthly, there is the
generation of a dense point cloud, obtaining a dense surface model in a grid. Finaly, thereis

orthorectification (“true ortho” to be used in the DSM) and final mosaic creation.

3.4. Case studies

The case studies presented in this paper consist of applying UASs in distinct fields—forestry
and coastal environments—that have particular relevance in the development of socio-
economic activities and in environmental sustainability. Regarding forestry, the selected UAS
was applied to monitor chestnut tree health. Indeed, chestnut fruit is the main income source of
the “Castanha da Padrela” region (Portugal). Asfor conservation and preservation, the selected
UAS was applied to monitor and assess topographic changes that occurred in the Cabedelo
sandspit, one of the most important and sensitive natural areas in Cabedelo (Porto, Portugal).

3.4.1. Chestnut health monitoring

Since the mid-1980s and mainly due to the increase in its economic importance, the area of
chestnut (Castanea sativa Mill.) cultivation has been growing in Portugal. Currently, chestnut
trees occupy around 36,000 hectares, of which 88% is located in northern Portugal (Instituto
Naciona de Estatistica, 1. P., 2016). The growing area of cultivation is clear in the “Castanha
da Padrela” region (the north-eastern part of Portugal), where this case study took place. In this
region, chestnut fruit is the main source of income for the local population (Instituto Nacional
de Estatistica, I. P., 2016). However, agricultural practice intensification has favoured the onset
of phytosanitary problems, such asink disease and chestnut blight. Both are considered as the

main causes of chestnut tree decline (Gomes-Laranjo et al., 2012).

Chestnut ink disease, caused by the soil-borne Phytophthora cinnamomi Rands (Santos et al.,
2015) dates back to the end of the 19th century and, since then, it has been recurrently causing
chestnut tree death to the present day. With respect to chestnut blight (Cryphonectria parasitica
(Murr.) Barr.) (Robin et a., 2010), two decades after its first detection in Portugal,
hypovirulence began to be observed in some locations. Many of the sub-populations of C.
parasitica belong to the well characterized and specific vegetative compatibility type EU-11
—in spite of having a spectral response that can be similar to other chestnut disorders caused
by, for example, abiotic factors, inadequate pruning practice, or insect defoliation—that appears
only in some orchards in Italy (Ambrosini et a., 1997). Successful treatment depends on the
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way the fungus population propagates in the area of interest. In 2014 the oriental chestnut gall
wasp was detected for the first timein Portugal, near Barcelos (Braga, Portugal). Scientifically
known as Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), it is considered the
world’s worst pest for chestnuts, and has become a serious concern for chestnut culture in
Portugal due to the potential losses to fruit and timber production (DRAPN, 2014). In three
years, has rapidly spread to the most significant chestnut production areas. Many of Europe’s
southern and western countries have been reporting this phytosanitary issue after its accidental
introduction into Piemonte (north-western Italy), where it was found for the first time in 2002
(Sartor et al., 2015).

Remote sensing techniques, such as conventional aerial photography or satellite images, are
usually applied for evolution monitoring purposes. However, acquiring those images is costly,
especially when the areas to be evaluated are small or thereisaneed to make several campaigns
in relatively short periods of time (Mozas-Calvache et al., 2012).

In this case study, a UAS approach composed of a fixed-wing UAV (senseFly SA, Lausanne,
Switzerland) was used to acquire high-resolution aerial data. This type of UAV enables the
acquisition of various samples over a significant geographic area (up to 10 km2) in a short
amount of time, especialy due to the developments in sensors and their spectral and spatial
resolutions (Xiang & Tian, 2011). As an example, and when addressing the vegetation
monitoring field, this kind of aerial image has been used mainly due to its advantages when
compared with ground observations. Temporal and spatia high resolutions, combined with the

low complexity and operation costs, make al the difference (Laliberte et a., 2010).

The case study area (438 ha) is located between the villages of “Sao Jodo da Corveira” and
“Padrela e Tazém”, in Valpagos (in the north-eastern region of Portugal). For monitoring the
chestnut area and recognizing the most disease-affected areas, aero photogrammetric flights
were made in three campaigns in 2014, 2015, and 2017 at an average flight altitude of 550 m
(GSD ~16 cm), along six flight lines, oriented in the north—south direction. Figure 3.3 shows
the evolution of asmall part of the case study area, over time. Later on, these aerial images—
both in colour (RGB) and near-infrared (NIR)—were used to compare the evolution in
consecutive campaigns. RGB images acquired in 2006 by the Portuguese Forest Authority for
the National Forest Inventory, with one-meter GSD (ICNF, 2010), were aso included in the
case study in order to extend the analysed period of time. After the flights, image
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orthorectification and geocoding were performed based on natural GCPs directly identified in
the images.

Figure 3.3. Temporal evolution of a portion of the study areain each campaign. RGB: red-green-blue.

3.4.1.1. Considerations about surveys of chestnut trees

Photographic keys relating to chestnut trees with different physiological conditions were
developed for photo interpretation purposes. Moreover, field data acquired during the
campaigns were compared with the acquired aerial images (Figure 3.4), which in turn were
processed using Pix4Dmapper software (Pix4D SA, Lausanne, Switzerland).

A geographic information system (GIS) was used for distributing 438 circular plotsin the case
study area (500 m? area, each), by using a systematic distribution of 100 x 100 m?
corresponding to a 1-ha grid. Colour and NIR orthorectified aerial photographs obtained in the
different campaigns were used in the GIS environment to determine differences in the chestnut
canopy between three consecutive campaigns (2006-2014, 2014-2015 and 2015-2017).
Canopy cover index (Cl) (Equation (1)) considers the ratio between the area covered by the
chestnut canopy and each plot’s surface (500 m?). This ratio represents ranges from 0 to 100.

The same procedure was adopted in all campaigns.
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Chestnut tree (N.° 67) affected by chestnut blight

Figure 3.4. Chestnut trees affected by (a) ink disease and (b) chestnut blight. The same trees are represented in
colour and infrared aerial photographs. NIR: near-infrared.

CA
_-a 1
Cl PA><100 1

In Equation (1), CA represents the plot’s canopy area and PA the plot’s area (500 m? in this
specific case). To estimate health of the chestnut trees, as well as mortality and new plantation
areas, a Student’s t-distribution was used. A sampling error with a 95% confidence level was
considered. To assess the geographical evolution of vitality, methods to estimate parameters
based on attributes observed in neighbour points were used (Soares, 2000). These methods are
used to explain the spatial structured phenomena (such as forest diseases) because they do not

have a random distribution.

The existence of spatial correlation between georeferenced random variables correlation (that
depends on the distance between points, which tends to decrease with distance), can be found
using geostatistical methods (Sousa & Muge, 1990). These methods use specific observations

65



Chapter 3.
Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs

for asingle regionalized variable of interest, Z(xi), referred to aset of points (Dong et al., 2015)
of the study area (univariate methods). Alternatively, auxiliary regionalized variables, whose
values can contribute to the improvement of estimates of the main interest variable, can be used

to provide the correlation rate.

The behaviour of regional variables in the interpolation, Z(xi), whose spatia continuity could
be modelled by a semi variogram represented by Equation (2), was observed. The chestnut
growth (CG) for each multi-tempora survey was used as the variable in the geostatistical
approach. The model does not use negative or null values. In this sense, the CG was converted

into a scale ranging from 1 to 20. The higher the value, the better the tree’s health condition.
1
Cl =X E[Z(x; + h) — Z(x)]? )

The results obtained in two consecutive campaigns were used to evaluate the difference
between Cls. For example, the results obtained by using the 2006 and 2014 campaign images
were used to estimate CG during that period of time. The CG (Equation (3)) reflects the
predictable growth (where CG > 0), but also the chestnut decline (if CG < 0). A 5% chestnut
growth rate was admitted for the 8-year period. This is the predictable chestnut trees
development considering the soil and climatic conditions of the case study area (Gomes-
Laranjo et a., 2012). For the other two periods (2014-2015 and 2015-2017), a 0% minimum
growth rate was considered (Gomes-Laranjo et al., 2012).
CG(14 — 06) = Clyy — Clyg (3)

where: CG—Chestnut growth (%); Clos—Canopy cover index in 2006; and Clis —Canopy
cover index in 2014.

3.4.1.2. Results and discussion

Table 3.1 presents the CI results for all the campaigns, with different values for each one.
Regarding the 2006-2014 period, Cl has significant differences and an important decline can
be noticed in 55% of the plots. As for the 2014-2015 period, the decline was even more
pronounced, occurring in 60% of the chestnut plots. Between 2015 and 2017, the decline
occurred in 35% of the chestnut plots. Asit can be observed in Table 2, new plantations were
made in forestry areas, abandoned areas, or in soils with less profitable cultures (cereals,
pastures, potatoes, etc.). These practices positively influenced the results obtained in the latter
analysed period (2015-2017). A significant contribution for this overall result was given by
new plantations that increased the total chestnut area by 40%. The 247 + 10 ha area in 2006
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now measures 347 = 14 ha (Table 3.2). For this reason, the decline can also be related to

inadequate soilsfor such ademanding culture as Castanea sativa (Bounous & Conedera, 2014).

Table 3.1. ClI and chestnut area for the period of the study (2006—2017). The sampling error is according to
Student’s t-distribution. The average values with (*) are significantly equal.

Parameter/Y ear 2006 2014 2015 2017
Canopy cover index (Cl) 21.6 £ 2.5% (*) 195+ 1.8% 222+ 2.0% (*) 259+ 2.1%
Cl minimum 5 5 0 0
Canopy cover per hectare (CC/ha) 2160+ 250 m? (*) 1950+ 180 m? 2220+ 200 m? (*) 2590 * 210 n?
Cl maximum 100 90 Q0 Q0
Sampling error (SE%) for CC 11.7% 9.2% 9.2% 8.2%
Total area (SE% = 4%) 438 + 18 ha 438+ 18 ha 438 + 18 ha 438+ 18 ha
Chestnut area (SE% = 4%) 247 + 10 ha 303+ 12 ha 295+ 12 ha 347+ 14 ha

Table 3.2. Chestnut area and chestnut decline affecting the whole study area (438 ha).

2006 2014 2015 2017
Other cultures 191 (44%) 135 (31%) 143 (33%) 91 (21%)
Ch%z:::)t AR 47 (56%) 303 (69%) 205 (67%) 347 (79%)
Chestnut
0, 0, 0,
e 135 (55%) 182 (60%) 104 (35%)
Chestnut
0, 0, 0,
ronth 112 (45%) 121 (40%) 101 (65%)
Chestnut area [303-247] [295-303] [347-295]
variation (18%) (=3%) (15%)
Tota (ha) 438 438 247 438 303 438 205

The geostatistical approach allowed for the detection of the three important affected areas
(Figure 3.5). Thedeclinein foci detected in the 2006-2014 period worsened in the 2014-2015
period. However, an improvement in the health condition of chestnut trees was observed in the
2015-2017 period. These results are in accordance with Table 3.2.

Moreover, these results also demonstrate that RGB and RE/NIR aerial imagery obtained by
UAS is a cost-effective aternative to other remote sensing platforms, as they are reliable for
monitoring chestnut tree health, allowing mapping affected areas quickly and accurately,

namely in:

e detecting chestnut ink disease symptoms (L. Martins et al., 2007);

e monitoring tree canopy cover decline by means of multi-tempora analysis (assess
chestnut blight presence);

e providing the means for evaluating gall wasp biological control strategy effectiveness.

Furthermore, this approach aso demonstrated to be an effective tool for classifying soil

occupation, detecting areas of interest for new cultures and evaluating new plantations.
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Figure 3.5. Chestnut growth (CG) and decline for the 2006-2014, 2014-2015, and 2015-2017 periods. CG was
converted into a scale ranging from 1 to 20. The higher the value, the better the tree’s health condition.

This study also confirmed interest in chestnut culture, as it showed the new plantations that
increased the area of chestnut cultivation from 247 hain 2006, to 347 hain 2017 (a40% greater
chestnut area in the case study areain the referred time period). The last period studied (2015-
2017) shows a positive value on CG. This growth is related to the new practices used for
controlling biotic agents. In fact, the lower soil tillage to reduce chestnut ink disease and the
application of hypovirulence strains to control chestnut blight may be directly responsible for
thisimprovement (Gehring et al., 2015).

Lastly, using this approach (when compared with field observations) enables the recognition
and quantification of the chestnut tree decline, disease dispersion and the respective most-
affected areas. It was also possible to evaluate the decline of the chestnut tree at a substantially
lower cost compared to other field surveys or manned aircraft-based images (L. Martins et al.,
2001). In Portugal, chestnut is currently facing severe climatic conditions characterized by heat
and drought stresses with important consequences for species’ health. Thus, it is convenient to

model yield forecast and species area redistribution according to climatic constraints.

Due to the similar aerial imagery behaviour presented by other species with high economic
impact in Portugal (Quercus suber L. and Olea europea L.), the obtained results allowed us to
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conclude that it could be possible to adapt the present methodology to be applied in those

Species.

3.4.2. Cabedel 0 sandspit variation assessment

The Cabedel 0 sandspit is responsible for the preservation of ecosystems and for the protection
of the sand area. Its dunes are crucial for preserving the dwellings situated on the coastline and
those of the local population, as it prevents the Douro River banks being reached by waves.
Moreover, there are financial interestsin termslocal business activities being run in the Douro
River estuary navigation channel, and these are highly dependent upon the sandspit
conservation (Teodoro et a., 2014).

At present, the Cabedelo sandspit has an approximate size of 800 x 400 m and is well known
for its frequent changes in position and shape. Before the construction of a detached jetty, the
sandspit morpho dynamics were related to extreme river flow, sea turbulence, and wind. After
the construction, the sandspit shape was stabilized and an increase in its area and volume was
observed aswell (Bio et al., 2015). Figure 3.6 shows orthoimages of different periods that show
the large variations in shape and location, as well as the stabilization that occurred after 2006.
Through Figure 3.6 it is possible to obtain a multi-temporal view of the morphological

dynamics of the case study area.

Pl

Figure 3.6. Orthoimages of the sandspit in five different periods (images provided by aeria national mapping
agency aerial photography archives).

A monitoring program has been developed by the University of Porto, based on GNSS land
surveys as well as photogrammetric surveys, using the digital camera ZI-DMC-I (Bio et d.,
2015; Goncalves et al., 2011). Some conventional aerial photography campaigns were carried
out, covering a coastline extension of 15 km. Aeria photography would not be affordable just
for the Cabedelo sandspit monitoring. The best solution for fast, frequent, and cost-effective
monitoring surveys of this areais the use of aUAS. Thefirst survey was carried out in 2013.
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In the next few subsections the changes that occurred between the three multi-temporal series
are analysed and quantified. Several aspects related to the accuracy of the extracted DSM are
also analysed as they may strongly affect the alteration assessment. Although GCPs were not
exactly the same in number, eight of them were placed at the same location in al flights, using
a global positioning system (GPS) navigation device. Their location was rigorously surveyed
using differential GPS, in real-time kinematic (RTK) mode.

3.4.2.1. Considerations about surveys in sand areas

The main purpose of UAS surveys in coastal areas is to assess topographic changes in sand
volume. For this reason, geometrical accuracy of the resulting surface models and orthoimages
are fundamental for the analysis. Sandy areas pose severa challenges that must be carefully
analysed Firgt, there is the need for accurate GCPs, which must be well defined on both the
ground and on the images. Unlike in built-up areas, the natural environments of coastal areas
do not provide such points, so artificial marks must be previously placed on the ground (Section
3.3.1).

For this case study, vertical checkpoints are most important since they allow for control of sand
volume variation. These are relatively simple to acquire, since surveys of RTK GNSS can be
very fast and points do not need to be marked. For a vertical checkpoint of coordinates (E, N,
h), residuals (Ah) are calculated by subtracting the height measured by GNSS (hGNSS) and the
height interpolated from the DSM, on coordinates (E, N), using bi-linear interpolation (hDSM)
(Equation (4)). The overal accuracy is given by the root-mean-square error (RMSE), for n
observed checkpoints, as in Equation (5). The mean and the standard deviation can aso be
determined to assess if some systematic trend may exist in the data.
A hy = higyss —hpsu(Ep, Np), i =1,...,n (4)

n 2
RMS, /—i=1nA hi (5)

Beside these challenges, others that are typical of sandy areas must be considered to obtain
success in applying UAS in this kind of environment. These challenges include, for example,
the lack of patterns that sand may have, reducing the quality of the conjugate points obtained
by stereo matching. This is especially the case when the sun is high, which may result in too-
bright images. It is preferable to perform surveys on cloudy days or in the early morning, when
the sun is low (Dandois et al., 2015). Another difficulty, which is combined with sun

illumination and the tide, is the requirement of relatively low wind. This is not the regular
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situation in the Portuguese coastal zone (Troen & Lundtang Petersen, 1989), which makes the
availability of adequate moments for the surveys relatively difficult. In this case study, there
was also the need to combine the flight time with alow tide. The first flight made in 2013 was

performed in the early morning of a cloudy day. In fact, it gave the best vertical accuracy.

Finally, it was possible to verify that waves also pose some difficulties. Although low tides
were chosen, with instantaneous sea level height at —1m or below, waves may be present in
heights of up to 1 or even 2 m. The extracted DSM has very poor quality in these areas. For that
reason, contour comparisons between different campaigns were made for an elevation of 2 m

above the sea level.

3.4.2.2. Results and discussion

Thefirst survey was conducted in 2013 with a smaller resolution camera (when compared with
the two more recent campaigns) coupled on senseFly Swinglet (senseFly SA, Lausanne,
Switzerland) with a GSD of 4.5 cm. The other two surveys were performed in 2015 and 2017,
using the UAV SenseFly eBee (senseFly SA, Lausanne, Switzerland) and a GSD of 5.2 cm.
This latter GSD meant that for practical purposes the resolution was dlightly decreased, while

keeping the standards for the monitoring objectives.

The first campaign was performed for experimental reasons and included detailed quality
control analysis, which is described in Gongalves and Henriques (2015). The image orientation
process by bundle adjustment was done in Agisoft Photoscan (Agisoft LLC, St. Petersburg,
Russia) and provided residuals similar to the GSD, both in planimetry and altimetry. The main
concern, especialy because the models are intended to rigorously assess height changes, was
with vertical accuracy. Although the bundle adjustment may be good in terms of the control
points, in areas not so well covered by GCPs the model may have deformations, especialy if
many adjustment parameters are used. As referred to before, an independent verification with
altimetric checkpoints is important to verify that deformations do not occur. Elevation
checkpoints were obtained by differential GNSS at the same time as GCP collection, with care
taken to choose places where sand had not been moved and without leaving the polein the sand.
At least 100 checkpoints—well distributed throughout the area—were to be acquired, per

survey.

The second campaign—done in May 2015—was performed during the breeding season of some

birds, such as sand plovers, which limited the accessto some areas. Therefore, asmaller number
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of checkpoints were collected. However, the distribution was reasonably complete. Table 3.3
presents data from the three campaigns, namely their characteristics and the accuracy analysis

results.

The vertical errors found on the independent check points (ICP) have positive and negative
values, and approximately follow a Gaussian distribution with an average close to zero
(Gongalves & Henriques, 2015). This fact reveals that no systematic trends exist in the surface
models. Thereis an error propagation to the calculated volumes but thisis not as significant as

If asystematic vertical trend were to exist on the surface.

Table 3.3. Cabedel 0 sandspit campaigns (2013, 2015, 2017) characteristics and analysis results. UAV: unmanned
aerial vehicle; GSD: ground sample distance.

Dateand Start Time  UAV/Camera GSD # Images GCPsTotal/3D ICPs
(h:min) Resolution Used RMS Total/RM S
22 July 2013 07:22 Swinglet/12Mp  4.5cm 308 11/12.8 cm 114/4.6 cm
06 May 2015 10:55 eBee/16 Mp 5.2cm 204 8/3.0cm 34/6.3 cm
29 March 2017 11:15 eBee/16 Mp 5.2cm 196 9/4.2 cm 146/7.1 cm

DSMs were generated for the tree campai gns, which enabled the assessment of differences due
to the sand movements. Figure 3.7a shows a colour-coded image of the 2017 campaign DSM.
Figure 3.7b shows the hill shaded image of the DSM, together with the corresponding contours
of height of 2 m. The 2-m contours of the 2013 and 2015 campaigns DSMs are overlaid on top
of the 2017 DSM, in different colours to perceive the sand accumulation, profiles were traced
in the place of largest separation between the contours, along the steepest slope (A and B).

These profiles are represented in Figure 3.8.
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Figure 3.7. Differencesin Cabedelo sandspit due to the sand movements: (@) colour coded DSM of 2017 and (b)
hillshaded DSM with contours of the 2013 and 2015 DSMs overlaid.
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Figure 3.8. Profiles along the steepest slope, in the part of largest sand increase for the three epochs: red for 2013,
blue for 2015, and black for 2017. Profile A had larger increase from 2013 to 2015, while in profile B the largest
increase was from 2015 to 2017.

The main change occurred from 2013 to 2015, with a large accumulation of sand (around 60
m) in the northern and central parts of the sandspit, facing the sea. From 2015 to 2017 there
was an accumulation in the southern part of around 40 m. The models were subtracted to
calculate the volume difference between consecutive DSMs as the sum of vertical prisms. The
largest volume calculated for the increased area facing the sea was of 170,000 cubic meters
(volumes above height zero), between 2013 and 2015. The increase from 2015 and 2017 was
of approximately 60,000 cubic meters. Sand accumulation that was observed with the DSMs
acquired in the successive UAYV flights is due to the detached breakwater built in the area. Its
aim is to disperse wave energy and fix the sandspit to facilitate boat navigation in the Douro
river mouth. As expected, there is an accumulation of sand in the sandspit (Teodoro et a.,
2014). Itsincrease rate (that can be measured from the UAV data) can help in taking measures
for the coastal engineering management of the area.

An additional remark on the profile analysis is the noise effect present on the DSMs. The first
DSM (2013) was smoother than the other two, especially the one from 2017, which may be
explained because it was done on a cloudy day. In the other two, especialy that of 2017, there
was sun and they were done in the middle of the morning: images were much brighter and with
less contrast and patterns for the matching process. This is concordant with the lower vertical
accuracy (ICP RMShin Table 3.3). In any case, detection and quantification of the differences
between the three DSM s was possible due to the sand deposition by the sea. This study confirms
the feasibility of this methodology for change assessment in sandy beaches. Many studies

recently published reveal that it is being regularly used to assess changesin critical areas. From
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the experience obtained with this study, which involved a relatively sparse dataset along the
time with an average revisit period of two years, more frequent surveys would be needed to
perceive the continuity of the change process. Some limitations were found due to
environmental issues, such as the frequent strong winds in the Portuguese Atlantic coast.
Another important constraint was due to logistic effects, because of the need for signalized
ground control points. Although flight times were as short as 30 min, several hours were needed
to place the signals, survey their coordinates with GNSS, and collect them back. This
reguirement makes surveys rather time consuming and not so simple to implement with higher

frequencies.

A very important improvement can be achieved with UAV's equipped with precise GNSS
equipment, working in RTK or post processing kinematic (PPK) mode. Surveys without ground
control points, keeping a suitable accuracy (Rehak & Skaloud, 2015; I. L. Turner et a., 2016),
can be conducted, allowing for much simpler logistics of data collection. With smaller
requirements for field work, a more frequent observation would be possible, allowing not only
for change assessment and quantification, but also for a better perception of periodical

phenomena, with regular data collection before and after winter seasons.

3.5. Conclusions

Thiswork presents two applications of unmanned aeria systems, one of the most recent remote
sensing technologies. In the first case study, RGB and NIR high-resolution aerial images were
used to monitor the evolution of a chestnut tree area over time. The feasibility of this approach
was demonstrated by comparing the resultswith ground true data. A good agreement was found.
Tree canopies, computed in both RGB and NIR high-resol ution images, were also used to detect
the coverage’s evolution. In that way, it was possible to correlate that evolution (growth or
decline) with biotic and abiotic factors. Thus, UAS-based methods allow us to detect and fight
the major issues affecting chestnut trees.

The second case study presented in this work focuses on the monitoring of the Cabedelo
sandspit. In sensitive ecosystems (like this one), the use of UAV's avoids having to walk the
terrain, which usually leads to severe damage which, for instance, occurs with ground vehicle
tracks. It was possible to detect a significant change between 2013 and 2015, with alarge build-
up of sand in the northern and central parts of the sandspit. In the study’s most recent period

(2015-2017), there was an accumulation in the southern part of the sandspit. Within the total
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period analysed, the sandspit’s total volume increased by more than 200,000 cubic meters of

sand.

The continuity of both studieswill support better knowledge and understanding in ng the
effects of corrective measures that have been applied by chestnut tree producers in the last
years, and a better understanding of the dynamics and coastal protection works performed in
the Cabedel o sandspit study area.

The UAS may be considered a well-suited configurable tool which is fairly flexible for
application in such distinct areas as forest and coastal environments. Moreover, they constitute
a cost-effective and non-invasive form of technology capable of covering considerably-sized
areas in a single flight, supporting different sensors within their payload. Currently, UASs
continue to evolve, offering new opportunities and presenting new challenges.
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Chapter 4.
UAV-Based Automatic Detection and Monitoring of Chestnut Trees

4.1. Introduction

In the early 1980’s, the European chestnut tree (Castanea sativa, Mill.) assumed an important
role in the Portuguese economy (Luis Martins et al., 2015). However, phytosanitary problems,
such as: the chestnut ink disease (Phytophthora cinnamomi) (Valverde et al., 2017; Vettraino
et a., 2005) and the chestnut blight (Cryphonectria parasitica) (Rigling & Prospero, 2017;
Vaverdeet a., 2017), along with other threats, e.g. chestnut gall wasp (Dryocosmus kuriphilus)
(Battisti et a., 2014) and nutritional deficiencies (Portela et a., 2003), are responsible for a
significant decline of chestnut trees, with areal impact on production (LuisMartinset a., 2014).
Thus, to mitigate the associated risks, it is crucial to establish an effective monitoring process
to ensure crop cultivation sustainability. Usually, chestnut trees health condition assessment
relies on time-consuming and laborious in-field observation campaigns. Alternatively, the use
of remote sensing platformsis becoming attractive in performing dull tasksthat are related with
land monitoring operations, in which vegetation monitoring can be included (Colomina &
Molina, 2014).

Among the different available aerial remote sensing platforms, Unmanned Aeria Vehicles
(UAVs) can provide high-resolution imagery, which is acquired using different sensors with a
remarkable versatility, ease-of-use, and cost-effectiveness (Padua, Vanko, et a., 2017). Data
resulting from usage of Unmanned Aerial Systems (UAS, composed of UAV, sensor(s), and
ground station), along with photogrammetric processing, enable reaching advanced data
products, such as orthorectified mosaics (orthophoto mosaics), digital elevation models (DEM),
three-dimensional (3D) point clouds, and vegetation indices (V1). Thus, vegetation monitoring
is possible, since these types of outcomes enable vegetation detection and features extraction,
such astree height, canopy areaand diameter, and individual tree counting. These features help
to promote agriculture and forestry sustainability, in both single and multi-temporal
perspectives (Padua, Vanko, et al., 2017).

Jarnstedt et a. (2012) used airborne laser scanning (ALS), RGB, and colour infrared (CIR)
imagery, to generate 3D point clouds and high-resolution imagery from forests. In that way, it
was possible to extract vegetation height and perform vegetation monitoring operations while
using high-resolution imagery with cost-effectiveness in comparison to the LIDAR-based
approaches. A comparison between point-clouds driven from imagery and ALS was carried out
to evaluate different attributes in both models—e.g. tree crown diameter and height, basal area,
and volume of growing stock. Zarco-Tejada et al. (2014) used a fixed-wing UAV that was
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equipped with RGB and NIR sensors to assess olive trees height with discontinuous canopy,
through photogrammetric processing. The results highlighted that an approach based on
consumer-grade cameras coupled in a hand-launched UAV provide similar accuracies to those
of the more complex and costly LIDAR systems, which are commonly used in forestry and
environmental applications. Mohan et a. (2017) evauated the applicability of low-cost
consumer grade sensors that were mounted in an UAV for automatic individual tree detection,
using a local-maxima based algorithm on Canopy Height Models (CHMs) computed from
UAYV -based photogrammetric processing. In this way, the resulting model only contains height

information from objects above ground.

Regarding the automated Individual Tree Crown Detection and Delineation (ITCD) task, while
using remotely sensed data, it plays an increasingly significant role in the efficient, accurate,
and complete forests monitoring process (Lindberg & Holmgren, 2017; Zhen et a., 2016).
ITCD agorithms have advanced focusing in two main goals. the improvement of traditional
algorithms to address specific issues and the development of novel algorithms that take
advantage of active data sources or the integration of passive and active data sources. Wallace
et a. (2014) used high-resolution LIDAR data acquired from UAS to determine the influence
of detection algorithms and the point density on tree detection. The authors implemented five
different detection routines to directly delineate trees from the point cloud, the determination
of voxd space, and the computation of CHM. The method that used both the CHM and the
original point cloud information achieved the best performance. Liu et a. (2015) developed a
novel ITCD approach using airborne LIDAR data in natural forests using crown boundary
refinement, based on the proposed Fishing Net Dragging (FIND) method and segment merging
based on boundary classification. The authors used a machine learning method (random forest)
to classify the boundaries between trees and between branchesthat belong to asingletree. There
were some limitations in their approach, since FiND is based on watershed segmentation, and
might not work well over areas where the valley shape between trees was not “V’ or ‘U’ shaped.
Specifically, this limitation becomes serious in cases where a small tree is close to a
neighbouring big tree, resulting in a possible merged tree crown. Eysn et a. (2015)
benchmarked and investigated eight ALS-based methods for individual tree delineation. The
authors claim that, in general, al of the methods achieved comparable results for the matching

rates, but they differ in the extraction rates and omission/commission rates.
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Ok and Ozdarici-Ok (2017) presented an approach to individually detect and delineate citrus
trees based in Digital Surface Models (DSMs) that were computed from the photogrammetric
processing of UAV -based imagery. The basis of their approach was the orientation-based radial
symmetry transform that was designed for an input asa DSM. The approach wastested in eight
different DSMs. However, this approach detects and delineates every circular object above-

ground that reduces its precision performance.

Regarding the focus of this study, Martins et a. (2014) carried out a study addressing chestnut
trees development, while using high-resolution aeria imagery. UAV-based data that was
acquired in July of 2014, at the average height of 550 m (ground sample distance—GSD ~16
cm), was compared with the 2006 imagery, acquired by the Portuguese Forest Authority for the
National Forest Inventory, with 1 m GSD. The analysis process used by Martins et a. (2014)
was manually performed while using a visual sample-based approach in GIS software, which
is a time-consuming procedure. The method that is proposed in this article consists of a fully
automatic process to monitor chestnut plantations, allowing for overcoming the major
drawbacks that are associated with manual-based methodologies. The area and the data
presented in Martins et a. (2014) and Padua et a. (2017) and representative ground-truth data
validate the method. Algorithmic-driven tree identification and counting, individual extraction
of tree height, tree crown diameter and area features are at the core of the proposed method,
aiming to improve data handling, and processing time, thus ensuring effectiveness towards the
outlined goal. Moreover, the proposed method also supports multi-temporal analysis for a
decision support system that correlates with features extracted from aeria images of the same

area, taken at different epochs.

4.2. Materials and Methods

4.2.1. Surveyed Areaand Data Acquisition

The selection of an UAV for data acquisition is influenced by the specificities of each case
study: the size of the area together with UAV’s autonomy influence the ground sample distance
(GSD), which may make obtaining an acceptable spatial resolution impossible—this
considering, of course, the completion of asingleflight. Inthisspecific study, while considering
the fina purpose of the experiment and the UAV characteristics, a fixed-wing UAV, the
senseFly’s eBee (senseFly SA, Lausanne, Switzerland), was used to collect aerial imagery. The

flights were conducted over a chestnut trees area (438 ha), located in the Padrela region
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(Valpagos, Vila Real, Portugal: 41°33'51”N, 7°29'40”W), Tras-os-Montes region (Northeast of
Portugal). This region concentrates the highest production of chestnuts in Portugal (Instituto
Nacional de Estatistica, I. P., 2017), representing one of the major agronomical sources of
income of the region (Borges et a., 2008). Specific software was used to plan the flights,
wherein the user defines the area of interest, flight direction, longitudina and lateral
overlapping, and GSD (Table 4.1). At each epoch, two flights respecting the same flight plan
were carried out, each one with a different imagery sensor. A standard RGB sensor and a
modified sensor were used to collect colour infrared (CIR) imagery in RedEdge (RE), green,
and blue bands (Table 4.1). RE is the spectral region where plant’s reflectance changes from
low to high (from 680nm to 750nm). These data were acquired on 19 July 2014, 8 September
2015, and 10 July 2017. All of the flights were conducted close to the solar noon time,
minimizing shadows, and the same flight plan was used at 550 m height (GSD ~16 cm). Figure
4.1a presents a general overview of the study area. For validation purposes, an extraflight was
conducted in June 2017, using the multi-rotor UAV, DJI Phantom 4 (DJI, Shenzhen, China), in
two smaller areas within the study area, as presented in Figure 4.1c, at 100 m height (GSD ~ 3

cm). Table 4.1 summarizes the main characteristics of the flight campaigns.

Table 4.1. Flight campaigns (2014, 2015, 2017) characteristics and analysis results. UAV: unmanned aerial
vehicle; GSD: ground sample distance.

Area
0
Date UAV Sensor and Resolution Overlap_(A)) GSD #Images Covered
(front/side) (cm)

(ha)
85 RGB

19 June 2014 RGB: Canon IXUS 127 1621 gsor 40
Sensefly HS (16.1 MP) 92 RGB

08 September 2015 cBee CIR: Canon PowerShot 75/60 14.99 90 CIR 436

10 July 2017 ELPH 110HS (16.1MP) 16.2 88?1?:?5 517
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Figure 4.1. General overview of the surveyed area: (a) colour infrared (CIR) orthophoto mosaic computed using
data from the flight conducted on July 10, 2017; (b) complex area used for vegetation coverage validation; and,
(c) chestnut plantations used for tree height and tree crown diameter validation. Coordinates in WGS84
(EPSG:4326).

4.2.2. UAV Imagery Pre-Processing

Pix4Dmapper Pro software (Pix4D SA, Lausanne, Switzerland) was used for the
photogrammetric processing of the UAV-based imagery. The following processing pipeline
was applied: (1) imagery coregistration—data corresponding to each sensor was separately
processed in different projects and throughout the identification of common point (tie points),
allowing for the generation of a sparse point cloud of the surveyed area, for each sensor’s
imagery; (2) project merging—both blocks were aligned relative to each other by using points
that are clearly identifiable in the imagery and then merged and geometric correction was
applied using ground control points (GCPs), using both natural features and artificial targets
that are deployed in the area (Padua, Hruska, et al., 2017); (3) dense point clouds computation—
two dense point clouds were computed (RGB and RE) using an high point density; (4) point
clouds combination—finally, the two sets of point clouds were combined, increasing the total
number of points, and ensuring, this way, height information for most of the trees, as shownin
Figure 4.2. Orthorectified mosaics, DSM and DTM were the main outcomes that were

generated from this pipeline. Data from each flight campaign has resulted in an excess of area
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surveyed and different GSDs (Table 4.1). As such, a section was chosen and resampled to meet
the same area (200 ha), as shown in Figure 4.1awith 16.21 cm GSD.

(a) (b)
Figure4.2. Differencesin the dense point clouds generated from data of each sensor: (a) RGB; (b) colour infrared;
and, (c) combination of both. Example of areas that benefited from the merging process are highlighted.

The CHM is computed by subtracting the DTM from the DSM, which makesit almost invariant
with respect to terrain’s slope, as illustrated in Figure 4.3. The use of CHM is crucial, since it
allows for obtaining the height of the objects above ground level, enabling the filtering of
undergrowth vegetation, such as grass and shrubs, and only analysing the vegetation of

interest—in this specific case, chestnut trees.
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Figure 4.3. Computation of the canopy height model (CHM) obtained from the digital terrain model (DTM) and
digital surface model (DSM): (a) profile line upon four chestnut trees; (b) DTM and DSM profiles; and, (c)
resulting CHM profile line computed from the subtraction between the DTM and the DSM.

Regarding the geometric correction of the obtained photogrammetric processed data, and from
amulti-temporal analysis perspective, it is mandatory to assure a subpixel alignment of all the
epochs, otherwise the results may be biased. The used UAVs’ navigation system includes a
Global Navigation Satellite System (GNSS) receiver, with a positional accuracy of a few
meters. Thus, the georeferencing that is achieved by this equipment does not follow the image’s
pixel resolution, only enabling an approximate location. Therefore, it is necessary to use tie
points to refine the external camera orientation. Ground Control Points (GCPs) must be
distributed throughout the surveyed areain order to avoid significant errors (Jianghao Wang et
al., 2012). However, not only should good GCP coverage be done, but a so independent check
points should be used to verify the quality of the extracted products. In an urban environment,
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especially when road markings are present, it isrelatively easy to find well-defined points that
can be used as GCP. However, in the specific case of this study, it was not always possible to
apply this method. In fact, only afew areas that were occupied by man-made objects allowed
for the identification of such points. As such, the option was to use targets (approximately with
1 m? area (Padua, Hruska, et al., 2017)) with centre-marked crosses, placed before the flight at
selected locations, and fixed with metal studs (see Figure 4.4). In total, 16 (6 natural + 10
artificial) GCPs and 20 natural check points were used in every flight.

Figure 4.4. Example of an artificia ground control point (GCP) measuring 100 x 100 cm:(a) being surveyed with
aglobal navigation satellite system (GNSS) receiver placed in the middle of the marker, (b) aerial image taken by
the unmanned aerial vehicle. In the left, RGB representation, and in the right, colour infrared representation.

The imagery geocoding was performed while using the 16 GCPs and the alignment quality
assessment was carried out using the 20 check points. For this case study, horizontal check
points are the most important, since they allow for controlling the geometric alignment of the
different outcomes, which crucial in implementing the multi-tempora analysis. These points
are relatively simple to acquire, since surveys of rea time kinematic (RTK) GNSS can be
quickly acquired in the marked points. A GNSS receiver, in RTK mode, with an accuracy of
approximately 2 cm, was used. For a check point of coordinates (E, N), the residuals are
calculated by subtracting the coordinates that were measured by GNSS (E;yss, Nenss) and the
corresponding point on the corresponding point interpol ated over the reference (ref) orthophoto
mosaic. The overall accuracy is given by the root mean square error (RM SE), for the n observed
check points, as in equation (1). The mean and the standard deviation can also be determined
to assess whether some systematic trends may exist in the data. However, the final results will
not be influenced, since the orthophoto mosaics were independently geocoded and the
distribution and geometry of the GCPs remained (Aguera-Vegaet al., 2017).

RMSEE’N ==

i (Ei,ref - Ei,GNss)2 + (Ni,ref - Ni,(;Nss)2 (1)

n
i=1
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Depending on the combinations of campaigns, the reference orthophoto mosaics may vary. The
oldest orthophoto mosaics was used as reference and then the differences between the
coordinates of the remaining two epochs were computed to assess the geometric quality of the

alignment.

4.2.3. Proposed method

The outputs that are described in Section 4.2.2 were processed to extract the chestnut trees
features. Figure 4.5 shows the main steps of the method that was developed in this research.
The different steps are described in detail in the next sub-sections. Two imagery data sets (RGB
and CIR orthophoto mosaics) and the CHM are loaded as inputs to fully exploit the proposed
method. It should be noted that the method remains functional, even if RGB or CIR images are
individually used as input. This way, the proposed method still fully operational, even in the
cases where only imagery resulting from cost-effective platforms, which normally only

supports RGB sensors, is available.
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Figure 4.5. Proposed method general flow chart.

In addition, the proposed method also supports multi-temporal analysis, enabling the temporal

vegetative evolution monitoring of chestnut plantations.

4.2.3.1. Segmentation and First Clustering
The first step relies on the preliminary selection of pixels that represent all of the vegetation,

mainly associated to chestnut trees. To achieve this, common segmentation thresholding
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techniques are not appropriate, since those techniques will not distinguish between vegetation
and non-vegetation areas, resulting in an image with other objects besides vegetation (e.g.
infrastructures, bare soil, roads, and the possible shadowing effects from the chestnut trees
canopy). To overcome this issue, the use of broadband spectral VIs was considered. A
comparison of different segmentation techniques and vegetation indices was conducted to select

the most performant. Appendix A presents the results of this study.

The image resulting from the application of VI-based segmentation (Figure 4.6b) enables the
creation of a vegetation mask by applying the Otsu’s method (Otsu, 1979) (Figure 4.6¢). From
thisselection, abinary imageis created that containsall of the pixelsthat potentially correspond
to vegetation. The same approach is applied to the CHM being binarized using a height
threshold, then both binary images are joined with a logical AND operation. Next, a set of
morphological operations is applied to the thresholding operation result. A 3x3 morphological
structuring element is used for the open operation (to remove small objects from the
foreground), and to the close operation (to remove small holes in the foreground, changing
small islands of background into foreground). Thus, the implemented morphological operations
alow for simplifying the resultant binary image by improving the detection of sets of
interconnected pixels C (i.e. clusters of pixels), forming a set of all clusters C, where C € C,
which enables the individual analysis of the regions. When located close to each other, the
larger trees may be represented as being connected in the binary image (overlapped trees) and,

consequently, grouped into the same cluster (Figure 4.6d).

Figure 4.6. Segmentation and first clustering: (a) the original colour infrared image; (b) colour-coded image
resulting from the application of EXRE vegetation index; (c) binary image resulting from both the threshold and
morphological operations; and, (d) clusters including connected trees highlighted in red.

To prepare the proposed method’s step 2—cluster isolation—a data structure is created with

individual cluster parameters. Those parameters are retrieved from the binary image and they

are composed of the clusters’ area and centroid. The cluster’s centroid is crucial in associating
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an identification (ID). At this stage, the cluster’s area value will be used to find clusters that
represent inter-connected trees.

4.2.3.2. Cluster Isolation

The approach that is applied in the first step of the method can correctly remove most of the
non-vegetative areas, allowing for the detection of large vegetation areas. However, even
though chestnut trees plantations for chestnut production are usually evenly distributed across
the field, their canopy can grow considerably in height and width, forming connected tree
crowns, resulting in clusters with interconnected pixels that may include several trees, in the
segmented images. Due to this fact, it is necessary to individually distinguish each tree for
precise chestnut trees’ monitoring. To achieve this, an individual analysis per cluster C, detected
in the first step, needs to be performed. Chestnut plantations generally have a group of trees
that typically depict the tree canopy coverage area. As such, the presence of interconnected
trees can introduce significant differences on clusters’ area, which can result in a skewed
distribution. Therefore, the statistical mode of this set of values—that represents the value
appearing most often, i.e. the value that is most likely to be sampled—is determined and a 10%
threshold is applied to this value. Clusters’ area mode is used to define the reference area (4y,,),
which will then be compared—in an iterative process—with the area of each detected cluster
Ac. Areas higher than A,,, are divided by it, to estimate the number of trees (T') present in each
cluster, as shown in equation (2). Figure 4.7a presents an example of clusters meeting this

condition.

T =

=< @

Ay,
Afterwards, amorphological operation of erosion (seethe example of Figure 4.8) is performed.
It consists in interactively removing a line with a pixel thick from the borders, until a new
cluster is formed. This new cluster is removed from the selection and the process continues
until T is achieved (Figure 4.8b). Finaly, the application of the thickening morphological
operation to properly separate the clusters by using a one pixel-thick line reverses the process
(Figure 4.8c). This process is achieved by adding pixels to the boundaries of the unconnected
clusters (as shown in Figure 4.7b), nevertheless preserving the total number of clusters, without
connecting them. The resulting image is also known as skeleton by zone of influence (SK12).
Figure 4.7c presents an example of this operation, being highlighted in red. The SKI1Z mask is
then used to separate the initially connected clusters by performing per-pixel binary AND
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operation, resulting in the disconnection of the previously connected clusters. The newly
created clusterswill be submitted to asecond pixel clustering to update the original set, created
in step 1. Figure 4.7d presents the result of this operation, highlighting the separated clusters.

Figure 4.7. Cluster isolation operation applied to an entire chestnut plantation: (a) clusters with area higher than
the reference areavalue, highlighted in red; (b) eroded image; (c) skeleton by zone of influence boundaries, in red,
on top of the eroded image; and, (d) image with the separated clusters highlighted in red.

a&”

p°?
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Figure 4.8. Cluster isolation process: (a) original cluster composed by five connected chestnut trees; (b) clusters
resulting from the morphological erosion operation represented with their centroids; and, (c) effect of the
thickening morphological operation, resulting in five unconnected clusters.

4.2.3.3. Parameters Extraction

At this point, each cluster correspondsto asingle tree and their centroids are used to extract the
tree crown diameter, canopy area, and height. Combining the masks that were obtained from
the previous pixel clustering process, it is possible to extract the correct parameters from each
chestnut tree. Regarding the diameter extraction, the centroids are overlapped to the binary
image that was obtained in the method’s second step. The diameter is extracted by measuring
each cluster’s Euclidean distances. Thus, the maximum distance is selected and transposed to
estimate each tree’s crown diameter. The same approach is applied to obtain the tree’s height.
However, the height value is directly extracted from the CHM, by matching the cluster’s
centroids with the corresponding CHM and retrieving the maximum value, which is then
assumed to be the tree crown’s top. The mean vegetation index value per cluster can also be
computed. This value can be interesting to assess chestnut trees vigour and the potential

presence of phytosanitary problems.
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Furthermore, it is aso possible to calcul ate parameters of the whole plantation, such asthe total
number of trees and total canopy coverage area and its percentage, by summing out all of the

individual areas.

4.2.3.4. Multi-Temporal Analysis

Data acquired in different epochs can be used to create time series, allowing for the comparison
between different periods. It is an excellent tool for the management of chestnut plantations,
enabling the evaluation of their evolution over time both at the plantation scale and at the
individual tree scale. In addition to parameters extraction, it is also possible to detect missing
trees and new plantations over the years, through a multi-temporal analysis. This achieved by
applying the proposed method to different epochs. By overlapping the detected clusters,
missing and new trees can be detected. The implemented multi-temporal analysis can also be
performed at the tree crown level. Performing a pixel-wise comparison between the evaluated
epochs achieved the chestnut tree canopy growth/decline. The following scenarios may occur:
(1) common vegetation in both epochs—vegetation is present in both epochs in the same pixel
(i, J) coordinates; (2) vegetation growth—vegetation is not detected in the first epoch, but it is
detected in the second epoch, meaning a chestnut tree growth; and, (3) vegetation decline—
pixels considered as vegetation in the first epoch that were not represented in the second epoch.
Chestnut trees with a decline percentage greater than 15% are signalled as potentialy having
phytosanitary problems, meaning that they need to be inspected in the field, reducing time-
consuming and laborious field inspections. Therefore, these results can be analysed both at a
plantation level and at the individual tree level.

4.2.4, Validation

To validate the proposed method and the feasibility of the data that was obtained from
photogrammetric processing of the UAV-based imagery, different tests were conducted for
different parameters, namely: VI selection; vegetation coverage area assessment; number of
detected trees; and, tree crown diameter and tree height estimation. This way, five test areas
were selected for this purpose. All of the chestnut trees present within each area were manually
segmented for validation purposes. The first test area represents about 23% of the whole
surveyed area (46.89 ha), as presented in Figure 4.1b. The area was selected, since it includes
several types of elements/objects. Beyond recently planted chestnut trees, non-controlled
chestnut plantations, several vegetation outliers (e.g. lawns), and infrastructures, such as

buildings and roads cover the area. It was considered to analyse the general behaviour of the
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method when facing outliers and it was only tested in vegetation coverage area. Apart from this
area and since the proposed method focus is the monitoring of chestnut plantations, four other
chestnut plantations were selected and analysed as the test areas (Figure 4.9). Plantation #1
(Figure 4.9a) has approximately 1.45 ha, Plantation #2 (Figure 4.9b) has 1 ha, Plantation #3
(Figure 4.9c) has an area of 0.26 ha, and the area of Plantation #4 (Figure 4.9d) is about 1.3 ha.
While Plantations #1 and #2 are composed of fully developed chestnut trees, Plantation #3 has
chestnut trees at different development stages and Plantation #4 is mainly composed of more
recent chestnut trees. These four areas were used for determining the area coverage, assessing
the number of trees detected, and for selecting the optimal vegetation indices (Appendix B).
Reference masks of these areas were manually created for the three available flight campaigns.
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Figure 4.9. Chestnut plantations used for validation: (a) Plantation #1; (b) Plantation #2; (c) Plantation #3; and,
(d) Plantation #4. Black lines represent the boarder of the plantation. Coordinates in WGS84 (EPSG:4326).

4.2.4.1. Vegetation Coverage Area

The purpose of this validation is to evauate the behaviour of the proposed method in the
detection of chestnut trees vegetation. The method was applied in a large and heterogeneous
area (Figure 4.1b) with different vegetation covers, in an uncontrolled environment, and to four
different plantations (Figure 4.9). The computational time of the algorithm to perform in the
complex area was measured to be compared with the time that is required to manually create

the reference mask of the same area. Validation was conducted comparing the method’s
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obtained results with the binary images that were created from the manual segmentation. This
way, each pixéd (i, j) was analysed, and it is classified as being true and fal se positive (TP/FP,
exact/over detection), which refer to the number of correct/incorrect pixels that are classified
as chestnut vegetation and similarly true and false negatives (TN/FN, exact/under detection)
for non-chestnut trees vegetation. For this purpose, different parameters were evauated,
namely: producer’s accuracy, user’s accuracy, and the overall accuracy. Producer’s accuracy is
obtained by the percentage of how many pixels on the map are correctly labelled as
corresponding to chestnut and to non-chestnut vegetation, encompassing errors of omission.
User’s accuracy is obtained by the percentage of all pixels that were identified as a chestnut and

non-chestnut vegetation that were correctly identified, encompassing errors of commission.

4.2.4.2. Number of Detected Trees

This validation consisted in the comparison of the number of trees that were detected by the
proposed method with the real number existing into a specific plantation at a specific epoch.
Sincethe areathat is used for vegetation detection validation contains thousands of trees, which
makes the segmentation difficult, it was decided to use a controlled environment consisting of
the four different plantations (Figure 4.9). The selection was done assuring the

representativeness of most real cases present in the study area.

In what regards this validation, different parameters were evaluated: (1) good detection—the
three was correctly detected when compared with the reference mask; (2) missed detection—
the tree was not detected; (3) extra detection—corresponding to a wrongly detected chestnut
tree; (4) over detection—a single chestnut tree being classified in multiple clusters; (5) under-
detection—multiple trees classified in a single cluster; (6) larger detection—treeis larger than
its actual size; and, (7) smaller detection—chestnut treeis smaller than its actual size.

4.2.4.3. Tree Height and Crow Diameter Estimation

To validate trees height estimation, 12 chestnut trees, as presented in the right side of Figure
4.1c, were measured in the terrain using a laser rangefinder with a precision of + 20 cm
(TruPulse 200, Laser Technology, Inc., Colorado, United States of America). Chestnut experts
from University of Tras-0s-Montes e Alto Douro have consistently monitored Padrela’s region
regarding chestnut trees cultural practices, environmental context, phytosanitary conditions,
and an evolution, in recent decades. This monitoring activity resulted in severa publications (J.
Castroet d., 2010; L. Martinset al., 2007, 2009; L. M. Martins et al., 2001, 2015; Luis Martins
et al., 2005, 2014, 2015; Padua, Hruska, et al., 2017), which conclude that both cultural
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practices and environmental context areidentical throughout the region. Therefore, the 12 trees
selected from plantation #2—the selection was made based on the main characteristics of an
adult chestnut tree, well represented in this Plantation—can be considered representative for
the entire area under study. Regarding tree crown diameter estimation validation, two groups
of trees were selected: the 12 trees that were used for the tree height estimation validation
composed the first group and 28 chestnut trees composed the second group (both areas
presented in Figure 4.1c). These measurements were obtained in the 2017 flight campaign day.
Tree crown diameter were obtained by tape measuring. Two measurements were considered
that corresponded to the four quadrants and the mean value was used as ground-truth. These
values were compared with those that were estimated from the proposed method. Findly, a
comparison was performed and the overall agreement between the observed in-field
measurements (0) and the root mean square error (RMSE) verified the estimated values (€), as
in equation (3), where n represents the total number of analysed trees. In general, RMSE is a

good metric to evaluate (punctually) the quality of the method’s measurements.

RMSE = \/Zinﬂ(ei—_oi) (©)]

n

The coefficient of determination (R?), which consists in a statistical measure of how close the

dataisto thefitted regression line, was also calcul ated.

4.3. Results

This section presents the results of accomplishing the validation procedures that are described
in Section 4.2.4, concerning the proposed method’s validation and extracted features reliability.
Moreover, a multi-tempora analysis, by applying the proposed method to four chestnut
plantations in three different epochs, is also presented.

4.3.1. Data aignment

Table 4.2 presents data from the three campaigns combinations, namely the results from their
accuracy anaysis. Analysing the values that were obtained for the residuals mean and standard
deviation—the mean valueis close to zero meters and standard deviation islower than RM SE—
means that there are no systematic errors. The results presented in Table 4.2 aso allows to
conclude that the geometric adjustment between epochs is very similar in less than one pixel.
These results validate the multi-temporal analysis that is performed by applying the proposed
method.
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Table 4.2. Geometric quality of the orthophoto mosaics used in the multi-temporal analysis.

Orthophoto N RMSE RMSE Star)dgrd M ean of M ir.1/max
M osaics Checkpoints (PX) (cm) Deviation Residuals Residuals
Compared (Px) (Px) (Px)
2014 - 2015 0.61 9.94 0.25 0.06 -0.93/1.28
2014 - 2017 20 0.90 14.44 0.38 0.10 -1.12/1.82
2015 - 2017 0.71 11.38 0.32 -0.04 -1.36/1.03

4.3.2. Vegetation Coverage Area

Figure 4.10 illustrates the result of the proposed method, when compared with the manual
segmented image, in an uncontrolled environment (RGB representation presented in Figure
4.1b). The proposed method obtained 94.31% of exact detection and an error rate of 5.69%,
from which 3.05% is of under detection (FN) and 2.63% over detection (FP).

7728 992w 728, 704W T8 416W

41734 568N

41734 368N

7°28.092W T2B.704W TZ8A18'W

I Exact datection 3 200 300
A B Over detaction \d 9 i
v T —
B Under detecton

Figure 4.10. Validation of the vegetation coverage area by comparing the automatic binary mask, in an
uncontrolled environment, produced by the proposed method, with the reference mask, represented in three
colours, overlaid in the orthophoto mosaic, in the left. In the right, contours of the detected trees of the area marked
in the dashed polygon. Coordinates in WGS84 (EPSG:4326).

According to the manual binary mask, in atotal area of 48.2 ha, only 12 ha contains chestnut
trees, corresponding to 25% of the total area. From this area, the proposed method identified
12.2 ha of chestnuts trees, which corresponded to an over estimation of 1.6%. Producer’s

accuracy was around 88% and user’s accuracy is 89.5% (see Table 4.3 for further results).

For reference, the manual mask was created in eight hours, while the method was performed in
approximately 10 minutes using a laptop computer with an Intel core 17-4720HQ CPU @ 2.6
GHz, 8 GB of RAM, aNVIDIA GeForce GTX 950 GPU with 2 GB of dedicated memory, and
a 700 GB HDD. For a more realistic study, four chestnut plantations, as presented in Figure
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4.9, were selected for evaluation. Figure 4.11 shows avisual interpretation of the results. Table
4.3 provides the results per plantation, in each epoch, for the parameters that were considered
in this evaluation. Producer’s and user’s accuracy were only evaluated for chestnut vegetation
class. Regarding, the non-chestnut vegetation class was not deeply analysed, but it was higher

than 95% in most of cases, with a mean of 97% for producer’s accuracy and 96% for User’s
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Figure 4.11. Vdidation of the vegetation coverage area by comparison of the automatic binary mask, produced
by the proposed method, in four chestnut plantations, with the reference mask, represented in three colours: (@)
Plantation 1; (b) Plantation 2; (c) Plantation 3; and, (d) Plantation 4. Left represents 2014; centre 2015, and in the
right 2017. Percentage and area of exact, over and under detection are also presented. Coordinates in WGS84
(EPSG:4326).

When analysing the four chestnut plantations in the three epochs, the mean overall detection

reaches 95%. Evauating these results in a plantation basis, higher detection values were
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observed in plantation #4 (97.4%) and lower in plantation #2, with 93.8%. The remaining
plantations reached accuracies of around 95%. When observing results by epoch, the highest
detection rates were obtained in 2014 (96.3%), whereas 2017 reached the lower mean values
(94.2%). As for the 2015 flight campaign, its mean accuracy value was of 95.2%. The higher
values were obtained for plantation #4, in 2014, and the lowest was 93.1%, for plantation #3.
Assuch, it can be stated that the method is suitable for chestnut detection, with accuracy greater
than 93% and varying up to approximately 99%, depending on the plantation characteristics.

Table 4.3. Chestnut trees vegetation coverage results for the bigger and complex areain 2017 epoch and in four
plantations (PHepocn) for the three epochs (2014, 2015, and 2017). Area of true and fal se positives (TP/FP) and true
and false negatives (TN/FN), in m? along with producer’s accuracy (PA) and user’s accuracy (UA) for chestnut
vegetation, and overall accuracy (OA) percentage values. Mean values for the plantation in all parameters are also
presented.

PI:\}: g’;ilon TP(M?) FPM) EN(M) TN(mM) UA (%) PA(%) OA (%)
Complexarea 107610 14698 12687 346582  89.45  87.98  94.31
Pli 4951 246 365 9630 9313 9527 9597
Plis 5096 425 366 9305 9330 9230  94.79
Pliy 5248 187 752 9004 8747 9655  93.82
P21 3460 415 186 6355 9491 8928  94.23
P25 3632 471 161 6152 9577 8851  93.93
P217 3929 446 262 5780 93.75  89.80  93.20
P31 554 57 33 2033 9442 9062  96.64
P35 569 75 55 1977 91.20 8831  95.13
P3y7 719 149 36 1773 95.25 8284  93.09
Pdy, 780 44 147 11645 8415 9466  98.49
P45 1216 99 299 11002 8028 9245  96.85
P47 1648 223 174 10572 9046 8809  96.86
Mean of P 2650 236 236 7102 9117  90.72  95.25

4.3.3. Number of Detected Trees

To evaluate the number of trees detected by the proposed method, the same test plantations that
are presented in Figure 4.9 (see Figure 4.1 for location) were used. The results were compared
with the manual counting of the number of trees present in the plantations and the three epochs
(2014, 2015, and 2017) were evaluated. Table 4.4 presents the obtained results, per plantation

in each epoch.
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Table 4.4. Chestnut trees detection accuracy in four plantations (P#epoch) for the three epochs with number of
estimated trees and its detection type.

Estimated Detection Type (%)
Plantation Nfumber Trees .
of Trees (Variation) Good Missed Extra Over Under Larger Smaller

Pli4 146 145 (-1) 97.93 0.69 - - 0.69 1.38
Plis 146 147 (+1) 98.64 0.68 - 0.68 - 0.68
Pliz 148 147 (-1) 97.96 1.36 - 0.68 - - 1.36
P214 80 80 (0) 100.00 - - - - - -
P21s5 80 80 (0) 97.50 - - - - 2.50 -
P217 80 79 (-1) 93.67 1.27 - - - 1.27 5.06
P314 44 43 (-1) 93.02 - - - 2.33 - 4.65
P31s5 43 42 (-1) 85.71 - - - 2.38 4.76 7.14
P317 44 44 (0) 86.36 - - 227 227 6.82 2.27
P44 91 88 (-3) 89.77 341 - - - - 10.23
P45 97 89 (-8) 91.01 8.99 - - - 3.37 5.62
P47 93 90 (-3) 92.22 3.33 - - - 222 5.56

Mean detection (%) 93.65 1.64 - 0.30 0.58 1.86 3.61

In total, 1092 chestnut trees were included in the analysis. The proposed method was able to
detect 1074 chestnut trees. However, six of those corresponded to wrongly estimated trees
(approximately 0.5%), i.e. trees classified as extra, over or under detections. Globally, 1068
trees were correctly classified, representing an accuracy rate of about 98%. This way,
exclusively concerning the detection of chestnut trees (i.e. good, larger, and smaller detections),
the method has a mean classification of 99%, per flight campaign. Regarding this detection in
a plantation basis, the mean accuracy of al flight campaigns is also of about 99%, being the
lower value corresponding to plantation #3 (approximately 97%). Moreover, no cases of
wrongly estimated trees (extra detections) were observed. In total, 19 chestnut trees were not
detected (1.7%).

4.3.4. Tree Height and Crow Diameter Estimation

Figure 4.12 presents the results that show the relationship agreement between in-field
measurements (ground-truth data) and the measurements that were estimated by applying the
proposed method. The height values ranged from 7.6 m to 10.2 m, with a mean value of 8.8 m.
For the model with 16 cm GSD (Figure 4.1248), the linear regression presents aR?> = 0.79 and a
RMSE of 0.69 m, and the estimated maximum, minimum, and mean values were 10 m, 6.4 m,
and 8.2 m, respectively. Using data resulting from a flight at lower height, there was a
significant increase in this parameter accuracy. Indeed, to test the influence of the flight height
in tree’s height estimation, a 100 m height (GSD ~ 3 cm) flight was carried out with DJI

Phantom 4, in the same area. In this case, the accuracy significantly improved, R? = 0.86 with
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aRMSE of 0.33 m (Figure 4.12b), the maximum, minimum, and mean height values were also
closer to the measured values, being, respectively, 10.2 m, 7.3 m, and 8.8 m.
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Figure 4.12. Trees’ height estimation validation: comparison between the trees’ height retrieved by the proposed
method and those measured in-field using & (@) 16 cm GSD data and (b) 3 cm GSD data.

Concerning tree diameter validation, analogously to tree height validation, the estimated
diameter values that were obtained from the proposed method were compared with ground-
truth data, where the 40 chestnut trees’ diameter ranged from 2.45 m to 12.23 m, with a mean
value of 6.71 m. Figure 4.13 presents the relationship between in-field measurements and those
that were estimated by the proposed method. From the data acquired at 550 m (GSD ~ 16 cm),
the linear regression presents a R? = 0.92 (Figure 4.13a), which indicates that the estimated tree
crown diameter fits the real data in an 92% accuracy rate. As for the RMSE value, an error of
0.44 m was obtained. Regarding the minimum, maximum, and mean values that were estimated
from the 16 cm GSD data were 2.1 m, 10.66 m, and 6.73 m, respectively. Concerning tree’s
crown diameter estimation that was obtained when using the flight conducted at 100 m height
(GSD ~ 3 cm), similarly to tree height estimation, there was an improvement in this parameter
(see Figure 4.13b). The linear regression presents a R? = 0.96 and the RM SE shows a value of
0.44 m, minimum, maximum, and the mean estimated values were, respectively, 2.92 m, 11.55
m, and 6.67 m.
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Figure 4.13. Trees’ diameter validation: comparison between the in-field measurements by the diameter values
estimated by the proposed method: (a) 16 cm GSD data and (b) 3 cm GSD data.
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4.3.5. Multi-Temporal Analysis
One of the major advantages of the proposed method, compared to the actual state of the art,

consists of its capacity to perform multi-temporal analysis, both at the tree and plantation levels.

4.3.5.1. Plantation-Level Analysis

The data available from the 2014, 2015, and 2017 campaigns was used to perform a multi-
tempora analysis. The number of chestnut treesin the plantation and their respective coverage
areas were compared. The same plantations that are presented in Figure 4.9 (see Figure 4.1 for
location) were used. Table 4.5 shows the occupation area of the chestnut trees in the four
plantations for each flight campaign, along with the mean values of tree height, canopy
diameter, and area. Figure 4.14 shows the evolution over time of the four chestnut plantations,
representing the differences between 2014-2015, 2015-2017, and 2014-2017 campaigns.

Table 4.5. Multi-temporal analysis at the plantation level for: total chestnut area, chestnut coverage area (CA),
and mean values of chestnut trees present at the plantation (height, canopy diameter, and area). Values retrieved
from four chestnut plantations in each epoch (Ptepoch)-

Plantation Chestnut Area Chestnut Mean Tree Mean Tree Mean Tree
(m? CA (%) Height (m) Diameter (m) Area (m?)
Pl14 5197 34.2 6.2 7.0 36
Plis 5521 36.3 6.0 7.2 38
P117 5436 35.8 6.7 7.4 37
P214 3876 37.2 6.6 81 48
P215 4104 394 6.7 85 51
P217 4375 42.0 71 8.6 55
P314 611 22.8 32 44 14
P35 645 24.1 39 4.7 15
P317 868 324 4.2 5.3 20
P44 824 6.5 41 3.6 9
P45 1315 10.4 4.6 45 15
P417 1870 14.8 52 53 21

Regarding the number of trees (Figure 4.15), plantation #4 presented more changes during the
analysed period, constituting a total of 20 new or missing chestnut trees (10 new trees and 10
missing trees). Plantation #1 presented a total of four changes: a missing tree and a new tree
were detected in the 2017 period; two new trees were also detected in the 2015 period. Five
changes were observed in plantation #2: two new trees were detected in 2015; and, three were
considered as missing in 2017. When considering plantation #3, four chestnut trees were
considered missing, two in each period (2015 and 2017), and four new trees were detected, one
in 2015 and threein 2017, performing atotal of eight changes. Potential phytosanitary problems
were aso detected in al of the analysed plantations.
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Figure 4.14. Multi-tempora analysis between three different periods: (a) Plantation 1; (b) Plantation 2; (c)
Plantation 3; and, (d) Plantation 4. Left represents 2014 to 2015; centre 2015 to 2017; and, in the right 2014 to
2017.
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4.3.5.2. Tree-Level Analysis

The proposed method is also able to perform a multi-temporal analysis at the tree-level. Thisis
only possible due to method’s step 3—cluster isolation—where the trees are properly separated.
To illustrate the method’s performance, Figure 4.16 highlighted the results of ten trees. Those
trees refer to the line of trees that is present in the top of plantation #2 (Figure 4.9b) and it is
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Figure 4.15. Missing trees, new trees and trees with potential phytosanitary problems detected in the multi-
temporal analysis of the chestnut plantations and the period when the detection occurred: (a) Plantation 1; (b)
Plantation 2; (c) Plantation 3; and (d) Plantation 4; and, (€) example of atree affected by ink disease from plantation
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Figure 4.16. Multi-tempora analysis at the individual tree-level: (a) RGB image from 2014 campaign; (b) RGB
image from 2017; and, (c) difference mask retrieved by the application of the proposed method.

Table 4.6 presents the quantitative results obtained from applying the proposed method to the
ten trees selected.
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Table 4.6. Multi-temporal analysis at the individual tree-level: canopy coverage area (CA), canopy diameter (D),
and trees’ height (H) estimation for each tree presented in the studied plantation.

D 2014 2015 2017
CA(m?) D (m) Hm) CA@mM?) D(m) Hm CAM) D@m) H(@m)

1 65.7 10.1 7.2 63.9 9.5 7.4 73.1 10.2 8.1
2 51.8 8.9 7.2 471 8.2 6.6 55.4 9.1 6.4
3 454 8.4 6.4 43.3 8.1 6.8 59.1 9.3 7.1
4 35.2 7.7 5.6 34.7 7.2 55 337 7.1 4.0
5 33.7 7.4 5.6 24.7 6.4 55 9.2 4.8 4.8
6 39.2 7.3 6.3 37.2 7.2 6.0 455 79 6.8
7 44.3 7.8 7.0 43.0 79 6.8 48.7 8.2 7.2
8 61.9 9.5 8.2 64.5 9.8 84 72.1 10.1 84
9 549 9.2 7.4 554 9.5 75 63.7 9.5 81
10 52.1 8.3 6.7 541 8.9 6.9 62.5 9.2 7.7

4.4. Discussion

4.4.1. Vegetation Coverage Area

The method achieved good overall results, even in the presence of acomplex and larger scenario
(Figure 4.11), which constitutes an extreme limit situation. For the complex area (Figure 4.1b),
there was a dlight tendency for the method to overestimate chestnut vegetation rather than
underestimate it. Still, both of the values are around 11%. Concerning these errors, it was
observed that alarge part of the over detection isrelated to the difficulty of discriminating some
lawns—since there were trees within the lawns—and due to some undergrowth, which have a
considerable height in the CHM, making it difficult to discriminate. This was aso reported in
(Yin & Wang, 2019). Regarding under detection, some errors were observed on the V1 in trees
that had few leaves and from the CHM in some recent chestnut trees where the height
information was not representative, causing misclassifications from the method. These
problems persist, even when considering higher resolution UAV-based imagery (Péadua,
Marques, Adéo, et al., 2018; Surovy et al., 2018). Probably, those trees may be misclassified
due to the absence of leaves, while considering the imagery resolution. At the same time, this
fact may be used in amulti-temporal approach to highlight the treesthat are potentially affected
by phytosanitary problems. An important aspect is that non-vegetation features present in this
areawere correctly classified as being so, which includes most of undergrowth vegetation and

infrastructures as buildings, which have height values that are similar to some chestnut trees.

It isworth noting that this large area (Figure 4.1b) is not representative of a chestnut plantation
used for economic purposes. Indeed, most chestnut plantations, namely the more recent ones,
follow a well-defined alignment. In these cases, the method’s performance reaches higher

overal accuracies (93 to 99%). However, when excluding non-chestnut vegetation (true
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negatives. soil and undergrowth vegetation), the results differ from the overall accuracy. When
considering the producer’s accuracy, its mean value is 90.7%, being that the higher and lower
values were reached in the 2017 campaign, for plantations #1 (96.6%) and #4 (88.1%),
respectively. When analysing the resultsin aplantation-basis, plantation #1 obtained the higher
values in this parameter (94.7%), while plantation #3 obtained the lowest producer’s accuracy
(87.3%). When considering the producer’s accuracy per epoch, this value is closer, with lower
precision in 2017 (89.3%), while the higher values were obtained in 2014 (92.5%). In 2015,
this value was of 90.4%. As for user’s accuracy, which encompasses all chestnut vegetation
present in the image (i.e. aso considers chestnut vegetation classified as being not), plantation
#4 is the most influenced by these errors (mean of 85.0%). This fact can be related with the
type of trees present in this plantation—more recent than other plantations—and due to the lack
of pixelsthat represent each tree at this GSD, which caused the method to not detect part of the
canopies. On the other hand, plantation #2 provided higher ratesin all of the seasons, with a
mean value of 94.8%. The epoch with lower user’s accuracy was 2015 (90.1%), followed by

2014 (91.65%) and 2017 (91.7%).

Despite the mean user’s and producer’s accuracy values being similar (~91%), it can be sated
that the method tends to overestimate chestnut vegetation (FP), rather than underestimate it
(FN). Plantation #1 was the less influenced by FP and FN, while plantation #4 was the most
influenced, especially by FN. These results clearly contrast with the ones that were obtained in
the overall accuracy, where plantation #4 obtained higher overall accuracy (97.4%) the
remaining with accuracy around 94% to 95%. If only accuracy was analysed, the results could
be wrongly interpreted, since the non-chestnut part in some plantations is considerably higher
than other plantations. Indeed, the area of FN and FP is not so different and is, in most of the
cases, mainly located in the borders of canopies. This way, when considering the obtained
results, it can be pointed out that plantation #1 was the area with the best results, while
plantation #4 was the less performant in chestnut vegetation detection. Nevertheless, another
aspect is that reference masks were manually created, which means that small errors can be

present.

The proposed methodology was devel oped with the underlying premise that it was to be used
to detect and monitor chestnut trees plantations whose own characteristics and those of the trees
that congtitute them lead to few crown overlaps. Nevertheless, regular development of trees
may bring—even when regarding with ordered plantations—canopy overlaps. These are well
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resolved by applying the proposed method (Figure 4.8). The study area also has some older
(and therefore disordered) chestnut plantations, where the proposed method presented high
precision results (Figure 4.10 right). As such, the proposed method may be potentially adapted

to other plantation types. Nevertheless, further studies are needed to evaluate this issue.

4.4.2. Number of Detected Trees

Despite the high accuracy in the results that was obtained in the evaluation of this parameter
(presented in Table 4.3), some trees were not detected, mostly in cases where trees crown was
too small. Thisisthe case of plantation #4, where the missing detection reached a mean value
of 5%, when considering the three epochs. Being this mainly related to the used data, since
flights were performed at 550 m height, making these small trees amost imperceptible in the
image. Moreover, detection also fails when the trees present few or no foliage due to
phytosanitary problems, making it aimost impracticable to detect canopy vegetation through
Vls. This is the case of a tree with considerable size (approximately 50 m?), which was not
detected in plantation #2 on the flight campaign of 2017 (see Figure 4.11b right). However, this
apparent limitation constitutes a strong point of the method, since when applied in a temporal
perspective, it allows for the detection of trees that are potentially affected by phytosanitary
phenomena. Asfor over detection cases, these are related to the method’s cluster separation in
chestnut treesthat had an irregular canopy shape, causing it to be divided into multiple clusters.
However, the number of casesisreatively small (mean of 0.3%). In regardsto under detection,
it was only verified in plantation #3, being caused by a small tree adjacent to a considerably
larger tree. Larger detections mainly occurred in chestnut trees with a considerable canopy area
(seeFigure4.11b), in the other hand, smaller detections cases were observed in smaller chestnut
trees (see Figure 4.11d). The proposed method accuracy is above or in line with the existing
similar methods for tree detection. In Mohan et a. (2017), an open canopy mixed conifer forest
was surveyed and a total of 312 trees were detected by their method, from a total of 367
reference trees with an accuracy of 85%, missing 55 trees. However, 46 trees were over
detected, performing atotal of 358 trees. Ok and Ozdarici-Ok (2017) evaluated individual citrus
trees delineation from UAV-based DSMs, and an overall precision of 91.1% in a pixel-based
analysis and 97.5% in the object-based analysis was obtained by the method. The results from
the proposed method are also greater or in line with the ones that were obtained from the
application of complex and expansive LIDAR data(Liu et al., 2015; Luke Wallaceet a., 2014).
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4.4.3. Tree Height and Crow Diameter Estimation

The results that were obtained for tree height and crown diameter estimation arein line or even
better than the ones from another studies. Tree height estimation was the less accurate when
comparing both parameters. However, when considering that the instrument used in the
measurements has an intrinsic error of about 20 cm, this accuracy is perfectly acceptable
(Mohan et a., 2017). Moreover, some errors can be related to the used digital elevation models,
since the flight was performed at 550 m height (GSD ~16 cm). When considering the
differences for the flight performed at 100 m height (GSD ~3 cm), as expected, thereis adirect
correlation between height accuracy and image resolution: the better the spatial resolution the
better the reached accuracy. It is worth noticing that, in most cases, the flight height will be
lower than 120 m (UAV regulations (Regulamento n° 1093/2016, 2016)), which assures the
method’s effectiveness, even in the estimation of trees’ height. The results prove the
effectiveness of the proposed method in the estimation of structural properties (tree height and
canopy diameter) of chestnut trees, with a good hit rate and with arelatively low error. Zarco-
Tegjada et al. (2014) conducted a tree height assessment of 152 olive trees, with heights that
range between 1.16 and 4.38 m, a R? = 0.83 and a RM SE of 35 cm was obtained. Similarly, to
this study, the results tended to be less precise in lower spatia resolutions. Panagiotidis et al.
(2017) obtained a R? = 0.72 to 0.75 and RMSEs of 3 m in two plots (48 and 39 trees, ranging
from 15 to 35 m). As for tree crown diameter a RMSE of 0.82 and 1.04 m and R? = 0.63 and
0.85, for plot 1 and 2, respectively, with adiameter varying from 11 to 19 m. Diaz-Varelaet al.
(2015) acquired UAV-based imagery to estimate parameters from olives (150 trees, heights
ranging between 1 and 3 m) with 7 cm GSD, obtaining a RMSE of 0.45 (R? = 0.07) for tree
height and for tree crown diameter obtained an RMSE of 0.32 (R? = 0.58), with values that
range from 1 to 25 m. Lim et a. (2015) evaluated tree detection using DSM from
photogrammetric processing of UAV-based imagery, and obtained a RM SE of 0.84 m for tree
height coniferous trees and 2.45 m for deciduous coniferous trees, tree crown width of crown
an RMSE varying from 1.51 m to 1.53 m was obtained for each area. lizuka et a. (2018)
obtained a RM SE of 1.7m from heights that ranged from 16 to 24 m. Guerra-Hernandez et .
(2018) compared the accuracy in tree detection using ALS and UAV-based imagery in
eucalyptus trees with heights that ranged from 10 to ~20m. The authors obtained RM SE values
from 1.83 to 2.84 and correlation coefficient (r) 0.61 to 0.69. Moreover, it was reported that
ALS performed better in steep slope areas. Guerra-Hernandez (2016) extracted properties from
52 Pinus pinea L. trees also evaluating crown diameter and tree height using UAV -based
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imagery (GSD of 6.23 cm). Obtaining R? = 0.81 and RMSE of 0.45m for tree height (7 to 12
m), as for tree crown diameter, the authors found an RMSE of 0.63 m and R? = 0.95 for tree
diameter (6 to 14 m). Paduaet al. (2018) obtained R? values that ranged from 0.91 to 0.96 from
an area that was composed mostly by chestnut trees, in flights ranging from 30 to 120 m and
RMSEs from 0.6 to 0.33 m. Despite the overall good results, the flights at lower heights had
lower accuracies than flights that were performed higher, it was also reported that double-grid
flights had an increase in accuracy. Popescu et al. (2003) obtained R? from 0.62 to 0.63 for tree
crown diameter estimation and a RMSE 1.36 to 1.41 m using LIDAR data for pines and
deciduous trees. Despite both parameters showing a good regression agreement, further studies
must be done, especially by evaluating recent chestnut plantations composed of treeswith lower
heights and, therefore, irregular canopy shapes (Surovy et a., 2018). Different spatial

resol utions can also be evaluated.

4.4.4. Multi-Temporal Analysis

UAYV-based multi-temporal analysis remains a topic not broader explored, and some studies
have focused on this topic. Guerra-Hernandez et al. (2017) proposed a method for multi-
tempora analysis to monitor the growth of Pinus pinea L. with different treatments. Michez et
al. (2016) employed amulti-temporal analysist for riparian forests monitoring. UAV's can carry
different sensors, providing more properties to be evaluated for chestnut trees monitoring, as,
for instance, UAV-based thermal infrared imagery can provide insights on water status level of
trees (David GOmez-Canddn et a., 2016; Park et a., 2015), or vegetation indices, from
multispectral imagery, to provide plant vigour and disease detection (Gago et a., 2015).

Concerning the multi-temporal analysis that was conducted in Section 4.3.5, the four
plantations had a growth in its chestnut canopy area, for the spanned period addressed in this
study. The higher development was observed in plantation #4, with agrowth of more than 1000
m? (126%). A similar behaviour is also noticeable in the mean tree development values, with
+1.1 min height, +1.6 m in canopy diameter, and 11.5 m? in canopy area. This plantation was
mostly composed by younger chestnut trees when compared to the other plantations, then with
a greater margin of development. The plantation with the lowest development was plantation
#1, which had a growth of around 240 m? (4.6%) in the period of 2014 to 2017. However, a
case of chestnut decline was verified in this plantation from 2015 to 2017 period with -85 m? (-
1.5%). As for the remaining two plantations, plantation #2 had an overall growth of 499 m?
(12.9%) and plantation 3 growth was 257 m? (42.1%). By analysing the obtained results, it can
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be stated that plantations that contained more recent chestnut trees had the higher growth rates
(plantations #3 and #4), whereas plantations with adult chestnut trees presented lower growth
rates (plantations #1 and #2), which was expected. When observing the mean chestnut tree
parameters per plantation, the higher values were verified in plantation #4, as previously
mentioned, followed by plantation #3, with amean growth of approximately 1 m for tree height
and canopy diameter, and finally by plantations #1 and #2, which presented 0.5m growth for
tree height, as tree diameter plantation #2 presented a mean growth of 0.5 m and plantation #1
showed the lower value of 0.3 m. Regarding the mean canopy area, plantation #2 presented 6.9
m? growth, while plantation #3 presented 5.5 m? growth. Again, plantation #1 showed the lower

growth value, being 1.1 m?,

Asfor the number of treesin the plantations (Figure 4.15), it was observed that more changes
were verified in more recent plantations (plantations #3 and #4), with this being mainly related
to some chestnut trees that were cut off from the plantation as well with the detection of smaller
trees, whereas the older chestnut plantations presented less changes. Concerning the detection
of potential phytosanitary problems, for plantations #2 and #4, these cases were only verified
in data from 2017 campaign. There was one case in plantation #3 of a chestnut tree with
potential phytosanitary problems detected in 2015, which lead to the tree to be removed and
become missing in 2017 campaign. Consecutive decline was verified in two trees from
plantation #1. Two trees that were detected in plantation #4, in 2015, where signaled as
potentially affected by phytosanitary problems in 2017. Thus, the method showed its
effectiveness in the multi-temporal analysis of chestnut plantations. Figure 4.15e presents a
chestnut tree that was infected by ink disease, as observed in the 2017 campaign at plantation
#2. This represents that, despite some problems in the development of young trees and the
presence of phytosanitary problems, there is still an interest in the this crop, as reported in
Martins et al. (2015) and Padua et al. (2017).

Regarding the results from the multi-temporal analysis of individual trees, as presented in
Section 4.3.5.2, a growth in the canopy coverage and diameter of the analysed chestnut trees
was verified (Figure 4.16 and Table 4.6). However, trees #4 and #5 showed a regression in
those parameters. Particularly, chestnut tree #5 had a coverage area regression of 25.3 m? (-
78%) and a decrease of 3.6 m in its diameter (-53%). A field campaign confirmed that this
decline was due to the chestnut ink disease (Figure 4.15€). Apart from these two cases, the
chestnut trees that are represented in Figure 4.16 had an average growth of 7.5 m? (+15%) in
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their canopy coverage area and 0.6 m (+7%) in their diameter. Regarding trees’ height, it was
referred before that the model quality influences the measurement quality. However, chestnuts
trees#2, #4, and #5 showed aregression in height well beyond the expected error. Despite these
regressions in the trees’ height, the remaining chestnut trees showed an average growth of 0.4
m (+5%).

Thisway, the method that is proposed in this study asthe ability to individually detect chestnut
trees and to extract dendrometric parameters in chestnut plantations with the ability to perform
multi-temporal analysis and to detect trees with potential phytosanitary problems. When
considering other remote sensing platforms, this approach makes use of the flexibility that is
provided by UASs to acquire data on-demand with higher spatial resolution that other
platforms, which cloud coverage (Padua, Vanko, et a., 2017) and lower operational costs can
also affect, when compared to manned aircrafts (Alessandro Matese et a., 2015). When
comparing the UAV -based approach against field surveys, the method can quickly cover larger
areasin alower tempora window and directing management operations to trees with potential

phytosanitary problems

4.5. Conclusions and future work

An automatic method was devel oped to assist chestnut tree management operations from aerial
images. The presented research used severa types of chestnut plantations with mixed tree
density, size, and background covers, covering most of the real-world scenarios to develop and
validate the proposed method, which includes image segmentation, based on CHM and Vs,

and the extraction of chestnut tree parameters.

For image segmentation, different Vs that are based on NIR and RGB bands combinations
were evaluated on a complex area composed of thousands of trees in a mixed environment.
Moreover, anovel VI was proposed for vegetation segmentation in CIR imagery, EXRE. The
segmentation accuracy on a pixel-based level was evaluated and arate that is greater than 95%
was reached. VIs using NIR band on its computation alowed for obtaining slightly better
results, however the overall RGB-based Vs performance allows for the proposed method to be
applied to aeria images that were acquired from low-cost consumer-grade cameras, commonly
used in UAS.

Experiments were conducted to evaluate the behaviour of the proposed method estimating the
global parameters of chestnut plantations, such as the total vegetation cover area, the total
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number of trees, and the trees’ height and crown diameter. The values that were estimated for
the proposed method were compared with ground-truth data obtained in-field measurements.
In the case of vegetation coverage and trees counting, the accuracy was greater than 90%,
respectively, 91% and 97%. Regarding parameters that can be adjusted by alinear regression,
as the case of tree heights and crown diameter, two sets of images, obtained at 550 m and 100
m height were used, and the proposed method fits the model with an accuracy of 86%, with a
RMSE of 0.33 m, for the tree heights, and with an accuracy of 96% with RMSE of 0.44 m for
the crown diameters. In the determination of these parameters, a correlation with the accuracy
and the flight height was found. Indeed, the accuracy increases with image resolution. Thus, at
the maximum legal flight height (120 m), the proposed method performs very well.

In summary, this research has proven that UAV-based imagery is afast and stable method in
chestnut tree parcel management. The overall results suggest that the proposed method can be
used as an effective alternative to the manua method for monitoring chestnut plantations.

The experiments that were made in the different study plantations allow for us to conclude that
the method is generally used for chestnut trees monitoring. Of coursg, it is more effective if
applied to parcels that were created for sustainable production. Usually, in this type of
plantations, the trees are distributed in agrid-shape. Moreover, the method would be performant
in other plantation sites (e.g. olives, orchards) so long as they are planted in a grid-shape and
the shape of those specific trees, in an aerial image, is very similar. Research towards chestnut
plantations that were affected by different phytosanitary problems (chestnut ink disease,
chestnut gall wasp and nutritional deficiencies) and how chestnut trees in-season growth is
affected is being conducted.

Furthermore, the method allows a multi-temporal analysis, which constitutes a useful and
powerful tool in chestnut plantation management. Therefore, by enabling the substitution of
time-consuming and costly field campaigns, this automatic method represents a good
contribution for managing chestnut plantations, providing equivalent results when applied at
thetree-level and plantation-level studies, both for static and multi-temporal analysis. Thus, the
proposed approach exposed the future potential of UAV-based analysis for plantation
monitoring. Future research should focus on forest monitoring and management, but also in the
estimation of individual tree attributes, such as tree height, crown size, and diameter, and
thereby devel op predictive model sfor estimating biomass and stem volume from UAV -imagery
as to discriminate/detect chestnut trees that are affected by biotic or abiotic problems.
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5.1. Introduction

Chestnut trees (Castanea sativa Mill.) are one of the most important species in Portugal for
both forestry and agricultural purposes. In an agricultural context, in 2018, this species
represented a surface of 38,728 ha with 33,929 tons of chestnuts produced. It is especialy
relevant in the northern region of the country, where it represents 89% of planted surface
(34,504 ha) and 88% of yield (29,908 tons) (Instituto Nacional de Estatistica, I. P., 2019).
Chestnut trees can be affected by several phytosanitary issues due to both biotic or abiotic
factors. Theseissues can significantly impact the chestnut development and yield (Luis Martins
et a., 2014). Chestnut ink disease (Phytophthora cinnamomi Rands) (Valverde et al., 2017),
chestnut blight (Cryphonectria parasitica (Murr.) Barr.) (Rigling & Prospero, 2017), nutritional
deficiencies (Portela et al., 2003) and, more recently (June 2014), the chestnut gall wasp
(Dryocosmus kuriphilus Y asumatsu) (Aebi et al., 2006), are among the most meaningful biotic
and abiotic factors that can affect chestnut trees. The phytosanitary condition of chestnut stands
is usually evaluated by in-field observations, which are time-consuming, laborious, demand
specialized human resources, and are based on small samples. Using currently available
methods and tools, al based on manual and |aborious measurements, phytosanitary conditions

monitoring over alonger period of timeis even more challenging.

Remote sensing can be considered as a viable approach to help in monitoring and managing
chestnut stands regarding phytosanitary issues caused by either biotic or abiotic factors. There
are several studies published using remote sensing platforms coupled with different sensors that
have chestnut trees as their research subject. Small format aerial photography via manned
aircrafts was used to assess chestnut ink disease (Ambrosini et al., 1997; L. M. Martins et al.,
2001; Vannini et a., 2005) and chestnut blight (Ambrosini et a., 1997). The same agerial
imagery format was also used to assess chestnut ink disease and blight spread through the use
of geostatistical methods (J. Castro et a., 2010; L. Martins et a., 2007) and to discriminate
different phytosanitary statuses (LuisMartinset al., 2005). Airbornelow-density LIiDAR (Light
Detection and Ranging) data were also used for biomass estimation (Montagnoli et al., 2015).
However, these initial attempts to use aerial images to assess chestnut trees’ health status
revealed low correlation. More recently, Marchetti et al. (2019) proposed an approach for
mapping chestnut stands using WorldView satellite multispectral imagery, enabling the
classification of chestnut stands within a heterogeneous |andscape.
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Meanwhile, unmanned aerial vehicles (UAVS) have been established as a versatile remote
sensing platform capable of being coupled to an array of different sensors and to operate under
diverse flight and terrain conditions. Furthermore, they are aso able to adapt to specific
requirements for monitoring different crops (both temporal and spatial). Precision agriculture
and forestry have greatly benefited from this remote sensing platform in the last few years, with
many advances being published and already in use. As for studies related to chestnut trees,
orthophoto mosaics obtained through photogrammetric processing of high-resolution imagery
acquired from UAVs were used by Martins et al. (2015) to monitor 231 ha of chestnut trees.
By comparing these data with aerial imagery acquired almost ten years earlier, it was possible
to measure areas of new plantations and to assess the decline of chestnut trees. The main
conclusion drawn by this study was that the decline was very significant along that time period.
The study was extended to subsequent years, and the results are presented in Paduael al. (2017),
where a decline from 2014 to 2015 was confirmed. A novel method based on image processing
was proposed in Marques et a. (2019), enabling the automatic monitoring of chestnut trees
through estimation of some of the main parameters, such astree height and crown diameter and
area. By applying this methodol ogy, multi-tempora analysis was possible both at the tree and
plantation level. Di Gennaro et a. (2020) used a similar method to estimate the pruning wood
biomass of chestnut trees. Finally, in Padua et a. (2018), the impact of different flight heights
in the estimation of tree height and crown diameter was evaluated using UAV-based RGB
imagery. It was concluded that flight altitudes of 60 and 120 m (corresponding to a spatial
resolution of 2.65 and 5.25 cm, respectively) presented the best overall results.

Nonetheless, despite the numerous advances in monitoring chestnut trees provided by the use
of UAV-based high-resolution aerial imagery, little progress has been made in both automatic
detection and classification of the biotic or abiotic factors that can affect them. The ability to
act (or react) in the timely detection of factors that can negatively affect the phytosanitary
condition of achestnut stand will be essential to improve management practices and, therefore,
have a significant social and economic impact. In this study, we explore UAV -based
multispectral imagery with high spatial and temporal resolutions (Padua, Vanko, et al., 2017)
of chestnut stands to detect potential phytosanitary problems.

There are studies with comparable objectives for vineyards (Albetis et a., 2017) to detect
Flavescence dorée, for olive groves (P. J. Zarco-Tejada et al., 2018) to detect symptoms of
Xylellafastidiosa, and for oil palm plantations (Shamshiri et al., 2018) to assess health status
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and disease detection. Balasundram et a. (2020) provided insights into the deployment of site-
and time-specific approaches to manage plant disease problems. However, and according to the
authors’ best knowledge, there are no similar studies or approaches applied to chestnut trees.
Indeed, the challenge is even greater when dealing with chestnut trees asthere are several biotic
and abiotic factors that can cause similar symptoms, with very different mitigation treatments
or methods.

As such, seeking to determine precisely which factors are affecting a given tree, the proposed
methodology also includes an incremental approach based on machine learning methods.
Severa flight campaigns were accomplished to acquire multispectral imagery over a chestnut
stand located in north-eastern Portugal. Furthermore, field surveys were also conducted, by an
expert, to obtain the phytosanitary characterization of every individual chestnut tree within the
monitored area. The proposed methodology begins by applying photogrammetric processing to
the acquired high-resolution aerial imagery. Then, tree crowns are detected using the outcomes
of thefirst step. A random forest (RF) classifier isthen applied to distinguish healthy trees from
those affected by any biotic or abiotic factor. This process is repeated to determine which
phytosanitary problem is affecting each tree. Multi-temporal anaysis comes into play by
applying the proposed methodol ogy to data acquired in different flight campaigns that occur in
the same growing season. It is a contributing factor to improve this methodology’ precision as
some chestnut trees were asymptomatic or showed alow incidence of phytosanitary issues early
in the growing season. The proposed methodology is able to distinguish healthy chestnut trees,
and it can also identify which is the specific limiting factor affecting the development of each

tree.

5.2. Materials and M ethods

5.2.1. Study Area Characterization

Research involving trees, in general, and chestnut trees, in particular, requires keen knowledge
of the area under study. The studied chestnut stand is alaboratory arealocated in north-eastern
Portugal (Figure 5.1a, 41°22-42.8N, 7°35-01.4W, dltitude 760 m) within one of the main
chestnut production regionsin Portugal (M. Pereiraet al., 2011). It hasan areaof approximately
0.4 haand is composed of 52 trees from which 46 are chestnut trees (marked in Figure 5.1b).

Thisareawasrigorously characterized by expertsfrom the University of Tras-os-Montese Alto
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Douro (VilaReal, Portugal), and to ensure the representativeness of this area, the most common
cultural practices were also used (Marques et al., 2019).

In-field observations were carried out during the 2018 growing season, on the same dates as the
flight campaigns, to assess the phytosanitary condition of the chestnut stand. Issues such as
chestnut ink disease and potential nutritional deficiencies were evaluated using a discrete scale
ranging from zero (absence) to four (strong incidence). Furthermore, the condition of each
chestnut tree was evaluated using afive-level scale ranging from 1 = very bad conditionto 5 =
excellent condition, considering the severity of the phytosanitary issues along with the overall
tree status. This qualitative classification was performed by an expert and based on the severity
of visible symptoms (L. M. Martinset a., 2015). Dendrometric measurements of each tree were

also acquired. Soil analyses were also conducted to assess the nutrient levels.
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Figure 5.1. Study area overview: (a) geographic location in Portugal’s mainland; (b) aerial overview of the
chestnut stand, where chestnut trees are marked (WGS84, coordinate system, EPSG:4326). Ground perspective of
some of the monitored trees, showing (c) absence of visual symptoms, (d) chestnut ink disease, and (e) nutrient
deficiency. Unmanned aerial vehicle during take-off (d), used sensors are highlighted.

5.2.2. UAV-Based Data Acquisition
A DJI Phantom 4 (DJI, Shenzhen, China) was used to acquire the aerial imagery used in this
study. Thismulti-rotor UAV comes equi pped out-of-the-box with acomplementary metal oxide
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semiconductor (CMOS) sensor—mounted in a 3-axis gimba—capable of acquiring
georeferenced RGB imagery with 12.4 MP resolution (details about UAV and sensor
specifications can be found at (DJ Official, n.d.)). The UAV was modified to support
multispectral imagery acquisition (Figure 5.1f) using the Parrot Sequoia (Parrot SA, Paris,
France). This sensor is composed of a camera array responsible for acquiring green, red, red-
edge (RE), and near-infrared (NIR) single-band images. Each band has a 1.2 MP resolution.
For radiometric calibration of the multispectral imagery, irradiance data are acquired during
flight (from a sensor positioned at the top of the UAV—see Figure 5.1f) and, prior to each
flight, reflectance data are acquired using a calibration target.

Flight campaigns were carried out throughout the growing season of 2018 to acquire
multispectral aerial imagery. A flight mission was planned to provide a complete overview of
the area, in adouble-grid pattern, with 80% overlap between images and 70% overlap between
flight lines. Flight height from the take-off point was set to 60 m, and the total area covered by
flights was approximately 2 ha. Considering the planned imagery overlap and the flight height,
the sensor was set up to acquire images at each 11 m travelled. The same flight plan was used

for al flight campaigns.

The selected dates—27 May, 24 June, 8 July, 8 August, 25 September, and 16 October—
allowed spanning across the most important stages of chestnut tree development: sprouting,
flowering, fruiting, and defoliation. The vegetative dormancy of chestnut trees usually spans
from November to March (Bergonoux et al., 1978).

5.2.3. Data Processing

Figure 5.2 presents the main steps of the proposed methodology as applied to each flight
campaign’s data. Outcomes generated from the initial photogrammetric processing enable
output of a crop height model (CHM) and several vegetation indices. The latter are computed
from different combinations of the four acquired bands and can be used for different purposes:
(1) individual tree crown detection; (2) object-based image analysis (OBIA); and (3) dataset
features. Training and prediction processes are the same to (1) classify the presence of
phytosanitary issues, and (2) to identify the specific phytosanitary issue (if any). Only the
number of classes varies. The proposed methodology remains functional, regardless of the

sensor used.
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Figure5.2. Main steps of the proposed methodology for data of a single flight campaign.

5.2.3.1. Photogrammetric Processing and V egetation I ndices Computation
Pix4dDMapper Pro (Pix4D SA, Lausanne, Switzerland) was used to achieve the

photogrammetric processing of the acquired aerial imagery. It provides a complete processing
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pipeline dealing with imagery correction, alignment, and radiometric calibration, producing
dense point clouds.

Within this study, RGB orthophoto mosaics were computed for visualization purposes only.
Despite the flight campai gns being carried out at the same height with both sensors, their spatial
resolution differs. Indeed, dueto different sensor resol utions, the ground sample distance (GSD)
of the RGB imagery is approximately double that of the multispectral imagery (2.6 and 6 cm,
respectively). Point cloud density, per m®, was, respectively, ~500 and ~40 points. Data from
both sensors were aligned relative to each other by using points that are clearly identifiable in
theimagery and then merged, and geometric correction was applied using ground control points
(GCPs) using both natural features and artificial targets.

In projects using multispectral imagery, a radiometric calibration is performed. Reflectance
maps are generated for each band, and the most relevant vegetation indices—suggested in the
literature—to monitor spatiotemporal variations in biomass and yield and to estimate |eaf
pigments (Albetis et a., 2017) are computed (Table 5.1). A digital surface model (DSM) and a
digital terrain model (DTM) are also generated, and a CHM is computed. This process was
accomplished in QGIS software by subtracting the DTM to the DSM.

Table 5.1. Computed vegetation indices found in the literature and their respective equations.

Name Equation Ref.
Normalized Difference N-R
Vegetatlon Index NDVI = N—-l—R (Rou%et a., 1974)
Green Normalized Difference N-G .
G—R
Green Red Vegetation Index GRVI = GTR (Tucker, 1979)
N —RE
Normalized Difference Red Edge NDRE = NTRE (Barnes et al., 2000)
. . . N—-R
Soil Ad] usted Vegetathﬂ Index SAVI = m X1+L (Huete, 1988)
Renormalized Difference _ N-R (Roujean & Breon,
. RDVI =
Vegetation Index VN+R 1995)
N
Simple Ratio SR = R (Birth & McVey, 1968)

Transformed Chlorophyll

RE
Absorption Reflectance Index  TCAR! =3 [(RE ~R)—02(RE - G) x —|  (Haboudane et al., 2004)

G: Green; R: Red; N: NIR; RE: Red edge; L = 0.5.

In addition to the vegetation indices shown in Table 5.1, new ones are proposed in this study.
In fact, knowledge about the typical spectral signature of symptomatic and asymptomatic
chestnut trees, allowed to conclude the relevance of the red-edge (RE) and near-infrared (NIR)
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regions. Figure 5.3 presents the spectral signatures for the main issues identified in the chestnut
stand (chestnut ink disease and nutritional deficiencies) and for chestnut trees with no visible
symptoms obtained from UAV-based hyperspectral data using the Nano-Hyperspec® VNIR
(400-1000nm) imaging sensor (Headwall Photonics, Inc., Massachusetts, USA). Significant
differences among them are observed along spectrum; in the visible part (400-690 nm), ahigher
reflectance is achieved in trees with nutritional deficiencies, followed by trees with no visible
symptoms, whilein the RE and NIR parts (690-900 nm), the oppositeis verified. Trees affected
by the ink disease always presented the lowest reflectance.
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Figure 5.3. Typical spectral signatures and standard error, computed using the average of 100 points, in chestnut
trees with no symptoms and from trees with chestnut ink disease and nutrient deficiency. Spectral band width of
the four Parrot Sequoia bands is highlighted.

Therefore, customized vegetation indices were developed considering the strong influence of
the RE and NIR bands. These vegetation indices are inspired by the Excess Green Index (ExG)
(D. M. Woebbecke et al., 1995) that showed effectiveness in weed discrimination (D. M.
Woebbecke et al., 1995), crop identification (Kiani & Jafari, 2012; G. E. Meyer & Neto, 2008)
and quantification (Kim et a., 2018), early-season crop monitoring (Marcial-Pablo et ., 2019),
and multi-temporal mapping of vegetation fractions (J. Torres-Sanchez et al., 2014) using both
close-range and UAV -based imagery. Thus, the assumption that added weight of both RE and
NIR bands would improve the detection of phytosanitary problems was made (Figure 5.3). Two
new vegetation indices are proposed and were named Excess NIR (ExNIR) and Excess RE
(EXRE) and are represented by the following equations:

ExNIR = 2 X N,, — G, — R, — RE,,, (1)

ExRE = 2 x RE, — G, — R,, — N, 2)
where Gn, Rn, NIRn and RE; corresponds to the division of, respectively, green, red, NIR and
RE bands by the sum of the four bands. Normalized difference versions of the two proposed
indices, the Normalized Difference Excess NIR (NDEXNIR) and the Normalized Difference
Excess RE (NDEXRE), were also computed as follows:
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DENIR = 2% No = Gn = R — RE, -
= XN, + G, + R, + RE,

bExRp = 2 REn = Go ~Ra— N, .
T O XRE, + G, + R, + N, “)

5.2.3.2. Individual Tree Crown Detection and Multi-Temporal Analysis

For extraction of individual tree parameters (Step 1 from Figure 5.2), each tree must be isolated
from its surrounding environment (soil, vegetation, and other trees). However, given its
planting distance and crown size, chestnut trees tend to be too close from each other, giving rise
to the need for their segmentation and isolation. In thisway, the orthorectified outcomes can be
used as input in an image processing method for individual tree crown detection. For this
purpose, the principles enunciated in Marques et al. (2019) were used with slight modifications
to encompass multispectral imagery. The method was developed for chestnut plantation
monitoring with the scope of performing multi-temporal analysis. It relies on the combination
of photogrammetric outcomesin araster format which, inturn, isautomatically binarized. Some
changes were implemented to ensure that all monitored chestnut trees within the study area
wereincluded for analysis. Taking both the NIR band and the CHM asinputs, alocally adaptive
threshold (Bradley & Roth, 2007) is used in the binarization of the stand. A visual analysis
allowed us to conclude that apart from trees of significant size (chestnuts and other trees) the
amount of green vegetation in the study areawas low or almost absent (depending on the flight
campaign). For that reason, a value of 0.20 m was selected for CHM thresholding. Both binary

images were then concatenated.

In the output, most of the pixels in the binary image (Figure 5.4b) belong to the crowns of
chestnut trees. Still, some clusters of pixels can eventually represent more than onetree, leading
to the need for a cluster isolation step (see Figure 5.4). The inverse of the binary imagery is
used to compute a distance transform (Figure 5.4c) based on the Euclidean distance transform
(Maurer & Raghavan, 2003), where a value is assigned for each pixel corresponding to the
distance to the nearest pixel with a zero value. In turn, the complement image is used in the
watershed transform (F. Meyer, 1994). This way, in an idea scenario, clusters representing
multiple trees are separated into individual clusters representing a single tree (Figure 5.4d).
However, given the high spatial resolution, there can be cases where small parts can be
erroneously separated. The processis reversed by analysing the bounding boxes overlap ratio,
namely, if it is higher than 90% relative to another. Binary images as presented in Figure 5.5b,d
were used to mask the colour—infrared image.
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Figure 5.4. Individual tree crown isolation process: () colour—infrared image; (b) detected vegetation; (c) color-
coded representation of the complement di stance transform result; and (d) unconnected clusters from the watershed
transform.

After cluster isolation, it is possible to obtain individual tree parameters. Several parameters
can be driven by the analysis of each cluster, such as the crown diameter, perimeter, and area.
Moreover, values retrieved from remotely sensed data, such as the CHM (tree height),
vegetation indices, or spectral bands, can be obtained by matching each cluster to the raster
data. This information can be presented as geospatial data in vector format (shapefile) to be
analysed in a geographic information system (GIS) or in atable format.

Finally, multi-temporal analysis can be carried out using the values extracted for each flight
campaign by comparison with the subsequent campaign. This way, the extracted parameters
can be used for individual tree monitoring or to obtain an overview of the chestnut stand at the
time of each flight campaign. In this study, the tree crown area and the mean NDV | value are
analysed in a multi-temporal perspective, focusing on the overall stand development and on

trees affected/non-affected by phytosanitary issues.

5.2.4. Detection of Phytosanitary Issues Using a Random Forest Classifier

Apart from the possibility of doing multi-temporal analysis using the extracted parameters, they
can be used in a machine learning (ML) approach to distinguish chestnut trees in different
phytosanitary conditions. Then, it is possible to (1) classify healthy chestnut trees and chestnut
trees with phytosanitary issues and (2) distinguish among phytosanitary issues. The clusters
resulting from the automatic individual tree detection were labelled in two ways according to
their phytosanitary status: in two classes—with or without phytosanitary issues; and in three
classes—to distinguish the different major phytosanitary problems (no visible symptoms, ink

disease, and nutritional deficiencies).

An RF algorithm was used to carry out these classifications. It is atype of ensemble classifier
that generates several decision trees using a random subset of training samples capable of

handling high data dimensionality and multicollinearity and isinsensitive to overfitting (Belgiu
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& Drigut, 2016). This method is widely used in remote sensing applications (O Akar, 2016;
Feng et al., 2015; Maet al., 2017), including tree species classification (Goodbody et al., 2018;
Michez et a., 2016; Nevalainen et al., 2017).

5.2.4.1. Data Augmentation from Object-Based Image Analysis

As mentioned in Section 5.2.1, the use of a well-characterized area with well-known behavior
is essential for validation of results. However, the fact that the stand used in the study is
composed of arelatively small number of samples is a challenge for ML techniques. In fact,
the essence of ML is based on using a high number of observations/samples. To overcome this
limitation, the number of available samples was substantialy increased using an OBIA
approach (Step 2 from Figure 5.2). This was done using large-scale segmentation based on the
mean shift algorithm (Michel et a., 2014) from the Orfeo ToolBox (OTB) (Inglada &
Christophe, 2009). It requires a raster as input and results in a set of objects in vector format
with a similar spectral similarity. To better discriminate tree crowns, the NIR, green, and red
bands (NGR, examplein Figure 5.4a) were concatenated and rasterized to produce a three-band
false-colour image. This combination of bands was reveal ed to be the best compromise for this
specific task. To increase the number of objects produced in this procedure, its sensitivity was
augmented. Therefore, the spectral radius was set to 10 while the spatial radius and minimum
segment size were kept at five and 50, respectively. The originated objects which intercept the
detected tree crowns inherit the same classification as their correspondent tree, being classified
according to its predominant phytosanitary issue that was observed in the field. Figure 5.5a
presents part of the output obtained from the OBIA step; the objects matching tree crowns
(Figure 5.5b) are then used for further model training and testing (Figure 5.5¢).

5.2.4.2. Feature Selection, Training, Validation, and Prediction

The created dataset is composed of the mean values of 16 features: the eight vegetation indices
presented in Table 5.1; the green, red, RE and NIR bands; and the last four corresponding to
the vegetation indices proposed in this study (see Section 5.2.3.1). As such, the database
connected to the objects representing the tree crowns include a column with the mean value of
these features. However, given the number of features to discriminate, those may behave
differently by class. Hence, to decrease the number of features, an intermediate step was
introduced. For this purpose, recursive feature elimination (RFE) (Guyon et al., 2002) was used
(Step 3, from Figure 5.2). This method ranks features recursively based on their respective
importance (Granitto et a., 2006).
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Figure 5.5. Data augmentation procedure: (a) objects from the mean-shift algorithm; (b) objects intersecting the
detected tree crowns; (c) train-test split of the objects used for training (orange for training an and grey for testing).

For training and evaluation of the RF models (Step 3, from Figure 5.2), a hold-out strategy was
used by randomly performing train-test splits (70% to train and 30% to test). To avoid possible
discrepancies in the solution, an average of 10 repetitions was used. The data split operation is
made by considering the area of each object within each tree and using 70% of the tree crown
area for training and the remaining 30% for testing. This step is applied to the datasets from

each flight campaign.

To evaluate the classification procedure in the different flight campaigns, the resultant
confusion matrices were analysed. For this purpose, the following metrics were used:
precision—the number of objects correctly classified for a given class divided by its total
number of samples; recall—the number of correct classifications for a given class divided by
its row total; and Flscore—the harmonic mean of precision and recall measures. The overall
accuracy and the Cohen’s kappa coefficient (K) (McHugh, 2012)—a statistic used to measure
inter- or intrarater reliability for qualitative items—were also analysed for a genera
perspective of the models’ behaviour. While the overall accuracy indicates the proportion of
correct classifications in the total number of samples, the kappa coefficient evaluates the
performed classification while considering the possibility of the agreement occurring by

chance.

To predict potential phytosanitary issues in the analysed stand (Step 4, from Figure 5.2), the
mean value of each tree is used. The mean feature value differs from the training values since
the mean value of the whole tree crown is different from the mean value of their objects (used
from training and testing). To evauate the performance, the overall accuracy and the
classification errors for each class were assessed. The predictions were made for two classes
(with or without phytosanitary problems) and categorized according to the detected issue (no

visible symptoms, ink disease, and nutritional deficiencies).
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5.3. Resaults

5.3.1. Phytosanitary Characterization of the Study Area

The phytosanitary issues detected in affected trees were mostly ink disease and nutritional
deficiencies. Both show symptoms on tree crown and foliage: while for chestnut ink disease,
the dieback can be observed by low-density foliage or even its absence in some parts of the
canopy (Figure 5.1d), nutritional deficits are noticeable by leaf discoloration and stress
symptoms (Figure 5.1€). From the 46 chestnut trees assessed, 16 presented nutritional
deficiencies (Figure 5.6a), eight had a higher predominance of ink disease symptoms (Figure
5.6b), and the remaining 22 were considered to be without symptoms. The latter had 6.5 m
mean height and a mean crown diameter of 6.5 m. Those presenting ink disease symptoms had
6.2 m mean height and 6.1 m mean crown diameter. Chestnut trees with symptoms of nutritional
deficiencies had amean height of 4.5 m and a mean crown diameter of 4.0 m. The overall mean
chestnut tree height was 5.8 m, and the overall mean crown diameter was 5.6 m. The global

condition of each evaluated chestnut treeis presented in Figure 5.6c¢.
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Figure 5.6. Phytosanitary assessment of chestnut trees for (a) nutrient deficiency; (b) chestnut ink disease; and (¢)
global condition.

5.3.2. Multi-Tempora Anaysis

The estimated individual parameters of the chestnut trees from the different flight campaigns
allowed for an understanding of the overal evolution of the stand. From these, the crown area
and vegetation indices are the foremost parameters that can support multi-temporal anaysis.
Figure 5.7a presents the overall area occupied by chestnut trees, while Figure 5.8 depicts the
individual crown area for each chestnut tree. A growth trend from the first (late May) to the
fourth flight campaign (August) can be observed. From the fourth up to the last flight campaign,
an overall decline occurred. The first three flight campaigns (May to June and June to July)
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presented a growth in area of 9% and 5%, respectively (from 767 to 877 m?), while from the
third to the fourth flight campaign, agrowth of 13% was verified (991 m?). In the last two flight
campaigns, a decline was registered (16% and 6%, respectively), resulting in a final chestnut

tree crown area of 783 m2.

Considering trees with no visible symptoms (22 trees, ~48% of the total number of trees) and
trees otherwise affected by phytosanitary issues (24 trees affected by ink disease or/and
nutritional deficiencies), the former represents between 63% to 67% of the crown area along
the flight campaigns. Figure 5.7a presents the crown area of the chestnut trees (i) that had no
visible phytosanitary issues detected in the in-field characterization; (ii) with phytosanitary
issues, regardless of which (24 trees); (iii) affected by ink disease (8 trees); and (iv) with
nutritional deficiencies (16 trees). In general, the various curves fit well in their behaviour,
presenting an almost linear increase in crown area until the third flight. Maximum crown area
was reached in the fourth flight. Crown area decline for trees affected by phytosanitary issues
was 29% (—98 m?, from 341 to 244 m?), with data acquired in the two last flight campaigns. As
for chestnut trees with no visible symptoms, the area decline was 17% (—108 m?, from 626 to
519 m?). Crown areas of chestnut trees affected by ink disease or/fand with nutritional
deficiencies have a 30 m? mean difference, representing 14% and 18% of the overall crown

area, respectively.

The distribution of tree crown areais presented in Figure 5.7b-d. While some trees present a
tree crown area higher than 40 m?, others present an area lower than 1 m? (Figure 5.7b). Such
discrepancies can be justified by the fact that the trees of smaller area represent recent
plantations, carried out to replace dead trees. Considering all flight campaigns, the mean
chestnut tree crown areais 18 m2. Whereas chestnut trees with no visible phytosanitary issues
had a higher mean crown area (26 m?), trees affected by ink disease had 15 m?, and trees with

nutritional deficiencies presented a mean crown areavalue of 10 m?.
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Figure5.7. Overall chestnut tree crown area (@), its distribution per flight campaign (b) and per class (c, d).
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Figure5.8. Crown area of each analysed chestnut tree per flight campaign, from 27 May to 16 October 2018.

The mean NDV I value of each chestnut tree is presented in Figure 5.9. Slight variations can be

detected in the first two flight campaigns. However, a constant decline was verified in the

remaining campaigns. Chestnut trees with symptoms of phytosanitary issues presented alower
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NDVI value in al flight campaigns when compared to healthy trees. Indeed, the lowest mean
values were presented by trees with nutritional deficiencies. This difference increased
throughout the flight campaigns. While for the first four campaigns, the mean difference—tree
crown growth—was —0.06 for trees affected by ink disease and —0.17 for those that showed
nutritional deficiencies, for the last two flight campaigns—tree crown decline—these were —

0.09 and —0.32, respectively.
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Figure 5.9. Mean NDVI values for the chestnut trees analysed throughout the flight campaigns (27 May to 16
October 2018).

5.3.3. Detection of Treeswith Phytosanitary Symptoms

Theindividual tree crown projections obtained with each flight campaign were subjected to an
OBIA procedure to output a set of objects (step 2, in Figure 5.2). Naturally, each set has a
different number of objects due to canopy area evolution and appearance over time. An average
of 1650 objects was obtained throughout all flight campaigns. While 1527 objects were
identified in May, that number grew in the following two flight campaigns—21668 in June and
1720 objects identified in July—and decreased in August (1389 objects). Then, it grew again
inthelast two flight campaigns, with 1452 objectsidentified in September and 2165 in October.
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These variations can be explained by changes in the canopy appearance over time, which result
in reflectance alteration. The latter can be justified either by the dieback observed in the overall
leaf discoloration and/or by the presence of some chestnut fruits, which resultsin higher spectral
differences among each tree crown. Asfor the distribution of objects per class (considering the
average of all epochs), the class of hedlthy trees has a higher number (67%), while the class
with phytosanitary issues is left with the remainder (33%). Ink disease represents 15% and

nutritional deficiencies 19% of the latter class.

5.3.3.1. Dataset Description and Feature Selection

Figure 5.10 presents the trends for vegetation indices throughout the flight campaigns.
Excluding RVI—for the first campaign—the majority of the vegetation indices present values
disposed in a shorter interval. However, in the last flight campaigns, values are spanned on a
larger interval. An example is NDVI: it tends to decrease in value but presents an increased
value span in the last two flight campaigns. GNDV | shows a different trend, increasing in the
first four flight campaigns and decreasing in the last ones. Asfor GRVI, it presents an overall
decline along the flight campaigns. EXNIR, NDEXNIR, NDRE, ExRE, and NDEXRE present a
similar behavior, increasing in value from the first to the second flight campaigns, followed by
a small decrease in the third flight campaign. Hereinafter, values increase again in the fourth
campaign and decrease in the last two flight campaigns. Lastly, RVI presents values spread
over alarger interval in aimost all flight campaigns, being lower in the last two.

When analysing the values of the vegetation indices automatically extracted from the detected
tree crowns—considering trees with or without phytosanitary symptoms (Figure C.1)—both
classes are distinguishable by their interquartile range (IQR). Trees presenting ink disease
and/or nutritional deficiencies can be clearly distinguished from those that are healthy in all
flight campaigns and by vegetation indices, with the exception of EXRE (see distribution in
Figure C.2). Moreover, EXRE is again the exception when comparing values between healthy
trees and those affected by chestnut ink: in the remaining vegetation indices, the latter presented
lower values. Asfor nutritional deficiencies, only the third flight campaign of EXRE presents a
higher value when compared to healthy trees. It should aso be noted that trees affected by
chestnut ink disease had higher values in comparison with those affected by nutritiona

deficiencies.
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Figure 5.10.Tree crown area and mean NDVI values of the chestnut trees analysed throughout the flight
campaigns.

Feature selection based on RFE alowed for understanding the influence of features extracted
from each object on the RF classifier. These results are presented in Table C.1. By analysing
the overall results—achieved by adding all ranks and sorting the features by their lower value—
when considering two and three classes, the top ten features are the same in both situations
(highlighted in bold in Table C.1). As such, those features were selected to be used in the
subsequent analysis.

5.3.3.2. Random Forest Classifier and Dataset Performance Evaluation

The model was trained by using ten random selections of 70% of each tree crown area per
epoch. It was then tested using the remaining 30%. The mean accuracy of the ten random splits
and their standard deviations were used to evaluate the model performance.

Table 5.2 presents the results when considering only two classes. absence or presence of
phytosanitary issues. Datasets acquired from all flight campaigns obtained an overall accuracy

equal or higher than 85%. The highest value (91%) was achieved in September’s flight
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campaign. Asfor accuracy statistics (kappaindex), a substantial agreement (kappa > 0.65) was
obtained in al flight campaigns. From July onward, kappa was always equal or higher than
0.71. Regarding metrics, when each class is analysed individually—precision, recal, and
Flscore—the healthy tree class achieved better results. When comparing each flight campaign,
June and May showed similar results. However, a higher standard deviation was observed in
May. Similarly, July, August, and October presented similar results. Still, results from August

are dightly lower.

Table 5.2. Performance evaluation results (and its standard deviation) of OBIA objects considering two classes
(1: no visual symptoms; 2: phytosanitary issues) for each flight campaign.

Month Class Precision Recall Fl-score Kappaindex Overall accuracy
M3 5 0790008 0720009 o700y OO 08500
M 5 0700 07500 0770y O 08500
M. 5 om0 00(002 om0y °7200 08800
AS 5 079002 om0 os(oy C7H00 087000
S5 5 om(00 085009 ooy OPO® 09100
on L 0RO 200 0900 omem owon

Table 5.3 presents the results obtained when distinguishing between specific phytosanitary
issues of ink disease and/or nutritional deficiencies. The minimum overall accuracy is 80%
(May and August flight campaigns) and the highest (85%) was achieved in the September and
October flight campaigns. However, the statistical significance of theresultsdiffers: amoderate
agreement (kappa > 0.55) was registered in May, while in the remaining epochs, the value
increased. Indeed, the highest value was in September (0.69). July and October also registered
akappavalue of at least 0.65. Regarding each class classification, F1-score was always higher
than 0.90 for trees without phytosanitary problems. As for the other two classes—affected by
ink disease and/or by nutritional deficiencies—the F1-score was lower. Nonetheless, the class

containing trees affected by nutritional deficiencies had better results.
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Tableb5.3. Performance eval uation results (and its standard deviation) from OBI A objects considering three classes
(1: no visual symptoms; 2: ink disease; 3: nutritional deficiencies) for each flight campaign.

Month Class Precision Recall Fl-score Kappaindex (STD) Overall accuracy (STD)
0.88(0.01) 0.93(0.01) 0.91(0.01)

0.58(0.08) 0.53(0.04) 0.55(0.04) 0.55 (0.01) 0.80 (0.02)
0.58(0.04) 0.49(0.03) 0.53(0.02)

0.88(0.01) 0.92(0.02) 0.90(0.01)

0.64 (0.04) 0.55(0.06) 0.59(0.03) 0.60 (0.02) 0.81(0.02)
0.66 (0.03) 0.61(0.04) 0.64(0.03)

0.89(0.01) 0.94(0.01) 0.91(0.01)

0.66 (0.04) 0.63(0.07) 0.64(0.05) 0.65 (0.03) 0.83(0.02)
0.74 (0.06) 0.62(0.04) 0.67 (0.03)

0.89(0.02) 0.91(0.01) 0.90(0.01)

0.58(0.06) 0.58(0.07) 0.58(0.05) 0.60 (0.03) 0.80(0.01)
0.64 (0.06) 0.60(0.05) 0.62 (0.02)

0.92(0.02) 0.94(0.01) 0.93(0.01)

0.60(0.03) 0.57(0.05) 0.58(0.03) 0.69 (0.02) 0.85(0.01)
0.77(0.05 0.73(0.05) 0.75(0.03)

0.90(0.01) 0.94(0.01) 0.92(0.01)

0.62 (0.04) 0.60(0.04) 0.61(0.03) 0.67 (0.03) 0.85(0.01)
0.83(0.04) 0.71(0.04) 0.76(0.03)

5.3.3.3. Detection of Chestnut Trees Affected by Phytosanitary Issues

The mean vaue of each tree crown feature was used to assess whether it was affected by

May

Jun.

Jul.

Aug.

Sep.

Oct.

WNEFRPWNRPWNRERPWNRPWNRER(WN P

phytosanitary issues. Resultsare presented in Figure 5.11 and Figure C.3a. The overall accuracy
is equal to or higher than 85%. The lowest value was achieved in May (85%) and the highest
in the last two flight campaigns (96%). In the remaining flight campaigns, the overall accuracy
is 91% in both June and August, and 94% in July. Indeed, the earliest flight campaign in the
season (May) had the most misclassifications—seven chestnut trees, representing about 15%
of the total number of chestnut trees monitored (46): two healthy trees were classified as being
affected by phytosanitary issues and five the exact opposite. The number of misclassified
chestnut trees without visible symptoms was consistently low in the remaining flight
campaigns: one in June, and two in both July and August. As for misclassified chestnut trees
with phytosanitary issues, there were three in June, one in July, and two in the remaining flight

campaigns.
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Figure5.11. Detection of phytosanitary issuesin chestnut trees throughout the flight campaigns.

Figure 5.12 presents the assessment results when using three classes (no visual symptoms, ink

disease, and/or nutritional deficiencies). The higher overal accuracy vaue is achieved in
September (91%) and the lowest in May (78%); see Figure C.3b. The remaining flight
campaigns present a relatively stable overall accuracy value, ranging between 83% and 87%.

Chestnut trees without visible symptoms present the lowest misclassification vaues (5%

overdl). No misclassifications were observed in both September and October. Moreover, in

July, there were no misclassifications in chestnut trees affected by ink disease. Affected trees

were mainly misclassified as having no phytosanitary issues: there were two misclassifications

on average (August and October had three). Regarding chestnut trees affected by nutritional

deficiencies—an average of four misclassified trees considering al flight campaigns— they

were misclassified in both of the other two classes. 10 in healthy trees and 12 in trees affected

by ink disease.
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Figure5.12. Detection of ink disease and nutritional deficienciesin chestnut treesthroughout the flight campaigns.
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5.4. Discussion

The multi-temporal data analysis enabled characterization of both spatial and temporal
variability of the studied chestnut stand. Studies on chestnut trees management rely only on
yearly flight campaigns (Padua, Hruska, et al., 2017) to monitor the overall condition and to
study vegetation decline (L. M. Martins et a., 2015), limiting the intra-seasonal monitoring of
potential issues. Indeed, no intra-seasonal multi-temporal studies were found for chestnut trees,
and these can be fundamental for detecting potential phytosanitary issues earlier on, which will
enable timely mitigation actions. Furthermore, each tree can automatically be classified
regarding its phytosanitary status as affected, ink disease or nutritional deficiencies, or healthy.

Regarding the crown area for the monitored chestnut trees throughout the season, it is of note
that it increased from May to August and decreased hereinafter. This trend is verified more
often in healthy chestnut trees (see Figures 5.7 and 5.8). Those affected by phytosanitary issues
presented a smaller crown area growth in the first three flight campaigns. The west side area of
the stand had higher NDVI values throughout the analysed period (Figure 5.9) while the
opposite was verified in the east. Whereas the size of the chestnut trees—smaller precisely in
the east area (Figure 5.8)—can explain thisbecauseit usually means|ower foliage density, trees
affected by phytosanitary issues are mostly located in that area (see Figure 5.6). A clear
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distinction between trees with and without phytosanitary problems (Figure 5.7c), and between

phytosanitary problems can be observed.

The crown area of chestnut trees affected by ink disease are usually larger when compared to
the ones from trees affected by nutritional deficiencies (Figure 5.7d). The latter present a small
increase in crown areain August. Asfor NDV I, while chestnut trees affected by phytosanitary
issues presented decreasi ng val ues throughout the season, thistrend is less clear-cut in chestnut
trees affected by ink disease. With reference to the feature selection procedure, the proposed
vegetation indices were among the ones with best discrimination performance. This can be
explained by the fact that spectral differences are more significant when addressing symptoms
caused by the studied phytosanitary issues (Figure 5.3). Spectral bands can also be considered
lessrelevant features than vegetation indices. Indeed, green, NIR, and RE bands did not perform
well when compared to the VIs, which was not verified in studies using RGB-based vegetation
indices (Padua, Guimarées, et a., 2019).

The employed methodology can be regarded as accurate not only when classifying chestnut
trees as affected (or not) by phytosanitary issues (Figure 5.7c), but also (when affected) in
distinguishing which phytosanitary issue is present in each case. The crowns detection for
individual trees employed in this study allow for discarding most outliers unrelated to chestnut
trees, such as soil and low-height vegetation, while other studies relied on OBIA with more
steps (Jorge Torres-Sanchez et d., 2015). As such, an ML classification step to detect treesis

not a requirement.

When considering the possibility of having a chestnut tree affected by a phytosanitary issue
(Table5.2, Figures 5.11 and C.34), the obtained results show that, both in testing and detection,
September’s flight campaign data had the best accuracy rates. While similar results were
achieved in October, the kappa value was slightly lower. Remaining campaigns also achieved
good accuracy values. May corresponds to an early phase of the chestnut’s phenological cycle,
when most symptoms caused by phytosanitary issues are not yet clearly noticeable. This
justifies the higher standard deviation observed in May. However, when three classes are
considered—healthy, ink disease, and nutritional deficiencies—the overall accuracy generaly
decreases (Table 5.3, Figures 5.12 and C.3b). Again, September’s data outperform those of the
remaining flight campaigns. Whilst the October flight campaign presented better results when
distinguishing ink disease, this can be explained by environmental factors: chestnut trees were

exposed to longer periods of low/no precipitation (causing low soil moisture) and higher
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temperatures than those registered in the summer, which result in trees having more stress and,
therefore, to manifest a higher incidence of phytosanitary symptoms (Camison et a., 2019). On
the other hand, this decrease in classification can also be related to the chestnut harvesting
season (and, therefore, trees start their senescence). Currently, to mitigate the occurrence of
chestnut ink disease, hybrid chestnut trees are being used with good results (Brito et al., 2012).

It should be noted that some chestnut trees did not present symptoms uniformly. Indeed, some
parts had similar spectral responses than healthy trees. Despite values in Figures C.1 and C.2
having a different separation between classes in the training phase, objects formed from the
OBIA procedure have similar objects in the classes, since the whole tree was considered as
being affected by only one issue. In other works, different types of classes were classified as
different tree species (Hill et al., 2010; Lisein et al., 2015; Melville et al., 2019; Michez et al.,
2016) or distinguished completely different types of classes (Ozlem Akar, 2018; Akcay et al.,
2019; Guerrero et d., 2012; Padua, Guimaraes, et a., 2019). Moreover, in Gini et a. (2018),
multispectral imagery was combined with texture features for tree species classification,
increasing the overall accuracy. In this study, only Castanea sativa Mill. trees were evaluated
using UAV-based multispectral data to automatically distinguish the presence (or absence) of
phytosanitary issues. Therefore, it was more challenging when considering data classification

into three classes since there were more spectral similarities.

When compared to traditional in-field approaches that require several days of field
surveys/measurements, the whole pipeline proposed in this study can deliver thefina resultsin
asingle day. Future developmentswould rely on data processing and results being delivered on
the fly, similar to what was demonstrated from tree counting (Salami et al., 2019). Data from
sensing payloads other than multispectral imagery can help improve the differentiation between
the phytosanitary issues analysed in this study. Indeed, thermal infrared, hyperspectral, and
fluorescence data (R. Calderon et a., 2013; Lopez-Lopez et al., 2016; P. J. Zarco-Tejadaet al.,
2018) are options to be considered (e.g. alowing the creation of narrow-band vegetation
indices). However, hyperspectral data require more complex data processing and with higher
computational and financia costs compared to multispectral data. The proposed method can
also be explored in other contexts such as arid and semi-arid land vegetation monitoring (T. T.
Sankey et a., 2018).
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5.5. Conclusions

This study shows the suitability of image analysis and processing to automatically detect
phytosanitary issues in individual chestnut trees within a chestnut stand using UAV -based
multispectral data. The results demonstrate the effectiveness of the RF classifier in
discriminating trees with and without phytosanitary issues and to classify according to the issue
affecting the trees (ink disease and nutrient deficiency). In addition, new vegetation indices
were proposed, which helped to improve the results. The obtained results also allowed us to
conclude that the | atter stages of the season are the optimal time (less misclassifications) for the
application of the proposed methodology. This way, the dormancy period can be used to apply
corrective treatments on the trees identified as having phytosanitary issues (e.g., soil nutrient
corrections, biomass pruning tree optimization, tree replacement). However, the results from
early and mid-season (May to June) are also promising—phytosanitary issues can be detected
even in cases when symptoms are not significant—and can be used to optimize field
inspections, reducing the amount of work/time needed compared to manual/visual inspections.
Some treatments can be directed to those trees to prevent the further development of issues.
Moreover, the usage of multi-temporal data enabled the monitoring of the chestnut stand along

the season.

In the near future, the proposed methodol ogy can be applied to monitor chestnut trees at alarger
scale, providing a cost-effective and less |aborious alternative to field surveys to assess overall
phytosanitary condition. Moreover, it can also be used in the long-term monitoring of damage
caused by the chestnut gall wasp in both phytosanitary and development status of individual
chestnut trees. Lastly, the greater spatial resolution provided by UAV-based data when
compared to other remote sensing platforms can allow for yield estimation by automatically
detecting chestnut clusters, since they tend to grow in tree branch tips and are therefore visible
from an aerial perspective. Other types of sensors should also be evaluated, such asthermal and
hyperspectral, increasing the variety of features that can be used for analysis and in promoting

efficient and sustainable management practices.
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Chapter 6.
Vineyard properties extraction combining UAS-based RGB imagery with elevation data

6.1. Introduction and background

Requirements to optimize vineyards’ (Vitis Vinifera L.) performancein a Precision Viticulture
(PV) context are high because both yield and quality should be maximized, while environmental
risks and impacts should be reduced (A. P. B. Proffitt et al., 2006). Therefore, farmers achieve
the utmost control over vineyard management by considering its variability. Grapevine quality
and development directly relate with the vineyards’ spatial heterogeneity, which depends on
severa factors associated to the vineyard itself—soil, crop management, irrigation, nutritional
status, pest and disease control and externa variables, as the climate—to determine the inter-
annual and intra-vineyard variability of both yield and quality (Alessandro Matese et ., 2015).
These factors can lead to the occurrence of biotic and abiotic issues. Depending on their
severity, they can result in a significant production decrease and consequently in significant
economic losses (Baofeng et al., 2016). Recent technological development opened the
possibility of implementing both Precision Agriculture (PA) and PV, along with the
combination of certain procedures, to improve the decision making process in several field-
related tasks (Zarco-Tejada et al. 2014). Hence, remote sensing data can provide a better
understanding of a terrain’s variability and can be applied in the context of PV management
(Bobillet et a., 2003). Indeed, sensors used in remote sensing platforms provide an effective
way to extract spatial information about crops’ state in a non-destructive manner (Weiss &
Baret, 2017).

Regarding vineyards, the usage of remote sensing platformsisusually related to: grape varieties
mapping (Lacar et a., 2001); vineyard Leaf Area Index (LAI) estimation (L. Johnson et al.,
2003; Kalisperakis et a., 2015; Mathews & Jensen, 2013); irrigation scheduling and water
stress variability (Baluja et al., 2012; Bellvert et al., 2013; Bellvert & Girona, 2012; P. Zarco-
Tegjada et a., 2004); grapevine phenology monitoring (Helder Fraga, Amraoui, et a., 2014,
Lamb et a., 2004); disease detection and mapping (Albetiset a., 2017; A. Matese et al., 2013);
grape quality mapping in vineyards affected by nutrients deficiency (Martin et al., 2015); and
chlorophyll estimation (P. J. Zarco-Tegjada, Berjon, et a., 2005), among others. However, the
use of remote sensing techniques is challenging due to the alternation of vines’ canopies—
which form a set of parallel rows—along with the presence of bare soil or vegetation cover,
within the vineyard plot (Burgos et al., 2015; Alessandro Matese et a., 2015). By considering
the whole vineyard terrain, the presence of information other than vines’ canopy is added, i.e.,

the inter-row vegetation cover and shadows produced by vines’ canopy and its surroundings.
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To detect vine’s canopy, several authors and research teams proposed approaches based on the
use of vegetation indices (VIs) applied to the imagery data provided by remote sensing
platforms (Albetis et a., 2017; Bellvert & Girona, 2012; Helder Fraga, Amraoui, et a., 2014;
L. Johnson et a., 2003; Alessandro Matese et al., 2015; Naidu et al., 2009; Smit et al., 2010).
VlIs are simple arithmetic operations applied to the spectral narrow-band or broad-band
imagery, with information from different parts of the electromagnetic spectrum (Padua, VVanko,
et a., 2017). However, Vls are often computed over the whole vineyard or at the plot level.
Thus, information not related with vines is present. To produce correct vineyard maps, a
separation of vine pixels from non-vine pixelsin the remote sensing datais required. Although
feasible manually, it isalaborious, error-prone and time-consuming task. Still, itiscrucial since
it heavily contributes to the obtained results’ global accuracy, which, in turn, increases
vineyards’ management efficiency by providing information about crops’ variability. This
enables the application of more efficient treatments to the plants and autonomous guidance for
unmanned ground vehicles.

Considering the previously presented requirements, satellite imagery is not suitable for
vineyards management tasks. The spatial resolution provided is, in genera, too sparse
(Alessandro Matese et a., 2015) and the data acquisition frequency too low. Manned aircrafts
and Unmanned Aerial Systems (UAS) provide more timely and flexible data acquisition
solutions (Weiss & Baret, 2017). While manned aircrafts can cover larger areas with high
resolution, they can be expensive for small sized-projects (Padua, Vanko, et al., 2017). On the
other hand, the ability of UAS (Unnamed Aerial Vehicle [UAV] + sensors and ground control
station) to perform low-altitude flights—enabling the acquisition of very high-resolution data—
makes them an ideal tool to use when versatility, cost-effectiveness and tempora data are
needed.

To overcome the vine’s vegetation identification issue, different studies proposed
(semi)automatic methods, using image-processing techniques on a single-band image, Vls or
Digital Elevation Models (DEMs). Bobillet et al. (2003) proposed a method to classify vine
rows based on a vineyard’ active contours. This method’s main issue was the requirement of
manual adjustments in pre- and post-processing stages to achieve valid results. Furthermore,
problems identifying vine rows with grass in-between them were also reported. Chanussot et
al. (2005) studied the identification of missing vines and proposed amethod that uses the Radon

transform of the Fourier spectrum over a vineyards’ image. This image is computed by
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subtracting the red band from the green band of the RGB image. The process allowed finding
both the inter-row spacing and row orientation. Next, a set of morphologica operations and a
median filter over a binary image generate an image that signals missing vines. However, this
method reportedly fails when dealing with irregularly spaced, too sparse or curved plantations.
Combaet a. (2015) proposed a method that benefits from vegetation’s high reflectance in Near
Infrared (NIR) imagery to apply the Hough space clustering over an image. This image is a
result of local histogram equalisation thresholding to estimate vine’s canopy vegetation and
Total Least Squares technique to estimate vine rows. The method uses techniques that require
alarge amount of processing time in big areas or images with lower Ground Sample Distance
(GSD) values. The method developed by Comba et a. (2015) was also applied in other studies
to produce vigour maps (J. Primicerio et al., 2015) and to estimate vines positionsin avineyard
(Primicerio et a. 2017). In the latter, the trunk’s position was estimated along with the canopy
shape of each individual plant. It was assumed that the plants are equally spaced along each
vine row, which enabled the application of a machine learning procedure to discriminate
between the presence or the absence of a plant along a row. Nolan et a. (2015) used
skeletonization techniques to accurately segment vineyard rows for vineyard mapping. The
proposed method used single-band images from distinct types of sensors as inputs, with the
only requirement of having a high spatial resolution to distinguish vine rows from soil. The
reported failure rate was related with the presence of trees obscuring vine rows, shadows, and
segmentation discontinuities. To detect vine rows, Puletti et a. (2014) proposed a method that
considers the lower reflectance values from the vineyard canopy red channel and the soil’s high
reflectance. An image obtained by a high-passfilter is then processed and passed to amodified
version of Ward’s technique (Ward Jr, 1963), which provides an unsupervised hierarchical
cluster analysis. There were problems reported in areas with low contrast between vineyard
canopy and soil. Poblete-Echeverria et al. (2017) studied different approaches to perform
vineyard vegetation detection, using VIs and both supervised (artificial neural networks and
random forests) and unsupervised (k-means clustering) classification methods in three classes:
plant, shadow and soil. The obtained results showed that the combination of VIswith artificial
neural networks provided good results. Poblete-Echeverria et a. (2017) stated that supervised
classification methods needed human intervention for model calibration with atraining dataset.
On the other hand, VIs complemented with the Otsu’s method (Otsu, 1979) for thresholding,

had a higher overall accuracy and performed very well in the detection of vineyards’ canopy.
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Thisresulted in an easy and automatic method for vine vegetation extraction, even though VIs
can aso classify vegetation with the same reflectance in between vine rows.

The problem of inter-row vegetation classification can be surmounted with a more
straightforward method: using DEMs computed from the photogrammetric processing of UAV -
based imagery and by considering the vineyard plot structure’s height. DEMs are an accurate
representation of the surface elevation. They can provide terrain’s surface elevation data —
Digital Terrain Model (DTM) — and contain elevation data from features present in the ground
surface— Digital Surface Model (DSM). Using thistype of data, Kalisperakis et a. (2015) were
able to estimate vineyards’ LAI, achieving good correlation rates when compared with ground-
truth measurements, whereas hyperspectral and RGB imagery obtained lower correlation rates.
Burgos et a., (2015) used this type of data to separate non-vine pixels from vine pixels, by
producing a Digital Differential Model (DDM) —that results from subtracting the DTM from
the DSM—also known as Canopy Height Model (CHM) or Crop Surface Model (CSM), CSM
will be the terminology used in this study. To assess CSM aobtained from photogrammetric
processing of UA S-based multispectral datain avineyard plot (Alessandro Matese et al., 2016)
found a relationship between vines’ heights—obtained from CSM—and Normalized Difference
Vegetation Index (NDVI) values. higher vegetation heights coincided with higher NDVI
values. Moreover, the authors also shown that UAS are suitable for vineyard’s biomass
estimation. However, flight altitude allied with the sensor’s resolution caused a smoothness on
the DSM, which lead the authors to consider only a vegetation’s height above 0.5 m. Both in
Burgoset al. (2015), Kaisperakiset a. (2015) and Matese et al. (2016), elevation data obtained
from the UAS proved to be an effective technique to estimate vineyard’s vegetation, regardless
of the terrain slope or outliers. Baofeng et a. (2016) proposed a method that used the DSM to
estimate missing plants and plants potentially affected from biotic and abiotic problems. The
method relied on the DSM’s local normalization with a sliding window to remove the terrain
slope effect, transforming it in abinary image that differentiates vine from non-vine pixels. This
approach requires the image to be both inverted and rotated to get a vertical row alignment and
divided into a grid. If the non-vine pixels percentage is greater than 90%, it is considered as
missing vine, whereas if it is between 20% and 90%, it is deemed to be affected vine. Weiss
and Baret (2017) processed UAV -based RGB imagery to extract the vineyard’s macro structure,
vine row orientation, cover fraction, row width, row spacing, percentage of vegetation and
missing vegetation. The method anal yses the percentage of pointsin the processed dense-point
cloud, where a threshold was used to separate vine row pixels from background pixels. This
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method also requires vertical vine rows alignment, obtained by estimating the row orientation
using the Hough transform. Thus, row spacing results from using row peaks’ average value
from a horizontal profile line. Moreover, a cover fraction estimation results from dividing the
estimated row width by the row spacing or by computing the ratio between the number of pixels
estimated as vineyard vegetation and the total number of pixels in the image. Missing plants
calculation was done by individual analysis of each row based on the percentage of non-
vegetation pixels. This procedure, as stated by the authors, is not very sensitive to large
variations of row width and height. However, depending on the flight characteristics (image
overlapping, altitude, sensor, data processing software) and of the vineyard management
practices or its phenological cycle, produced elevation models can be imprecise, rendering them

unable to differentiate accurately between vines and soil.

The aforementioned studies show the diversity of methodologies found in literature concerning
the segmentation of vine rows and vineyard vegetation. Each has their own strengths and
weaknesses and this work uses them in a complementary way, especialy UAS-based
methodologies. Indeed, photogrammetric processing of imagery—acquired during an aerial
survey, as point cloud(s)—along with individual UAV imagery, can be used to compute
orthophoto mosaics, DTMs and 3D models of the surveyed area (Padua, Vanko, et a., 2017).
By combining the very high-resolution outcomes produced from UAV s imagery, the proposed
method’s main goals are to: (1) identify and extract vineyard’s vegetation by distinguishing it
from soil, canopy shadow and eventual inter-row vegetation; (2) detect vine rows for a given

vineyard plot; and (3) estimate possible missing vine plants.

The proposed method worksindependently from the type of broadband imagery sensor coupled
to the UAV, the vineyard plot orientation and terrain slope. In addition, it uses as few
parameters as possible to be robust enough to achieve the defined goals. Finaly, the proposed
method also considers the potential of imagery data to estimate vineyard parameters. Thus,
combining VIs with elevation data to provide accurate vineyard maps may be used to extract
vineyard-related parameters in the scope of PV, helping in both the management and decision-
making tasks. The proposed method proved to be effective when applied with low-cost

consumer-grade sensors carried by UAVSs.

This paper is structured in 6 sections. In this section, the motivation and main goals were
described, along with some related works and applications of remote sensing in PV, which

enabled to assess the actual state-of-the-art. Section 6.2 describes the data acquisition process,
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the used UAV platforms and the vineyard data used in the study. Section 6.3 presents an
evaluation of the different VIs’ suitability to detect vineyard vegetation. Then, the proposed
method is described in Section 6.4. Section 6.5 presents the results, validation and discussion
of the proposed method, when applied to different vineyard plots. Finally, Section 6.6 points

out the main conclusions and future directions towards new developments and the method’s

applicability.
6.2. Data description

Data used in this study came from vineyards located in Portugal’s north-eastern, which has
some unique features concerning the size, terrain slope and management practices.

Aeria surveys were performed using the low-cost and light-weight (1380 g) rotary-wing UAV
DJl Phantom 4 (DJI, Shenzhen, China), which has a maximum flight time of approximately 28
minutes per battery, vertical take-off and landing (VTOL) capabilities. It is equipped with a
remote controller, aGlobal Navigation Satellite System (GNSS) receiver, acameraand afrontal
collision avoidance system. Regarding the camera—attached to a 3-axis gimbal that provides
stabilization—it has a 12.4-megapixel sensor, which alows acquiring RGB images with a
maximum resolution of 4000 x 3000 pixels. Autonomous flights were carried out using the
Pix4Dcapture app (Pix4D SA, Lausanne, Switzerland) on an Android smartphone.

This study’s flights took place during June and July 2017, using a double-grid configuration, at
60 to 80 metres height, from the UAV take-off position and with an image overlap between
70% and 80%. Acquired data was processed using Pix4Dmapper Pro (Pix4D SA, Lausanne,
Switzerland), which can compute orthophoto mosaics, DSM and DTM from a dense point
cloud. Thistype of very high-resolution dataprovides ageneral overview of thewholevineyard.
Furthermore, it enables to associate operations—such as VIs—that alow the enhancement of
certain vegetation features by using combinations from multiple bands and CSM, which can be
computed to obtain surface’s objects’ heights. The computation of both the photogrammetric
and the proposed method were performed by using alaptop equipped with a2.6 GHz Intel i7-
4720HQ CPU, 16GB RAM (DDR3, 1600 MHz) and a NVidia GeForce GTX 970m (3GB
GDDR5 5000 MHz) GPU.

Aerid surveys included three different vineyards, from which 16 plots were used for further
evauation. Figure 6.1 shows the orthophoto mosaics of the three vineyards used in this study
and presents details about the flight characteristics for each vineyard, along with the boundaries
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of each analysed plot and the areas used for VIs and method’s validation. Vineyards B and C
are used for commercial purposes, while vineyard A is not. When compared in-field, plots
belonging to vineyard B show better management practices or are less affected by biotic issues
than vineyards A and C. The latter has more missing vine plants along the plots. Vineyard C
plots have larger areas and are surrounded by trees—that cover part of the rows—at their outer
limits. Regarding the analysed plots, 11 plots were from vineyard A, 2 from vineyard B and 3

from vineyard C, as presented in Figure 6.1.

SA35he QS0 240m|0 10 20 30 40m SA134ha 080280"1
MEn  Amgh FHBIm Mmg 318 |

Figure 6.1. Resulting orthophoto mosaics from the three surveyed vineyard plots used to evaluate the proposed
method along with their flight characteristics, surveyed area (SA), flight height (FH), ground sample distance
(GSD), and number of acquired images (#Img). Vineyard A islocated at 41°17'08.0"N, 7°44'12.0"W; vineyard B
a 41°17'41.5"N, 7°29'51.3"W; and Vineyard C at 41°15'51.5"N, 8°14'12.1"W. The analysed plots are delimited
by black lines and areas extracted from the orthophoto mosaics being polygons delimited in yellow (used in
vegetation indices) and blue (used in the method’s validation).
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6.3. Vineyard vegetation detection using vegetation indices

Vs behaviour with different vineyard images, vine rows orientation, shadow presence, inter-
row vegetation and missing vine plants, was observed and compared. Six different areas within

the studied vineyard plots were analysed, as presented in Figure 6.2.
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Figure 6.2. RGB images of the areas used to evaluate VI behaviour (row orientation, shadow presence, inter-row
vegetation, and missed plants were considered).

The evaluation process is composed of the following steps: (1) VIs are computed in each area,
producing a greyscale image from the arithmetic operations done on different bands; (2) then,
aglobal threshold is applied on the resulting images to create a binary image, based on Otsu’s
method (Otsu, 1979). This method is capable of automatically threshold a single-band image
by dividing its histogram in foreground and background pixels; (3) morphological operations
(open and close) are carried out to filter the binary images (small clusters of pixelsareremoved),
thus improving the results obtained from VIs; and (4) lastly, the resulting binary image is
compared with amanually segmented image that is used as reference.

Accuracy is computed by comparing the resulting image obtained for each V1 by applying the
aforementioned steps with its reference image. Results are calculated by analysing the value of
each pixel, from which one of three conditions can be observed: (1) same pixel value in both
images (0 or 1), which is classified as ‘exact detection’; (2) a false detection, if the pixel value
of the manually segmented image is one and in the resulting image is zero, being classified as
‘under detection’; and (3) classified as ‘over detection’ if the situation is opposite to the one
described in (2). Based on the bibliographic review, 13 VIs were selected, which are presented
in Table 6.1, and evaluated in this process. From these, only some were directly applied to

vineyards.
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Table 6.1. RGB vegetation indices evaluated in the estimation of vineyard vegetation.

Index Formula References

(Falkowski et al., 2005;

Normalized Green red difference NGRDI — Green — Red Gitelson et al., 2002;

index Green + Red Kawashima & Nakatani,
1998; Tucker, 1979)

Normalized Green Blue Difference NGEDI = Green — Blue (Kawashima & Nakatani,

Index Green + Blue 1998)

i£i ; 2 2
Modified Normalized Green red MNGRDI = Green“ — Red (Bendig et al., 2015)

difference index

Red Green Blue Vegetation Index

Blue/Green Pigment Index

Blue/Red Pigment I ndex

Excess Green

Woebbecke Index
Vegetation Index Green
Green Leaf Index
Triangular Greenness Index
2G_RGi

Green Percentage I ndex

Green? + Red?
Green? — (Blue x Red)

RGBVI =
Green? + (Blue x Red)

Blue

Green
Blue
BRVI = Red
ExG = 2g —r, —b,
8, — bu
r,—g,
Green — Red
Green + Red — Blue
2Green — Red — Blue
- 2Green + Red — Blue

TGI = Green — 0.39 x Red
—0.61 x Blue

BGVI =

WI =

VARIg =

GLI

2G_RGi = 2Green — (Red + Blue)

Green

G% =
% (Red + Green + Blue)

(Bendig et d., 2015)

(P. J. Zarco-Tejada, Berjon,
et a., 2005)

(P. J. Zarco-Tejada, Berjon,
et a., 2005)

(Woebbecke et al., 1995)

(Woebbecke et a., 1995)

(Gitelson et d., 2002)

(Gobron et al., 2000; Hunt et
a., 2013)

(Hunt et al., 2013)
(Richardson et ., 2007)

(Richardson et a., 2007)

where, r, =

Red Green

Blue

o — S
(Red+Green+Blue)'gn (Red+Green+Blue)” ~» ~ (Red+Green+Blue)

and Green, Red and Blue are the reflectance

values of each band.
Anoveral averageresult of 87% of vineyard vegetation exact detection was reached. The only
exception wasthe WI V1 that was very inconsistent amongst the tested areas (from 49% to 89%
exact detection), as presented in Table 6.2. It is worth to note that many Vs had over 90%

accuracy when applied to the different areas.
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G%, with 91.9%, GLI with 91.8%, RGBVI with 91.6%, EXG and NGBDI, both with 91.4%,
are the VIs with the highest average accuracy. Moreover, while NGBDI reached 4.6% of over
detection, the remaining had lower values, around 2%. These five Vs were compared to select
the most suitable for vineyard’s vegetation detection. Figure 6.3 presents the evauation
regarding the areas where Vs presented the same value. As depicted, the five VIs have an
overlap of 94% for the six tested areas, which makes their performance very similar. However,
G% has adlightly higher performance and was therefore selected for this study.
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Portion of area identified as vegetation (%)
ooy | Aeal | Aeall | Aeaml | Aeav | Aeav | Areavi
@in 5 indices| 9268 8513 84.70 91.79 95.43 94.21
Din 4 Indices|  0.70 0.89 0.91 1.06 0.75 0.79
Oin 3 indices|  0.53 0.35 0.24 0.34 0.37 0.46
Bin 2 indices|  0.54 113 0.32 0.91 0.65 0.57
Bin 1 Index 5 56 2.50 382 5.90 2.7 397

Figure 6.3. Percentage of common pixels to the five-selected VIsin the test areas.

Figure 6.4 shows the agreement between the automatic threshold value obtained from the
Otsu’s method and a selected fixed threshold value. The obtained results are in line with the
mean values given from the Otsu’s method in the six evaluated areas and the overall detection
percentage assumes only one maximum value, proving the suitability of the Otsu’s method to

automatically estimate a threshold value.
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Figure 6.4. Vine vegetation detection accuracy based on the threshold val ues for the top five vegetation indicesin
arealll. Itisalso presented atable with the averaged results.

6.4. Proposed method for vineyard analysis

This section presents the proposed method to identify vineyard vegetation, distinguishing it
from non-vineyard features that can be present in a vineyard plot. The main challenge when
regarding vineyard vegetation monitoring is related with the similar reflectance that other types
of vegetation can present, which is especially noticeable in common RGB imagery and less
noticeable in NIR or hyperspectral imagery. Therefore, by considering the usual vineyards’ row
structure and its regularity, the method explores the usage of the different outcomes provided
by photogrammetric processing of UAS imagery in combination with image processing
techniques, that namely use elevation data and orthophoto mosaic. This enables the
classification of vine vegetation within a given vineyard plot and distinguish it from vegetation
cover, shadows, and bare soil. Moreover, the proposed method is aso capable to estimate
potential missing vine plants. As inputs, the UAS-based photogrammetric outcomes are used.

Features extraction from a given vineyard plot is achieved by masking non-vine vegetation.

Figure 6.5 presents the proposed method’s operations sequences. There are three distinct steps
composing it: (1) vegetation extraction and pixel clustering; (2) vine rows reconstruction, by
means of analysing each formed pixel cluster retrieved in step 1; and (3) vineyard parameters
extraction—vine rows, vineyard vegetation and potential missing vines. Each step plays an
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essential role in the process of vineyard vegetation extraction. All are further detailed in the
next subsections. The notation used in this section is explained in Table 6.3.
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Figure 6.5. Proposed method’s operation general flow chart.

6.4.1. Step 1. Vegetation extraction and pixel clustering

Method’s step 1 aims to extract vine-related pixels from the aeria high-resolution images of a
given vineyard plot, which defines the polygon P (Figure 6.6f). As such, data that does not
represent vine vegetation, such as soil, grass and possible shadowing effects caused by vine
canopies, trees, and buildings, is discarded. To accurately complete this step, both orthophoto
mosaic (Figure 6.6a), and elevation data (Figure 6.6b and c), are used. The former is used to
compute the VI (Figure 6.6d). Assuming that in the produced orthophoto mosaic, vegetation
presents higher reflectance values than non-vegetation areas, a threshold operation can be
applied to separate both. The computed V1, is used to create a binary image produced using
Otsu’s method (Otsu, 1979), as presented in equation (1), where V (Figure 6.6g), represents the
computed binary image resulting from the Otsu’s method application, VI represents the image
produced by the vegetation index computation and T represents the defined threshold from
Otsu’s method. For each (i, j) pixel position in theimage, i represents the line number and j the

column number. In this way, v;; represents the matrix V entry for the position (i, j). The same

notation is used in the remaining equations.
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Table 6.3. Notation table.

Notation

M eaning

[5
Vi

T

\Y
CS™m

h

max

=

g
5

M DPRWWES O

Y oHrFCcY Oom

entre

W

=

X O 0]

>

Binary image of the polygon of the plot to be analysed

Single band image obtained from vegetation index computation

Threshold value obtained from Otsu’s method application

Binary image resultant from VI thresholding step

Single band image obtained from subtraction of the DTM to the DSM computation
Maximum height range used for CSM thresholding

Minimum height range used for CSM thresholding

Binary image resultant from CSM thresholding according to h,,;,, and h,,,,,

Binary image resultant from the conjunction of V, C and P

Group of interconnected pixels forming a cluster resultant from pixel clustering

Set of all detected clustersB in W

Orientation angle of the cluster B

Mean orientation all « values from the set of clusters B

Structuring element used to dilate W, forming E. It is constituted by a line with
orientation 6

Binary image resultant after dilation of W

Group of interconnected pixels forming a clusters resultant from the pixel clustering of
E

Set of all detected clustersin E

Binary image containing estimated inter-row vegetation

Binary image with all pixels detected in V presentin E

Complement of L

Line segment that intersects each cluster’s (D) centroid, ends in its extremities and has
its orientation

Binary image contained all detected S,,,,.,.. €lements

Structuring element used to dilate G, forming Q. It has a disk shape element with radius
r

Binary image produced after intersection of al s; ; pixels with T”
areas with potential missing vines

Binary image produced after G dilation, representing vine rows areas with potential
missing vines

Property intended be used to calculate its area, which can assume the value of the binary
imagesE, L, Q

Area of agiven property to calculate K, which isthe sum of all pixel values (0 or 1) of a
binary image with m x n size

representing vine row

Next, CSM (Figure 6.6€) is computed using elevation data, as shown in equation (2) (Holman
et a., 2016; Alessandro Matese et a., 2016). Each pixel contains avalue h that corresponds to
the height of objects above ground: values close to zero represent the ground. This operation

1, Vii']' =>T
Vij - {O,Vii,j <T

removes the field’s topography.

In the same way as V, the computed CSM has a thresholding operation, as represented in
equation (3), where each height value (h) is analysed according to a height range (from h,,;,, to
hmax), Producing a binary image C (Figure 6.6h), only containing pixels within the values
defined for the height range. This process enables a CSM’s pixel-wisefiltering to discard pixels

CSM = DSM — DTM
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other than vineyard’s vegetation. Knowledge of the analysed areas allowed the selection of h
values ranging from 0.5 to 2 metres, thus removing possible data other than vineyard’s
vegetation. However, height range may depend on both the vineyard’s architecture and the

management practices used.

©)

o= {1, hmin < Csmi’j < hmax
ij —

0, otherwise
Asshown in the RGB image presented in Figure 6.7a and in the fal se colour image, that results
from applying G% vegetation index (Figure 6.7b), part of the inter-row vegetation has almost
the same reflectance value of some vine canopies, which is not verified in the CSM

computation, presented in Figure 6.7c.

The method’s main steps are summarized in Figure 6.6, were plot 02 from vineyard A is used
toillustrate its application, from the input data to the final extracted parameters.

Figure 6.8 presents afraction of avineyard plot where the superimposed lines are related to the
thresholded G%—in yellow—(V) and CSM above 0.5 m and below 2 m—in red (C). The
detection of inter-row vegetation is noticeable in V. However, it is accurate in the row’s
vegetation. On the other hand, shadows detection is also considered in the C threshold but not
inV.

By merging both types of data, it is possible to obtain areas where only pixels considered as
vegetation and with a certain height are present, thus removing vegetation cover that could also
be identified as vine vegetation, which would lead to erroneous classification of vine rows. In
this way, the conjunction of the binary images produced after thresholding (V and C) are used
to create a new binary mask image (W) (Figure 6.6k), according to equation (4), where P is
also considered to discard pixels outside the area under analysis.

(4)

{1,ifVi,j =1 /\Ci,j =1 Api,j =1
W =
& 0, otherwise

The resulting binary image (W) is submitted to a sequence of morphological operations (open,
close and removal of small objects) to remove outliers and improve the detection accuracy. This
step can evaluate different properties from each generated group of interconnected pixels B €
B, where B represents all the detected clusters at the plot level. Resulting clusters are areas
where vine canopies are present. At this stage, each vine row is not connected and therefore a
reconstructive process takes place to join the unconnected clusters into row shapes.
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Figure 6.6. Extracted parameters resulting from the proposed method’s step 3. Green colours represent detected
vegetation — light green corresponds to vine row vegetation and dark green to inter-row vegetation; red represents
the estimated missing vegetation; yellow represents the row centre; and grey the estimated vine rows boundaries.
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Figure 6.7. Different UAS-based outcomes from part of a vineyard plot: () RGB image; (b) corresponding false
colour image from the green percentage index computation; and (c) CSM line profile from the line traced upon
three vine rows.

Figure 6.8. Method processing steps applied to the plot 02 from vineyard A, some images are in a false colour
representation for better interpretation.

6.4.2. Step 2: Vine rows reconstruction

Depending on the vineyards’ management practices and on the acquired data resolution,
clusters of pixels obtained in the proposed method’s step 1 do not represent complete vine rows,
requiring areconstruction process. Therefore, the mean plot orientation 6 is estimated based on
the dominant angle of all detected clusters from the set of clusters B. Thisangle () is obtained
by the orientation a of each detected cluster, which is computed based on the angle between
the x-axis and the major axis of the ellipse containing the same second-moments as B. 6

assumes the mean value of al a € B. Then, clusters are submitted to a dilation process, ¢,
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using a linear structuring element SE, with one-pixel width and orientation 8, obtaining E,
which depicts the vine rows map of the plot under analysis, as represented in equation (5)
(Figure6.6}). Thisforms anew set of clusters D, where D represents asingle vine row.

eij = PSEg (Wi,j),where ejj Apij =1 5)
By applying this procedure, previously unconnected clusters begin to form a set of clusters
representing the connection of clustersin each row, therefore enabling vine rows reconstruction.

6.4.3. Step 3: Vineyard parameters extraction

Method’s step 3 relies on the final extraction of vineyard-related information, namely by
estimating vine rows, vineyard vegetation and areas with missing vine plants (Figure 6.6i). The
resulting vine rows estimation image (W)—obtained after the proposed method’s step 2—
enabl es to estimate the number of rows and their occupation area present in P. After estimating
rows, the mask with vegetation (V) is used to detect vine’s vegetation, where all pixels present

in B and contained in D form L, which represents the vine vegetation.

V egetation that lies outside vine rows area and that is considered in B, is classified as inter-row
vegetation (U). Areaswith potential missing vine plants are predicted by matching the estimated
vine rows mask central lines S with the complement of the estimated vine vegetation L, forming
anew binary image G. Sis congtituted by, S_.,.:» Which isaline segment that intersects each
cluster’s (D) centroid and ends at its extremities and has its orientation. However, detecting
possible missing vine plants is typically a more complex problem, since, in many cases,
adjacent vines tend to cover the empty space of the missing vine canopy, making the estimation
more complicate. Next, the clusters pass through a process of image dilation, represented in
equation (6), to compute a representative map of the detected areas, Q. However, thistime, SE
is a disk-shaped structuring element whose radius r is half of the mean value of all cluster’s
width (D).
qi; = ¢SE-(gij) (6)

The area A of each estimated output can be calculated by equation (7), which represents the
sum of all pixels contained (matrix with m lines and n columns) in the property to calculate K
(vine rows area, vine vegetation, potential missing vine plants and inter-row vegetation),
multiplied by the squared GSD value.
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Figure 6.9 presents the detected vegetation, potential missing vine plants and the estimated vine
rows area. The method’s outputs are an accurate and quick way to provide vineyard status

information in a PV context, to help viticulturistsin their vineyard management activities.
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Figure6.9. Visual interpretation of both the thresholding and the masking processes. vegetation index represented
in yellow and the canopy height model in red.

6.5. Results and discussion

For validation purposes, the proposed method was applied to 16 plots from three different
vineyards presented in Section 6.2, Figure 6.1. As an accurate manual segmentation of the
vineyard vegetation present in al the selected plots is a highly laborious and time-consuming
task, small fractions of eight plots—A.02, A.04, A.10, B.01, B.02, C.01, C.02 and C.03—were
extracted. This allowed a more precise and quicker process to create precise manual segmented
images. The aforementioned fractions—four per plot, each with an approximated area of 100
m? (10 m x 10 m)—were selected assuring diversity in terms of rates of missing vine plants,
rows orientation and inter-row vegetation.

6.5.1. Proposed method validation

Regarding vine rows estimation, different parameters were evaluated: (1) good detection—the
row was detected with a high overlap when compared with its real position; (2) missed
detection—the row was not detected; (3) extra detection—wrongly detected vine row; (4) over
detection—the row was classified in multiple vine rows; (5) under detection—multiple vine
rows classified as one row; (6) larger detection—row is larger than its actual size; and (7)
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smaller detection—vine row is smaller than its actual size. The proposed method validation
occurred by using the extracted vineyards fractions and comparing the obtained results with the

manual segmentation.

As presented in Table 6.4, the proposed method achieved a good accuracy in vine rows
estimation. Correct row detection was aways greater than 90%, with 93.4% mean vaue.
Moreover, the method could detect successfully al the vine rows, of 353 analysed. On the
analysed fractions, missed, extra, over or under detection cases were not found. Regarding the
detected vine rows, 19 were not correctly estimated and from those, 2.67% were classified as
‘larger detection’ and 2.88% as ‘smaller detection’. Moreover, the percentage of real vineyard
vegetation contained in the estimated vine rows area was calculated to further validate vine
rows estimation achieving a mean vaue of 99.7%. This was achieved by intercepting the

manual segmented vineyard fractions with the estimated vine rows.

Table 6.4. Vine row detection accuracy in 8 different vineyard plots, with the number of rows analysed per plot
and percentage of detected vineyard vegetation contained in the plot’s estimated vine rows.

Detected Type of vinerows detection (%)
Plot no. Number vegetgtion
of rows portion 1. Good 2.Missed 3.Extra 4.Over 5.Under 6.Larger 7.Smaller
(%)
A.02 28 99.78 92.86 - - - - 357 357
A.04 34 99.97 91.18 - - - - 5.88 2.94
A.10 45 99.40 95.56 - - - - - 4.44
B.01 43 99.50 97.50 - - - - 2.50 -
B.02 37 99.78 91.89 - - - - 2.70 541
c.01 75 99.55 97.30 - - - - 1.35 1.35
C.02 53 99.87 92.59 - - - - 3.70 3.70
C.03 60 99.93 96.72 - - - - 1.64 1.64
Mead detection (%) 99.72 94.45 - - - - 2.67 2.88

Finally, vine vegetation extracted by applying the proposed method al so underwent avalidation
processthat consisted in comparing it with the manual segmented images. Figure 6.10a presents
these results. The method achieved a 94.10% mean percentage of exact vegetation detection, a
mean value of 2.93% regarding over classification and 2.97% of under classification.
Differences between plots’ fractions were not meaningful. Indeed, even those with a higher rate
of missing vines did not influence the vegetation extraction process. In what regards the
validation of missing vegetation estimation, the process was the same as that applied to
vegetation estimation. However, only thefractions that have missing vegetation were eval uated.

Thus, al plot fractions from vineyard B, as well as those from plot 02 from vineyard C were
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discarded, as they have low rates of missing vegetation. Results achieved a mean value of

97.04% in exact classification of missing vegetation, as shown in Figure 6.10b.
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Figure 6.10. Results from validation of the vine vegetation extraction process (a) and potential missing vine
vegetation process (b).

Figure 6.11 shows only afraction of the detected vine vegetation, its manual segmented image

and the comparison between both. Most of the non-detected vegetation lies in the vine plants’

borders. In vineyard B plots’ fractions, variations are less noticeable than in the other vineyards’

fractions. This is due to fewer regions with missing vine vegetation in this vineyard. In

vineyards A and C there are cases were the presence of shadows and grass in the row is also

considered in the estimation of vine vegetation.
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Figure 6.11. Comparison between the estimated vine vegetation with manually segmented plot fractions.
Represented in green are exact classifications, in blue over classifications, and in red under classifications.
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These results are satisfactory, since the method proved to be able to accurately detect vine rows
with vegetation in almost all scenarios: present inside the estimated vine rows (99.72%); to
exactly estimate the actual vine vegetation (94.10%); with alow percentage of under detection
of vegetation (2.97%); missing vine vegetation also achieved a good accuracy (97.04%). The
various parameters automatically extracted by applying the proposed method support the
generation of accurate vineyard maps and vine rows-related properties, such as: percentage of
vineyard vegetation, missing vines and inter-row vegetation. This proves that the proposed
method is useful in PV management and in its decision-making tasks. Furthermore, obtained
results are in line with those of previous works (Comba et a., 2015; A. Nolan et al., 2015),
which made use of different image acquisition sensors (NIR)—more expensive when compared

with the sensors used in this study—to obtain imagery data.

6.5.2. Proposed method application

The proposed method was applied to 16 plots from vineyards A, B and C. In al plots, the
following parameters were extracted: vine rows estimation, vine vegetation and missing vines
plants estimation. Figure 6.12 presents an overall view of the evaluated plots. In vineyard A,
vine rows occupation area ranged from 40% to 55%; in vineyard B from 37% to 49%; and in
vineyard C, from 53% to 61%. As expected, a higher percentage of missing vine vegetation
was found in vineyard A (plot A.01 to A.11), with an average of 28% of missing vineyard
vegetation. On the other hand, vineyard B presented only 1% of missing vegetation, while
vineyard C presented approximately 7%.

Figure 6.13 presents a visual interpretation, based on the results obtained by applying the
proposed method to plots A.04, A.06, A.07, B.02 and C.03. These plots differ in size and in
vine rows coverage area. Some of the noticed limitations are related with the absence of
vegetation or highly affected vines that did not developed properly. These issues resulted in
lower heights that correspond to low vine rows formed. For example, in plot A.06 that was not
classified, as can be seen in Figure 6.13b. Green vegetation cover was considered as vegetation
in plot A.07 (shown in Figure 6.13c). In plot B.02, vegetation absence in the estimated row

centre caused an over estimation of missing vine vegetation (shown in Figure 6.13d).
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Figure 6.12. Area of the evaluated vineyard plots, along with vine rows occupation area, vines, and potential
missing Vvines percentage.

The processing time spent in each vineyard was 8 minutes and 45 seconds for vineyard C and
5 minutes and 32 seconds for vineyard A. Noticeably in vineyard B, the method took about 47
seconds to complete the analysis due to the lower number of plots and the lesser amount of
images’ detail — lower number of pixels due to the higher flight altitude that results in alower
GSD. Processing time is not related with the number of plots under analysis but with the areas’
characteristics. This can be observed in the time spent during the vineyard C processing (only
3 plots were analysed) in comparison with vineyard A (11 plots analysed): vineyard C took 3
min more to be completed. The average plot processing time was 30 seconds for vineyard A,
23 for vineyard B and almost 3 minutes for vineyard C.
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Figure 6.13. Results obtained by applying the proposed method to plots 4, 6, and 7 from vineyard A, plot 2 from
vineyard B, and plot 3 from vineyard C. Faded RGB images are used as background; detected vegetation is
represented in black and highlighted rows areas; and detected missing vegetation areas are represented in light red.

6.6. Conclusions and future work

In this paper, a method to extract vineyard vegetation from high-resolution aeria imaginary is
presented. It combines the benefits of VIsand CSM along with image processing techniques to
automatically extract vine plot related parameters, overcoming the presence of inter-row
vegetation and canopies shadowing effects. The method is able to estimate missing vegetation
and its correspondent overal percentage. It provides useful information about the current
vineyard state, which can be used as atool to be effectively applied in the management process
within PV scope. The usage of relatively low-cost UAV with an RGB sensor proved to have
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enough accuracy to detect vineyard vegetation, being a cost-effective alternative to more
expensive UAS and sensors used in PA surveys. The results obtained by applying the proposed
method in RGB orthophoto mosaics and DTMs with very-high resolution (GSD from 2.4 to 3.8
cm) demonstrated its efficiency in the estimation of vine rows (94.45%), vine vegetation
(94.10%) and missing vines plants (97.04%). These results are in line with other methods that
use imagery data from more expensive sensors types, such as NIR. Misclassifications were
noticeable in areas where vine vegetation suffered from neighbouring trees shadows and in vine
rows constituted only by dead vine plants. Small variations in vegetation detection were

noticeable in vine rows’ edges.

Asfuture work, the proposed method will be applied at amulti-temporal level to detect possible
biotic and abiotic problemsin the vineyard and to study itsin-season and inter-season evolution
dynamics. Even though the used data was RGB, the method is also suitable to be applied
alongside with multi-spectral or thermal UAS-based data. More parameters can be accurately
estimated, such as vine vegetation vigour and water status, crucial to assist in the application of
crop-variable treatments and irrigation scheduling. The presented method has also potential to
be applied in different crops with the same row-oriented plantation structure, as fruit orchards
and vegetable crops. The usage of UAV's can be useful to automate vineyard management using
unmanned ground vehicles and/or ground sensors, from soil and meteorological data. It isalso
intended to provide the ability to automatically detect vine plots and to interpret its plantation
shape type, so that correct methodologies can be applied in vine vegetation detection and
analysis. Data acquisition parameters must be studied (altitude, image overlap, UAV speed,
camera angle or resolution) to evaluate its influence in the photogrammetric processing to

ensure maximum data quality.
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7.1. Introduction

As with precision agriculture (PA), precision viticulture (PV) depends on the adoption of
emerging technologies to acquire data that alow the assessment of field variability to support
the PV decision making process (Ozdemir et al., 2017; Pablo J Zarco-Tejada et al., 2014).
Grapevine (Vitis vinifera L.) yield has both spatial and tempora variability (R. Bramley &
Hamilton, 2004) and several field- and crop-related factors can influence yield, such asthe soil,
terrain topography, and microclimate conditions. Therefore, it isimportant to have information
allowing specific and proper operations for each identified management zone within vineyards
(R. Bramley, 2005; R. G. V. Bramley, 2001; R. Bramley & Hamilton, 2004; Ozdemir et a.,
2017).

Canopy management is critical for improving grapevine yield and wine quality (Smart et al.,
2017) by influencing canopy size and vigour and reducing phytosanitary problems (Vance et
al., 2013). Assuch, it isimportant to estimate above-ground biomass (AGB), which helps with
the monitoring of plant status and can potentially provide ayield forecast (Bendig et ., 2014).
Grapevine biomass can be estimated through crop models (CeSIA et a., 1997) by using leaf
area, global solar radiation, and air temperatures (Duchéne & Schneider, 2005), and based on
vegetation indices, which correlate several grapevine biophysical parameters (Dobrowski et al.,
n.d.). Moredirect methodsto estimate biomass require accurate field measurements and involve
destructive processes (Kankare et al., 2013; Yu et a., 2013).

Remote sensing is an effective solution, allowing the acquisition of severa types of data with
various spatial and temporal resolutions. Specifically, unmanned aerial systems (UAS) are
considered to be cost-effective, able to acquire the needed data at the needed time and place,
and able to provide greater spatial resolution compared with other remote sensing platforms,
such as satellites and manned aircrafts (Alessandro Matese et al., 2015; Padua, Vanko, et a.,
2017). Severa research studies successfully applied UAS-based remote sensing in distinct
vineyard monitoring contexts by coupling different sensors—such as red/green/blue (RGB),
multispectral, thermal, hyperspectral sensors, and Light Detection And Ranging (LIDAR)—to
unmanned aerial vehicles (UAVS), for the estimation of potential phytosanitary problems
(Baofeng et al., 2016), water status assessment (Baluja et a., 2012; Romero et a., 2018;
Santesteban et a., 2017), leaf area index (LAI) caculation (Kalisperakis et a., 2015), and
grapevine biophysical parameters (Alessandro Matese et al., 2016).
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Several studies explored UAV -based plant monitoring using hyperspectral sensors, namely for
biomass and nitrogen estimation in wheat (Polonen et a., 2013; Yueet a., 2017), in grassland
with different treatments (Capolupo et a., 2015), for rice paddies characterization (Uto et al.,
2013), using UAV-based RGB photogrammetry for tree identification, and to estimate
phytosanitary damages mapping (Nési et a., 2015; Nevalainen et a., 2017). In Kalisperakis et
al. (2015), ahigh correlation was found in a vineyard’s canopy greenness map, computed from
hyperspectral data, compared with the three-dimensional (3D) canopy model. However, some
current hyperspectral sensor data acquisition technology (e.g., push-broom sensors) does not
support structure from motion (SfM). As such, geometric parameters’ estimation is difficult
(Adao et al., 2017). These sensors are also highly dependent on cloud coverage (Polonen et al.,
2013), leading to over- or under-exposure, which affects data reliability. LIDAR sensors have
proven their usefulness and precision when applied to forestry inventory (Luke Wallace et al.,
2012), individual tree detection (L. Wallace et a., 2014), and forest understory studies
(Chisholm et al., 2013). Despite providing high accuracy, they are costly (P. J. Zarco-Tejada et
a., 2014).

UAV-based RGB imagery stands out as a cost-effective solution, providing reasonable
precision compared to LIDAR (Madec et al., 2017). Sensor fusion was afocus of other studies,
such as Sankey et a. (2017), where hyperspectral and LIDAR sensors were both used for forest
and vegetation monitoring (T. T. Sankey et a., 2018). Cost-effective sensors (RGB and
multispectral) have been used for biomass estimation and parameters extraction in different
contexts, such as in pasture lands (Von Bueren & Yule, 2013), near-infrared (NIR), sunflower
crops (Vega et a., 2015) (NIR), maize (Castaldi et al., 2017; Li et a., 2016), winter wheat
(Schirrmann et al., 2016), barley (Bendig et a., 2014, 2015), and vegetable crops (Kim et a.,
2018; Moeckel et al., 2018). These sensors were proven to be suitable for tree detection and
height estimation (Karpina et al., 2016; P. J. Zarco-Tejada et al., 2014), and diameter at breast
height estimation (Carr & Slyder, 2018).

Regarding vineyard AGB estimation, Mathews and Jensen (2013) used UAV-based imagery
with SfM algorithms to compute a vineyard’s point cloud to generate the canopy structure
model. The authors stated that SfM-based point clouds can be used to estimate volumetric
variables, such as AGB. Thus, providing this type of data throughout the different grapevine
phenological stages would benefit winegrowers in assessing a grapevine’s canopy spatial

variation (Mathews, 2014; Mathews & Jensen, 2013). Weiss and Baret (2017) used dense point
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clouds, generated through photogrammetric processing of UAV-based RGB imagery, to
characterize a vineyard’s properties, such as grapevine row height, width, spacing, and cover
fraction. Matese et al. (2016) used a multispectral sensor mounted on a UAV to assess the
photogrammetric processing of multispectra imagery. The authors concluded that greater
normalized difference vegetation index (NDV1) (Rouse et a., 1974) value matched areas where
grapevineswere|located were higher, proving the effectiveness of UAV -based datafor vineyard
mapping. Grapevine volume was estimated by considering three classes of grapevine height,
width, and length. However, the low-resolution of the multispectral sensor caused a smoothing
effect in the evaluated vineyard plot’s digital surface model (DSM). Caruso et al. (2017) used
an UAV equipped with RGB and NIR sensorsto obtain biophysical and geometrical parameters
relationships among grapevines, using high, medium, and low vigour zones of a vineyard,
determined from the NDVI. The volume was calculated for grapevines’ lower, middle, and
upper parts. UAV-based data were acquired in four different periods. May, June, July, and
August. De Castro et al. (2018) proposed an approach where a DSM computed from
photogrammetric processing of UAV-based RGB imagery was used in object-based image
analysis (OBIA) software to compute individual vineyard parameters. Unlike in Matese et al.
(2016), the smoothing effect was less significant. The authors stated that multi-temporal
monitoring of grapevine biophysical parameters using UAV -based data can be both efficient
and accurate, constituting a viable alternative to time-consuming, laborious, and inconsistent

manual in-field measurements.

This article supports the findings of De Castro et al. (2018) about the relevance of using multi-
tempora data acquired from remote-sensing platforms in PV, to monitor the size, shape, and
vigour of grapevines canopies. This study aimed to characterize vineyard vegetation evolution
through multi-tempora analysis using acommercial low-cost rotary-wing UAV equipped with
an RGB sensor, enabling the acquisition of very high-resolution imagery up to few millimetres
of ground sample distance (GSD). The multi-tempora data acquired over the area of interest
(AOI) were automatically analysed and grapevine vegetation was non-evasively estimated
using vegetation area and volume, as well as identifying vineyard areas that need canopy

management operations, by extracting several of the vineyard’s parameters.

This article is structured as follows: the next section describes the study area and the methods

used for data acquisition and processing. Section 7.3 presents the results of multi-temporal
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analysisand Section 7.4 providesadiscussion. Finally, Section 7.5 presents our most significant

conclusions.

7.2. Materials and M ethods

The study area characterization; the description of the used UAS; and the methods applied to
acquire, process, and interpret the UAV-based imagery are presented in this section. The
methodology followed in this study was proposed by Padua et al. (2017) and was intended for
multi-temporal crop analysis of UAV-based data. The method is based on three main stages:

vegetation segmentation, parameters extraction, and multi-temporal analysis.

7.2.1. Study Area Context and Description

Typical Vitis vinifera L. phenologica stages are well defined, occurring within known time
periods depending on geographical context. In Portugal, budburst occurs from March to April,
followed by flowering and an intensive vegetative growth in the period between May and June.
Then, veraison occurs. During this stage, usually between July and August, grapevine ripening
starts. Fruit maturity and harvesting typically happens between September and October. In the
remaining months, grapevines are in a dormancy stage (Magalh&es, 2008). However, these
stages might vary dlightly in time, depending on environmental conditions and grapevine
variety (Costa et al., 2015). The warm and dry Portuguese summers can limit crop growth due
to limited water availability during summertime (Helder Fraga, Malheiro, et a., 2014). To
improve both fruit quality and yield, vineyard canopy management methods are performed,
which involve different operations throughout the year. They include pruning, shoot thinning,
leaf removal, cover crop cultivation, irrigation scheduling, and application of soil and crop
amendments (L. Johnson et al., 2003). Regarding UAV -based agerial survey in vineyards, data
should be acquired after the budburst stage, when grapevine leaves begin to be noticeable.
These data can be used to monitor vineyard vegetation growth.

Two experimental vineyard plots were selected as the AOI for this work. Figure 7.1 presents
an overview of both plots, located at the University of Tras-os-Montes e Alto Douro campusin
Vila Real, Portugal (41°17'09.7" N, 7°44'12.9" W). Plot 1 (P1) had an area of 0.33 ha and was
composed of red grapevine varieties. Plot 2 (P2) had an area of about 0.55 ha and contained
white grapevine varieties. The grapevine varieties planted in both plots are recommended in the
Douro Demarcated Region (DDR), where this study occurred. Grapevines were planted in 1995
in parallel rows, separated by 2 m, and with 1.2 m space between plants within a row. They
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were trained in a vertical shoot positioning (VSP) system, with a double Guyot training
system—one of the most commonly used training systemsin DDR (H. Fraga & Santos, 2017).
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Figure 7.1. Area of interest (AOIl) general overview: analysed vineyard plots, validation areas, height validation
points, and their location in the Douro Demarcated Region, coordinates in WGS84 (EPSG:4326).

For a better understanding of the results obtained in this study, weather contextualization is
necessary. Therefore, parameters such as monthly precipitation, potential evapotranspiration
(PET) and mean, minimum, and maximum air temperatures were acquired from an automatic
weather station (iMETOS 1, Pesdl Instruments GmbH, Weiz, Austria), located 300 m from the
AOQI. Figure 7.2 represents daily mean air temperature parameters for each month and the
monthly accumulated precipitation and PET for the period of September 2016 to September
2017.
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Figure 7.2. Monthly mean weather variables for the study areas in the period between September 2016 and
September 2017: mean (Tmean), minimum (Tmin) and maximum (Tmax) air temperatures, and precipitation
(Prec) and potential evapotranspiration (PET) values.

The high air temperature during summer 2017, together with low precipitation in spring 2017
and winter 2016 caused a drought period in Portugal and earlier grape maturation in the DDR
region. Assuch, harvesting was anticipated in late August to mid-September: about two or three
weeks earlier than usual. In the AOI, harvesting occurred in mid-September. This can be
explained by comparing the weather data against the climatological norma of Vila Real
(retrieved from the Instituto Portugués do Mar e daAtmosfera, IPMA, Lisbon, Portugal) for the
period of 1981 to 2010. Comparing the one-year period with the climatological normal, we
noticed a difference of +3.2 °C in the maximum air temperature (+4.1 °C for the period of the
flight surveys), +0.6 °C in the mean air temperature (+1.1 °C for the period of the flight
surveys), —0.7 °C in the minimum air temperature (—0.6 °C for the period of the flight surveys),
and approximately 220 mm less accumulated precipitation.

7.2.2. Flight Campaigns

A commercial UAV, the DJI Phantom 4 (DJI, Shenzhen, China), was used in this study for data
acquisition. It is aflexible and cost-effective off-the-shelf solution, able to perform manual or
fully automatic flights in different configurations through a set of user-defined waypoints. The
UAS consists of this multi-rotor UAV equipped with a rolling-shutter 1/2.3” CMOS sensor
attached to a 3-axis electronic gimbal, which acquires 12.4 MP resolution RGB imagery.

Nine aerial campaigns were completed in the selected plots, covering the time span from 2 May
to 15 September, 2017. Details about these flight campaigns are presented in Figure 7.3. The
flight strategy enabled the inclusion of most of the plants phenological development until

harvesting season. The performed canopy management operationsin the studied vineyard plots
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were performed by the farmers and the aerial surveys were conducted within one week of its
ending. All flights were conducted between 1:00 p.m. and 2:00 p.m. to minimize the sun angle
influences and shadows. A double-grid configuration was used when planning each flight
campaign to ensure a high overlap of 75% between images. Flight height relative to the UAV
take-off position was set to 60 m.
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Figure 7.3. Flight campaign details. Flight number (F#), date, and the temporal difference in days between flights
and the performed vineyard canopy management operations in dashed lines. Plot 2 images in different flight
campaigns are also provided.

7.2.3. Data processing

Theimagery acquired in each flight was subjected to a photogrammetric processing using SfM
algorithmsto compute different orthorectified outcomes, which were used to segment vineyards
and extract their features. This enabled a multi-tempora analysis of the AQI, aong with the

estimation of areas that potentially need canopy management operations.

7.2.3.1. Photogrammetric Processing

Photogrammetric processing was applied to the high-resolution aerial imagery using
Pix4Dmapper Pro software (Pix4D SA, Lausanne, Switzerland). This software allows the
generation of different orthorectified outputs, such as orthophoto mosaics, DSMs, and DTMs.

The processing involved three main stages: (1) generation of a sparse point cloud by using SfM
algorithms to establish relationships between the geo-tagged RGB imagery through matching
corresponding points (tie points) in multiple images, thus estimating its three-dimensional (3D)
position. In this study, the computed outputs were aligned by setting manual tie points in areas
that were clearly identifiable in the imagery of al flight campaigns: five pointswere used. This
ensured that all generated outputs shared the same relative latitude, longitude, and altitude
coordinates, differing only on the surface’s changes as vegetation develops. (2) The next step

was the generation of adense point cloud by considering the computed tie points and enlarging
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the number of candidate points (in this case point density was set to high); and (3) then
computation of orthorectified outcomes, namely orthophoto mosaics, DSM, and DTM, which
was achieved by submitting the dense point cloud to a noise filtering process, and by
interpolating it using a triangulation algorithm. Since the mission plan was the same in al
flights, the photogrammetric processing alowed the generation of orthophoto mosaics, DSMs,
and DTMswith aGSD of 3 cm.

7.2.3.2. Vineyard Properties Extraction

Besides grapevine vegetation, inter-row vegetation and shadows cast by grapevines canopies
are two examples of elements usually present in vineyard aerial imagery (Burgos et a., 2015).
To automatically separate grapevine vegetation in aerial high-resolution imagery acquired by
UAVs, different approaches have been proposed in the literature: digital image processing-
based techniques (Comba et al., 2015; A. Nolan et al., 2015), supervised and unsupervised
machine learning classification techniques (Poblete-Echeverria et al., 2017), point clouds
(obtained from SfM methods) filtering (Weiss & Baret, 2017); and the use of DEMs (Burgos
et a., 2015; Kalisperakis et al., 2015).

Paduaet al. (2018) proposed a method for segmenting vineyards. The method uses UAV -based
RGB imagery—commonly available in most UAS— assumes that vineyards are organized in
rows, and that grapevine heights are greater than inter-row vegetation. Grapevine canopy is
often constrained to a certain area using a wire-based training system along the rows. This
confines grapevines to both a given width and height. By complementarily using the different
outcomes from photogrammetric processing of very high-resolution UAV-based imagery and
resorting to vegetation indices, the method is able to filter vegetation within a certain height
rangein agiven vineyard plot. Therefore, the method can extract parameters, such as grapevine
vegetation, and estimate the number of vine rows, the inter-row vegetation, and potentially
missing grapevines. Vegetation indices proved to be an accurate and quick mean to extract
vineyard vegetation, compared to more complex supervised and unsupervised machinelearning
methods which, respectively, require datasets for both training and validation purposes or that
provide lower accuracy rates (Poblete-Echeverria et al., 2017). Table 7.1 explains the notation
used in this section.
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Table 7.1. Notation table.

Notation M eaning

S Binary image containing the central lines of the grapevine rows

Rax Maximum height range used for crop surface model (CSM) thresholding

Rmin Minimum height range used for CSM thresholding
D Binary image resultant from CSM and G% thresholding
F Binary image resultant from the intersection of clusters of pixelsin D with S
c Set of all detected clustersin F
F Complement of F
L Binary image created from the intersection of F with the thresholded G% binary image
A Area of agiven property to calculate (F or L), which isthe sum of &l pixel values (0 or 1) of a

binary image with m x n size, multiplied by the squared GSD value

Mean height of agiven cluster C;, obtained from the CSM

Grapevines’ vegetation volume, given by the area of clusters C;, multiplied by its mean height
Flight campaign number

Single-band image resultant from pixel-wise comparison of two consecutive flight campaigns (k
andk + 1)

M aximum width that grapevines can assume

-

s X x<I&

Thiswork proposes a modified and enhanced version of the method introduced by Padua et al.
(2018). The original method was applied to the AOI’s two plots, resulting in amask (S) with
the central lines of grapevine rows. Figure 7.4 illustrates the method’s main steps and the
different outputs obtained from its application.
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Figure 7.4. General workflow of the proposed method and main outputs, illustrated with data acquired on 11 July
2017 (F5) from plot 1 (P1).
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The orthophoto mosaics obtained from photogrammetric processing of each flight campaign
data were used to compute the green percentage index (G%) (Richardson et al., 2007) (Figure
7.49), as presented in Equation (1), where the green band was normalized by the sum of all
RGB bands, allowing the extraction of the green vegetation cover.

G% = Green/(Red + Green + Blue) Q)
Next, an automatic threshold value based in Otsu’s method (Otsu, 1979) was applied to G%
(Figure 7.4d), generating a binary image. From the difference between the DTM and DSM, the
crop surface model (CSM) was generated, as shown in Equation (2) (Figure 7.4b). CSM values
represent the height of objects above the terrain that, upon further processing, alows obtaining
grapevine vegetation height.

CSM = DSM — DTM 2)

The CSM wasfiltered by height (h), ranging from h;, t0 h,.x. The outcome was anew binary
image (Figure 7.4€), in which each pixél (i, j) assumes the value “1” or “0”, based upon whether
the matching pixel inthe CSM has a height value within the defined range. A new binary image
D, containing all the vegetation within the defined height range, was obtained by combining
the binary images resulting from the threshold of G% and the CSM. Then, a set of
morphological operations (e.g., open, close, or remove small objects) was applied to D to delete
potential outliers that did not represent grapevines. This also contributed to reducing the

proposed method’s computational burden.

Each cluster of D wasindividually analysed and discarded if it did not intercept S (Figure 7.4c)
at least once. The result was a set of clusters C, which constitute a new binary image F that
contains only vegetation within a certain height range (Figure 7.4h). Hence, inter-row
vegetation was estimated by the interception between F’s complement F and the binary image
resultant from G% thresholding (Figure 7.4g). The resulting binary image, L, was composed of
vegetation that did not belong to grapevines.

Thus, a vineyard’s plot parameters can be estimated. Equation (3) presents the method of
calculating grapevine vegetation area A: the sum of each pixd (i, j) from F multiplied by the
squared GSD value, where m and n represent the image’s number of rows and columns,
respectively. The same approach can be used to determine inter-row vegetation area using L
instead of F.
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A= izjfi,j GSD? 3

i=1 j=1
In terms of grapevine volume V, expressed in m?, the estimation is performed by adding the
individual volumes of F’s clusters of pixels (C), which in turn are obtained by multiplying each
cluster’s area by its mean height, as presented in Equation (4), where a cluster C; area is
represented by Ae,, and He, represents the mean height of a given cluster C; and its value is

obtained from the CSM.
V= Xis14c, X H, (4)

7.2.3.3. Multi-Tempora Analysis Procedure

Although significant, parameters computed from individua flight campaigns are only capable
of offering a snapshot about a crop’s developmental stage and its contextual environmental
conditions. A multi-temporal approach allows analysis changes over time and to create data
seriesthat may proveval uablefor extracting patterns about crops and environmental conditions,

which can further improve PV management tools.

As this study aimed to characterize vineyard vegetation evolution throughout the most
significant grapevine vegetative growing cycles and given theimportance of managing biomass
for both fruit and yield optimization, a multi-temporal analysis was conducted. The process
used grapevine vegetation detected in consecutive flight campaigns (k and k + 1) to perform a
pixel-wise estimation of grapevine vegetation development. This produced one of the following
three possible outcomes per pixel: (1) considered as grapevine vegetation in both flights and
remains as such; (2) not considered as grapevine vegetation in k but considered in k + 1,
representing grapevine vegetation growth; or (3) considered as grapevine vegetation in k but

not in k + 1, representing a grapevine vegetation decline.

A new image X with grapevine vegetative growth values was created by applying Equation (5)

to both F images from k and k + 1 flight campaigns. Values 1, 0, and —1 represent grapevine

vegetation growth, maintenance, and decline, respectively. No value (NaN) was attributed to
areas with no grapevine vegetation detected in consecutive flight campaigns.

(Lf(k);;=0Af(k+1);;=1

o ! 0,f(k);j=1Af(k+1);;=1

v L—1,f(k)i,j =1Aflk+1);;=0

NaN, otherwise

=1,..,n 5)
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7.2.3.4. Canopy Management

Given the diversity and sheer number of field operations performed throughout a year to
maintain and extend grapevine life and increase their productivity, the ability to identify
vineyard areas in need of canopy management actions can significantly contribute to PV
sustainable practices. This process can help evaluate, hierarchize, and schedule field operations
based on the operation’s potential benefit evaluation in the identified vineyard area, while

considering cost and environmental impact.

Grapevine vegetation outside a defined area is considered as excess. To identify excess, Sis
dilated according to a given width (w) (Figure 7.4f), which represents the maximum width of
grapevine vegetation in a row, according to its spacing. Afterward, the resulting binary image
is combined with F. Grapevine vegetation pixels belonging to F outside the dilated S mask are
estimated as excess vegetation.

7.2.3.5. Vaidation Procedure

To monitor the selected vineyards temporally, atotal of nine aerial campaigns were carried out,
covering the grapevines’ most significant life cycle. The first flight, performed on 2 May, 2017,
corresponding to the beginning of the grapevine vegetative cycle; and the last flight was carried
out on 15 September, 2017, corresponding to the grapes’ final maturation stage (i.e., harvesting
season). Field data acquisition consisted of collecting vine row height and width measurements
at marked positions to estimate the vine row area and volume to compare the estimated
parameters by the proposed method and the one calculated with ground-truth data. Vine row
height was obtained by taking measurements using a surveyor’s levelling rod (Figure 7.5a), and
width by using a measuring tape and two surveyor’s levelling rods, used as presented in Figure
7.5b. These validation points were selected from two 10 x 10 m areas (blue polygonsin Figure
7.1). They are limited by characteristic features present in all vineyards and easily recognised
both in aerial images and in the field: posts equally spaced along the rows (every 5 m in our
AOQI). Thisway it was possible to identify the same area over the flight epochs and to compare
ground measurements with those provided by the proposed method. In total, 50 measurement
points were selected, 25 located in each validation area, to allow correct representation of the
vine row. If the vine row presents aregular shape, five points were selected per row, with 2 m
average separation. These areas were selected due to the presence of different vigour levels and
missing grapevine plants. Moreover, 37 other points (see Figure 7.1 for location) outside the 10

x 10 m areas were used as verification points (24 in P1 and 13 in P2). These points were selected
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to ensure sample representativeness in different contexts (dense and sparse grapevine
vegetation, different height values, etc.). In this case, only vine row heights were measured and
compared with heights estimated by the CSM.

(b)

Figure 7.5. Inffield measurements at specific points: (@) row height measurements; and (b) row width
measurements.

Grapevine height and area of the two 10 x 10 m validation areas was estimated using three
different approaches. (1) ground-truth data; (2) a mask produced by manual segmentation of
the computed orthophoto mosaics for the computation of grapevine vegetation area, which was
then multiplied by the vine row’s average height, computed using the results of the CSM; and
(3) applying the proposed method to UAV-acquired data and extracting both row area and

height in afully automatic process.

The accuracy of the method was assessed using vine rows heights and widths measured in-field
asreference. Then, those values were compared with those obtained using the proposed method.
The overall agreement between the observed in-field measurements o and the estimated values

e were verified through the root mean square error (RM SE), as shown in Equation (6).

RMSE = \/M (6)

n

7.3. Results

As stated in Section 7.2.3., this modified and enhanced version of Padua et al. (2018) method
enabled the estimation of grapevine area and volume, as well as vineyard areas that can
potentially benefit from canopy management operations. By using multi-temporal dataanaysis,

this method enables monitoring grapevine vegetation evol ution.

181



Chapter 7.
Multi-Temporal Vineyard Monitoring through UAV -Based RGB Imagery

7.3.1. Study Area Characterization

Both vineyard plots analysed—one composed of red wine varieties (P1) and another by white
wine varieties (P2)—were characterized by orthophoto mosaics, DSMs and DTMs with 3 cm
GSD, resulting from photogrammetric processing of UAV-based RGB imagery, acquired
during each flight campaign. Table 7.2 presents the mean error and RMSE values for each
direction (X: easting, Y: northing, Z: height), obtained during photogrammetric processing,
using five ground control points extracted from F1 coordinates, as reference. Higher deviations
were found in Z, while the error rateislower inboth X and Y.

Table 7.2. Mean error and root mean square error (RMSE) in each direction (X, Y, Z) on the five tie points for

each flight and its global values, considering the deviations from &l tie points. F1 coordinates were used as
reference.

. . Mean Error (cm) RM SE (cm)
Flight Campaign (F#) X Y 7 X Y 7
F2 0.39 0.67 -2.62 210 272 9.51
F3 -0.31 —0.64 1.28 421 316 3.90
F4 —-0.67 0.26 -2.57 338 279 1048
F5 0.03 0.07 -0.01 229 074 387
F6 -0.35 —0.13 -2.00 165 061 481
F7 -0.20 —0.17 —0.04 166 090 284
F8 —-0.08 —-0.56 —0.44 175 1.29 2.37
F9 —-0.08 —-0.02 —-0.16 209 124 033
Globa —0.16 —0.06 —(.82 254 193 5.78

Figure 7.6 presents the generated orthophoto mosaics along with the percentages of both
grapevine vegetation and inter-row vegetation. Grapevine vegetation was denser in the right
side of both studied vineyard plots, particularly in P2’s lower-right side and P1’s upper right
side. Conversely, there was a greater incidence of missing grapevines in the studied vineyard
plots’ left sides. Canopy management operations that occurred were also perceivable between
flight campaigns when considering multi-tempora analysis, as observed in the flights of 16
June (F3) and 11 July (F5).
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Figure7.6. Generated orthophoto mosaics for each flight campaign carried out in both vineyard plots (P1 and P2),
along with grapevine vegetation (VV) and inter-row vegetation (IR) percentages. The result of canopy
management operations, such as shoot thinning and leaf removal, is noticeable by comparing the orthophoto
mosaics. Coordinatesin WGS84 (EPSG:4326).
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Regarding the other orthorectified outcomes, the DSM and DTM enabled obtaining the CSM,
and G% was computed from the orthophoto mosaics. Figure 7.7 presents a color-coded
representation from these results from data acquired on the 27 July, 2017 flight campaign.
Regarding CSM height rangein thisstudy, h,;, and hp,,x Were set to 0.2 and 2 m, respectively.

Those values were selected according to the known characteristics of the study vineyards.
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Figure 7.7. Examples of inputs used in this study, computed from the photogrammetric processing of imagery

acquired on the 27 July, 2017 flight campaign: (@) green percentage index; and (b) crop surface model. Coordinates
in WGS84 (EPSG:4326).

7.3.2. Vineyard V egetation Change Monitoring

By applying the proposed method to the orthorectified products from the photogrammetric
processing of data acquired in each flight campaign, it was possible to (1) identify vine rows,
(2) determine individual vine row’s central line, (3) estimate grapevines’ vegetation, and (4)
distinguish grapevines from other types of vegetation (e.g., inter-row vegetation). Two relevant
canopy management operationstook place during this study (marked both in figures and tables):
one in the first half of June 2017 (shoot thinning between the second and the third flight
campaigns) and another onein the first week of July 2017 (leaf removal between the fourth and
fifth flight campaigns).

Figure 7.8 shows an estimation of grapevine vegetation area and volume per flight campaign,
as well inter-row vegetation area. As expected, P1 and P2 begin by having the smallest
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estimated grapevine vegetation area (F1, 2 May, 2017) with 172 m? and 257 m?, respectively,
representing 5% of the total plot occupation area. An intensive vegetative growth was expected
between May and June, together with some relevant canopy management operations. These
results coincide with the expected vegetative evolution of grapevinesin DDR. Moreover, they
allow not only identification but also estimation of the impact on grapevine vegetative area of
two relevant canopy management operations.

In terms of grapevine vegetation volume, the behaviour was similar to grapevines’ vegetation
area it increased from the first to the fourth flight campaigns and decreases thereafter, as
presented in Figure 7.8. Wheresas the first canopy management operation—shoot thinning—
that occurred a few days before the third flight campaign did not decrease the volume’s growth,
the second canopy management operation—Ileaf removal—verifiable in the fifth flight

campaign, clearly did.

In general, no significant differences amongst red and white grapevine varieties in regards to

either area or volume were detected. Both parameters presented a similar behaviour per flight

campaign.
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Figure 7.8. Estimated outcomes from applying the proposed method to data acquired in al aerial campaigns, from
(a) P1 and (b) P2: grapevines’ vegetation area, inter-row vegetation area, and grapevine vegetation volume.
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In this study, we al so estimated the area of non-grapevine vegetation (e.g., inter-row vegetation)
in the same plots, P1 and P2 (Figure 7.8). After the winter and spring months, the first flight
campaign data—about 300 m? in P1 (6% of occupation area) and approximately 800 m? in P2
(14% of occupation area)—and the second flight campaign data revealed a slight increase in
both plots. Data acquired in the following flight campaigns showed a decrease in inter-row

vegetation area

7.3.3. Multi-Temporal Analysis

By applying the proposed method to consecutive flight campaigns’ data, a multi-temporal
analysis of the study area was performed, as described in Section 7.2.3.4. This enabled the
observation of canopy management operations that occurred during grapevines growing season.
Figure 7.9 presents a visua representation of the multi-temporal analysis of grapevine

vegetation area variation between flight campaigns.

The main vegetative development occurred between the first and the second flight campaigns,
with an estimated grapevine area increase of about 300% for P1 (~540 m?) and 320% for P2
(~870 m?) and the lowest decline (nearly 26 m? for P1 and 38 m? for P2, corresponding to 4%
and 3% of grapevine vegetation area in the fight campaigns) registered during this study. This
result further supports those presented for grapevine’ vegetation area and volume (Section
7.3.2).

7.3.4. Estimation of Vineyard Areas for Potentia Canopy Management
Operations

By obtaining continuous information about grapevine vegetation evolution, it is possible to
estimate which areas (if any) within a given vineyard plot that could potentially benefit from
canopy management operations at any given time. This can be useful as a decision-support
system for canopy management operations scheduling, enabling the optimizing of physical

means, managing biomass, and further improving vineyards’ overall performance.
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Figure 7.9. Multi-temporal analysis of grapevine vegetation: blue stands for vegetation present in both consecutive
flight campaigns; green means vegetation growth; and red represents vegetation decline. Percentage and area (m?)
values are also presented for each class.

Both P1 and P2 were analysed to estimate areas that potentially needed canopy management
operations. Grapevine vegetation is considered excessive when outside a defined area. To
identify it, the binary image S was dilated according to a given width w, representing the
maximum width of grapevine vegetation in arow. Several tests were performed in thisanalysis
to determine the best value for w. Accordingly, for the canopy management operations
performed in the field, avalue of 0.6 m was considered optimal for the estimation of potential
excess vegetation. This procedure was applied for all flight campaigns’ data. Figure 7.10
presents the outcomes obtained for data from the second, third, fourth, and fifth flight
campaigns. Those flights were the ones that revealed excess vegetation, except for F5, which
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was included in Figure 7.10 to show an example where no excess vegetation was detected. F5
occurred after the second management operation. After that, vegetation was contained in the

range of w = 0.6 m until harvesting season.
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Figure 7.10. Estimated grapevines’ vegetation both in P1 and P2. Green identifies grapevines’ vegetation, red
signals areas of excess grapevines’ vegetation and therefore that potentially could benefit from canopy
management operations along with itsareain m2.

7.3.5. Accuracy Assessment

The results presented in the last subsections were obtained by automatically applying the
proposed method. However, to assess the method’s accuracy and effectiveness, a validation
procedure was used, as described in Section 7.2.3.5. Figure 7.11 presents the boxplots of the
differences in height per flight campaign between the measurements taken in the field and the
heights generated by the proposed method at the 50 points belonging to the validation areas.
Theinfluence of field management operations and the vegetative vigour of the plantsare clearly
detectable in the method’s height estimation accuracy. The dispersion of values increased with
plant vigour and decreased after each field management operation, remaining stable after the
last field operation, because after that time, the vegetative expansion was no longer so

prominent.
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Figure 7.11. Boxplots of the height differences per flight campaign.

Table 7.3 presents the results of the comparison between heights estimated by the proposed
method and measured in the field per flight campaign. In general, the RMSE indicates the
expected difference between heights per campaign. As can be concluded from Table 7.3, Figure
7.11, and demonstrated in the next section, the RMSE varied significantly and a direct
correlation was obtained with canopy management operations and the grapevine vegetative

cycle.
Table 7.3. Accuracy assessment per flight campaign (F#) using the 50 points in the two validation areas and the

37 sparse points used for control. RMSE: root-mean-square error, R coefficient of determination. Red dashed
lines represent canopy management operations.

RM SE (m) Overall
F#—Date (dd/mm/yyyy) n=50 n=37 RMSE(m) R
F1—02/05/2017 020 019
_Shootthinning_ F2--30/05/2017 015 _ 014
F3—16/06/2017 0.13 0.12
_Ledfremoval | FA—26/06/2017 014 013
F5—11/07/2017 0.10 0.11 0.13 0.78
F6—27/07/2017 0.10 0.10
F7—Q07/08/2017 0.12 0.11
F8—22/08/2017 0.12 0.12
F9—15/09/2017 0.13 0.12

Regarding grapevine area estimation, three different approaches were used, as explained in
Section 7.2.3.3. The method was validated by comparing manual segmentation of two different
areas, each one located in a different vineyard plot where the following three conditions could
be observed: (1) the pixel-value is the same and is classified as exact detection; (2) over
detection, if grapevine vegetation estimated in the method’s application result is not classified
as grapevine vegetation in the reference mask; and (3) under detection, corresponding to areas
of grapevine vegetation that were not accurately estimated from the obtained results. Theresults
from this evaluation are presented in Figure 7.12. Overall, the proposed method provided a
mean accuracy of 94.40% in the exact detection of grapevine vegetation, similar to Paduaet al.
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(2018). However, the mean exact detection percentage in P1 area was greater than the area
located in P2, at 95.01% and 93.79%, respectively.
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Figure 7.12. Results from occupation row area validation from data from each flight in an area of 10 x 10 m from
both studied vineyard plots (a) P1 and (b) P2.

7.4. Discussion

A relationship was clearly established between grapevine vegetative cycle, field canopy
management operations, and the different parameters obtained using the proposed method
based on the results presented in Section 7.3. This section presents a discussion regarding
vineyard vegetation evolution, determination of vine row height, and the impact that the

proposed method can have in canopy management operations scheduling.

7.4.1. Vegetation Evolution

AOQI vegetation evolution over time can be observed in Figures 7.6 and 7.8. As expected, the
grapevine vegetative cycle was verified. P1 and P2 begin by having the smallest estimated
grapevine vegetation area (F1, 2 May 2017), at 172 m? and 257 m?, respectively. Thisrepresents
5% of the total vineyard area. An intensive vegetative growth follows, between the months of
May and June. From the fifth flight campaign onward, grapevine vegetation area remained
relatively stable, with only some minor variations. Some vegetation growth still occurred within
the AOI, but grapevine vegetation steadily declined until the harvesting season, with a greater

emphasis to the last two flight campaigns.

Theimpact of the first canopy management operation (shoot thinning, which took placein mid-
June) is distinctly noticeable when comparing the second and third flight campaigns. Whereas
vineyard vegetation area variation was not meaningful for both P1 and P2 (approximately —5%
and 7%, respectively), the decline area was about 258 m? for P1 and 373 m? for P2, which are
among the highest values registered in this study. As mentioned when presenting the grapevine
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vegetation volume, the type of canopy management operation can be directly correlated to
grapevine canopy. This can be further established by analysing vineyard vegetation evolution
from the fourth to the fifth flight campaigns, in between which another canopy management
operation, leaf removal, took place (Figure 7.9, F4—F5). Grapevine vegetation area variation
was higher than when the first canopy management operation occurred. Larger vegetation
decline values were registered, about —29% (413 m?) for P1 and —37% for P2 (843 m?), when

considering that the more intensive grapevines vegetative growth period ended in late June.

When comparing consecutive flights (Figure 7.9), the dlight differences in the results
concerning temporal evolution may be explained by the proposed method’s implementation.
However, grapevine leaves can (and do) change colour either when entering in their later
phonological stages or as a manifestation of potential phytosanitary problems. As an example,
in P1, some misdetections occurred mostly in the last two flight campaigns, because grapevine

leaves were turning red.

Regarding grapevine canopy area, and when analysing each flight campaign individually
(Figure 7.12), datafrom theflight prior to leaf removal (F4) showed the lowest accuracy in both
analysed areas—91.50% and 90.73%, respectively—which can be explained by the existence
of some grapevine branches that were not correctly detected in the CSM. This means F4 was
the flight with the greatest overall under detection rate. The highest accuracy was achieved in
F7 for P2 with 97.83% and F1 for P2 with a detection accuracy of 95.50%. Regarding
misclassifications, under detection was verified in the boarders of grapevine plants and in the
few thinner parts, whereas over detection was observed in shadowed areas and when there was
more abundant vegetation, resulting in connected rows. Some inter-row vegetation was also
classified. However, these misclassifications did not significantly influence the proposed

method’s overall performance in terms of grapevine canopy area evaluation.

With respect to grapevine vegetation volume, the behaviour was similar to grapevine vegetation
area it increased from the first to the fourth flight campaign and decreased thereafter, as
presented in Figure 7.8. The first canopy management operation—shoot thinning—that took
place a few days before the third flight campaign, did not decrease the volume’s growth. The
second canopy management operation—Ieaf removal—verifiable in the fifth flight campaign,
clearly did decrease the volume: P1 decreased by about 62% in its 1000 m? and P2 grapevines’
vegetation volume decreased about 68%, from 1900 m3. This can be explained by the applied

canopy management operations.
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When assessing both grapevine area and volume from aerial imagery, management operations
such as shoot thinning, which helps to focus grapevine development to have the best possible
yield by removing secondary shoots and uncrowning areas to open up the canopy and help
avoid diseases and improve air flow, may have no significant visual impact in grapevines’
canopy. This happens because much of this operation is performed in the grapevines’ canopy
understory, and uncrowning does not completely remove surrounding vegetation—it only
reduces it. Leaf removal effectively and unequivocally removes a significant amount of
grapevine vegetation, with a visible impact on grapevine canopy level. In the sixth, seventh,
and eighth flight campaigns, grapevine vegetation volume was about 240 m? in P1, having
decreased to 125 m® (—53%) in the ninth (and final) flight campaign. P2 grapevine vegetation
volume progressively decreased about 15% per flight campaign, until approximately 295 m3in
the ninth flight campaign.

No significant differences amongst red and white grapevine varieties in regards to either area

or volume were detected. Both parameters presented a similar behaviour per flight campaign.

Inter-row vegetation (Figure 7.8) in P1 and P2 was practically non-existent after the fourth and
seventh flight campaigns, respectively. By cross-referencing estimated non-grapevine
vegetation area with environmental data (Figure 7.2), the evolution was as expected. Whereas
some precipitation during May 2017 can account for the slight increase in area between the first
and the second flight campaigns, the lack of precipitation, the non-existent irrigation system,
along with the high air temperature, and some inter-row management operations justify a

reduced or even non-existent inter-row vegetation until the harvesting season.

7.4.2. Grapevine Row Height

The determination of grapevine row height is critical since it is used to compute vegetation
volume, which was one of this study’s goals. As such, a thorough validation was carried out,
following the procedure presented in Section 7.2.3.3. A total of 87 measurementswererecorded
both in P1 and P2 per flight campaign, separated in two groups: 50 points were used for the
proposed method’s validation and the remaining 37 were used as control points. Field
measurements were recorded simultaneously with flight campaigns and provided heights
ranging from 1.01 mto 1.95 m. By analysing the results presented in Figure 7.11 and Table 7.3,
an overall RMSE of 0.13 m was attained. These results are in line with other studies that used
this type of validation: in De Castro et a. (2018) a R? of 0.78 and a RMSE of 0.19 m were

observed in measurements ranging from 1 m to 2.5 m, from three different vineyards, at two
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different epochs. In Caruso et al. (2017), a R? of 0.75 and a RMSE of 0.15 m were obtained,
with heights ranging from 1.4 m to approximately 2 m. Again, grapevines’ vegetative cycle,
together with the canopy management operations, influenced the quality of row height
estimation. Leaves scarcity made it difficult to estimate heights using the proposed method in
thefirst flight campaign; as aresult, the highest RM SE (~0.2 m) was obtained. Then, vegetation
development facilitated the use of photogrammetric tools, and the RMSE decreased in a
consistent manner until ~0.13 m, just before the leaf removal canopy management operation.
After that, RMSE drastically reduced (~0.10 m), influenced by the rows’ regularity after the
canopy management operation and the density of leaves. In the last stage of the grapevine
vegetative cycle, RMSE moderately increased, since some grapevine branches influenced the
photogrammetric estimation. From this point onward, both phenological and environmental
contexts contributed so that no further excess grapevine vegetation was detected until the

harvesting season.

7.4.3. Field Management Operations

Whereas the analysis of the data acquired in the second flight campaign identified some excess
grapevine vegetation both in P1 and P2, a canopy management operation—shoot thinning—
conducted before the third flight campaign reduced it significantly (P1 had about 22 m? and P2
had 82 m?, representing 3% and 7% of the detected grapevine vegetation, respectively).
However, given the intense grapevine vegetative growth until the end of June—the time when
the fourth flight campai gn took place—more excess grapevine vegetation was detected on both
plots (P1 had about 113 m?, representing 11% of the grapevine vegetation, and P2 had 306 nv,
representing 17% of the estimated grapevine vegetation). Another canopy management
operation—Ieaf removal—which occurred before the fifth flight campaign, meant none excess
grapevines vegetation in P1 and P2.

Besides being a potentially useful tool to identify vineyard areas that can benefit from canopy
management operations, the analysis in Figure 7.10 shows the estimation of excess vegetation
is possible at any given point in time. Therefore, grapevine biomass management can be
optimized accordingly. Together with multi-temporal analysis, this approach enables a more
complete characterization of vineyard’s parameters’ evolution, as well as the construction of

historical seriesto further define intra-seasons crops’ profiles.
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7.5. Conclusions

Canopy management is critical to improving grapevine yield and wine quality by influencing
canopy size and vigour and by reducing phytosanitary problems. As such, finding an
operational method to estimate vineyards’ geometric and volumetric parameters via remote
sensing would improve the efficiency of vineyard management. In this context, we introduced
the potential of applying low-cost and commercially off-the-shelf UAS equipped with an RGB
sensor in the PV context. The acquired high-resolution aerial imagery proved to be effective
for vineyard area, and volume estimation and multi-temporal analysis. The image-processing
techniques we used enabled the extraction of different vineyard characteristics and the
estimation of its area and canopy volume. Our method provides a quick and transparent way to
assi st winegrowers in managing grapevine canopy.

RGB orthophoto mosaics provide a context of the whole vineyard for visual interpretation of
the surveyed area. By combining the different photogrammetric processing outcomes with
Image-processing techniques, we proved the possibility of automatically estimating vineyard
geometric and volumetric parameters. Multi-temporal analysis of vineyard vegetation
devel opment enabled monitoring vineyard growth. We observed both volume and area growth
until the period were the in-field grapevine canopy management operations were carried out for
leaf removal, decreasing from that moment until the grape harvesting season. Inter-row
vegetation decreased as the campaign progressed dueto the high air temperatures and the almost
absent precipitation during the summer period. These results were corroborated by a thorough
validation using ground-truth data. The proposed method provided height estimations with a
mean RMSE of 0.13 m, corresponding to an error of less than 10% in the row height, even
considering the most complex scenarios of vegetation devel opment (projected branches in the
side and in the top of the row). After canopy management operations, the method’s
effectiveness improves, benefiting from row shape regularity (RMSE ~0.10 m). Regarding the
area evaluation, we validated that the overall method’s effectiveness was over 90% for all the

flight campaigns.

This study provides amore valuable and less complex crop-related data acquisition method for
farmers and winegrowers. The acquisition of other UAV -based data from different sensors can
also be employed to estimate other grapevine parameters, such as for multispectral and thermal
infrared sensors. These sensors, despite being less cost-effective and sometimes requiring, more

expensive UASs, can estimate other important parameters, such as vineyard water status by
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estimating crop water stressfor decision support inirrigation management, LAI estimation from
vegetation indices, which can also support canopy management operations, and estimate the

presence of potential phytosanitary problemsin vineyards.

In the near future, the growing attention given by UAS manufacturers to both PA and PV
marketswill provide new technology in thesefields by designing sensors adaptable for different
UAS. It is expected that cloud-based photogrammetric processing solutions and geographic
information system (GIS)-based web platforms for data analysis and results interpretation will
contribute to an easier and more flexible method of acquiring and interpreting crop-related
UAV -based data.
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8.1. Introduction

About 70% of the available worldwide clean water is used in agriculture (Gilbert, 2012).
Moreover, by the year 2050, there will have to be an estimated 70% increase in food production
(Gilbert, 2012) to sustain Earth’s population. Therefore, to attain a sustainable agriculture, it is
essential to ensure proper water management. Global warming evolution throughout the years
means these phenomenais one of the major threats to agricultural production, also with effects
on society (Asseng et a., 2015; C et a., 2009; Lobell & Gourdji, 2012; Jinxia Wang et al.,
2009). Less precipitation, associated with more frequent and longer drought periods
(Schmidhuber & Tubiello, 2007), ultimately leads to an increase in the use of water in
agricultural activity. To improve water usage efficiency, the United Nations (UN) set
sustainable development goals with the aim to create an expected increase in efficiency in all
sectors by the year 2030. This will ensure sustainable extractions and the implementation of
integrated water resources management (United Nations, 2015). It iscrucial that the agricultural
sector contributes to this effort by developing and implementing controlled irrigation
management systems (Cancelaet al., 2017; Gago et a., 2015). Assuch, it is necessary to have

an efficient analysis of crops’ water status.

The enduring search for resource use optimization, risks reduction, and minimizing
environmental impacts led to the emergence of precision agriculture (PA) (Gebbers &
Adamchuk, 2010). To understand both spatial and temporal variabilities of a production unit,
PA’s tools and technologies enable the acquisition and processing of large data volumes (e.g.,
image processing techniques, geo-statistical methods) (Gebbers & Adamchuk, 2010; Pablo J
Zarco-Tejada et al., 2014). The precision viticulture (PV) concept derived from PA involves
applying different technologies to vineyard management and grape production (Alessandro
Matese et a., 2015; Morais et al., 2008). However, grapevine (Vitis vinifera L.) development
isstrongly related to spatial heterogeneity, which depends on severa factors to determine both
its production and quality (A. P. B. Proffitt et al., 2006). Some of the more relevant factors are
soil quality and type, vegetation management operations, irrigation systems, nutritional status,
pest and disease control, air temperature, and precipitation levels (Alessandro Matese et a.,
2015; Steyn et al., 2016). Changes in one of these factors may result in the occurrence of biotic
and abiotic problems. Depending on its severity, it may result in a significant decrease in
production or quality, and therefore, considerable economic losses (Baofeng et a., 2016). The
Douro Demarcated Region (DDR, north-eastern Portugal) spatial variability ishigh due mainly
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to the terrain’s topographic profile, climatic variations, and soil characteristics, which causes

vineyards to be unique throughout the DDR (Morais et al., 2008).

In the last few years, due to their flexibility and efficiency in diverse environments, the use of
unmanned aeria vehicles (UAVS) emerged in agriculture applications (Adéo et al., 2017).
UAV s can acquire georeferenced data with a high spatial resolution while using different types
of sensors (RGB, near infrared, multi and hyper-spectral, thermal infrared (TIR) and LiDAR)
(Padua, Vanko, et a., 2017), which allow for the output of several digital products, such as
ortho-rectified mosaics, digital elevation models (DEMs), land surface temperature, and
vegetation indices (VIs) (Padua, Vanko, et a., 2017). Indeed, their ability to carry different
types of sensors make UAVs a suitable solution for agricultural applications. While
multispectral sensors acquire data from the electromagnetic spectrum in the near and visible
infrared region (400 to 1000 nm), thermal sensors can acquire datain thefar infrared zone (5000
to 18,000 nm), where the reflection value of each pixel can be transformed into a temperature
value (Padua, Vanko, et a., 2017). Among the different Vs, which can be considered as a set
of arithmetic operations applied in different bands used to extract different vegetation
characteristics (Padua, Vanko, et al., 2017), the normalized difference vegetation index (NDV )
(Rouse et a., 1974) must be highlighted as it is frequently used in agricultura applications to
estimate different crop-related parameters: biomass (Bendig et al., 2015); canopy structure, |eaf
area index (LAI), crop management (Candiago et al., 2015); and mapping vigour zones (J.
Primicerio et al., 2015). Moreover, it was found to correlate well with grape quality properties
(Alessandro Matese & Di Gennaro, 2018). As for temperature-based indices, they constitute a
quick and practical way to estimate crop water status, therefore indicating the plants’ water
content. The crop water stressindex (CWSI) (ldso et al., 1981) iswidely used in remote sensing
to monitor plants’ water status and consequent irrigation management (Alderfasi & Nielsen,
2001). TIR-based indices were employed to different crops, such as olives (Berni, Zarco-
Tejada, Sepulcre-Cantd, et al., 2009), grapevines (Bellvert et a., 2013), cotton (D. G. Sullivan
et a., 2007), wheat (Banerjee et al., 2018), rice (Liu et al., 2018), sugar-beet (Quebragjo et a.,
2018) and maize (Romano et a., 2011). Remote sensing platforms can also be a helpful tool
for a better understanding of spatial variability, which has a significant meaning in vineyard
management activities. Actualy, UAVs have already been used to, e.g., estimate the leaf area
index (Kalisperakis et d., 2015; Mathews & Jensen, 2013), irrigation management and water
stress mapping (Baluja et al., 2012; Bellvert et a., 2013; Romero et a., 2018), diseases
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detection and mapping (Albetiset a., 2017; A. Matese et al., 2013), and detection of nutritional
deficiencies (Martin et a., 2015).

UAVs have already proved to be a cost-effective and flexible aternative for remote sensing,
within a PA context. They present an improved decision-making process to the farmer and
provide greater flexibility, when compared to other remote sensing platforms (Alessandro
Matese et a., 2015).

Asfor PV, vineyards have significant areas occupied by elements other than grapevines (e.g.,
inter-row vegetation, man-made structures, vegetation that usually surrounds the plot, and
grapevines’ shadows) (Burgos et al., 2015; Alessandro Matese et al., 2015). These elements
can be automatically identified by means of digital image processing methods. Indeed, several
methods have been proposed to deal with UAV-based aerial imagery or with the resulting
digital products from the photogrammetric processing. For example, grapevine segmentation
(Comba et a., 2015; A. Nolan et al., 2015), supervised and unsupervised machine learning
(Poblete-Echeverria et a., 2017), point clouds derived from photogrammetric processing
(Comba et al., 2018; Weiss & Baret, 2017), and DEMs (Baofeng et a., 2016; Burgos et a.,
2015; Kalisperakiset al., 2015). Regarding Vs, they are one of the most common segmentation
techniques applied in remote sensing (Ponti, 2013), mainly to segment a given image into two
classes: vegetation or non-vegetation (Pefia-Barragan et al., 2011). However, when considering
vineyard vegetation, VIs acknowledges all types of vegetation without distinguishing
grapevines from non-grapevines (e.g., inter-row vegetation). By using the DEM—or more
specifically, the canopy surface model (CSM), which can be obtained by subtracting the digital
terrain model (DTM) from the digital surface model (DSM)—quantifying and removing non-
grapevine vegetation in a vineyard’s segmentation process can be done as plant height is

provided (Jiménez-Brenes et al., 2019).

While different digital outputs can be generated from UAV -based imagery, the amount of data
and its complexity can be overwhelming for the common farmer to interpret. Straightforward
useful crop-related information is needed. Vigour maps are an example where by using the
NDVI, vegetation is classified into different classes according to its characteristics. By applying
it to PV, grapevines’ vigour can be defined as the measure of the growth rate during a given
time period (e.g., the growing season). This not only enables the classification of vineyard
homogeneity zones (T. Proffitt & Turner, 2017), which isaway to represent the impact of both

environmental conditions and soil fertility (van Leeuwen, 2010). There have been some related
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works done in this area. Khaliq et al. (2019) compared satellite imagery with UAV -based
multispectral data in four different epochs of the grapevines’ vegetative cycle. Different
comparisons were made by considering: (i) the whole vineyard, (ii) only the grapevines’
vegetation, and (iii) only inter-row areas. The authors reported that satellite multispectral
imagery presented limitations due to the ground sampling distance (GSD, 10 m) and to the
influence of inter-row information Primicerio et al. (2015) evaluated vigour maps produced for
the whole vineyard and only encompassing grapevines’ vegetation, by applying an automatic
segmentation method (Combaet a ., 2015). Camposet a. (2019) used UAV-based vigour maps

to create prescription maps for vineyard spraying operations.

Studies supported by imagery acquired in one flight mission alone mainly focused on assessing
non-grapevine vegetation removal when considering the whole vineyard, and in creating task-
oriented vigour maps (Camposet a., 2019; Costa Ferreiraet al., 2007; J. Primicerio et al., 2015;
Rey-Caramés et d ., 2015). With reference to multi-temporal studies, there are those whose aim
is to compare different growing seasons by evaluating biophysical grapevines parameters
(Bonilla et al., 2015; A. Matese et a., 2019; Rey-Caramés et al., 2015). Furthermore, studies
utilizing intra-season multi-temporal data, considered the whole vineyard information (Marcal
& Cunha, 2007), or vineyard changes were not the main focus (Khaliq et al., 2019). As found
in Primicerio et a. (2015), vigour maps using only grapevines’ vegetation showed a better
representation of the variability within the vineyard. The spatial variability in grapevines’ water
status can be assessed thought both multispectral and TIR imagery, where TIR imagery serves
as an immediate way to estimate crops’ water status, while multispectral data can show
cumulative water deficits (Baluja et al., 2012). As such, the TIR data has the potential to help
understand water stress for near-real -time decision-making support (Espinozaet a., 2017). By
integrating TIR and multispectral data, datasets to study grapevines’ response to climate change

(Di Gennaro et al., 2017) can be created.

This study aimed to evaluate vineyard vigour maps (NDVI) created using UAV-based
multispectral imagery within a multi-temporal context and in different grapevines’
phenological stages. The main goal was to study grapevines’ vegetation dynamics during the
growing season up until harvesting. Two approaches were used: (i) considering the whole
vineyard area, and (ii) considering only automatically detected grapevines’ vegetation. Spatial
assessment between the generated vigour maps, and grapevines’ canopy temperature and height

data—obtained from UAV-based TIR and RGB imagery, respectively—were conducted with
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the objectiveto correlate vigour mapswith potential grapevines’ water stress and canopy height.
This allowed for the assessment of non-grapevine features when analysing vigour maps.

The next section presents the study area and the methods used both for data acquisition and
processing. Results are presented in Section 8.3 and discussed in Section 8.4. Lastly, the most
significant conclusions are shown in Section 8.5.

8.2. Materials and methods

8.2.1. Study Area and Environmental Context

This study was conducted in a 0.30 ha vineyard located in the University of Tras-os-Montes e
Alto Douro campus, Vila Real, Portugal (41°17°13.2” N 7°44°08.7” W WGS84, altitude: 462
m), in the DDR (Figure 8.1). The vineyard (cv. Malvasia Fina) is trained in a double Guyot
system, where each row has grapevines 1.20 m apart and there is 1.80 m distance in between
rows. There is a total of 22 rows with a NE-SW orientation. Furthermore, it is a rainfed
vineyard, with fertilization applied using foliar spraying and with phytosanitary management
operations taking place throughout the entire season. Inter-row areas are composed of
spontaneous vegetation, which is managed using mechanical interventions at least twice per

Season.
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Figure 8.1. Genera overview of the studied area delimited by a polygon. Coordinates in WGS84 (EPSG:4326).

During the studied period (May to September 2018), a total of 170 mm of precipitation was
registered, along with 590 mm of potential evapotranspiration. Mean values for maximum,
mean, and minimum air temperatures were 29 °C, 20 °C, and 13 °C, respectively. Monthly
values are presented in Figure 8.2. Higher air temperature values were observed in July, August,
and September, while May and June presented higher precipitation values. In contrast, there
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was almost no precipitation in August. This environmental data was acquired using a weather
station located some 400 m away from the study area.
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Figure 8.2. Monthly mean values for maximum (Tmax), mean (Tmean), and minimum (Tmin) air temperatures,
precipitation (Prec); and potential evapotranspiration (PET) for the studied areain the period ranging from May to
September 2018.

8.2.2. UAV-Based Data Acquisition

RGB, multispectral and TIR imagery were acquired using both a DJ Phantom 4 (DJI,
Shenzhen, China) and a Sensefly eBee (senseFly SA, Lausanne, Switzerland). The former isa
low-cost UAV equipped with an RGB sensor (12.4 MP resolution) attached to a three-axis
electronic gimbal. For the purpose of this study, it was modified to support a multispectral
sensor: the Parrot SEQUOIA (Parrot SA, Paris, France). This sensor consisted of afour-camera
array, which was able to acquire data in the green (550 nm), red (660 nm), red-edge (735 nm),
and near infrared (790 nm) parts of the electromagnetic spectrum, with a 1 MP resolution.
Moreover, a Sunshine sensor (Parrot SA, Paris, France) was also added to the UAV’s top. It is
responsible for acquiring theirradiance conditions during the flight mission in the same spectral

bands as the multispectral sensor and to geolocate the acquired imagery.

As for the Sensefly eBeg, it is a fixed-wing UAV used to acquire TIR imagery with the
thermoMAP (senseFly SA, Lausanne, Switzerland) sensor (between 7500 nm to 13,500 nm,
with 640 x 512 pixels and atemperature resolution of 0.1 °C), with automatic in-flight thermal
image-based calibration. Ground control points (GCPs), used for aligning the acquired imagery
during the photogrammetric processing, were measured using a Global Navigation Satellite
System (GNSS) receiver in rea-time kinematic (RTK) mode based on the TMO6/ETRS89
coordinate system (GCP’s location in Figure 8.1). While the multi-rotor UAV was used mainly
due to its capability to survey areas at lower flight heights, which provides higher spatial
resolution (Padua, Vanko, et al., 2017), the fixed-wing UAV surveyed a larger area, which
included the studied area. Furthermore, the TIR sensor only operated as a fixed-wing UAV.
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Data acquisition was conducted in five flight campaigns, from 17 May 2018 to 21 September
2018. Each flight campaign corresponded to distinct grapevine phenological stages: flowering
(May and June), fruit set (July), veraison (August), and harvest (September). Details are
presented in Figure 8.3. All flight campaigns were conducted near solar noon to minimize sun
and shadow influences. Flights for both the RGB and multispectral sensors were done at a 40
m height, with aforward overlap of 80% and 70% side overlap between images. The GSD was
approximately 1.8 cm for the RGB and of 4.4 cm for the multispectral imagery. Regarding
flights for TIR imagery acquisition, they were carried out at a 75 m flight height, with a 90%
forward overlap and 75% side overlap between images, resulting in an approximate 17.5 cm
GSD. All flight campaigns utilized RGB and multispectral imagery, while TIR imagery was
only acquired from F3 onward (see Figure 8.3), due to both in-field observations and the
environmental context, sincerainfall caninduce an error in the remotely sensed grapevine water
status in the subsequent days (Bellvert et a., 2016). Moreover, a radiometric calibration was
performed prior to each flight for the multispectral imagery using a reflectance panel provided
by the manufacturer, along with the irradiance data from the sunshine sensor. Irradiance and
reflectance data enabled a reliable radiometric workflow for the collection of repeatable

reflectance data over different flights, dates, and weather conditions.
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Figure 8.3. Flight campaigns’ details: flight number (F#), Day of Year (DOY), and temporal difference (in days)
between flights. Vineyard imagesin different flight campaigns are also shown.

8.2.3. Data Processing and Parameters Extraction

Imagery acquired in each flight campaign was processed using the Pix4Dmapper Pro (Pix4D
SA, Lausanne, Switzerland). This software makes use of structure from motion (SfM)
algorithms to identify common points in the images. It can create point clouds, and by
interpolating them, generate different orthorectified outcomes depending on the sensor used.
Imagery from each sensor was processed in different projects. The default processing options

for each sensor were applied, but point clouds were generated with a high-point density. Point
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cloud interpol ation was achieved using inverse distance weighting (IDW) and by applying noise
filters. The generated digital outcomeswere: (i) RGB—orthophoto mosaic, DSM, and DTM; (ii)
multispectral-Vls; and (iii) TIR-land surface temperature. By subtracting the DTM from the
DSM, the CSM was obtained. From the multispectral imagery, the NDVI (Rouse et al., 1974)
was obtained using a normalization between the near-infrared (NIR) and red bands, as given in
Equation (1).

NDVI — NIR — RED )
" NIR + RED

The land surface temperature was used to compute the CWSI through the empirical model
presented in Equation (2). It was based in the usage of canopy temperature, Tc, and the lower
and upper canopy temperature limits (Tary and Twe), corresponding, respectively, to well-
watered and non-transpiring leaves. These values can be directly obtained in the field or by
using UAV -based thermal infrared imagery (Alessandro Matese et al., 2018). CWSI values can
vary between 0 (no stress signs) and 1 (high levels of stress). In this study, Twet and Tary values
were obtained as described in the work of Matese and Di Gennaro (2018): Twe Was obtained
by wetting some leaves and immediately measuring their temperature, while Tqry Values were
obtained by applying petroleum jelly in the leaves and registering their temperatures after some
minutes had gone by. Temperature values were measured using a handheld infrared
thermometer (Shenzhen Jumaoyuan Science and Technology Co., Ltd., Shenzhen, China), with

az1.5 °C precision and operating between 8000 nm to 14,000 nm.

Twet

CWSI = <~
Tdry - Twet

2

To remove non-grapevine elements from the acquired imagery, segmentation was performed
by using the method proposed in Padua et a. (2018). Both the CSM and the G% index
(Richardson et a., 2007), computed from the orthophoto mosaic, were used as inputs, and
through thresholding, considering both vegetation and height thresholds, it identified al
vegetation within a given height range. While G% was automatically obtained using Otsu’s
method for thresholding, CSM used a defined height range. An accurate grapevine
segmentation was obtained, filtering out non-grapevine objects such as soil and inter-row

vegetation.

This method has already been used in a multi-temporal analysis of grapevines’ vegetation
evolution throughout a season in two vineyard plots in Padua et a. (2018). Similarly, in this

study, the method to segment grapevines’ vegetation (Padua, Marques, Hruska, Adao, Bessa,
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et a., 2018) was applied to evauate the multi-temporal vineyard evolution when regarding
grapevine area and canopy volume, as well as the inter-row vegetation area. The grapevine
canopy volume was computed according to Padua et al. (2018), using the mean height of each
cluster of pixels obtained during the segmentation process multiplied by its area, where the sum

of the volume of each cluster represents the total vineyard volume.

As such, the orthorectified outputs from each flight campaign were used for different purposes.
The grapevines’ vegetation was detected and then CSM, NDVI, and CWSI values from the
detected parts were considered, while non-grapevine pixels were discarded. Within the scope
of this study, three different approaches were tested to create vigour maps. Figure 8.4 describes
the main steps in each approach. Moreover, vigour classes were set to low, medium, and high.
The workflow consisted in loading the orthorectified outcomes, followed by the vineyard
segmentation method, depending on the used approach. Then, vigour maps were created by a
applying a mean filter to the image, using a 2 x 2 m dliding window. Data could then be
normalized before the vigour map creation. Again, thislast step depended on the approach being
used.
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Figure 8.4. Approaches tested to produce vigour maps using three vigour classes.

The first approach relied on the usage of data from the whole vineyard. The outcome was
directly smoothed and divided into three classes, using terciles. As for the second approach, it
was similar to the first, but it only considered the grapevines’ vegetation. Lastly, the third
approach, similar to the second approach, considered only normalized grapevines’ vegetation.
Normalization was done based on the mean value of the 10% higher and lower values of the
smoothed grapevines’ vegetation values. Then, three vigour classes are created by dividing the
values in the normalized raster according to fixed thresholds: (i) values lower or equal to 0.4
were considered low vigour; (ii) between 0.4 and 0.7 were considered medium vigour; (iii) and

values above 0.7 were considered high vigour.
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8.2.4. Vigour Maps versus Spatial Statistics

Vigour maps obtained from each flight campai gn were compared with the CSM and the CWSI
using statistical techniques that consider geospatia variability. This comparison was done by
converting the three vigour classes maps to a 4 x 4 m grid. The grid size was selected by
considering the studied vineyard’s characteristics: each grid square was confined to two vine
rows. This pipeline was proposed by Matese et a. (2019). Regarding the methods used in this
comparison process, they were the local bivariate Moran’s index (MI) and the bivariate local
indicators of spatial association (LISA) (Ansdlin, 1995). Local MI (LMI) is based in the
Moran’s index (Moran, 1950), which measures the global data correlation. While a positive
correlation represents similar values in the area’s neighbourhood, a negative value represents
the opposite, and zero represents a random spatial agreement. Regarding the LMI, avaue is
provided for each observation through permutation. The local bivariate M| was used in this
study to assess the correl ation between a defined variable and a different variable in the nearby
areas. Inturn, LISA measuresthelocal spatial correlation, providing maps of local clusterswith
asimilar behaviour, which is based on MI. This way, spatial clusters and its dispersion can be
assessed. Bivariate LISA (BILISA) (Anselin, 1995) was used asin Anselin (2014) to examine
the spatial relationship between the CSM and CWSI and the vigour maps. This comparison was
made using GeoDa software (Anselin et al., 2006). Spatial weights were necessary to perform
these analyses: an eight-connectivity approach (3 x 3 matrix) was used to create the weights
map and BILISA was executed with 999 random permutations. The computed cluster maps and
its significance were used. Cluster maps specify positive and negative spatia associations and
are divided into four classes, based on the correlation of the value with its neighbourhood. The
obtained associations are: (i) high—high (HH), where high values correlated with high valuesin
the neighbourhood; (ii) low—low (LL), in which low values correlated with low valuesin the
neighbourhood; (iii) high-low (HL); (iv) and low-high (LH). The three classes of vigour maps
computed through the different approaches were compared with their correspondent vigour map

in the following flight campaign, as well as with the CSM and CWSI three classes maps.

8.3. Results

This study yielded different digital products through the methods employed, from which it is
important to highlight the vineyard status, vigour areas, potential water stress areas, and amulti-

temporal vineyard characterization.
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8.3.1. Multi-Temporal Vineyard Characterization

Figure 8.5 presents the orthorectified outcomes from the photogrammetric processing. There
was a noticeable overall NDVI decline throughout the season (Figure 8.53). However,
grapevines’ canopy height (Figure 8.5b) presented a growth from the first to the third flight
campaign, while remaining constant from then on. Asfor the temperature (Figure 8.5c), ahigh
temporal variability was observed dueto both the day temperature and the inter-row vegetation.
For example, in the third flight campaign, temperature differences between areas with or
without grapevines’ vegetation were smaller, about 1.0 °C, than in the other flight campaigns:
approximately 2.2 °C for F4 and 1.4 °C for F5. Moreover, registered land surface temperatures
presented the same behaviour as the maximum air temperature (Figure 8.2) registered in each

month. Indeed, they were lower in July (followed by September), and higher in August.

Figure 8.5. Orthorectified outcomes generated with data acquired in each flight campaign using a colour-code
representation: (a) normalized difference vegetation index, (b) crop surface model, and (c) land surface
temperature. Orthophoto mosaics are presented as the background of (a) and (c).

Due to early vegetation development in grapevines by the time the first flight campaign took
place, the minimum height to consider as grapevines’ vegetation was 0.2 m. As for the
remainder of the flight campaigns, minimum and maximum heights were set to 0.5 and 1.9 m,

respectively.

Table 8.1 presents the differencesin NDVI, CSM, land surface temperature, and CWSI values
when considering the whole vineyard plot and when analysing only detected grapevines’
vegetation. Generally, mean and minimum NDVI values were higher when considering only

grapevines’ vegetation. As for maximum values, some high values were accounted for in areas
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other than with grapevines’ vegetation. The same tendency was verified in the mean and
minimum height values, obtained through the CSM. However, maximum values were
practically similar, except for the first flight campaign. An inverse tendency was verified when
analysing the land surface temperature and CWSl, i.e., higher values were found when

analysing the whole vineyard plot.

Table 8.1. Maximum, mean, and minimum values of the normalized difference vegetation index (NDVI), crop
surface model (CSM), surface temperature, and crop water stress index (CWSI) when considering the whole
vineyard plot and only grapevines’ vegetation in the five flight campaigns.

Type Outcome Parameter F1 F2 F3 F4 F5
Max 088 091 089 078 0.78
NDVI Mean 057 074 068 042 0.38

Min 013 026 027 017 001
Max 117 148 159 151 153
CSM (m) Mean 006 019 035 022 0.19
Min 000 000 000 000 0.0

Whole area Max ~ . 3874 5090 4584
Temp (°C) Mean - - 2989 4435 37.20

Min _ 2712 3726 3249

Max 100 100 100

cWsl Mean - _ 060 083 078

Min 004 023 007

Max 087 089 089 075 078
NDV/ Mean 070 082 080 062 059
Min 041 059 064 037 025
Max 107 148 159 151 153
CSM (m) Mean 040 089 116 101 0.99
Min 020 047 052 027 020

Grapevines’ vegetation only Max - _ 3100 4781 39.36
Temp (°C) Mean - - 2892 4217 3584

Min - - 2712 3726 3249

Max - - 0.82 100 091

Cwsl Mean - - 0.38 068 048

Min 0.04 023 007

Extracted vineyard parameters allowed for a multi-temporal analysis of both grapevines’
vegetation area and volume, as well as for other vegetation present in the studied area. Figure
8.6 contains these results. The first flight campaign presented the lower vaues for the
grapevines’ vegetation area: 82 m?, representing 3% of the vineyard plot. The grapevines’
vegetation area increased until the third flight campaign, from which a significant decline was
verified in the following flight campaigns. The grapevines’ canopy volume presented the same
behaviour. As for inter-row vegetation, a growth happened between the first and the second
flight campaigns, from 6% to 20% of the vineyard plot. After the fourth flight campaign, inter-
row vegetation area decreased to 26 m? (1% of the vineyard plot), whilst asmall increase was

verified in the last flight campaign.
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Figure 8.6. Estimated grapevines’ vegetation area and volume, and inter-row vineyard vegetation, in each flight
campaign.

8.3.2. Generated Vigour Maps
Vigour maps were generated as described in Section 8.2.3 and assessment val ues are presented

in this section. Each map was classified as one of three classes, namely as alow, medium, or

high vigour area.

8.3.2.1. Visual Assessment

Figure 8.7 presents the vigour maps generated using three approaches. When encompassing the
whole vineyard (i.e., considering bare soil and all existing vegetation), as presented in Figure
8.7a, a perspective of the plot’s homogeneity throughout the season was obtained. Approaches
considering only detected vineyard vegetation presented a higher diversity, providing a deeper
perspective on the grapevines’ vegetation spatial variability (Figure 8.7b,c). Still, a tendency
for a lower vigour classification in the left part of the studied area was noticeable in all
approaches. The same situation was verified in the southern centra part of the vineyard plot.
This assessment was more pronounced in the first approach but had more detail in both the

second and third approaches.
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Figure 8.7. Generated vigour maps, based on the normalized difference vegetation index (NDV1), with three
vigour classes (high, medium, and low) for each flight campaign, with the three evaluated approaches: (@)
considering al vegetation present, (b) regarding only the grapevines’ vegetation, and (C) considering only
normalized grapevines’ vegetation.

Vineyard areas classified with high, medium, or low vigour were evaluated in al flight
campaigns. Their percentages are presented in Figure 8.8a. As for the first approach, the
vineyard plot showed a higher percentage of vegetation in the high vigour class (mean overall
percentage of 48%). However, in the first flight campaign, there was a higher area classified in
the low vigour class (mean overall percentage of 31%). The medium vigour class presented the
lower mean overal percentage (21%). As for the second approach, the overall mean area
percentage was similar: 43% in the high vigour class, followed by 33% in the low vigour class
and 24% in the medium vigour class. Regarding the third approach, the medium vigour class
presented the higher mean overall occupation area (42%), followed by the high vigour class
(31%) and the low vigour class (27%).

The vineyard vigour area behaviour may not correspond to the grapevines’ vegetation. As such,
Figure 8.8b shows the grapevines’ canopy volume present in each class throughout all the flight
campaigns. This was achieved by intercepting vigour classes with the detected grapevines’
vegetation canopy volume. There were variations when comparing the applied approach and
when analyzing the flight campaigns in the same approach: the overall value corresponded to
the grapevines’ canopy volume presented in Figure 8.6. When considering the NDV | valuesfor
the whole vineyard to generate a canopy map, the grapevines’ canopy volume presented a
higher predominance in the high vigour class. However, when comparing this with the
approaches that consider only the grapevines’ vegetation, the grapevines’ canopy volume was

significantly lower in the low vigour class for the latter approach. Regarding the approach
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where only grapevines’ vegetation was considered, a clear distinction among the grapevines’
vegetation volume was clear: the high vigour class had a greater grapevines’ canopy volume,
followed by the medium and low vigour classes. As for the third approach (normalized
grapevines’ vegetation), in the last two flight campaigns (F4 and F5), there was a higher volume
in the medium vigour class, corresponding to the detected vineyard area (Figure 8.8a).
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Figure 8.8. Vineyard area (a) and grapevines’ canopy volume (b) per vigour class and approach in all flight
campaigns (F#).

8.3.2.2. Spatial Correlations

To undergo a spatial assessment, the three approaches to generate vigour maps were applied to
the CSM and CWSI outcomes of each flight campaign, when available. Ergo, maps with height
values sorted in classes—low, medium and high height—could be obtained from the CSM.
These results are presented in Figure 8.9. Height maps presented a high homogeneity among

all approaches, especially from the third flight campaign onward.

FusmarA  Pueaew rasswen et een rasiers  Fuasiers mmrs camtmen sram -t

Figure 8.9. Generated height maps obtained from the crop surface models (CSM) for each flight campaign. Each
height value was sorted into one of three height classes (low, medium, or high). The whole vineyard (a),
grapevines’ vegetation only (b), and normalized grapevines’ vegetation (C) was considered.
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From the CWSI, maps that could potentially point out grapevines’ water stress were obtained.
They are presented in Figure 8.10. Again, three classes were considered to sort out each value
on every map: low, medium, and high water stress. Results from considering all vegetation
present in the vineyard (Figure 8.10a) showed a high homogeneity across the plot for al flight
campaigns. However, when considering only grapevines’ vegetation (approaches two and
three) the behaviour was different (Figure 8.10b,c).

T TN Vard e ! . I ¥ Aa ekt A

Figure 8.10. Generated crop water stress index (CWSI) maps for each flight campaign. Each CSWI value was
sorted into one of three classes (low, medium, or high). The whole vineyard (@), grapevines’ vegetation only (b),
and normalized grapevines’ vegetation (C) was considered.

Maps presented in Figures 8.9 and 8.10 were compared with the vigour maps presented in
Figure8.7ina4 x 4 mgrid using the LMI to measuretheir spatial correlation. Table 8.2 presents
these results. Considering all the vineyards’ vegetation (first approach), stronger correlations
were observed for the CSM. In turn, the other two approaches presented a more balanced trend
for the CSM and CWSI. Stronger correlation values were found among vigour maps using data
from the fourth flight campaign with the third approach (LMI = 0.70 for the CSM and LMI =
0.66 for the CWSI). Lower correlation values were observed in the height maps when
considering all the vineyard’s vegetation with data from the first flight campaign. The same

was verified in the fourth flight campaign for the CWS!.

Thelocal spatia autocorrelation enabled the creation of clusters mapsusing BILISA to evaluate
HH, LL, LH, and HL patterns between vigour maps of the different flight campaigns and

between vigour maps and their correspondent height and water stress maps.
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Table 8.2. Quantitative comparison using the local Moran’s index of the normalized difference vegetation index
(NDVI) vigour classes in the three different approaches considered to the crop surface model (CSM) and crop
water stressindex (CWSI) classes with a p-value < 0.001, for each flight campaign (F#).

Vigour map Approach 1 Approach 2 Approach 3
F# CsM Cwsl CSM Cwsl CsM Ccws
1 0.32 - 0.39 - 0.35 -
2 0.53 - 0.50 - 0.50 -
3 0.41 0.44 0.37 0.43 0.36 0.41
4 0.65 0.40 0.67 0.63 0.70 0.66
5 0.59 0.39 0.66 0.59 0.67 0.57

BILISA cluster map for the three evaluated vigour map approaches and its association with
height maps is presented in Figure 8.11. As for the first approach (Figure 8.114), there was a
clear spatial correlation with a higher significance in the left and right sides of the vineyard
plot, corresponding, respectively, to LL and HH associations. However, a smaller number of
significant LH and HL clusters were detected. Regarding the other two approaches (Figure
8.11b,c) that considered only the grapevines’ vegetation, similar spatial patters were found for
HH and LL. Furthermore, a significant HL cluster could be found in the southwestern part of
the vineyard plot in the fourth and fifth flight campaigns. Significant LH clusters were found
in the south-eastern part of the vineyard in the second, third, and fourth flight campaigns for

the second approach (Figure 8.11b).
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Figure 8.11. BILISA cluster maps between NDVI vigour maps and CSM height maps for the three evaluated
approaches: (a) first approach, (b) second approach, and (c) third approach. Associations with a p-value < 0.05 are
highlighted with ablack border.

Figure 8.12 presents the BILISA cluster maps generated from the spatial associations among
vigour maps and water stress maps (Figure 8.10). Significant associations were found when
using the first approach, with arepresentative HH cluster present in the north-eastern region of

the vineyard plot and a LL cluster in the vineyard’s left side. When considering only the
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grapevines’ vegetation, a similar behaviour was observed in the third flight campaign. In the
remaining flight campaigns, asignificant LL cluster existed in the |eft part of the vineyard, but
alower significance was found for HH in the north-eastern part. A high significance among the

values was detected in the southern region, which presented HH and LH associations.
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Figure 8.12. BILISA cluster maps between NDVI vigour maps and CWS| maps for the three evaluated
approaches: (@) first approach, (b) second approach, and (c) third approach. Associationswith a p-value < 0.05 are
highlighted with a black border.

Considering the BILISA clusters maps from the vigour maps for each evaluated approach when
comparing consecutive flight campaigns (Figure 8.13), similar patterns were observed in all
approaches and significant LH clusters were identified when comparing the first and second

flight campaigns considering only the grapevines’ vegetation (Figure 8.13b,C).
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Figure 8.13. BILISA cluster maps between NDV I vigour maps of two consecutive flight campaigns for the three
evaluated approaches: (a) first approach, (b) second approach, and (c) third approach. Associations with a p-value
< 0.05 are highlighted with a black border.
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8.4. Discussion

In this section the most meaningful results achieved in this study are discussed: (i) the multi-
tempora analysis of the studied vineyard plot; (ii) the generated vigour maps; and (iii) spatial

correlations between vigour maps, grapevines’ height, and potential water stress.

8.4.1. Multi-Tempora Analysis

The vineyard multi-tempora dynamics can be better understood using the orthorectified results
obtained via photogrammetric processing of the UAV-based imagery (Figure 8.5) though their
visual inspection in ageographical information system (GIS) (Ozdemir et al., 2017).

Orthophoto mosaics can be used to detect missing grapevines and to manage vineyard in-field
operations (Padua, Marques, Hruska, Adao, Peres, et al., 2018). Vegetationindices (e.g., NDVI)
can provide an overall assessment of vegetation vigour and potentially detect phytosanitary
problems, such as flavescence dorée (Albetis et al., 2017) and esca (Gennaro et a., 2016). Leaf
canopy temperature maps and CWSI can suppress the need to manually measure leaf water
potential in the field (Baluja et al., 2012)—a time-consuming approach, usually not performed
inthewholevineyard—aswell as be used for irrigation management (Bellvert & Girona, 2012).

In this study, an overall NDVI decline was noticeable from the third flight campaign onward
(Figure 8.5a F4, F5). This was related to the grapevines’ vegetative cycle and to the decline of
inter-row vegetation. Regarding height values obtained from each flight campaign’s CSM
(Figure 8.5b), a clear distinction existed between grapevine and non-grapevine vegetation (e.g.,
soil and inter-row vegetation), except for in the first flight campaign (Figure 8.5b F1). Land
surface temperature (Figure 8.5c) was clear-cut between flight campaigns. In fact, in the fourth
and fifth flight campaigns (Figure 8.5¢ F4 and F5), there were some signs of the grapevines’

water stress.

Removing non-grapevine elements from the vineyard imagery provided a different perspective
on the results, as confirmed in Table 8.1. Indeed, this enabled the production of estimate
parameters such asthe overal inter-row vegetation and the grapevines’ area and volume (Figure
8.6). The estimated grapevines’ vegetation area in the first flight campaign was 81 m? (3% of
the vineyard plot) and in the second flight campaign, a 181 m? growth took place (262 m?, 9%
of the vineyard plot). As for the third flight campaign, there was a growth of 255 m? to 518 m?
(18% of the vineyard plot). In the following flight campaigns, the grapevines’ vegetation area

was reduced by 199 m? (—38%) to 319 m? Regarding the grapevines’ canopy volume, it was
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modified by +634%, +160%, —41%, and —12% in between each successive flight campaign,
respectively. Concerning theinter-row vegetation area, it presented a behaviour consistent with
the available precipitation data (Figure 8.2). Indeed, it had a 214% growth in between the first
two flight campaigns (from 181 m? to 569 m?), representing 20% of the vineyard plot area. A
steep decline was noticeable in the third and fourth flight campaigns (a decline of 95% to 26
m?), followed by a growth in the last flight campaign (88 m?). As such, the vineyard inter-row
vegetation was a good indicator of soil water status. The same tendency had already been
verified in Padua et a. (2018).

By comparing the mean, maximum, and minimum values observed in the different outcomes,
either when considering the whole vineyard or only grapevines’ vegetation (Table 8.1), there
was a clear difference among the flight campaigns. Mean NDV1 values were superior in al
flight campaigns when considering only the grapevines’ vegetation. The same tendency was
verified in the CSM. This can be explained by the presence of a significant amount of lower
valuesin the non-grapevine vegetation areas. However, the maximum NDVI valuesin thefirst,
second, and fourth flight campaigns were registered in non-grapevine vegetation areas. Inter-
row vegetation can account for this. Regarding maximum CSM values, they were similar in all
flight campaigns, except for the first one, where the maximum height was detected in a non-
grapevine area (probably a vineyard post). Minimum CSM and NDVI values were lower in
non-grapevine areas. Asfor temperature-based outcomes (land surface temperature and CWSl),
the opposite behaviour was found for the maximum values: they were located in non-grapevine
vegetation areas. Mean temperature and CWSI values were lower in the grapevines’ vegetation
areas, as it was expected due to the existence of bare soil areas in the vineyard. Minimum
temperature and CWSI values were similar in both approaches since they were found in the
grapevines’ vegetation areas. These results showed the importance of grapevines’ vegetation
segmentation when analysing a whole vineyard plot. The grapevines’ vegetation segmentation
could improve the results in studies where this operation was not automatically performed,
which is beneficial for removing non-grapevine e ements from the analysis. Such an automatic
procedure could help in the evaluation of vegetation indices (Candiago et a., 2015), to detect
flavescence dorée and grapevine trunk diseases (Albetis et a., 2019) and to estimate

grapevines’ biophysical and geometrical parameters (Caruso et al., 2017).
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8.4.2. Vigour Maps

Vigour maps generated when considering the whole vineyard provided an overall perspective
(Figure 8.7a) about the studied area. Indeed, influences from bare soil and especialy inter-row
vegetation were clearly noticeable. Generaly, the medium vigour class had the smaller area
(Figure 8.8a) and the high vigour class encompassed the majority of the grapevines’ canopy
volume (Figure 8.8b). The latter was, on average, 150% higher than the other vigour classes. A
high homogeneity was verified for the last two flight campaigns. The same happened from the
second to the last flight campaigns, when computing height maps from the CSM and all
campaigns with CWSI. Thewhole vineyard was considered in both. Positive correlation values
were found for the LMI (Table 8.2). Moreover, the verified homogeneity resulted in meaningful
HH and LL areas when comparing vigour maps with CSM and CWSI in the same flight

campaign.

Different results were obtained in the other two approaches, where only the grapevines’
vegetation was considered to create vigour maps. The higher incidence of missing grapevine
plantsin the left area of the vineyard remained amost the same throughout al flight campaigns.
This was not noticeable in the first two flight campaigns’ vigour maps when considering the
whole vineyard, probably due to an effect caused by inter-row vegetation. Other studies
reported similar trends using vigour maps produced from the UAV-based NDVI (Khalig et al.,
2019; J. Primicerio et a., 2015), when excluding inter-row vegetation. Moreover, Vanegas et
al. (2018) found positive correlations when comparing vigour maps created from UAV -based

data and a vineyard expert assessment.

Asfor vineyard area, when considering only grapevine vegetation, it presented amore balanced
behaviour. The third approach, normalized grapevines’ vegetation, showed a considerable area
of medium vigour class, particularly in the last three flight campaigns due to the fixed cut-off
values to create vigour classes. Both approaches, grapevines’ vegetation and normalized
grapevines’ vegetation, presented insignificant grapevines’ canopy volume values in the lower
classes. Moreover, when considering normalized grapevines’ vegetation, canopy volume values
were predominant in the medium vigour class, in agreement with the vineyard’s overall
vegetative growth and decline (growth from first to the third flight campaigns and decline
onward). Similar relations between vigour and the grapevines’ canopy volume were reported
in other studies (Caruso et a., 2017; Alessandro Matese et al., 2016). A higher heterogeneity
was verified when observing both the CSM and CWSI maps generated with the approach that
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considered the normalized grapevines’ vegetation. In fact, when analysing the CWS| mapsfrom
the last two flight campaigns (Figure 8.10), a period of the grapevines’ water stress was
observed. However, this period was not clearly distinguishable in avisual map inspection based
on data from the first approach (when the whole vineyard was considered). These correlations
were observed in the BILISA cluster maps (Figure 8.12b,c), where areas with a high vigour
showed a HL relationship with the CWSI maps, and significant agreements could be observed
in the third flight campaign. A similar trend was reported in Matese and Di Gennaro (2018).
Significant spatial associations were found in all approaches—whole vineyard, grapevines’
vegetation, and normalized grapevines’ vegetation—when analysing the height class maps
(Figure 8.11). Although lesser associations were found in the first flight campaign, this can be
explained with the grapevines’ growth cycle. In this case, significant HL areas were found in
the approaches considering only the grapevine vegetation. Similarly, Matese et al. (2016)
observed that some areas with a higher vigour were linked to areas with higher heights.

Thisstudy analysed a vineyard’s behaviour throughout aseason with amulti-temporal approach
based on multispectral data acquired using a UAV. Furthermore, correlations between the
different digital outcomes were found. This presents a potential tool for multi-temporal
vineyard assessment and can serve as a base to provide prescription maps, similar to Campos
et a. (2019), since they can be correlated with agronomical variables (e.g. yield, berry weight
and total soluble solids), as shown in Matese et a. (2019). Indeed, patterns detected when
comparing vigour maps from consecutive flight campaigns (Figure 8.13) highlighted
differences in the multi-temporal data, which helps to understand local and spatial grapevines’
vegetative development dynamics throughout the season. However, filtered data considering
only values representing grapevines’ vegetation, therefore representing the plants’
physiological status, was proven to be more reliable when comparing the evaluated approaches
(Table8.2); that isto say, it had ahigher overall correlation. Assuch, it standsto be an excellent

tool for decision support systems within vineyard management processes.

8.5. Conclusions

Climate change can heighten key environmental vectors that negatively impact vineyards.
Grapevines can be weakened by both water stress and exposure to higher temperatures, which
will increase their vulnerability to phytosanitary issues. UAV s equipped with different sensors
can be used to regularly monitor grapevines, documenting changes in the vegetation or signs of

diseases/infestation, as well as any stress caused by environmental constraints.

220



Chapter 8.
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change | mpacts

In this context, the need to evaluate current vineyard behaviour iscrucial to proceed toward PV.
Vigour maps can help to provide relevant insights, helping farmers and/or winemakers to
understand their vineyards status and enabling timely actions to tackle problematic areas or
observing response to treatments. Furthermore, the methods employed in this study to filter out
non-grapevine vegetation presented a better vineyard representation, which can be used to
assess a vineyard’s variability, but also to help in managing field-operations, such as those to

inspect grapevines or to improve grapevines’ physiological status.

The use of methods to compare spatial correlations allowed us to obtain a spatial distribution
of significant clusters among the different approaches evaluated for creating vigour maps. The
importance of using different UAV-based outcomes to estimate biophysical and geometrical
parameters shows the suitability of UAVs as a remote sensing platform for vineyard multi-
tempora monitoring operations. This study allowed us to conclude that the need for UAV -
based data can be tracked according to a vineyard’s phenology. Moreover, TIR data should be
acquired in periods of higher temperatures to assess areas potentially affected by water stress.
Nevertheless, the analysis presented in this study should be assessed in other vineyard types,
such asthose with irrigation systems, with alower rate of missing grapevines, and in other wine

producing regions with different grapevine training parameters.
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Chapter 9.
Individual grapevine analysisin a multi-temporal context using UAV -based multi-sensor imagery

9.1. Introduction

The need to assess vineyard spatiotemporal variability is crucial in viticulture, asit is directly
related to grapevine health statusand yield (A. P. B. Proffitt et a., 2006), which can be achieved
through precision viticulture (PV). Derived from precision agriculture concept (Pablo J Zarco-
Tegada et a., 2014), in PV different technologies for vineyard management and grape
production are employed for data acquisition and processing, aiming, among others, to
maximize the oenological potential of vineyards, according to their spatiotemporal variability,
by adopting site-specific management practices to increase both quality and yield (Alessandro
Matese & Di Gennaro, 2015; Zhang & Kovacs, 2012). Thus, individual grapevines
identification isimportant to precisely assess the vineyard status, by estimating several metrics
for each plant. In this way, a better knowledge of grapevines (Vitis vinifera L.) development
and spatial heterogeneity within the vineyard (A. P. B. Proffitt et al., 2006) along with the
factorsinfluencing it (Steyn et al., 2016) can be reached enabling individual plant treatments.

Traditional airborne remote sensing platforms, as satellites and manned aircrafts, both suitable
for applications requiring a regional coverage, were used in PV to, among others, detect
grapevine varieties (Karakizi et a., 2015), vigour assessment (Martin et al., 2007; Tisseyre et
al., 2007), vineyard disease mapping (Hall et a., 2002), and for leaf area index (LAI) and
canopy density estimation (L. Johnson et a., 2003; L. F. Johnson et al., 2001). However, given
their coarser spatial resolution, crop and non-crop data are often mixed or represent multiple
plants, lacking of true individual grapevine information (A. Matese et al., 2013). Nevertheless,
data from these platforms can still deliver a general overview of vineyards, at least at a plot
level (Khaliq et a., 2019). To overcome this scale-related issue, some approaches rely in
proxima remote sensing (Mendes et a., 2016; Milella et a., 2019; Rosell et a., 2009).
However, these approaches are time-consuming, requiring a passage through the whole
vineyard and some issues can occur due to terrains’ topography and possible obstacles in
between the vinerows (Morais et a., 2008). Vibrations induced by the vehicles can interferein
data quality and the high costs of LIDAR sensors constitutes a drawback to their widespread
adoption.

In the other hand, unmanned agerial vehicles (UAVS) provide aerial remote sensed data, with
high temporal and spatial resolutions, and at lower costs for small to medium area coverages
when compared to traditiona airborne platforms (Alessandro Matese et al., 2015). UAVs are

capabl e to acquire high-resolution georeferenced datafrom different sensors exploring different
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parts of the electromagnetic spectrum (Padua, Vanko, et a., 2017). The georeferenced images
driven from these sensors can be used to compute orthorectified outcomes, through
photogrammetric processing (Colomina& Molina, 2014): orthophoto mosaics, digital elevation
models (DEM) and spectral indices (Padua, Vanko, et a., 2017) are among the most used. The
normalized difference vegetation index (NDVI) (Rouse et a., 1974) is a vegetation index
widely used in different remote sensing platforms for different purposes (Padua, Vanko, et al.,
2017). Inthe scopeof PV, itisknown to be correlated with LAI (Caruso et al., 2017), vegetative
vigour (Campos et a., 2019) and yield (A. Matese et al., 2019). In turn, the crop water stress
index (CWSI) (Idso et al., 1981) is used in different studies to assess vineyard water status
(Baujaet a., 2012; Bellvert et a., 2013, 2015; Santesteban et al., 2017). In PA crop surface
model (CSM) were used in different annual crops (Bendig et al., 2014; Du & Noguchi, 2017;
Li et a., 2016; Tilly et a., 2014), where good agreements with crop height and biomass were
observed. CSMswere also used in olive groves (Diaz-Varela, DelaRosa, et a., 2015), chestnut
trees (Marques et al., 2019) and lychee trees (Johansen et a., 2018). As for PV, CSMs
demonstrated a high agreement with grapevines’ height (Caruso et a., 2017; A. I. de Castro et
al., 2018; Padua, Marques, Hruska, Adao, Peres, et al., 2018), and with vineyard vigour
(Alessandro Matese et al., 2016; Padua, Marques, et al., 2019). Its usage aso enabled the
estimation of grapevine volume (Caruso et a., 2017; A. |. de Castro et a., 2018; A. Matese et
al., 2019; Padua, Marques, Hruska, Adao, Peres, et al., 2018). Regarding vineyard vegetation
detection severa methods were aready proposed, based in different approaches using the
photogrammetric outcomes from UAV-based imagery by applying image processing
techniques, machine learning methods and by filtering dense point clouds and DEMs (Baofeng
et a., 2016; Burgos et a., 2015; Comba et a., 2015, 2018; Kalisperakis et al., 2015; A. Nolan
etal., 2015; Padua, Marques, Hruska, Addo, Bessa, et al., 2018; Poblete-Echeverriaet d., 2017,
Weiss & Baret, 2017). Those are capable to distinguish grapevine from non-grapevine
vegetation and to extract different vineyard macro properties such as the number of vine rows,

row spacing, width and height, potential missing plants and vineyard vigour maps.

In what concerns UAV -based approaches for individua identification of plants, the published
studies mostly focus in tree detection within both forest and agriculture contexts (Dempewol f
et a., 2017; Padua, Marques, Adéo, et a., 2018; Surovy et a., 2018). The outcomes resulting
from photogrammetric processing can be used to estimate individual geometrical and
biophysical grapevine parameters, providing a plant-specific application for PV (Jacopo
Primicerio et a., 2017). In this scope, De Castro et a. (2018) proposed an object-based image
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analysis (OBIA) method using very high-resolution vineyard DSMs (1 cm ground sample
distance—GSD) to estimate grapevine vegetation within vineyard plots. The method is based
in a chessboard algorithm to consider pixels as grapevine. Grapevines are then divided by
considering the spacing between plants, wherein missing plants are also estimated. Different
geometrical properties were extracted, per grapevine: area, height, width, length, and volume.
Matese and Di Genaro (2018) assessed missing plant detection, in a semi-automatic procedure,
by filtering the DSM (1 cm GSD) in an 40 x 60 m experimental vineyard plot and by manually
placing polygons of 1.00 x 0.60 m, representing each grapevine plant and, then, analysing the
number of pixels intercepted by each polygon by using a five-classes approach based in
quantiles to verify the probability of a missing plant presence. Primicerio et a. (2017) used a
Binary Multivariate-Logistic Regression model for the individual detection of grapevines,
including missing grapevines, in orthophoto mosaics. Grapevine vegetation segmentation was
addressed by the method proposed in Comba et al. (2015). While De Castro et al. (2018) only
focused in the extraction of grapevine geometric parameters, Primicerio et a. (2017) and
Matese and Di Genaro (2018) mainly relied in the detection of presence/absence of grapevines.
In the previously mentioned studies, it is pointed out that the integration of data from other
sensors can enable the extraction of single plant vigour, health and water status, allowing to
solve some of the problems of correct representation of vigour zones within the vineyard.
Usually vineyard vigour maps rely in the averaging and/or interpolation of vegetation indices
values (Jacopo Primicerio et al., 2017). Moreover, De Castro et a. (2018) state that grapevine
multi-temporal analysiswould provide arapid way to monitor its statuswhen compared to time-

consuming and inconsistent in-field observations.

In this study, it is intended to address the gaps that were not covered in those implementations,
by performing an individual grapevine estimation for site-specific management in a multi-
tempora context, helping winegrowers into fully explore the potential of the high-resolution
data provided by UAV's and to combine data resultant from the different imagery sensors for a
more precise decision support and aquick vineyard inspection. Thisway, grapevine biophysical
and geometric parameters extraction is performed using UAV-based data from different
imagery sensors, namely: RGB, for grapevine vegetation detection, and geometrical features
extraction; multispectral, for feature extraction from vegetation indices; and thermal infrared

(TIR) imagery for grapevine temperature and water status estimations.
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Next section characterizes the study areas, describes the data acquisition and processing,
presents the method used for vineyard, aswell asthe validation procedures. The obtained results
are shown in Section 9.3, considering grapevine estimation accuracy and the multi-temporal
analysis. Section 9.4 discusses this study’s findings. Section 9.5 addresses the main conclusions

and presents potential future developments using the proposed method.

9.2. Materials and Methods

Aeria surveys were conducted in different vineyards, in the context of this study, and the most
significant of their characteristics are shown in Table 9.1. Except for vineyard B, the analysed
plots are located in the campus of the University of Tras-os-Montes e Alto Douro (UTAD, Vila
Real, Portugd), in the Douro Demarcated Region. They are rainfed irrigated and trained in
double guyot system. Vineyard B is located at Quinta do Suco (Amares, Braga, Portugal), in
the Vinhos Verdes Region, it istrained in asingle cordon and is irrigated through an irrigation
system. Both training systems are the most common in these wine regions (Costa et al., 2015).
The selection of these vineyard plots was based on the fact they present different row
orientation, diverse levels of missing grapevines (0% to 33%) and plant height. The surveyed

vineyard plots are presented in Figure 9.1.

Table9.1. Characteristics of the analysed vineyard plots, indicating the original number of grapevinesand missing
grapevines; its number of rows, spacing, and height.

Vineyard Coordinates Area Number of grapevines Rows
plot (Lat.,Lon.) (ha) Original Missing  Number  Spacing (m) Height (m)
A 4#21712221\}\\/‘ 0.36 1440 381 34 1.20 14—1.7
s WWAIN 0y 2 o 28
C 4#2171%866\}\\/] 0.35 1439 448 36 1.20 14—1.7
D @%2170}3372\,’\\; 0.30 1228 320 22 1.20 14—1.7
E 4#2170%891\}\\/1 0.57 2266 416 55 1.25 14
F 4;%21703915\/51 0.32 1224 405 45 1.25 14
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Figure 9.1. Analysed vineyard plots. The uppercase letter in the upper left corner represents each vineyard plot
ID. Coordinatesin WGS 84 (EPSG: 4326).

Aeria imagery acquisition was performed using two UAVs, a multi-rotor UAV, the DJI
Phantom 4 (DJI, Shenzhen, China) and a fixed-wing UAV, the senseFly’s eBee (senseFly SA,
Lausanne, Switzerland). The Phantom 4 was used to acquire RGB and multispectral imagery at
lower flight heights, whereas eBee was used to survey alarger areafor TIR imagery acquisition,
which included the studied areas. RGB imagery was acquired using Phantom 4 native camera,
FCC 3 model, a CMOS sensor with 12.4 MP resolution mounted in a 3-axis electronic gimbal.
Multispectral imagery acquisition was conducted using the Parrot SEQUOIA (Parrot SA, Paris,
France), using green (550 nm), red (660 nm), red-edge (735 nm), and near infrared (790 nm)
bands, with 1.2 MP resolution. The radiometric calibration is performed based on theirradiance
measured by the sensor located at the top of the UAV and using the reflectance from calibration
target (Airinov, Paris, France) prior to each flight. TIR imagery was acquired using thermoMAP
(senseFly SA, Lausanne, Switzerland) which can acquire TIR data between 7500 nm to 13500
nm with 640 x 512 pixels and with atemperature resolution of 0.1 °C. The sensor’s calibration
isautomatically performed in-flight.

UAV flight campaigns performed with the multi-rotor UAV were conducted with 80% front
overlap and 70% side overlap at ~40 m height from the take-off point in a double-grid
configuration, resulting in GSDs of approximately 2 cm for RGB imagery and approximately
5 cm for multispectral imagery. While, the flights conducted with the fixed-wing UAV had
90% front overlap and 70% side overlap and were performed at 75 m height in a single grid,
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these specifications were selected according to manufacturer recommendations, obtaining an
approximate GSD of 18 cm. The preparation and execution of flight campaigns of the multi-
rotor UAV took 20 minutes, while the fixed-wing UAV took 30 minutes.

9.2.1. Dataacquisition

9.2.1.1. Vadidation dataset

A validation dataset, composed of all the surveyed vineyard plots (A to F), was created for
accuracy assessment of the individual grapevine detection procedure. Specifically, for the
estimation of the number of grapevines and for canopy gaps detection, i.e. parts of vine rows
where no grapevine canopy is present (missing plants). For this purpose, only RGB data was
considered. The data was collected between May to August 2018 at the following at days of
year (DOY):136 (vineyard plot B); 186 (vineyard plot A); 197 (vineyard plot D); 215 (vineyard
plot C); and 219 (vineyard plots E and F).

9.2.1.2. Multi-temporal dataset

Vineyard plots A and B were used for multi-temporal analysis and were surveyed using
different UAV-based sensors, namely, RGB, MSP and TIR. The context of these vineyard plots
is different: vineyard plot A, located at UTAD campus, it is mainly used for experimental
purposes, while plot B is acommercial vineyard. Vineyard plot B was selected to be surveyed
throughout the vegetative growth cycle. It is composed by seven rows of two white grapevine
varieties, four rows of cv. Alvarinho and three rows of cv. Loureiro. Vineyard plot A had a
higher incidence of missing grapevines and suffered from powdery and downy mildew due to
the conjugation of high air temperature and high humidity levels. These fungi affect the
grapevines yield and leaves, causing potential losses (Maria do Carmo Val, 2013). It is

composed by a collection of recommended Portuguese grapevine varieties.

In the case of vineyard plot A, flight campaigns were conducted in the first and fourth weeks
of July and in the third week of August and September (2018), with an average time distance
of approximately 26 days in between flight campaigns, covering most part of the fruit set and
varaison phenological stages. Asfor vineyard B, theflight period is broader encompassing most
part of grapevine’s phenological development, from the third week of May 2018 until the
second week of October 2018, after grape harvesting. The remaining campaigns were
performed at the third week of June and July, and at the second week of August 2018. The
tempora mean distance between campaignsis 37 days.
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For an accurate multi-temporal analysis, six ground control points (GCP) were acquired in
different points from the surroundings of each analysed vineyard plot using a GNSS receiver
in RTK mode in the TMO6/ETRS89 coordinate system to perform imagery alignment during
the photogrammetric processing. In order to ensure GCPs’ recognition in TIR imagery,
aluminium foil was used, as in Hartmann et al. (2012). Figure 9.2 presents an example of the
aluminium target appearance thermal and RGB images.
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Figure 9.2. Thermal target, indicated by the arrow, used for data alignment: (a) its representation in thermal
infrared imagery and (b) in RGB.

9.2.2. Dataprocessing

The data acquired in each flight campaign passed through a pre-processing stage by means of
photogrammetric processing for computation of different orthorectified outcomes. After this
stage, the data was used as input for individual grapevine estimation and computation of
different vineyard-related parameters.

9.2.2.1. Data pre-processing

Pix4ADmapper Pro (Pix4D SA, Lausanne, Switzerland) was used for photogrammetric
processing. It supports the imagery from all the sensors used in this study, allowing to generate
3D point clouds using Structure from Motion (SfM) algorithms and, therefore, different
orthorectified outcomes. However, depending on the source data, different outcomes were
computed. This way, when processing RGB imagery, orthophoto mosaics, DSMs and DTMs
were generated. Moreover, crop surface models (CSM) were computed subtracting the DTM
atitudevaluesfromthe DSM. The G% index (Richardson et al ., 2007) was computed according
to Padua et al. (2018), from the RGB orthophoto mosaic, as in (1), by normalizing the green
band with the sum of all bands. The datafrom other sensors used in this study can also generate
CSM, but they suffer from smoothing effects, since they have less spatial resolution and,
therefore, lack of detail (Alessandro Matese et al., 2016).
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G% = Green/(Red + Green + Blue) Q)
The NDVI was computed using multispectral imagery. Using TIR imagery, the land surface
temperature (LST) was computed. However, since crop temperature varies along the day and
epoch of the year, it can penalize the multi-temporal data analysis representativeness (Bellvert
et a., 2013). Thus, to ensure the most representative results from TIR data, LST from each
flight campaign was used to computethe CWSI (Idso et al., 1981). Thisindex reliesin the usage
of upper and lower temperature bounds (Twe and Tary) Which, respectively, correspond to the
temperatures of well-watered leaf and anon-transpiring leaf. Since GSDsfrom different sensors
were also different, to enable data integration, it was necessary to standardize the GSD. This
operation was directly performed in the photogrammetric software, using the gaussian average,
being the dataresampled to 5 cm GSD. Obviously, this procedure did not improvetheresolution
of the thermal data, as in practice the origina pixel was split divided allowing a direct
comparison. This ensures the resolution of the remaining information is maintained and, at the
same time, making the image processing stage quicker, and preserving all relevant information.
This ensures the resolution of the remaining information is maintained and, at the same time,
making the image processing stage quicker, preserving relevant information. CSM and G%

were computed using QGI S software, an open source geographical information system (GIS).

9.2.2.2. Vinerows estimation and individual grapevine estimation

The detection of vineyard vegetation and vine rows was accomplished using the method from
Paduaet al. (2018). Figure 9.3 presents the main stages of the method for individual grapevines
estimation and parameters extraction.

Vegetation detection relies on the combination of CSM and G% with image processing
techniques for a given vineyard plot P. Both CSM and G% are binarized by thresholding,
automatically using the Otsu’s method (Otsu, 1979) for G%, and using a height range for the
CSM. The resulting images are combined resorting in a new binary image V representing the
estimated vineyard vegetation, forming different group of pixels (clusters). Then, the detected
clusters are dilated according to their orientation resulting in the vine rows estimations. By
eroding this image, a new image S with the rows central lines is obtained. Considering the
equidistance space d between grapevines’ trunks along with S, grapevine plants can be
estimated. Thisisthe common scenario in modern vineyards were grapevines are mechanically
implanted (Jacopo Primicerio et a., 2017). This way points are positioned along the vine rows

and, then, dilated with a morphological line structuring element with the same orientation as
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the vine rows. Depending on the vineyard training system trunk’s position can vary, being in
the middle or in edges of the grapevine area. Taking this into account, the grapevines are
correctly positioned. The resulting binary image is subjected to a thickening morphological
operation, by adding pixels to border of the clusters, but maintaining the clusters unconnected.
The binary image G forms the area where vegetation from each grapevine is confined, since
they are trained with wires to grow vertically and horizontally in between rows.
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Figure 9.3. Main stages of individual grapevine estimation and its parameters extraction along with graphical
examples of each step. Some graphical examples are presented in a colour-coded representation to highlight the
different values. Binary images were used to mask the orthophoto mosaic.

9.2.2.3. Parameters extraction
By estimating the area of where each grapevine is present within a given plot, it is possible to
individually estimate different parameters, from biological and physical characteristics. This

way, the outcomes from different sensors can be useful to provide grapevine parameters.

This procedure uses the estimated grapevine vegetation V along with G, both are combined as
in (2). The result of this combination in a new image E, representing the vegetation for each
estimated grapevine, enabling the extraction of biophysical and geometric grapevine parameters
from the UAV-based photogrammetric outcomes.

e _{1,ifvi,j=1/\ gi,j=1
bl NaN, otherwise

)
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Depending on the available data, different parameters can be extracted for each grapevine,

namely:

e the areaof each grapevine, which is computed by the number of pixels present in each
cluster from E multiplied by its squared GSD value;

e the grapevine height, these values are extracted from the CSM, only retrieved in the
pixels of E (the remaining CSM pixels are not considered), mean, maximum and
minimum values are estimated;

e thevolume of grapevine, it is estimated using both height and area, the different height
estimates (mean, maximum and minimum estimated height values) are used to calculate
different volume values;

o features driven from multispectral and TIR imagery, in the case of this study, NDVI,
LST and CWSI are masked according to E and its mean, maximum and minimum values
are estimated.

Mean value refers to mean value of a given cluster, maximum and minimum values are
estimated from the mean value of the higher/lower 10% values, thisway, potential outlier pixels
are discarded, independently from the area of the clusters. Since CWSI needs upper and lower
bound temperature values, this was achieved by using the mean temperature values retrieved
from LST, considering the mean temperature value of the 10% lowest and highest temperature
values to compute Tary and Twet, respectively. The estimation of other vegetation indices from
different sensors is aso supported. In the scope of this study only NDVI and CWSI are
estimated. Still, other parts of the electromagnetic spectrum can also be used. The grapevine
mask clusters are associated with the extracted grapevine parameters, which, in turn, are
converted to a point shapefile or in atable format. Statistical parameters as standard deviation
of the estimated valuesis aso calculated, but such values are not in the scope of this study.

9.2.2.4. Multi-temporal analysis

The estimated grapevine positions enable its multi-temporal analysis which is crucia to track
the grapevine vegetative development over time. This way, the anaysis is performed by
considering the position of each detected grapevine in a given flight campaign, aming to
individually monitor them regarding the various estimated parameters extracted from the multi-
sensor data. Thisanalysisis also performed at the vineyard plot scale, as proposed in Padua et
al. (2018).
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Multi-temporal analysisis performed by using the detected grapevine estimation in each flight
campaign. Using themask created in G in thefirst flight campaign upon the estimated grapevine
vegetation V from aflight campaign k, it is possible to estimate the different parameters from
the available UAV-based datafor n flight campaigns. Thus, datafrom flight campaign k can be
used to evaluate the current vineyard status, by statistically assessing the distribution of the
different extracted parameters, and to compare it with other flight campaigns. This enables to
observe the grapevines vegetative evolution through the extracted biophysical and geometrical

parameters.

9.2.3. Grapevine counting accuracy
For accuracy purposes, the number of estimated grapevines was evaluated. This process was
conducted by counting the plants in the vineyard plots, in each vine row, and then different

cases were eval uated:

1. the total number of estimated grapevines, this value helps to understand the robustness of
the method, by considering the total number of grapevines for an analysed vineyard plot;

2. the number of existing plants, by cross-referring the actual number of plants observed in-
field with the ones estimated from the method; and

3. the number of missing grapevines, i.e. grapevines that were missing causing a canopy gap

in the vine row.
These values are compared at the vineyard plot level and at the row level.

Grapevine detection was evaluated based in true and false positives (TP/FP) which refer to the
number of correct/incorrect estimated grapevines as real grapevines and, similarly, true and
false negatives (TN/FN) for non-grapevines. For this purpose, different parameters were
evaluated (equation presented in Table 9.2), namely:

e precision, the fraction of estimated grapevines that are correctly estimated (TP) rather
than wrongly estimated (FP);

e recal, the fraction of grapevines that are correctly detected rather than wrongly
estimated,

o false negativerate (FNR), percentage of grapevines falsely classified as being missing;

e Fiscore, the harmonic mean of precision and recall measures; and
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e overadl accuracy, considering all correctly estimated grapevines and missing grapevines
in all data.

Table 9.2. Evaluation parameters in grapevine vegetation classification

Parameter Equation
Precision Precision = re
recision = 5 _Ytlfp
Recall itivity = ————
Sensitivity TI;F-)I- N
False Negative Rate =1-
= FNR =1 TP+ FN
Precision X Recall
Flscore Fyscore = 2( )

Precision + Recall
TP+ TN

Overall accuracy Accuracy =

9.2.4. Data alignment

Data alignment is crucial in multi-temporal analysis to accurately extract individual grapevine

TP+ TN +FP+FN

parameters with minor alignment errors. Thus, the photogrammetric processing of the UAV -
based imagery from the different sensors was evaluated for each vineyard plot in the flight
campaigns encompassed in the multi-temporal dataset. The mean error and root mean square
error (RM SE) were used. RM SE equation is shown in (3), where g isthe error of each point in
agivendirection (X, Y, Z) and n the total number of GCPs. This evaluation can further provide
the deviation of the acquired UAV -based imagery from each sensor along the flight campaigns.

n

o e.2
RMSE = [&i=t7t 3
n

9.3. Results

9.3.1. Grapevine counting accuracy

Individual grapevine estimation for different plots of the study areais presented in Table 9.3.
A perfect agreement was observed in vineyards A, B, D, and F, where the number of estimated
grapevines per row matched with the ground-truth values. However, for vineyards C and E, the
number of estimated vine rows differed in one in each vineyard plot, which was expectable
since in these vine rows there were no grapevines, thus, these missing grapevines were
discarded from further validation. The number of estimated grapevine plants differed in two for
vineyard C and seven concerning vineyard E. Discarding the plants bel onging to the undetected
vine rows, the overal agreement was 99.88%, missing solely in nine plants (total: 7786,
estimated: 7777).
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Table 9.3. Number of estimated grapevines when compared to ground truth data observed in-field.

Number of grapevines

Vineyard plot Observed Estimated Percentage (%)
A 1436 1436 100.00
B 234 234 100.00
C 1369 1367 99.85
D 1238 1238 100.00
E 2279 2272 99.69
F 1230 1230 100.00
Tota 7786 7777 99.88

Figure 9.4 presents the estimated grapevines in each vineyard plot, aong with the
corresponding numerical assessment shown in Table 9.4. The precision rate was above 99%
(mean value of 99.59%), reaching 100% in vineyard B. Regarding recall, aso quantifying FN;
a mean value of 98.06% was obtained, being the lowest recall value obtained in vineyard C
(93.98%). These cases reflect the number of grapevines that were incorrectly classified as
missing grapevine (FN). Consequently, FNR was approximately 3% (vineyards C, D and F),
while the mean FNR reached 1.94%. In what concerns the harmonic mean of precision and
recall metrics (Flscore) its mean value is above 98%. The lower value for this metric was
observed for vineyard plot F (96.75%), in opposition to vineyards A and B (99%), which had
the better ranks. For the remaining plots, Flscore was within the range of 97-98%. Focusing on
accuracy metrics, an overal value of 98% was obtained, with minimum occurrences above
96%. Theseresults seem to represent agood overall agreement concerning individual grapevine
classification.

s

Ll e e )

AN

“TrLreTe

=
b3
=
r
-

NN

“Hare™s

Figure 9.4. Estimated grapevine plants in the validation dataset. The uppercase letter in the upper left corner
represents each vineyard plot ID. Coordinates in WGS 84 (EPSG: 4326).
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Table 9.4. Evaluation of the proposed method in the grapevine’s classification for the following parameters:
precision, recall, Flscore, false negative rate (FNR) and overall accuracy (OA).

Vineyard plot  Precision (%) Recall (%) Filscore(%) FNR (%) OA (%)

A 99.22 98.71 98.96 1.29 98.33
B 100.00 100.00 100.00 0.00 100.00
C 100.00 93.98 96.90 6.02 95.17
D 99.90 96.62 98.23 3.38 97.09
E 99.71 97.67 98.68 2.33 97.58
F 99.00 97.07 98.03 2.93 96.75
Mean 99.64 97.34 98.47 2.66 97.49

9.3.2. Multi-temporal vineyard monitoring

Since the used methods anticipated a multi-temporal context application, supported through
different photogrammetric outcomes from which individual grapevine parameters can be
extracted, an analysis using UAV-based RGB, multispectral, and TIR imagery was conducted
invineyards A and B. Moreover, for thistype of application, it isimportant to ensure areliable
imagery alignment, which was a so evaluated.

9.3.2.1. Dataaignment

The spatial accuracy of each orthorectified outcomes, generated from the photogrammetric
processing, were evaluated in their mean spatial deviations (X, Y, Z) and mean RMSE. In this
case, the UAV-based imagery acquired from RGB, multispectral and TIR sensors, with
different spatial resolutions, were used along with georeferenced GCPs. The projection errors
obtained in vineyards A and B for each sensor are presented in Table 9.5, for each flight
campaign. Overdl, the errors are lower for RGB, below 5 cm; followed by multispectral
imagery, with errors ranging from 5 cm to 10 cm; and when processing TIR imagery higher
error rates were obtained ranging from 10 cm to 20 cm. Pixel projection error wassimilar in all
sensors, i.e., from approximately 0.5 to 1 pixel, being, generally, higher for RGB imagery. The
overal mean RMSE valuesin vineyard A were 3.61 cm for the RGB imagery, 7.35 cm for the
multispectral imagery, and 15.50 cm for the TIR imagery, while in vineyard B were,
respectively, 2.24 cm, 4.84 cm, and 14.34 cm. The mean pixel projection error of all campaigns
was lower than one pixel in al sensors; it was higher in the RGB, followed the multispectral
and TIR imagery.
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Table 9.5. Mean error, root mean square error (RMSE) and projection errors for the alignment of each project
during photogrammetric processing in both analysed vineyard plots, at each flight campaign (F#).

Vineyard plot Sensor F# Mean (cm) RM SE (cm) Projection error (pixel)

F1 -0.19 3.15 1.30

F2 -0.19 4.55 121

RGB F3 0.08 3.65 0.57
F4 0.06 3.09 0.58

F1 0.78 5.47 0.71

F2 -0.40 5.90 0.43

A MSP F3 0.41 8.22 1.25
F4 0.24 9.82 0.51

F1 0.72 12.39 0.65

TIR F2 -0.98 13.34 0.54
F3 3.82 19.38 0.74

F4 4.70 16.87 0.90

F1 -0.37 3.68 1.30

F2 0.02 2.20 0.63

RGB F3 0.00 173 0.57
F4 -0.03 181 0.57

F5 -0.01 1.76 0.58

F1 -0.63 4.66 0.50

F2 0.24 4.38 0.85

B MSP F3 -1.16 3.84 0.93
F4 -0.76 4.99 0.53

F5 011 6.35 0.75

F1 284 11.30 0.47

F2 3.14 16.52 0.76

TIR F3 2.35 15.55 0.66
F4 2.60 14.02 0.59

F5 1.55 14.30 0.77

9.3.2.2. Vineyard plot A

The applied method enables the estimation of vegetation (grapevine and. inter-row vegetation)
present in the vineyard plot. In between the flight campaigns, an increment of grapevine
vegetation area was observed from the first to the second flight campaign (from 675 m?to 782
m?, corresponding to a 16% increase). From the second to the third flight campaign, there was
adecline of 35% (-272 m?). For the remaining flight campaigns, the grapevine vegetation area
remained unchanged (around 500 m?). The same behaviour was observed in grapevine volume,
where 877 m® were estimated in the first flight campaign, 939 m? (growth of 7%) for the second
flight campaign, followed by 619 m® (decline of 34%) and 610 m? (decline of 1%), for the third
and fourth flight campaigns, respectively. Focusing in theinter-row vegetation, its areadeclined
from the first to second flight campaigns (from 1221 m? to 6 m?), and then remained unchanged

on subsequent flights (lower than 90 m?).
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Figure 9.5 provides the distribution of the mean values of the different parameters extracted
from the estimated grapevine plants. The flight campaigns were carried with a significant
vegetation development from fruit set to harvest. This way, the height distribution in the
different flight campaigns (Figure 9.5a) did not varied significantly, starting with amean height
of 1.23 m, in the first flight campaign, and stabilizing around 1.13 m, in the remaining
campaigns. In what concerns the grapevine area and volume (Figure 9.5b and c) both
parameters presented a similar behaviour, declining from the first to the last flight campaign.
Grapevines mean area starts with 0.44 m? in the first campaign and a progressive decrease can
be observed until the last campaign, in which grapevine mean area ends up with 0.32 m?. In
terms of the mean grapevine canopy volume, it is 0.69 m® in the first flight campaign, 0.58 m?
in the second one and 0.50 m? in the remaining flight campaigns. Considering the distribution
of the NDVI vaues (Figure 9.5d), a decline was verified when comparing the values of the
previous campaigns sequence in which 0.80, 0.73, 0.66, and 0.55 of grapevine mean NDVI
were respectively reached. Regarding the parameters extracted from the thermal infrared
imagery, both grapevine temperature and CWSI (Figure 9.5e and f) presented distinct
distributions. The temperature values were lower in the first flight campaign and higher in the
third flight campaign. Despite the mean temperature variability through the flight campaigns,
CWSI distribution is similar.
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Figure 9.5. Boxplots of height (a), area (b), volume (c), normalized difference vegetation index (d), land surface
temperature (€), and crop water stress index (f) of each flight campaign in vineyard A. Mean values are marked
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Figure 9.6 presents the main parameters extracted for the estimated grapevines. The grapevine’s
height distribution (Figure 9.6a) suffered a decline along the flight campaigns. In fact, 87% of
estimated heights were higher than 1.0 m in the first flight campaign, faling to 77% in the
second flight campaign, 64% in the third and 72% in the fourth flight campaign. Regarding
plants with heights lower 0.5 m, no estimates were presented in the first flight campaign,
wheresas in the following campaigns this number represented 0.3%, 8% and 2%, of the total
estimates. Individual grapevine canopy volume (Figure 9.6b) presented a similar trend. In the
first flight campaign, 53% of the grapevines showed a volume greater than 0.75 m3, while in
the following flight campaigns only 39%, 24% and 19% where greater than 0.75m3. Regarding
plantswith avolume greater than 1 m?, they represented 19%, 10%, 6% and 4% of the estimated
grapevines. Considering individual grapevine NDV | values (Figure 9.6¢) bigger than 0.7, atotal
of 85% higher were identified in the first flight campaign, 60% in the second, 38% in the third,
and 16% in fourth flight campaign. Focusing on the CWSI (Figure 9.6d), 75% of the grapevine
plants were lower than 0.6 in the first three flight campaigns, while in the last flight campaign
thisvalueis 70%.
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Figure 9.6. Estimated grapevine parameters in vineyard A, for three flight campaigns (DD/MM/YYYY): (@)
height; (b) volume; (c) normalized difference vegetation index; (d) crop water stressindex.
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9.3.2.3. Vineyard plot B

In what concerns vineyard B, a broader period was analysed (from May to October 2018),
encompassing most of the vineyard vegetative development, from flowering to harvesting. A
growth trend of the grapevine vegetation areaand volumeis observed acrossthefirst four flight
campaigns (growth of 218%, from 262 m? to 833 m? and 463%, from 339 m3 to 1301 m®). In
the last campaign, a decline of 15% (128 m?) in area and 21% (—401 m®) in volume was
verified. From the second to third flight campaigns, there was a canopy management operation
(leaf removal), due to the smaller growth areain between these flights (20% and 101 m?). As
for inter-row vegetation, this value increases until July (from 34 m? to 546 m?) and decreases
in August (34 m?), whit asmall growth in October (to 83 m?).

The estimation of the individual grapevines position in the vineyard enabled to estimate several
parameters. Their distribution is presented in Figure 9.7. Height distribution (Figure 9.7a) was
lower in first flight campaign with a mean value of 1.24 m, which growth until the forth flight
campaign and declined in the last one. Similar trends are observable in other geometrical
parameters as area and volume (Figure 9.7b and c), as well as in the NDVI (Figure 9.7d).
Indeed, from the first to the second flight campaigns, a significant growth was registered. The
mean grapevine area increased almost to the double (from 1.10 m? to 2.12 m?), and the mean
grapevine volume increased 193% (from 1.38 m® to 4.04 m®). In what respects the grapevines
NDVI values, the mean value ranged from 0.56, in the first flight campaign, to 0.84 in the
second, 0.86 in the third, 0.89 in the fourth and declined to 0.76 in the last flight one. As for
LST (Figure9.7e) and CWSI (Figure 9.7f), values adifferent trend was observed, thefirst flight
campaign presented a higher temperature than the remaining ones (approximately 10 °C
higher), while CWSI values spanned towards higher values in the first flight campaign and

lower values in remaining flight campaigns, where most of the data is located below 0.5.
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'isirphp?.rature (e), and crop water stress index (f) of each flight campaign in vineyard B. M ean values are marked
Theindividual grapevine values estimated for each parameter in the most representative flight
campaigns is presented in Figure 9.8. From first to the reaming flight campaigns (Figure 9.8a,
b and c), an overall numerical increase of assessed characteristics can be noted, while a decline
from thefourth to fifth flight campaign is better observableinthe NDV I, rather than with height
or volume. Most of the height values (Figure 9.8a) in thefirst flight campaign are below 1.5 m,
whereas in the remaining flight campaigns those are higher than 1.5 m. Asfor grapevine canopy
volume (Figure 9.8b), in the first flight campaign all plants show a value below 4 m3,
estimations made upon data from the second flight campaign point out a rate of 57% of
grapevine plants greater than 4 m?, being above 94% in the remaining flight campaigns. NDVI
values (Figure 9.8c) arelower than 0.7 in thefirst flight campaign (0.56 mean value) and higher
than it in the remaining flight campaigns, excluding the last one where 82% of the grapevines
were higher than 0.7. For CWSI, 53% of the grapevines presented avalue higher than 0.6 in the
first flight campaign, but in the remaining campaigns it is lower, as an example, it represents
21% and 28%, respectively, in the fourth and fifth campaigns.
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height; (b) volume; (c) normalized difference vegetation index; (d) crop water stress index.

9.4, Discussion

9.4.1. Grapevine counting accuracy

The results presented in Section 9.3.1 document the method’s effectiveness in the individual
grapevine estimation using the six vineyard plots analysed. As for the number of grapevines
presented in each vineyard plot (Table 9.3) the method showed 100% accuracy for vineyard
plots A, B, D and F. However, for vineyard plots C and E, there was an under estimation in the
number of grapevines, in both cases, due to the lack of one plant per vine row. Still, a mean
accuracy vaue of 99.88% was achieved. Thisis related with the way that the vine rows were
estimated, the distance of the rows were smaller than its ground-truth, possibly related to the
automatic vine row orientation used during their estimation. Furthermore, as stated in the results
section, there were two vine rows that were not detected, one in vineyard plot C (three
grapevines) and another in vineyard D (five grapevines). However, since there were no
grapevines present in those plots, they were discarded from this evaluation procedure.
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As for grapevine identification, the results from the performed evaluation were slightly lower
(Table 9.4), which is related with FP and FN estimations for grapevines. Neverthel ess, a mean
overal accuracy of 97.5% was achieved. It can be stated that the method tends to overestimate
grapevines rather than underestimate, since more FN cases were identified (mean of 2.0% and
mean of 0.4% FP). In vineyard A, the percentage of FP and FN was 1.6% representing,
respectively, 8 and 10 cases. The higher number of FP was verified in vineyard F with 10 cases
(1%), whereas the higher number of FN was reached in vineyard E with 49 cases (2.4%).
However, vineyard F had the higher percentage of FN cases with 3% (30 occurrences). Cases
of grapevines classified as being missing (FP) can be justified by erroneous three-dimensional
reconstruction of the surveyed vineyard plots. Increasing the imagery overlap in the mission
plan stage can help to mitigate this issue, since more common tie points will be found in
correspondent images. The grapevine plants from the commercial vineyard (vineyard plot B)
were correctly estimated, being this plot only composed by seven vine rows and with only two
missing grapevine plants. In Primicerio et al. (2017), this issue was addressed by evaluating a
total of 211 missing plants (incidence of 9.4%), in which the parameter found with most
correlation was the grapevine area. Different area thresholds where considered, based in the
cardinality of each cluster attributed to grapevine plants, wherein lower values showed to be
more suitable for missing plants discrimination, but inducing the FP number growth, while
higher values result in the inverse behaviour. In Matese and Di Genaro (2018), the results
demonstrated 80% accuracy in missing plants detection with the application of their method.
Authors stated that FP results (plants estimated as missing plant) were related to their low
vegetative development, while FN results (missing plant classified as plant) were related to the
high presence of weeds and overlap of adjacent plants. However, neither of these studies
considered height properties. In De Castro et a. (2018) an overall accuracy of 95.3% was
obtained in the analysis of three vineyard plots, in North-eastern Spain, at two different epochs
(July and September). Similarly, to this study, according to the authors most of misclassification
cases were related to grapevines lower vegetative development (thin branches and less leaves)
which led to issues in the 3D canopy reconstruction through photogrammetric processing.
Regarding FN cases, it can be justified by the growth of adjacent grapevines which tends to
cover missing spots in the wires, making difficult to estimate missing plants. This way, as a
future direction, machine learning classification should be considered to detect the number of
missing grapevines. Moreover, as stated by Matese and Di Genaro (2018), by selecting an

anticipated period to conduct thistype of survey would increase the results accuracy, by having
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plants with |ess vegetative devel opment, which would avoid the presence of adjacent grapevine
vegetation in missing plant aress.

9.4.2. Dataaignment

Since one of the main goals of this study is to extract grapevine properties from different
outcomes through photogrammetric processing of UAV -based imagery from different sensors,
a correct data alignment must be ensured to mitigate data alignment errors. Aiming to reduce
geolocation errors from few metres to some centimetres (D. Turner et a., 2011). In Turner et
al. (2014) the same tendency was inferred, when comparing with results obtained in this study.
More specifically, the overal RMSE values were approximately 1.9 cm for RGB imagery (1
cm GSD), 6.4 cm for multispectral imagery (3 cm GSD), and 17.8 cm for TIR imagery (10 cm
GSD). Intheir study, the authors used a higher number of GCPs along with alower flight height
and almost half of spatial resolution used in this study. The need of GCPs for multi-sensor data
alignment will be mitigated by the technological development of sensors by combining visible,
multispectral and TIR data into a single sensor, this is the case of the MicaSense Altum
(MicaSense Inc., Washington, United States of America) which provides radiometrically
corrected blue, green, red, red edge, NIR spectra bands along with TIR imagery. Thisway, in
asingle UAYV flight all datais acquired and photogrammetric processing can be achieved in a

single project.

9.4.3. Multi-temporal vineyard monitoring

By analysing the results obtained through the method application in both vineyards A and B
(Sections 9.3.2.2 and 9.3.2.3) the spatial grapevine variability is noticeable. Furthermore, the
multi-temporal analysis enabled to track the changes throughout the anal ysed periods.

In what concerns the experimental vineyard (vineyard A), it presented a higher incidence of
missing grapevines, which is associated with the occurrence of phytosanitary problems and to
the presence of different grapevine varieties wherein a higher data variability is clearly visible
(Figure 9.6). Areaswith better grapevine overall status are located in the upper right and bottom
left parts of the vineyard. Higher NDV values and grapevine volume were detected in those
areas throughout the flight campaigns, being this more notoriousin al flight campaigns for the
estimated grapevine volume and in the first three flight campaigns for NDVI. With respect to
CWSl, only in the first and last two flight campaigns highlighted this behaviour. On the other

hand, the southern central part showed the lower results. The grapevinesin thisregion presented
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lower volume—particularly in the last two flight campaigns—, along with higher CWSI values
(potential water stress) and lower NDV I values.

The commercia vineyard plot (vineyard B) presented a high vegetative dynamic over the
analysed period, its parameters growth throughout the flight campaigns and declined after the
harvest season (Figure 9.7). Its geometrical features (height, area, and volume) along with
NDVI showed a higher development from the first to second flight campaigns. These results
are related to both phenological stages and training systems implemented in the Vinho Verde
wine region. This vineyard presented overall good results as confirmed by the estimated
grapevine values in the flight campaigns (Figure 9.8). The northern part presented higher
grapevine volume, when analysing each flight campaign, while for NDV I thiswas only verified
in the last two campaigns. The southern part presented some water stress signs (Figure 9.8d) in
the last two flight campaigns, aong with lower grapevine volume verified al flight campaigns,
lower NDVI values were only observed in the last flight campaign. Regarding CWSI, the
inferior grapevine vegetative development verified in the first flight campaign led to the
estimation of potential water stress in the upper part of the vineyard, while in the last flight
campaign the higher CWSI agreed with the lower NDV1 values.

When comparing the commercial (vineyard B) and the experimental (vineyard A) vineyard, the
former obtained better results in amost al parameters. A higher spatial heterogeneity was
verified in vineyard A, while vineyard B presented a more homogeneous devel opment, as can
be seen when anal ysing the grapevine canopy volume and NDV 1. However, some similar trends
were detected in both vineyards, an overall decline of the NDVI values in the last flight
campaigns and an agreement between NDV | with the estimated grapevine volume and with the
CWSI vaues was observed. The decline of NDVI in the last flight campaigns can be related to
the leaf senescence and, consequently, its discoloration (Junges et a., 2017, 2019). The
relationships among the NDVI and volume relationships were verified in other studies (A.
Matese et al., 2019) that shown that both of these parameters are related with LAI, which, in
fact, isalso verified in this study.

Grapevines located in the south parts (first plant of the rows) of the analysed vineyards
presented potential water stressin the CWSI, an observation that gains meaning in the last two
flight campaigns of vineyard B and in the first, third and fourth flight campaignsin vineyard A.
This can be considered as outliers, since higher temperatures are observed due to heat advection

from the soil in proximity of the edges of the rows to the grapevine canopy, which can affect in
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a significant manner the air temperature, with an increase of the loss of water by
evapotranspiration (Yunusa et a., 2004). These results corroborated with Tucci et a. (2019)
were external rows in aterrace vineyard presented higher temperatures due to solar exposition
and shadowing effects when compared with internal vine rows. Although the individual
grapevine temperature is estimated, this parameter shown to be ineffective to be evaluated in a
multitemporal analysis. It is useful to understand the global temperature context in the flight
campaign day. The CWSI trends shown a more stabilized distribution since this index
represents anormalization throughout flight campaigns. Moreover, other TIR-based indices can
be computed, asit is the case of stomatal conductance indices Ig and 13 (Jones, 1999), which,
respectively, implicated in increases with stomatal conductance and correlates with stomatal
resistance. The same applies to other multispectral-based vegetation indices and to
hyperspectral data, as long as it comes in an orthorectified format. Usually, published studies
resort to NDV | to produce vigour maps and use that information to improve the decision support
at the vineyard plot scale (Campos et al., 2019; Khaliq et a., 2019; J. Primicerio et al., 2015).
The approach proposed in this study providesamoreincisive analysis. Multi-sensor parameters

are extracted at the plant level, and are not exclusively relying on a qualitative analysis.

9.5. Conclusions

This study explores the usage of UAV -based photogrammetric outcomes to extract individual
grapevine geometrical and biophysical parameters within vineyard plots. Missing plants and
other vegetation are detected but not considered to perform multi-tempora anaysis over a
series of flight campaigns. Three different types of sensors (RGB, multispectral and TIR) were
used. By estimating vine rows and, theindividual position of each plant, severa parameters can
be extracted at the plot level, namely the: number of vine rows; number of plants; number of
missing plants and grapevine vegetation area; and at the plant level the: position; length; width;
area; volume; vigour (driven from NDV1); temperature from TIR and water status (driven from
CWSI). The two multi-temporal analysis conducted in the two different vineyards presented in
this study confirmed the method’s suitability for plant-specific analysis, alowing to assess the
different estimated parameters and to establish relationships among them and between flight
campaigns. This way, the methods employed in this study enable an overview of the current
status of the grapevine plants and the monitoring of their evolution over time. The estimated
geometrical and biophysical parameters can significantly help farmers and/or winemakers

understanding the current vineyard overall status and can be used as a decision support tool to
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apply treatments in certain plants and to observe their response with multi-temporal analysis,
helping to improve grapevines health. Moreover, it can be used to compare growth seasons

from different years, by extending the flight campaigns.

The potential of the method can be extended for different applications, it can helpinthedecision
support, by means of grapevine growth and status evaluation, and the individual grapevine
water status estimation. Moreover, the different extracted parameters can be used to create
datasets for supervised and unsupervised classification methods for disease detection and to
improve the results in the detection of missing grapevines. The extracted individual grapevine
parameters can be used for computation of prescription mapsfor individual grapevine treatment
in PV plant-specific applications and to estimate individual grapevine production. The
topographical data produced from the photogrammetric processing along with the position of
each grapevine and its estimated parameters can be used to reproduce a 3D virtua vineyard
environment. As such, thisinformation can be used in augmented reality applicationsfor easier

vineyard in-field inspections.
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Chapter 10.
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This thesis presents a series of contributions in the fields of computer vision, remote sensing,
and precision agriculture. The multidisciplinary nature of the conducted research motivated the
proposal of advances in different areas converging the novel approaches to assist farmers in
decision support. Thiswas reached allying data processing algorithmswith very high resolution
remote sensed data from multiple sensors, improving precision agriculture practices. The
presented research work can be divided into two categories: (1) the proposal of new methods
and approaches for multi-temporal data processing; and (2) the application of those methods to

extract/estimate crop-related parameters.
The work chain was designed to answer the research questions (RQ):

RQ1: “Can multi-temporal datafrom multi-sources be combined to provide better management

of agricultural and forest crops, in particular in vineyards and chestnut plantations?”

To answer thisquestion, several al gorithms/approaches were devel oped for the specific purpose
of the detection of grapevines and chestnut trees which suffered an iterative process with the
work progress. In fact, more features were added over time in an incremental logic, making it
possible to respond to identified needs of farmers or winegrowers. The segmentation methods
presented in Chapters 4 and 6 rely in the most cost-effective approach regarding UAV data
acquisition, since it only relies in imagery from RGB sensors. Another aspect to consider is
data extraction capabilities for multi-temporal analysis that was set to provide parcel-level and
plant-level estimations. Moreover, the methods require few parameterization (depending on the
level of analysis) and reveaed potential to be applied in other crops with similar plantation

styles (in rows or spaced).

By relying in the obtained results, it can be stated that multi-sensor data acquisition from
unmanned aeria systems (UAV'S) poses as an important process to substantially contribute for
an improvement on crop analysis. The data obtained from each sensor proved to be useful for
different or multiple tasks:

¢ the photogrammetric processing of RGB imagery leads to the computation of digital
elevation models (DEM), which, in turn, can be used to detect crops and to retrieve
geometrical features, thisis particularly noticeable in crop height estimation on Chapter
4, grapevine volume and height estimation in Chapters 7 and 9, in a multi-temporal
context can help to acknowledge the crop vegetative growth or decline;
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e when using multispectral imagery for vegetation monitoring, the spectral response from
other wavelengths can be considered (outside the visible spectrum)—particularly the
near infrared region, where spectral differences among different crops and among crops
with different health/vigour status are noticeable—this opens the possibility to monitor
crops at an individual scale to estimate parameters that correlate with their biophysical
status, in a multi-temporal context, enabling to extend the use of UAV multispectra
data to understand the temporal dynamics of the crops along a growing season, to detect
potential problematic areas (Chapters 8 and 9) and to estimate potential phytosanitary
issues (Chapter 5);

e the use of thermal infrared imagery can help into the assessment of crop water status,
which in amulti-temporal approach, iscrucial for the maintenance and improvement or
crops health status, and to provide a better water management efficiency (Chapter 9);

e when comparing data from different sensors, it is possible to notice common points
highlighted areas, where crops tend to be less and more vigorous, as the comparison of
a multispectra outcome with thermal and geometrical data products performed in
Chapter 8, but their complementarity usage provides a wider range of possibilities in

both crop monitoring (Chapter 9) and disease detection.

So, it was possible to answer to the RQ2:

“Can the agriculture and forest management process be automated based on the developed
algorithms specifically for the extraction of valid information from data acquired from different

types of sensors?”

In fact, the automatization process that was achieved in the findings documented in the
presented study, allows to save time and resources spent in field inspection activities by
covering and analysing, in afaster and efficient manner, wider areas and providing warnings to
only certain parts of the terrain (Chapter 8) or certain trees (Chapters4 and 5). Thus, the ability
of the developed algorithms to automatically detect anomalous situations is a key factor to
reduce the time required to perform interventions and to allocate the necessary human
resources. This way, it is possible to reach a controlled monitoring of problems affecting
cultures, with the economic benefits that come from it, as well as the monitoring of vegetative

development.
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A genera methodology for UAV-based high-resolution multi-temporal data analysis can be
withdrawn from this work. The methodology relies in five main steps: (1) UAV data
acquisition, by planning multi-temporal campaignsfor crucial stages of the growing season and
ensuring the data alignment/co-registration, among sensors and flight campaigns; (2) data pre-
processing, by means of photogrammetric processing or using aspecific softwarefor UAV data
processing, depending on the used sensors; (3) vegetation segmentation, for an accurate
detection of the crop or tree under analysis; (4) parameters extraction, depending on the data
availability, can be adapted. Data from different sensorsis not always needed, for example, the
usage of thermal infrared imagery can be discarded when the weather is not propitious of water
stress; and finally; (5) data from different periods will enable multi-temporal analysis through
comparison over time. This methodology can be implemented in an agricultural management

system to improve the support to the decision-making process.

Some paths can be taken as future research and development. The methods proposed in this
thesis can be merged into a specific software for multi-temporal data analysis of a given crop
providing the use with semi-automatic ways for quicker crop parameters estimation, and to
adjust the results for more precise outcomes. The study of the correlation of the crop yields with
parameters estimated from the UAV -based data products, can be of special interest for the wine
section of the Douro Demarcated Region. This kind of approach can lead to a better harvest
planning and resources allocation. In the field of crop phytosanitary monitorization, the aerial
spectroscopy was not explored, in thiswork, and the availability of UAV hyperspectral sensors
allows to cover awider range of the electromagnetic spectrum, providing high spectral, spatial

and temporal resolutions, supplying ways for early disease detection.
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Appendix A. Supplementary material for Chapter 4

This appendix presents a comparison of different segmentation approaches for chestnut trees
segmentation. To identify the proper segmentation approach different techniques were
considered, namely: thresholding techniques, the Otsu’s method, and adaptive thresholding;
unsupervised clustering based in K-means; colour spacing thresholding using the Hue
Saturation and Vaue (HSV) colour space; and based in vegetation indices. This evaluation
motivated the selection of the segmentation approach from the method presented in section
4.2.3.

To evaluate these approaches, the area presented in Figure A.1 was selected as reference. This
area was selected based on the existence of other features than vegetation, as infrastructures,

such as houses with different roofs, roads, bare soil, and shadows casted by trees canopy.

Figure A.1. Reference area used for the evaluation of the different segmentation approaches:. (a) the RGB image;
(b) colour infrared image; and (c) manually segmented image.

Otsu’s method is a simple global thresholding technique. It assumes that the image contains
two-pixel classes following a bi-modal histogram: one class is composed by the background
pixels — corresponding, in this case, to non-vegetated areas — and the other class is composed
by foreground pixels, corresponding to vegetation. In this evaluation the method was directly
applied to the greyscale images of the RGB and CIR images obtaining a binary image after the
method application. The adaptive thresholding technique differs from the Otsu’s method in the
number of used thresholds T. Whereas Otsu’s method is globally applied to the image, this
approach applies different thresholds to sub-regions of the image. Similarly, to the Otsu’s
method, this technique was applied to the RGB and CIR grayscal e images, resulting in abinary
image. K-means clustering is a non-supervised method that groups pixels in a K number of

clusters in accordance with their likelihood. In this case the method was applied to the RGB
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and CIR images of the selected area and K was set to two, i.e. it was intended to divide the
image into two distinct clusters, one representing vegetation and other non-vegetation, the
vegetation cluster was then binarized for comparison against the manually segmented image.
HSV is a colour space composed by Hue, Saturation and Vaue (or Bright), instead of the
commonly used RGB colour space. This way, both RGB and CIR images were converted to
HSV colour space, and the Hue band was used, it contains colour information, its thresholding
was based in upper and lower limits, Hue values differ from zero to one, the values used for the
RGB image were between 0.2 to 0.27, corresponding to the green colour, whereas, in the CIR
case, as vegetation assumes a magenta colour the selected values where located between 0.85
to 1. The values within these ranges were then binarized (set to one) whereas other values where
considered as background (set to zero). The last evaluated approach, which is commonly found
in studies dealing with vegetation segmentation, is the usage of V1. Thisway, two different VI
were applied, the RGBV 1 to the RGB image and the ExRE to the CIR imagery, these VIswere
selected based in the results from the VI selection, see Appendix B for more information. To

segment the vegetation the Otsu’s method was applied to resulting VI images.

The evaluation of the different approaches was based in a pixel-wise comparison against the
manually segmented image (Figure A.1c), and three classes were considered, exact detection,
over detection and under detection. The obtained results applied to the RGB and CIR images

from the reference scene are shown in Figure A.2.

Oisu's Adaptive

methiod theshalding

HSY egetation

K-means e
indicas

. Exact detection . Linder detaction . Cheer detection

Figure A.2. Results obtained from the different segmentation approaches of the same area for the RGB and colour
infrared (CIR) images. Exact detection of vegetation areas represented in green and exact detection of non-
vegetation areas represented in black; red represents over detection; and blue signals under detection.

Table A.1 presents the percentage of exact, over and under detection, for each evaluated
approach in the two tested images. According to the obtained resultsit is possible to conclude
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that K-means had a good performance in the CIR image with an exact detection rate of 96%.
However, when applied to the RGB image this rate decreases to 74% with an over detection of
25%. The over detection mainly corresponds to infrastructures and shadows, being this
approach not ideal to apply for vegetation detection in RGB images. Asfor the results obtained
for the segmentation approach based in the Otsu’s method, obtained a high over detection rate
in the CIR image (18%), the same was verified for the under detection (17%). When analysing
the results obtained from the RGB image the over detection rate decreases to 2%, however the
under detection remains with a considerable percentage (16%). The adaptive thresholding
approach did not provide satisfactory results for both images, the method obtained error rates
higher than 40%. Thisis due to the method not being capabl e to discriminate between shadows
and infrastructures from the vegetation since it is based in local threshold values. In what
concerns the results obtained from the HSV-based technique, the results were acceptable in
both tested images. The HSV conversion of the CIR image, showed an exact detection of 96%,
although, in the case of the RGB image it decreased to 84%, being this a considerably
acceptable value. However, the former, suffers from the same problem as other approaches,
some outliers were wrongly classified (shadows and roads). The good detection accuracy in K-
means and HSV-based techniques in CIR imagery can be explained due to the high reflection
of the RedEdge in the vegetation, contributing for a clearer vegetation discrimination. The VI-
based approach obtained the best overall results, with exact detection rates greater than 93%,
being this value higher in the CIR image (96%), till the accuracy obtained in the RGB image
was satisfactory (93%).

Table A.1. Results of the performance of the different methods classified in exact, over and under detection when
compared to the manually segmented image of the same area for the RGB and colour infrared (CIR) images.

M ethod Image type Exact Over Under detection
detection (%) detection (%) (%)

Otsu RGB 82 16 2
CIR 65 18 17

Adaptive RGB 59 38 3
threshold CIR 45 46 9
K-means RGB 4 25 1
CIR 96 3 1

HSV CIR 96 2 2

V egetation index %(I;IS gg 513 613

Thisway, when comparing the results of al approaches tested for vegetation segmentation the
one based in VI was the one with the best overall performance for both types of images (94.5%

mean value). The two evaluated thresholding methods (Otsu’s and adaptive) were the
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approaches with lower exact detection accuracy with, respectively, 73.5% and 52% mean
accuracy in vegetation detection. However, with image processing these methods provide more
accuracy, as de case of the VI-based approach were the Otsu’s method is applied to the images
driven from the VI computation. The K-means and HSV-based segmentation approaches
reached a reliable performance in the CIR image, which can be explained by the difference
caused by the RE band where vegetation has higher pixel values, athough when to the RGB
image their performance decreases, their overall accuracy is 85% and 90%, respectively. Thus,
the VI-based approach, more specifically using EXRE for CIR imagery and RGBV I in the case
of RGB images (see Appendix B), corresponded to the selected approach for vegetation
segmentation, since it had better behaviour, in both CIR and RGB images, thus providing a
flexible and robust approach with respect to the type of image being used, with low error rates.
These results motivated the selection of the VI-based approach for vegetation segmentation
procedure of the method proposed in this study.

Appendix B. Supplementary material for Chapter 4

To select the most suitable VI, a study was accomplished using the 17 Vislisted in Table B.1):
six based exclusively on RGB bandsand 11 Vs based on RGB and NIR/RE band combinations.
These VIswere chosen dueto their potential relevance in vegetation segmentation (highlighting
vegetation areas). The validation was performed in the different areas, in the three epochs,
presented in Figure 4.9 (location in Figure 4.1), selected to be representative: recent chestnut
plantations, adult chestnut trees and both types, were included. The proximity between chestnut
trees was also considered in the areas’ selection: plantations with regular space between trees
and treeswith overlapping canopy areas. These areaswere used asinput of the proposed method
and the first two phases of method’s step one were performed (VI application and image
thresholding). Results provided by the application of the VI-based segmentation (binary
images) were compared with manual segmentation. To evaluate the segmentation accuracy,
false negative and false positive rates of image pixels were calculated. False negatives are
defined as vegetation pixels that were classified as background pixels (under detection). False

positives are defined as background pixels that were classified as vegetation (over detection).

Over detection values correspond to false positives, i.e. values detected as vegetation but that
are not classified as vegetation in the manual segmentation; and under detection values that
correspond to false negatives, i.e. values that were classified as vegetation in the manud

segmentation but were not detected as such by the applied V1.

290



Appendices

Table B.1. List of broadband vegetation indices implemented and tested in the proposed method.

Vegetation indicesrequiring NIR and RGB bands

Name Equation Reference
Blue Normalized Difference BNDVI= N-B (Hancock &
Vegetation Index ~ N+B Dougherty, 2007)
Difference Vegetation Index DVI=N-R (Tucker, 1979)
N—-R
Enhanced V egetation Index =2 ( ) Justice et ., 1998
= EVI=2.5x N+6XR—-75xB+1 ( )
Proposed in this
Excess RedEdge ExRE = 2 X re, — g, — b, study, derived from
ExG
Green D'ffelrrfggf Vegetation GDVI=N -G (Sripadact al., 2006)
Green Normalized Difference N-G :
Vegetation Index GNDVI = &— (Gitelson et al., 1996)
Green Soil-Adjusted Vegetation N-G .
=— %1, Sripada et a., 2006
Index GSAVI N?G+g.5x15 (Srip )
Modified Soil-Adjusted N—-R) x 15 )
Vegetation Index MSAVI = =2 70% (Qietal., 1994)
Normalized Difference -
Optimized Soil-Adjusted OSAVI = 1.5x (N—-R) (Rondeaux et al.,
V egetation Index T N+R+06 1996)
N —-R
Soil-Adjusted Vegetation Index AVl = —— x 1. Huete, 1988
J ey SAVI = e X 15 ( )
Vegetation indices requiring only RGB bands
Name Equation Reference
_ o (Woebbecke et al.,
Excess Green ExG=2Xg, —1r, —b, 1095)
. G—-B (Kawashima &
Green-Blue Vegetation Index GBVI = GTE Nakatani, 1998)
. G—-R
Green-Red Vegetation Index GRVI = GTR (Tucker, 1979)
Modified Green Red Vegetation G2 —R? '
Index MGRVI = IR (Bendig et d., 2015)
Red Green Blue Vegetation _G*—(BxR) -
. G—R .
Vegetation Index Green VARIg = CiR_E (Gitelson et al., 2002)
where, the reflectance values of each band are represented by R: Red; G; Green; B: Blue; N: NIR; and
R R G B
fén = (R+G+B);rn = (R+G+B);gn = (R+G+B); n = (R+G+B)

Figure B.1 presents the mean results of the performed validation, using the Vislisted in Table
B.1. For a complete overview, the results are presented, per tested area, in Table B.2 which

shows the exact detection percentage.
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Figure B.1. Mean accuracy of exact, over and under detection in the evaluated vegetation indices from the
comparison with manual segmentation masks from the seven evaluated areas.

TableB.2. Mean near-infrared (NIR) and RGB vegetation indices (V1) exact, over and under detection percentages
for the evaluated chestnut plantationsin epoch (year).

2014 2015 2017
VI Exact Over Under Exact Over Under Exact Over Under
(%) (%) (%) (%) (%) (%) (%) (%) (%)

Vegetation indicesrequiring NIR and RGB bands
BNDVI 94.9% 0.8% 4.3% 94.4% 0.2% 5.4% 93.7% 0.7% 5.6%
DVI 94.2% 3.7% 2.1% 92.8% 4.8% 2.4% 94.4% 3.6% 2.0%
EVI 92.1% 6.1% 1.7% 89.9% 7.8% 2.3% 91.6% 6.9% 1.4%
ExRE 95.8% 2.1% 2.1% 95.9% 1.3% 2.9% 95.3% 2.5% 2.2%
GDVI 94.7% 4.4% 0.8% 95.8% 2.9% 1.3% 94.3% 4.9% 0.8%
GNDVI 93.8% 5.8% 0.4% 95.1% 4.0% 0.9% 92.5% 7.2% 0.3%
GSAVI 94.2% 5.3% 0.5% 95.5% 3.5% 0.9% 93.2% 6.4% 0.3%
MSAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7%
NDVI 92.6% 5.2% 2.2% 90.7% 6.6% 2.7% 91.8% 6.4% 1.8%
OSAVI 93.5% 4.4% 2.0% 91.9% 5.7% 2.4% 93.3% 5.0% 1.7%
SAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7%
Vegetation indices requiring only RGB bands

ExG 95.8% 0.9% 3.3% 95.2% 1.2% 3.5% 94.9% 0.9% 4.3%
GBVI 88.8% 8.1% 3.2% 80.4% 16.3% 3.4% 89.7% 5.7% 4.6%
GRVI 89.5% 5.1% 5.4% 85.5% 8.6% 5.9% 87.7% 6.2% 6.0%
MGRVI 89.4% 5.1% 5.5% 85.4% 8.3% 6.3% 87.6% 6.2% 6.2%
RGBVI 95.9% 1.1% 3.0% 95.2% 1.4% 3.3% 95.1% 1.1% 3.9%
VARIg 87.2% 5.1% 7.8% 81.6% 7.7% 10.7% 84.7% 6.5% 8.8%

The results allow to conclude that, in general, NIR-based VIs presented a better overall
performance, mean exact detection of 93% with a standard deviation of 0.7% considering the
three flight campaigns. However, the performance achieved by RGB-based Vs presented an
accuracy rate close to 90% (standard deviation of 1.6% in the three flight campaigns), if
excluding VARIg. If discarding the less performant VIs (exact detection lower than 90%), the

overal accuracy rate is around 94%.

292



Appendices

The obtained results from the different VI motivated the selection of the EXRE as it wasthe VI
with the best overall performance (mean accuracy of 96%). Despite the selection of EXRE,
which isproposed in this study (being an adaptation of ExG to CIR imagery), asthe V1 of better
performance, there were other NIR-based VIswith similar performance (~95%), therefore with
equivaent results, namely: GDVI, GNDVI and GSAVI. However, if only RGB images are
available, the method maintains its performance. Indeed, ExG and RGBVI reached an overall

accuracy around 95%.

Appendix C. Supplementary material for Chapter 5

This appendix contains the results of the RFE procedure presented in Section 5.3.3 (Table C.1).
Moreover, boxplots of some of the vegetation indices used in this study (Figures Figure C.1
and Figure C.2) are also presented. These boxplotsintend to depict the distribution of mean tree
crown values when considering two or three classes. (i) with or without phytosanitary issues
(Figure C.1); and (ii) affected by chestnut ink disease, nutritional deficiencies, or healthy
(Figure C.2). Data dispersion trends throughout the season can be further studied to understand
the multi-temporal variations of phytosanitary issues. The overall accuracy results from the

prediction stage are presented in Figure C.3.

Table C.1. Recursive feature elimination results for each flight campaign, considering two classes (C2) and three
classes (C3), and its overall rank. Top ten features are highlighted.

Feature May Jun Jul Aug Sep Oct Overall
C2 C3 C2 C3 (€2 €Cc3 €2 €c3 €2 €3 €c2 c3 c2 cs3

NDEXxNIR 1 2 2 4 2 2 1 1 4 4 2 2 1 1
EXNIR 3 3 3 3 3 3 3 3 2 3 3 3 2 2
GNDVI 4 1 1 1 4 5 2 4 3 2 4 5 3 3
NDRE 8 6 7 10 1 1 6 7 1 1 1 1 4 4
RVI 6 7 4 2 5 6 4 2 5 5 5 9 5 5
NDVI 2 4 5 5 6 9 5 5 6 9 9 10 6 7
RED 5 5 11 7 8 10 8 6 7 6 6 4 7 6
NDEXRE 7 9 6 6 9 11 9 10 9 11 11 11 8 10
GRVI 1 11 12 12 7 4 10 8 10 7 8 6 9 8
EXRE 10 8 10 8 11 8 13 11 8 8 7 7 10 9
TCARI 9 12 9 9 12 12 7 9 13 10 10 14 11 12
SAVI 16 14 8 4 14 15 11 15 16 15 13 15 12 15
GREEN 13 10 13 11 13 7 14 13 11 12 16 8 13 11
NIR 2 13 14 13 10 13 15 12 14 13 15 13 14 13
RDVI 14 16 16 16 15 16 12 14 12 16 12 16 15 16
RE 15 15 15 15 16 14 16 16 15 14 14 12 16 14
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Figure C.1. Boxplots representing the distribution of tree crown mean values regarding the vegetation indices
used for healthy chestnut trees and for those affected by phytosanitary issues.
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Figure C.2. Boxplots representing the distribution of tree crown mean values regarding the vegetation indices

used for chestnut trees affected by ink disease, nutritional deficiencies, or healthy.
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Figure C.3. Overall accuracy, per flight campaign, of the prediction for the presence of phytosanitary issues (a)

and for phytosanitary issue detection (b).
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