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Abstract 

Forest and agriculture ecosystems are prone to disturbances caused by human action or natural 

effects. For instance, climate change is projected to be a key influence on vegetation across the 

globe. Regarding agriculture, primary climate vectors with a significant impact include 

temperature, moisture stress, and radiation. Within this context, it is of foremost importance to 

monitor crops along time, as well as to detect pests, diseases, assess and control irrigation 

demands. Regular monitoring activities will enable timely measures that may trigger field 

interventions that are used to preserve health status of crops, achieving both time and economic 

gains, while assuring a more sustainable activity. Within this scope, precision agriculture (PA) 

techniques appear as an effective alternative to the traditional agronomy practices. In fact, the 

technological advances that promote PA are able to enhance support when making decisions, 

resulting in agronomical processes upgraded by employing site or plant specific management 

operations. In this regard, the capabilities of unmanned aerial vehicles (UAVs) to provide 

flexible, efficient, non-destructive, and non-invasive means of acquiring data on agricultural 

crops and the various agro-environmental factors of the parcel, can be used for PA applications. 

The high- temporal, radiometric and spatial resolutions achieved by UAV-based aerial imagery 

make possible to foresee new and important advances in PA practices. 

In this study it is presented the development of a management support system for the agriculture 

and forestry sectors, based on the analysis of multi-temporal data obtained through different 

sensors coupled to UAVs. With a continuous monitoring, it is intended to monitor the vegetative 

development and to identify, in an early and (semi)automatic way, potential issues, allowing 

their localized mitigation, through methodologies and algorithms developed for this purpose. 

To meet these main objectives, two important agricultural crops from the region of Trás-os-

Montes and Alto Douro (Portugal) economy, were identified: the grapevine (Vitis vinifera L.); 

and the European chestnut (Castanea Sativa Mill.). Both of these crops have a high socio-

economic relevance for the population of this region and represent an important share of 

national production. Thus, the work is divided into two parts, one focuses on monitoring 

chestnut stands and the other focuses on vineyards. The several differences among these two 

species in the planting typology and their geometry, make the approaches to each of the sectors 

also different. However, this fact will allow the adaptation of the proposed methodologies to 

almost all agricultural species, regardless of the type and the way they are arranged, in a grid 

or in rows. 
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Although there are several approaches to detect and monitor vegetation through aerial imagery, 

most of them remain dependent of manual extraction of vegetation parameters. This work 

presents automatic methods that allow—with none or few parametrization—the individual 

detection of the trees/grapevines and their multi-temporal analysis. The approach for tree 

detection was applied to several chestnut stands, allowing the automatic estimation of several 

parameters, such as the number of trees, the canopy coverage, tree height, and crown diameter. 

A novel methodology that enables the identification of phytosanitary issues from multi-

temporal analysis of chestnut stands, using UAV-based multispectral imagery, was also 

developed and it is presented in this thesis. This approach not only allows the absence or 

presence of phytosanitary issues but also the identification and the classification of biotic or 

abiotic factors affecting the trees. The developed methodology proved to be effective in 

automatically detecting and classifying phytosanitary issues in chestnut trees throughout the 

growing season. 

Likewise, methods to automatically estimate and extract grapevine vegetation parameters are 

also proposed. A full pipeline for vineyards management was developed. First, a methodology 

able to differentiate grapevine canopy between inter-row vegetation cover and soil, and to 

identify independent vine row was built. Then, the outputs were provided but the former 

methods were used to create a multi-temporal data analysis of vineyards, enabling the 

monitoring of vegetation dynamics of a given vineyard plot along the growing season. This 

way, areas with canopy management operation needs, and with different vigour levels, are 

identified. The approaches proposed enable to fully exploit the advantages offered from the 

UAV-based multi-sensor data (RGB, multispectral and thermal infrared), by performing multi-

temporal analysis of vineyards both at the plot and at the plant scales. Individual grapevine 

detection permits the estimation of geometrical and biophysical parameters, as well as missing 

grapevine plants. 

Thus, the developed methodologies proved to be very effective and can be used in a single 

epoch, analyzing the data from one individual flight campaign to estimate different parameters 

(depending on the used sensors), both at parcel-level and at the plant-level. In terms of 

agricultural plot, the canopy coverage, the estimation of the number of trees/grapevines, and 

the estimation of other vegetation and bare soil can be reached, as well as mean values of the 

species under analysis. Regarding the plant-level monitoring, geometrical and biophysical 
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parameters as height, canopy volume, crown diameter, temperature and vegetation indices that 

correlate with yield, biomass, leaf density and phytosanitary issues are also possible to estimate. 

Combining data from different flight campaigns, allows a multi-temporal analysis to be 

performed. Moreover, this multi-temporal analysis can be carried out over a single vegetative 

cycle and/or over different agricultural years, allowing, in any case, to obtain important 

management information. Hence, the original methods presented in this work have shown to be 

effective and have proved that their potential goes beyond vegetation detection, since they can 

be employed in an operational routine for the automatic monitoring of vineyard plots and 

chestnut stands. Thus, this work can be seen as an important contribution towards the 

substitution of time-consuming and costly field campaigns for managing plantations in a 

quicker and more sustainable way. 

Keywords: multi-temporal data analysis, unmanned aerial vehicles, precision agriculture; 

precision viticulture; decision support system. 
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Resumo 

Os ecossistemas agroflorestais estão sujeitos a distúrbios causados por ação humana ou por 

efeitos naturais. Por exemplo, projeta-se que as alterações climáticas venham a ter grande 

impacto na vegetação a nível global. Em relação à agricultura, os parâmetros climáticos com 

maior impacto são a temperatura, a humidade e a radiação. Nesse contexto, a monitorização das 

culturas ao longo do tempo é de primordial importância, possibilitando a deteção de pragas e 

de doenças, assim como a avaliação e o controlo das necessidades de irrigação. Uma 

monitorização regular permitirá a adoção atempada de medidas que podem desencadear 

intervenções para preservar o estado das culturas agrícolas, obtendo-se, com isso, proveitos a 

vários níveis, nomeadamente ganhos económicos e um aumento na eficiência e na 

sustentabilidade. Nesse âmbito, a com vista a atingir esses desideratos, a utilização de técnicas 

de agricultura de precisão (AP) surge como uma alternativa eficaz às práticas tradicionais. De 

facto, os avanços tecnológicos que possibilitaram os recentes desenvolvimentos da AP, 

permitem, simultaneamente, melhorar o apoio à tomada de decisão, melhorando os processos 

agrícolas, através da aplicação de ações localizadas ao nível da planta ou de uma determinada 

zona do terreno. Neste sentido, a capacidade dos veículos aéreos não tripulados (VANT), para 

adquirirem dados de culturas agrícolas e outros fatores agroambientais, de forma flexível, 

eficiente, não destrutiva e não invasiva faz com que estes possam ser usados para aplicações de 

AP. As suas elevadas resoluções espacial, radiométrica e temporal fazem com que as imagens 

aéreas obtidas por VANT ajudem a atingir novos e importantes avanços nas práticas de AP. 

O trabalho apresentado neste documento, teve por finalidade o desenvolvimento de um sistema 

de apoio à gestão dos setores agrícola e florestal, baseado na análise de dados multi-temporais 

obtidos por meio de diferentes sensores acoplados em VANT. Com um acompanhamento 

contínuo, demonstrou-se ser possível monitorizar o desenvolvimento vegetativo e identificar, 

de forma precoce e (semi)automática, potenciais problemas, permitindo a sua mitigação, 

através de metodologias e algoritmos desenvolvidos para o efeito. Para cumprir estes objetivos 

principais, foram identificadas duas culturas agrícolas com forte peso na economia da região de 

Trás-os-Montes e Alto Douro (Portugal): a videira (Vitis vinifera L.); e o castanheiro europeu 

(Castanea Sativa Mill.). Estas culturas representam uma elevada relevância socioeconómica 

para a população da região e uma importante parcela da produção nacional. Assim sendo, o 

trabalho realizado dividiu-se em duas partes, uma centrada na monitorização de soutos e outra 
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na monitorização de vinhas. As diferenças entre estas duas espécies são substanciais, a vários 

níveis, obrigando, necessariamente, ao recurso de abordagens distintas. No entanto, este facto 

permitirá a adaptação das metodologias propostas a quase todas as espécies agrícolas, 

independentemente da forma como estão dispostas no terreno, quer seja em grelha ou em linha. 

Embora existam várias abordagens para detetar e monitorizar a vegetação através de imagens 

aéreas, a maioria permanece dependente da extração manual de parâmetros relacionados com a 

vegetação. Neste trabalho apresentam-se métodos automáticos que permitem—com poucas ou 

nenhumas parametrizações—a deteção individual de árvores/videiras e a sua análise numa 

perspetiva multi-temporal. A abordagem para deteção de árvores foi aplicada em vários soutos, 

permitindo estimar vários parâmetros de forma automática, tais como o número de árvores, a 

cobertura do solo pelo copado, a altura das árvores e o diâmetro da copa. É apresentada, 

também, uma nova metodologia para a identificação de problemas fitossanitários em 

castanheiros, a partir da análise multi-temporal usando imagens multiespectrais obtidas por 

VANT. Esta abordagem permite não só aferir a ausência ou presença de problemas 

fitossanitários, como também a identificação e a classificação de fatores bióticos ou abióticos 

específicos que possam afetar as árvores. A aplicação da metodologia desenvolvida mostrou 

ser eficaz na deteção e na classificação automática de problemas fitossanitários em castanheiros 

ao longo do período vegetativo.  

Propõem-se, ainda, métodos para estimar e extrair, automaticamente, parâmetros de videiras. 

Foi desenvolvida uma pipeline específica para a gestão de vinhas. Primeiro, foi construída uma 

metodologia capaz de diferenciar o copado das videiras de vegetação que a envolve e do solo, 

e identificar os diferentes bardos. De seguida, estes resultados foram usados para criar uma 

análise multi-temporal da vinha, permitindo realizar a monitorização da dinâmica da vegetação 

de uma determinada parcela de vinha ao longo do período vegetativo. Desta forma, são 

identificadas áreas com necessidades de intervenção no copado e com diferentes níveis de vigor. 

As abordagens propostas permitem explorar as vantagens oferecidas pelos dados de diferentes 

sensores acoplados em VANT (RGB, multiespectral e térmico), através da realização de 

análises multi-temporais da vinha, tanto à escala da parcela como ao nível da planta. A deteção 

individual de videiras permite a estimativa de parâmetros geométricos e fisiológicos, bem como 

a contagem de videiras em falta. 
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As metodologias desenvolvidas neste trabalho revelaram-se eficazes e podem ser utilizadas 

numa única época (data), analisando os dados de uma única campanha de voo para estimar 

diferentes parâmetros (dependendo dos sensores utilizados), tanto ao nível da parcela quanto 

ao nível de planta. Ao nível da parcela, parâmetros como a cobertura do solo pelo copado, o 

número de árvores/videiras e a segmentação de outro tipo de vegetação e do solo podem ser 

obtidos, assim como valores médios da cultura em análise. Relativamente à monitorização ao 

nível da planta, vários parâmetros geométricos e fisiológicos podem ser estimados como altura, 

volume do copado, o diâmetro da copa, a temperatura e diferentes índices de vegetação, que se 

correlacionam com a produtividade, a biomassa, a densidade foliar e potenciais problemas 

fitossanitários. 

A combinação de dados provenientes de diferentes campanhas de voo permite a realização de 

análises multi-temporais. Além disso, este tipo de análises pode ser realizado ao longo do 

período vegetativo e/ou ao longo de diferentes anos agrícolas, permitindo, em qualquer caso, 

obter informações importantes para a gestão das parcelas. Desta forma, os métodos 

apresentados neste trabalho revelaram-se eficazes, comprovando que o seu potencial vai muito 

para além da deteção de vegetação, uma vez que podem ser aplicados numa rotina operacional 

para a gestão automática de vinhas e soutos. Assim, este trabalho pode ser visto como uma 

importante contribuição para a substituição de campanhas de campo, demoradas e trabalhosas, 

logo muito dispendiosas, passando-se para uma gestão de parcelas agrícolas de forma mais 

rápida, integrada, otimizada e sustentável. 

Palavras-chave: análise de dados multi-temporais; veículos aéreos não tripulados; agricultura 

de precisão; viticultura de precisão; sistemas de apoio à decisão. 
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 Contextualization 

The agriculture sector has considerably evolved due to technological developments achieved in 

the last decades, enabling improvements in the entire production chain (Floros et al., 2010). 

Despite these advances, the global context, where water scarcity will increase together with the 

global population, demands for optimization of agriculture processes and, at the same time, for 

environmental sustainability (United Nations, 2015). In fact, in most regions of the world, over 

70% of freshwater is used for agriculture (Gilbert, 2012). By 2050, to sustain Earth’s population 

an estimated 50% (at least) increase in agricultural production and a 15% increase in water 

withdrawals are expected (Bruinsma, 2011; Ercin & Hoekstra, 2014). This future demand on 

water will affect all sectors, requiring as much as 25 to 40% of water to be re-allocated from 

lower to higher productivity and employment activities, particularly in water stressed regions 

(McKinsey, 2009). Given the existing constraints, the agricultural water management sector is 

currently in the process of repositioning itself towards modern and sustainable service 

provision, optimized according to the crops demands (Vanham et al., 2013). On the other hand, 

the adverse effect of synthetic chemicals on human health and environment can only be reduced 

or eliminated by adopting new agricultural technological practices (Al-Samarrai et al., 2012). 

Finally, it cannot be forgotten that the nature of agriculture and farming practices, in any 

location, are strongly influenced by the long-term mean climate state. Changes in the mean 

climate away from current states, may require adjustments to current practices in order to 

maintain productivity, and in some cases, the optimum type of farming may change (Howden 

et al., 2007). 

Given these factors, it is essential to develop new methods/approaches to better adapt to this 

changing and challenging context. Precision agriculture (PA) promotes the use of technology 

for the improvement of agronomical processes by means of data acquisition, processing and 

analysis to support decision making and crop management operations (Gebbers & Adamchuk, 

2010; Pablo J Zarco-Tejada et al., 2014). With the implementation of PA approaches 

environmental impacts can be mitigated while increase yields and maintaining the crop health 

status, by adopting site-specific management practices (Baofeng et al., 2016). 

In the Portuguese case, more specifically in the region of Trás-os-Montes and Alto Douro, the 

wine and the chestnut sectors are very relevant (Luís Martins et al., 2015), and for this reason, 

they are the focus crops of this work. Both chestnut trees (Castanea sativa Mill.)—wood and 

chestnut production—and grapevines (Vitis vinifera L.)—for wine production—are within the 
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most important species in Portugal. Those are especially relevant in the northern region of the 

country. According to the 2018 Portuguese Agricultural Statistics (Instituto Nacional de 

Estatística, I. P., 2019), in this region, chestnut trees represent 89% of planted surface (34,504 

ha) and 88% of yield (29,908 tons) while grapevines represent 47% of the planted surface 

(82,850 ha) and 33% of the wine production in Portugal (778,698 tons of grapes harvested to 

produce 1,918,369 hectolitres of wine). Both can be affected by several phytosanitary issues—

due to biotic or abiotic factors—which can significantly impact the plant development and its 

yield (Luís Martins et al., 2014). This way, there is a need to efficiently monitor these species 

with a high and spatial resolution enabling an early detection of pests, diseases and nutritional 

deficiencies for a quick, site-specific and effective response, which will foster a more 

sustainable and more profitable management of these crops and natural resources. 

The use of remote sensed data acquired from airborne or spaceborne platforms arises as an 

effective alternative for vegetation monitoring. More recently, the technological development 

has led to a size reduction of unmanned aerial vehicles (UAVs), to adapt to different usage 

contexts and at a more affordable cost (Pádua, Vanko, et al., 2017). Indeed, UAVs have become 

a highly flexible remote sensing platform to use in different areas (Jenkins & Vasigh, 2013; 

Juul, 2015). These allow the data acquisition from different sensor types, with greater versatility 

and lower cost (in small to medium sized project) when compared to other remote sensing 

platforms, such as satellites or manned aircrafts (Alessandro Matese et al., 2015). In the 

agriculture and forestry sectors its use extends, among others, to crop monitoring (Berni, Zarco-

Tejada, Suárez, et al., 2009; D. Turner et al., 2011), weed mapping (D. Gómez-Candón et al., 

2013), irrigation management (Baluja et al., 2012; Bellvert et al., 2013; Bellvert & Girona, 

2012; Pablo J. Zarco-Tejada et al., 2012), estimation of biomass (Bendig et al., 2014; Eija 

Honkavaara et al., 2013; Pölönen et al., 2013), chlorophyll (Uto et al., 2013; Pablo J. Zarco-

Tejada et al., 2012), or nutrients (Caturegli et al., 2016; Pölönen et al., 2013), vegetation height 

mapping (Mathews & Jensen, 2013; Suomalainen et al., 2014), helping in the decision making 

process to manage eventual problems (Yubin Lan et al., 2010). 

In most of the studies found in the bibliography, the use of UAVs is not intended to acquire 

data of the crops vegetative state in a temporal context. Some studies have used multi-temporal 

data in different types of crops, such as barley (Bendig et al., 2013), sunflowers (Vega et al., 

2015), silage maize (Castaldi et al., 2017), rice (Willkomm et al., 2016) and vineyards 

(Ballesteros et al., 2015). In these studies, the data obtained in the different periods allowed to 
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achieve results, which, in some cases, were only visible from a certain phase of the vegetative 

cycle. Thus, the study of UAV-based data of the same area obtained in a multi-temporal 

approach can be advantageous, as it will allow to continuously assess the vegetative 

development and to identify possible problems, which will enable a more effective and 

localized response, to mitigate them. 

Although the UAV data acquisition process is constantly evolving, it is reasonably established. 

However, concerning data processing and its interpretation for the extraction of valid and useful 

information for farmers, it is still primarily a manual process using geographical information 

systems (GIS). This thesis, presents the development of a management system for decision 

support for agriculture and forest, based on the automatic analysis of the acquired data at 

different periods, using different sensors aboard UAVs. Thus, in addition to the development 

and in-field validation of the necessary procedures for the different phases of the system, 

particular attention is given to the development of algorithms that allow automatic data 

processing and the extraction of useful information. Along these lines, it is intended a box-to-

box management support system for the agriculture and forest sectors. In this context, the 

scientific work presented in this thesis contributes to crop sustainability and, at the same time, 

reduces chemical treatments and preserves water resources. 

 Objectives of the study 

The main goal of this thesis is the development of a solution that can be used to support the 

management of agricultural and forest crops. This solution is supported by automatic data 

acquisition and analysis with high spatial and temporal resolution, using different sensors 

coupled to UAVs. This solution allows the assessment of crops temporal evolution, defining 

the probable causes of eventual problems—from biotic and/or abiotic origins—thus, allowing 

the most appropriate measures to be taken in order to solve or mitigate the detected issues. From 

this general objective, several specific objectives might be drawn up: 

• Study the relevance of multiple source data fusion/combination for the extraction of the 

most relevant information on a specific crop; 

• Importance of multi-temporal data for management of vineyards and chestnut 

plantations; 

• Development of algorithms for automatic monitoring of the vegetative status and 

detection of possible crop phytosanitary and nutritional issues;  
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• Validation of the algorithms in monitoring and verification of crop development, when 

compared with traditional methods. 

In this sense, the following research question has been formulated: 

1) Can multi-temporal data from multi-sources be combined to provide better management 

of agricultural and forest crops, in particular in vineyards and chestnut plantations? 

If the answer to the previous question is yes, it is necessary to understand if there is any obstacle 

to the development of a complete analysis process. It will then be necessary to answer the 

following question: 

2) Can the agriculture and forest management process be automated based on the 

developed algorithms specifically for the extraction of valid information from data 

acquired from different types of sensors? 

 Structure of the thesis 

This thesis is organized in ten Chapters, eight of which (Chapters 2-9) composed of original 

scientific research published in refereed international journals, subjected to blind peer reviews. 

This introduction chapter is followed by a comprehensive state-of-the-art regarding the usage 

of UAVs and different sensors in agriculture and forestry. This review (Chapter 2) was 

published in an international scientific journal and describes the advantages of UAVs regarding 

other remote sensing platforms, highlighting the existent UAV types along with the different 

sensors that can be applied for data acquisition in agriculture and forestry sectors. 

Considerations towards the most suitable UAV type and sensor to a specific application are 

presented along with its potential costs. 

Chapters 3 to 5 are mainly focused in the monitoring of chestnut trees, while Chapters 6 to 9 

are related to vineyard monitoring. The main objective of Chapter 3 is to explore UAVs for 

aerial imagery acquisition for preservation and prevention contexts, for this purpose two studies 

were conducted, in an area were chestnut trees are predominant and in a coastal area. The 

monitoring of chestnut trees health and the assessment of phytosanitary issues from the acquired 

multi-temporal imagery enabled the identification of the tree canopy cover decline through the 

time. 
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In Chapter 4 a method for automatic multi-temporal analysis of chestnut stands is proposed. 

The UAV-based dataset from Chapter 3 was used. The method allows the single tree detection 

enabling to estimate its height, tree crown diameter and, by means of multi-temporal analysis, 

to estimate the canopy decline. The analysis of the tree canopy decline enables to estimate trees 

with potential phytosanitary problems. This method poses as a faster approach for chestnut trees 

monitoring and to assist in field inspections. 

Chapter 5 presents a study where a chestnut stand was monitored along a growing season. The 

multi-temporal dataset acquired, using a multispectral sensor coupled to a UAV, along with a 

phytosanitary characterization of each individual tree, enabled to apply machine learning for 

the detection of phytosanitary issues. The method presented in Chapter 4 was used for the 

segmentation of each tree and several features were extracted for training a random forest 

classifier using data from each flight campaign. The results achieved in this study allow to 

understand the accuracy of the presence of phytosanitary issues in chestnut trees and to predict 

the specific issue affecting each one of them. 

In Chapter 6 a method for vineyard vegetation detection is presented. For this purpose, different 

vineyards, mainly located in the Douro Demarcated Region, were surveyed using a low-cost 

UAV. The method relies in the use of RGB and height information driven from the 

photogrammetric processing of the UAV-based imagery. It allows, with high accuracy, to 

estimate the number of vine rows, grapevine vegetation, inter-row vegetation, bare soil and 

areas along the rows with potential missing vines. This way, new automatisms in vineyard 

monitoring are achieved for a better decision support. 

Chapter 7 addresses a study using multi-temporal UAV-based RGB data acquisition with nine 

flight campaigns carried in two vineyard plots located at University of Trás-os-Montes e Alto 

Douro (UTAD). The data covers different phenological stages of the growing season of 2017. 

The vineyard vegetation segmentation method presented in Chapter 6 is applied to estimate the 

vineyard vegetation and the vine rows along with the grapevines canopy volume. The estimated 

height was validated with field measurements. This process enabled to characterize the vineyard 

vegetation evolution (grapevine and inter-row vegetation area and grapevine volume) 

throughout the season and allows to estimate areas were canopy management can be applied. 

Chapter 8 presents a study that explores the relationship among different sensors coupled in 

UAVs and analyses different approaches to generate vineyard vigour maps. A vineyard plot at 
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UTAD was surveyed in the growing season of 2018 along five different flight campaigns of the 

vineyard vegetative development. UAV-based data is acquired from RGB, multispectral and 

thermal sensors. The vigour maps are classified in three levels (high, medium and low) using 

the whole vineyard or only grapevine vegetation. This approach enables a rapid vineyard 

characterization and provides knowledge to farmers and winegrowers of areas with lower and 

higher vigour within a vineyard plot. 

Using the knowledge acquired and the methods presented in Chapters 6 and 7, a computer 

vision method for individual grapevine analysis from UAV-based data is presented in Chapter 

8. This method is capable to estimate potential missing grapevines with a high accuracy when 

comparing to ground-truth data. A multi-temporal dataset composed of RGB, thermal infrared 

and multispectral data from two vineyard plots in two different wine regions is used to extract 

different biophysical grapevine parameters. The extracted parameters allow a better 

understanding of the vineyard dynamics along the growing season, possessing potential to be 

used for the computation prescription maps for plant-specific applications and to estimate the 

individual grapevine production. 

Chapter 10 concludes the thesis with a synthesis of the significant achievements of this research 

and presents future research directions. 
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 Introduction 

Recent years showed rapid socialization and an increased interest in unmanned aircraft system 

(UAS) for civilian applications. Unmanned aerial vehicles (UAVs), often referred as drone, are 

aircrafts without a human pilot on board. Instead, UAVs are controlled by a ground operator. 

This was achieved due to a variety of factors, ranging from the introduction of relatively low-

cost systems and user-friendly controls to the general technological advances and to the 

miniaturization of individual components (main boards, micro-processors and motors, high-

power density batteries, cheaper airframes, communication devices, and sensors). These 

advances led to the production of affordable off-the-shelf UAS suitable for civilian applications, 

easy to transport, mount, launch, and operate. 

An UAS can be defined as a power-driven reusable aircraft operated without a human pilot on 

board (J. M. Sullivan, 2006). It can be remotely piloted or have a programmed route to perform 

an autonomous flight, using the embedded autopilot. Generally, it also requires a ground-

control station, sensor suites and communication devices for carrying out flight missions 

(Pappalardo, 2003). 

Apart from military applications (Austin, 2011; Gertler, 2012; Jenks, 2009), the European 

Parliamentary Research Service provided a list of potential applications in civil and commercial 

use consisting of disaster response, earth observation, the energy sector, infrastructures, 

maintenance monitoring, aerial mapping, filming, agriculture, forestry, fisheries, 

telecommunications, package delivery and non-military government authorities. Also, some 

concerns rose from the increased use of UAS in illegal activities, such as drug trafficking (Juul, 

2015). The Association for Unmanned Vehicle Systems International (AUVSI) estimates that, 

among the aforementioned applications, agriculture is at the vanguard of the promising markets 

for the commercial use of UAS (Jenkins & Vasigh, 2013).  

In the specific area of agriculture, every farmer’s goal is to efficiently apply the available 

resources to gain the maximum yield possible. To achieve this, they need a fast, reliable, cost-

effective and easy method to scan their fields. The crop’s condition can be assessed by the stage 

of ripening, water status, pest attacks and nutritional requirements. UAS with remote sensing 

capabilities can provide this necessary data, so that the farmer is able to identify problems in 

early stages and rapidly select the appropriate interventions (George et al., 2013). Besides crop 

monitoring, farmers can also benefit from UAS in precision spraying. Similarly, agriculture, 
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forestry and nature preservation can also greatly benefit from the use of UAS technology. 

Foresters can use them for inspection of forestry operations, wildfire detection, wildlife 

tracking, legal restrictions monitoring, woodland change detection and survey sites which are 

otherwise inaccessible or where trespassing is undesirable (Grenzdörffer et al., 2008). 

 There is a wide range of UAS and sensors that can be used in agroforestry, which leaves space 

for uncertainty among the professionals regarding the use of those devices and how they can 

actually help to cost-effectively leverage the production. Thereby, the purpose of this study is 

to help users selecting the proper UAS together with the proper imaging sensor to get the 

expected and needed results. Several authors already provided surveys regarding UAS and their 

applications (Colomina & Molina, 2014; Nex & Remondino, 2013; Pajares, 2015; Salamí et 

al., 2014; Watts et al., 2012; Zhang & Kovacs, 2012). However, in this study authors are 

focusing on the application of low-cost mini and micro UAS and imaging sensors that meet the 

interests of both farmers and foresters. 

 UAS as a remote sensing platform 

Remote sensing platforms are useful to provide added value information for agroforestry 

applications. This section presents these platforms focusing on UAS which are classified 

according to their size. Emphasis is given on small, mini and micro UAS, which are divided in 

two types: fixed-wing and rotor-based.  

 Traditional remote sensing technologies and UAS 

Traditional remote sensing technologies encompass satellite and manned aircraft platforms. 

These platforms are continuously improving in terms of spatial, spectral and temporal 

resolutions. Each of these technologies has benefits and constrains regarding technological, 

operational and economic factors. The high spatial and temporal resolutions, flexibility and 

much lower operational costs make UAS a good alternative to traditional remote sensing 

platforms for agroforestry applications (Muchiri & Kimathi, 2016; Salamí et al., 2014). 

The use of professional civilian UAS is increasing rapidly around the world and it is expected 

to explode in the upcoming years. The main factors supporting this growth are related to the 

increasing awareness of the benefits that this technology can bring to a wide range of industries 

and non-commercial sectors, as well as to the introduction of relatively low-cost systems, user-

friendly controls and the general technological advancements and the miniaturization of 

individual components. 
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According to the AUVSI, the foreseen integration of UAS in the United States national airspace, 

for the decade 2015–2025, is expected to create more than 100 000 jobs and generate an 

economic impact of $82 billion (Jenkins & Vasigh, 2013). 

As a new method of geo-data collection, UAS complements existing techniques, filling the gap 

between large area imaging (satellites and manned aircrafts), and smaller coverage, time-

consuming, but highly accurate terrestrial techniques (Figure 2.1). Compared to high altitude 

data, UAS data is fairly low cost, with the advantage that flights can be made often and quickly. 

UAS are thus very useful when portions of land must be quickly surveyed (quick response 

capability for, e.g. time-sensitive deliverables, disaster situations or search and rescue 

operations). Compared to laser scanning—a very good technique for most of the surveying 

operations—UAS have the advantage of being above the area to be monitored, which is often 

a requirement to get an accurate reading. However, and despite the aforementioned advantages 

of UAS, they are not really competing against traditional aerial photography, since they are 

seen as a complementary technology. 

 

Figure 2.1. Pros and cons of the existing remote-sensing technologies Unmanned aerial system (UAS) technology 
complements existing techniques, filling the existing gap between large-area satellite and manned aircraft imagery 
and smaller coverage, time-consuming, but highly accurate collection using terrestrial surveying instruments with 
major pros and cons highlighted. 
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A technical comparison between multi-rotor UAS, manned aircraft and satellites was made by 

Matese et al. (2015), to evaluate their cost-effectiveness within the precision agricultural scope. 

UAS were classified with the best flexibility, optimal cloud cover independence and regarding 

the processing tasks, the resolution and precision were also classified as optimal. However, the 

coverage range, flight endurance, mosaicking and geocoding effort were classified as poor in 

comparison with the other two platforms. The case study was implemented in two different 

vineyards. In heterogeneous vineyards, low-resolution images fail in presenting part of the 

intra-vineyard variability. The referred study concluded that in small fields (5 hectares), rotor-

based UAS proved to be the most cost-effective solution. However, and according to the 

authors’ own experience with UAS, fixed-wing small UAVs can be used up to a square 

kilometre area—with a Ground Sample Distance (GSD) up to 5 cm/pixel—and up to 4 km2 

area for a GSD greater than 10 cm/pixel. Of course, these threshold values depend on the UAS 

autonomy (the eBee, from SenseFly, was used as reference). It is worth noting that imaging 

area-coverage is also influenced by flight altitude (directly influences the GSD), speed, 

endurance, and sensor resolution (low resolution sensor lead to lower altitude flights, which 

impacts on the imaging area). 

Therefore, UAS represent an evolution in gathering agricultural and forest statistics data from 

small to medium areas. Commercial low-cost aerial platforms coupled with high resolution 

imaging sensors allow to collect accurate data regarding crop and trees’ health at large scale 

with insignificant clouds’ influence (Quiroz, 2015). 

 UAS main characteristics 

The use of UAS equipped with small sensors has emerged as a promising alternative to assist 

modelling, mapping and monitoring applications in rangelands, forest and agricultural 

environments. UAS are also suitable to be used in dirty, dull and dangerous conditions as 

wildlife monitoring, ice cover, weather phenomena and climate change (Watts et al., 2012). 

However, flight regulations and legislation do not always engage technological advancements 

regarding UAS. Many countries still lack the proper legislation that regulates the use of UAS 

both for commercial and for leisure purposes. The sooner legislation safely integrates UAS in 

the airspace—clarifying requirements and conditions under which drones can be operated—the 

sooner UAS usage will increase. The legal situation with regard to flying a UAS in various 

different countries is discussed extensively in the paper by Cracknell and Hayes (2007) which 

is published in this special issue. 
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With UAS it is possible to acquire low-cost yet high precision images since they are acquired 

from lower altitudes. For agroforestry applications, such level of detail can reveal more 

information about crop condition, weeds, pests and other abnormalities, leading to an earlier 

detection. These advantages can help agroforestry professionals in short, medium- and long-

term operations, due to the possibility of identifying problems faster and, consequently, react 

quickly, reducing losses and other economical outlays. Regarding farm management, it is 

possible to gather more accurate results on how crops are reacting to different treatments, 

leading to a more effective use of resources.  

As previously mentioned, UAS differ in size, physical shape and operational endurance, which 

limit the supported payload carrying capacity, operating altitude and range. This subsection will 

address UAS of diverse dimensions but it is important to remind that the main focus of this 

study are mini and micro UAS, since these types are more affordable, easier to carry and simpler 

to use than the large and medium sized UAS.  

Some authors classify UAS in terms of aerospace occupation, altitude and endurance (Austin, 

2011; Nex & Remondino, 2013; Watts et al., 2012; Zhang & Kovacs, 2012).  

The large UAS used for civilian applications are commonly adapted from military platforms. 

They are intended to be used on tasks where manned aircraft deployment would be potentially 

unsafe or inefficient (e.g. in forest wildfires monitoring). NASA’s Ikhana UAS (Figure 2.2a) 

was used to collect and process data regarding fire detection, through a multispectral camera 

(Ambrosia et al., 2011). These types of platforms require high financial funding, due to the 

development, deployment and ground operations complexity. 

Medium-sized UAS suffer basically from the same problems as large UAS. In comparison 

medium-sized UAS feature reduced overall costs and easier take-off/landing operations. An 

example of a medium-sized UAS is the NASA’s SIERRA UAS (Figure 2.2b). It was applied in 

atmospheric composition, arctic surveys, land cover characterization, surface to air fluxes, 

disaster response and assessment, agriculture and ecosystem assessment, biological/physical 

oceanography, island and coastal remote sensing and coral reef monitoring (Watts et al., 2012). 

Another NASA’s UAS, known as Pathfinder-Plus (Figure 2.2c), was applied for surveillance 

operations and decision support in agriculture, to detect weeds and inconsistencies in the 

fertilization delivery of coffee plantations, using image acquisition sensors, more specifically 

RGB and narrow-band multispectral (Herwitz et al., 2004). Due to costs, portability and 
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required knowledge for controlling purposes, these types of UAS are not suitable or even 

affordable for most farmers and foresters. 

 

Figure 2.2. Large and medium-sized unmanned aerial vehicles (UAVs): (a) NASA’s Ikhana; (b) NASA’s 

SIERRA; and (c) NASA’s Pathfinder-Plus. Image courtesy of NASA. 

The small, mini and micro UAS built for civilian usage features user-friendly platforms, present 

a typical weight less than 20 kilograms with a flight time comprised between a couple of 

minutes and a few hours of autonomy within limited distance range (Hardin & Jensen, 2011). 

Technological advancements have enabled meaningful upgrades to these devices which are 

capable of acquiring spatial data in great detail using cost-effective platforms (Watts et al., 

2012). The expansion of these devices has been facilitated by the miniaturization and the cost 

reduction of sensors and embedded computers (Berni, Zarco-Tejada, Suarez, et al., 2009). 

There are two main types of small, micro and mini UAVs: fixed-wing and multi-rotor. Each 

type has its own advantages for different deploying environments and required tasks. 

The size of the mapped area, its complexity, desired resolution, weather conditions and take-

off/landing zone space are the necessary conditions that must be considered before acquiring 

an UAS. The minimal experience to program and to operate these platforms is an important 

advantage, given that flight planning and management can be controlled from a single interface. 

Fixed-wing UAS can travel several kilometres from the launch point, being mainly suitable for 

mapping with applications in land surveying, agriculture, mining and environmental 

management. This type of UAS can achieve a high cruise altitude and speed, cover large areas 

and get a few centimetres of GSD. However, they are launched by hand or use a small launch 

ramp and require a large and soft corridor to land. After successful launch, the Global 

Navigation Satellite System (GNSS) receiver guides the UAS along a pre-defined path (Hardin 

& Jensen, 2011). The market offers a wide variety of commercial lightweight fixed-wing UAS. 

Some of the most successful are shown in Figure 2.3. 
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Figure 2.3. Some of the most representative fixed-wing UAVs: (a) QuestUAV Q-Pod; (b) SenseFly eBee; (c) 
Trimble UX5; (d) MAVinci Sirius Pro; and (e) PrecisionHawk Lancaster. The images were obtained from the 
manufacturers’ websites. 

The multi-rotor UAS rely on a set of propellers arranged around its core (Figure 2.4) being the 

most suitable for inspection, surveying, construction, emergency response, law enforcement 

and cinematography and videography. Their low cruise altitude and speed are adequate to cover 

small areas, obtaining spatial resolution up to a millimetre GSD. Moreover, their vertical take-

off and landing (VTOL) only requires a few square metres of free terrain, contrarily to fixed-

wing-based systems. The rotors can be arranged around the UAV or can be attached to a set of 

fixed arms. Multi-rotors are less prone to vibrations than fixed-wing (L. O. Wallace et al., 

2011). As more rotors are added, the lesser is the crash risk and heavier payloads are supported, 

although the payload size limitation remains (Anderson & Gaston, 2013). 

 

Figure 2.4. Some of the most representative rotor-based UAVs: (a) Topcon Falcon 8; (b) DJI Phantom 4; (c) 3DR 
SOLO Quadcopter; (d) SenseFly eXom; and (e) Yuneec Typhoon. The images were obtained from the 
manufacturers’ websites. 
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Regarding mini and micro UAVs, a few considerations should be made before acquiring or 

deploying them. Anderson and Gaston (2013) presented the four main constraints for 

consideration: (1) platform; (2) sensor; (3) operating and; (4) environmental constrains. Table 

2.1 summarizes the major differences between the fixed-wing and the multi-rotor UAVs. 

Table 2.1. Comparison between mini and micro fixed-wing and rotor-based UAVs regarding specific parameters 
and examples of tasks that can be performed. 

 Fixed-wing Multi-rotor 
Image resolution Up to centimetre level Up to millimetre level 

Take-off Hand/small launch ramp Vertical take-off 
Payload capacity Small Depending on the number of rotors 

Flight time High (usually up to 1h) Low (usually up to 30 min) 
Landing surface Several meters of extension Approximately the UAV size 

Coverage 
Fixed-wing outperforms multi-rotor, most of the times Cruise speed 

Wind resistance 

Main applications 
Land surveying, agriculture, GIS, 

mining, environmental management 
Inspection, video, surveying (urban 
scale), construction and emergency 

There are two approaches to carry out a UAS mission: by autopilot according to a predefined 

flight path or manually with a remote controller operated by a pilot. An autonomous flight can 

be achieved in the following main steps: (1) flight plan—most of the recent UAS are released 

with a flight planning software, and there are also freely available smartphone applications that 

allow to specify the intended area of interest, mark the launch area (i.e. where the UAV will 

gain enough altitude to start the mission) and the landing area; (2) after planning—the flight 

path must be uploaded to the UAV, making it available to start the next step, the flight execution 

and data gathering. After a successful launch, the UAV will automatically capture images 

triggered using the GNSS location as reference. Sufficient overlap of the images ensures enough 

redundant data in case of distorted images; (3) after landing—the obtained data are downloaded 

and later processed in a software that provides the desired output; and (4) the last step is to 

evaluate the data, for the intended purpose (e.g. field issues, irrigation issues, water stressed 

crops, crop height). 

As previously mentioned, lightweight UAVs have limited payload, which makes most of the 

available platforms unable of carrying a multi sensor system. In some cases, to acquire data 

from different sensors, the UAV must perform multiple flights over the same area. 

The next section provides the different types of sensors used in UAS flight missions. 
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 Sensors 

The critical component for carrying out remote sensing activities is the imaging or sensing 

payload which defines the capabilities and the usability of the UAV (Siebert & Teizer, 2014). 

The current huge market offer of imaging sensors can be quite overwhelming at first glance for 

a non-expert user. To help farmers and foresters making their final decision, an overview of 

imaging sensor types is provided together with their main applications in precision agriculture 

and forestry. It is noteworthy that the development of UAVs and sensors occurs at a rapid rate 

which, expectedly should not slow down in the upcoming years (Wagner, 2015). In the near 

future most of the current systems will probably be discontinued, evolve or be replaced by 

entirely new systems. Therefore, potential buyers should always find up-to-date information 

about the current state of available UAVs and sensing instruments. UAVs as a remote sensing 

platform are capable of carrying a large variety of sensors, from low-cost commercial Digital 

Single-Lens Reflex (DSLR) cameras to expensive professional gear, such as hyperspectral 

cameras or LIght Detection And Ranging (LiDAR) sensors, specially designed for UAVs 

(Klemas, 2015).  

Each remote sensing device detects a portion of the electromagnetic radiation. Gamma rays, x-

rays, ultraviolet, visible light, infrared light, microwaves and radio waves are examples of 

electromagnetic radiation that differ from each other concerning wavelength. This range of 

electromagnetic radiation is called the electromagnetic (EM) spectrum. Only a very small 

portion of the EM spectrum is visible by the (naked) human eye. However, some sensors can 

detect different parts of the EM spectrum allowing humans beings to interpret it and therefore 

make the non-visible become visible. In this study, two types of imaging sensors will be 

discussed: passive and active sensors. 

Passive sensors are used for natural emissions detection from the Earth’s surface and its 

atmosphere whereas active sensors transmit their own pulses of radiation from their own source 

of energy and then detect the incoming reflected radiation. Passive sensors include RGB 

cameras, near infrared (NIR) cameras, thermal cameras and their combinations in multispectral 

and hyperspectral cameras, whilst LiDAR and RADAR (radio detection and ranging) are 

examples of active sensors (Richards, 2013; W. Turner et al., 2003). 
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 RGB sensors 

Visible light sensors are capable of capturing imagery perceptible to the human eye. Optical 

visible light cameras operate in the wavelength range, approximately, from 400 to 700 nm 

(Austin, 2011). UAS can benefit from a large scale of mass-market off-the-shelf cameras to 

professional grade cameras with prices varying accordingly. In their review, Colomina and 

Molina (2014), present a list of small and medium format visible band cameras with their basic 

parameters. In addition to this list, Figure 2.5 displays some currently used RGB cameras 

suitable for mini and micro drones, for agricultural and forestry applications. 

 

Figure 2.5. Examples of optical cameras commonly used on UAVs for RGB image acquisition: (a) GoPro Hero 4 
Black edition; (b) Canon G9X; (c) Panasonic Lumix DMC-TZ71; (d) Sony Alpha 7; and (e) Nikon D800. 

RGB sensors mounted on UAVs are capable of providing high resolution imagery from a bird’s 

eye perspective, as presented in Figure 2.6. These images can be processed into orthophoto 

mosaics, by stitching images together (Darren Turner et al., 2012), or to build digital surface 

models (DSM), using 3D reconstruction algorithms based on stereo vision or structure from 

motion (SfM) algorithms (Nex & Remondino, 2013). Possible uses of orthophoto mosaics 

include aerial mapping and imaging, plant counting, surveillance, emergency response, 

surveying and land use applications. DSMs can be useful for 3D surveying and mapping or 

volume computation. 

 

Figure 2.6. RGB image sample obtained with Sensefly’s eBee fixed-wing UAV over one vineyard of the 
University of-Trás-os-Montes e Alto Douro (UTAD). 
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Remote sensing applications also very often separate RGB channels and work with individual 

red, green and blue channels. Colour reassigning is used to create false colour images to 

enhance certain features that can be very useful in land analysis. While this kind of imagery 

might provide valuable visual information for farmers and foresters, it is not very suitable to 

assess vegetation properties due to the lack of information obtained in the NIR region, where 

the high reflectance of vegetation occurs (Nebiker et al., 2008). 

 Infrared sensors 

The infrared spectrum covers longer wavelengths than the visible light spectrum, ranging from 

around 700 nm (NIR) to 1,000,000 nm (far infra-red, FIR). The boundaries between the visible 

and NIR, at one end, and between the FIR and microwaves, on the other end, are not precise 

and are open to different interpretations (Austin, 2011). The NIR band from 700 nm to 

approximately 8,500 nm represents the region where high plant reflectance occurs, thus being 

crucial for most of the agroforestry applications. A NIR image is displayed in Figure 2.7.  

 

Figure 2.7. NIR image sample obtained with Sensefly’s eBee fixed-wing UAV corresponding to the same area 
represented in Figure 2.6. 

NIR sensors are frequently used in precision agriculture applications and constitute the basis 

for vegetation analysis. Healthy vegetation that is actively growing and producing energy from 

photosynthesis reflects more in the NIR region. When combined with RGB, it can be used for 

vegetation indices (VI) calculations which are based on the fact that vegetation reflects various 

wavelengths differently. Most of the common off-the-shelf cameras have filters blocking NIR. 

However, it is relatively easy to transform an RGB camera into a NIR camera, by removing the 

filter and replacing it by one that is filtering the visible red, green or blue bands. Figure 2.8 

displays some of currently used cameras that were converted to NIR cameras by changing the 

filters. NIR and RGB sensors are often combined in multispectral sensors, which will be 

addressed later. 
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Figure 2.8. NIR cameras commonly used in UAVs: (a) Canon S110; (b) Panasonic Lumix 7; and (c) Fujifilm X-
M1. 

While the human eye is less sensitive to NIR, FIR is entirely invisible for us. With the intensity 

increase, this radiation can be experienced as heat. Thermal cameras operate approximately in 

the spectrum at wavelengths from 5,000 nm to 14,000 nm. Each pixel’s intensity can be 

transformed into a temperature measurement. 

When compared with conventional cameras, thermal cameras are much more expensive and the 

image resolution is much lower (Mejias et al., 2015). Thermal sensors allow to create full 

thermal maps (Lagüela et al., 2015), to check irrigation management (Gonzalez-Dugo et al., 

2013), to assess the functionality of solar panels (Quater et al., 2014) and to detect wildlife or 

livestock (Israel, 2011). A couple of thermal cameras developed for UAS are depicted in Figure 

2.9. 

 

Figure 2.9. Common thermal cameras developed to be mounted on UAVs: (a) Workswell WIRIS and (b) FLIR 
Vue. 

 Multispectral and hyperspectral sensors 

Until a few years ago multispectral and hyperspectral cameras were considered too heavy for 

mini and micro UAVs, whereas RGB and modified RGB cameras, for acquiring the NIR band, 

were considered as a standard tool coupled with UAVs for photogrammetric and remote sensing 

applications. Apart from early prototypes (Saari et al., 2011), such cameras only became 

commercially available in recent years. Just like NIR sensors, multispectral sensors are 

extensively used for vegetation analysis, since NIR is one of the multiple bands they can detect 

(usually R, G, B, NIR, Red Edge and sometimes ultra violet light and thermal bands are 

included in multispectral sensors). Red edge refers to the EM region between visible light 
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spectrum and NIR. Some of the most used multispectral sensors are shown in Figure 2.10. 

Nebiker et al. (2016) made a comparison between a high-end multispectral camera and a low-

cost off-the-shelf NIR camera showing significant differences. As expected, the multispectral 

sensor provided good results, consistent with the reference values obtained by a hyperspectral 

spectrometer whilst the low-cost camera showed a reasonable correlation with the multispectral 

system with some significant biases. However, the use of high spatial resolution low-cost 

cameras proved to be useful for qualitative monitoring of crops, including diseases detection. 

While multispectral cameras sense broadbands, usually 4 to 12, hyperspectral cameras (Figure 

2.11) are capable of sensing hundreds of narrow bands, up to 2 nm in wavelength (Bendig et 

al., 2015). 

 

Figure 2.10. Some of the most commonly used multispectral cameras: (a) Parrot Sequoia; (b) multiSPEC 4C; (c) 
Tetracam ADC; and (d) MicaSense RedEdge. 

 

Figure 2.11. Some of the most common used hyperspectral cameras: (a) the Headwall Photonics Micro-Hyperspec; 
(b) the Rikola Hyperspectral camera; and (c) the Surface Optics Corp. SOC710-GX. 

Hyperspectral sensors produce images in which each pixel contains the whole spectrum of the 

sensed wavelengths. This means that hyperspectral outcomes provide much more information 

than the imagery produced by the previously referred devices. A simplified representation of a 

hyperspectral data cube is shown in Figure 2.12. A list of both multispectral and hyperspectral 

sensors used in conjunction with UAVs in several published works can be found in Colomina 

and Molina (2014). 
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Figure 2.12. Two-dimensional projection of a hyperspectral data cube. The high number—typically, over 100—

of narrow spectral bands results in a continuous range of reflectance values for each image pixel. The front of the 
cube shows a false colour image using the infrared spectral bands 1721, 2306, and 1565 nm in RGB (image from 
http://org.uib.no/cipr/Project/VOG/hyperspectral.htm). 

 LiDAR sensors 

LiDAR is an active laser-based remote sensing technology that transmits to the surface optical 

laser pulses with a fast repeat rate. By measuring the double path time from the emitted pulse 

(transmitter-target-transmitter/receptor) it is possible to determine the distance to targets 

(objects, surface). By repeating this process with a fast sequence, LiDAR generates a 3D point 

cloud of the surface, as shown in Figure 2.13. 

 

Figure 2.13. UAV-based lidar data of different agriculture features. Properly sparse surveys in time provide 
valuable data to detect cropland critical areas. © RIEGL LMS, www.riegl.com 

The accuracy of these 3D point clouds allows them to be used for multiple applications in 

agroforestry, forest change detection (L. Wallace et al., 2014), flood mapping (Malinowski et 

al., 2016) or plant height measurements (Bareth et al., 2016). Short-range LiDAR sensors were 

also used on-board UAVs for obstacle detection and guidance (Ramasamy et al., 2016). In the 

near future, further miniaturization and cost reduction of LiDAR sensors is expected (Poulton 

& Watts, 2016). Figure 2.14 shows some currently available LiDAR systems suitable for UAS. 
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Figure 2.14. Examples of commonly used UAS lidar sensors: (a) the Routescene lidar Pod; (b) the Yellowscan 
Mapper; and (c) the Velodyne PUCK. 

Table 2.2 presents some examples of application areas and studies in which the described 

sensors were used. Depending on the goal of certain applications, the sensor should be properly 

selected, considering the trade-off between characteristics and goals to reach. Thermal sensors 

provide spectral bands that are more suitable for applications that require temperature 

information invariant to light conditions as, for example, real-time animal detection. Disease 

detection, in early stages, can be performed by hyperspectral sensors since many of them only 

present slightly noticeable visible characteristics. On the other hand, and despite of the fact that 

some similar tasks can be achieved with thermal and hyperspectral sensors, such as water status 

assessment, other aspects need to be considered (e.g. spatial and spectral resolution and 

acquisition costs). These topics are addressed in Section 2.5 of this study, where the estimated 

budgets of UAS bundles for different agroforestry applications are also presented (including 

UAV platform, sensors and processing software).  

The amount of data collected by sensors mounted on UAVs can be huge, prompting the need 

for methods able to transform them into valuable information. In the next section this topic is 

addressed.  

 Data processing 

After each flight the sensors mounted on the UAV returns a large amount of data which is not 

yet suitable to extract information and to reach conclusions, since platforms are rarely designed 

to interact on-the-fly with the attached sensors. Thus, the desired results must be pursued in a 

post-flight processing stage (Geipel et al., 2013). This section intends to present the several 

operations that can be performed with the acquired data, in the referred post-flight processing 

stage. 
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Table 2.2. List of potential application areas with examples of scientific studies, grouped by sensor type. 

Sensors Application areas References 

RGB 

Forest canopy gaps inspection Getzin et al, (2012) 
Biomass monitoring Bendig et al. (2014) 
Volume characterization Ballesteros et al. (2015) 
Vegetation segmentation Nolan et al. (2015) 

Early-season crop monitoring 
Torres-Sánchez et al. (2014); Gómez-Candón et al. 
(2013) 

Thermal 

Land-use classification Lagüela et al. (2015) 

Water status assessment 
Baluja et al. (2012); Zarco-Tejada et al. (2012); Park et 
al. (2015) 

Wildlife detection Israel, (2011); Ward et al. (2016) 
Irrigation management Bellvert and Girona (2012); Bellvert et al. (2013) 
Fire detection Merino et al. (2011) 

Multispectral 

Vigour maps production based on 
vegetation indices 

Primicerio et al. (2012); Candiago et al. (2015); 
Nebiker et al. (2008); Navia et al. (2016) 

Image segmentation Comba et al. (2015) 
Weed mapping Peña et al. (2013) 
Nitrogen status estimation Caturegli et al. (2016) 
Biomass estimation Bendig et al. (2015) 

Hyperspectral 

Biomass estimation Honkavaara et al. (2012); Pölönen et al. (2013) 
Chlorophyll estimation Uto et al. (2013) 
Nitrogen status estimation Pölönen et al. (2013) 
Water status assessment Zarco-Tejada et al.  (2012) 
Early detection of plant disease Calderón et al. (2015) 

LiDAR 

Bellow forest canopy mapping Chisholm et al. (2013) 

Forest inventory and structural properties 
Wallace et al. (2012); Wallace (2013); Wallace et al. 
(2016) 

Assessment of tree parameters Park et al. (2015) 

 Image pre-processing 

Numerous issues may affect data quality. To enhance the data, a pre-processing stage is 

commonly used. Issues such as atmospheric distortions, spectral variability of the surface 

materials, altitude, wind turbulence, camera focal length and viewing angle are external factors 

that may contribute to image degradation. For these reasons, to detect changes as revealed by 

modifications in surface reflectance and to be able to compare acquired data in different epochs 

(time series analysis), it is necessary to carry out radiometric corrections. Two approaches to 

radiometric calibration are possible: (1) ground measurements at the time of data acquisition 

for atmospheric correction and sensor calibration; and (2) radiometric calibration target that 

allows the user to calibrate and correct the images’ reflectance, considering the illumination 

and some of the sensor’s characteristics. It is recommended to use such a target when generating 

index maps. Practically, the radiometric calibration target is a white balance card. The 

radiometric calibration target should cover enough pixels to get good statistics.  
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In most use cases a single image cannot cover the entire area of interest, which makes it 

necessary to capture several overlapping images of the area (Figure 2.15a). These images have 

to be stitched together into a single orthophoto mosaic (Figure 2.15b). Jia et al. (2016) describe 

the mosaicking process based on the Scale-Invariant Feature Transform (SIFT) algorithm. The 

process can be subdivided into the following steps: (1) image pre-processing; (2) image 

registration (feature extraction, feature matching, model transformation and parameter 

estimation); and (3) image fusion. Also, the correction of the image’s geolocation can be 

achieved with Ground Control Points (GCP). 

It should be noticed that the most common UAS limit the sensor payload in weight and 

dimension, imposing the selection of standard small format sensors for imaging. The sensor‘s 

characteristics (focal length changes, principal point offset, lens optical distortion, etc.) along 

with external factors produce image deformations. The cause of resolving the above parameters 

is called geometric calibration, which is critical to ensure UAS‘s data geolocation precision and 

significant for UAS quantitative remote sensing application. 

 
Figure 2.15. Orthophoto mosaic generation example. (a) Images gathered in a UAV flight over UTAD’s campus. 

(b) Orthorectified image mosaic which is the result of the processing operations (involving homographic 
corrections and stitching) upon the acquired images. 

 Spectral indices 

To easily extract information from the mosaic, there are different spectral indices that can be 

applied. These indices are calculated through the use of information about the surface’s 

reflectance from two or more wavelengths or spectral bands. The results provide a relative 

abundance of certain features. The most used indices are VI. However other available types of 

indices can be useful for agroforestry professionals, e.g. burned areas and water or snow indices. 
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Vegetation indices are not recent and were used in the evaluation of data gathered by other 

remote sensing platforms (e.g. satellites) before being applied to UAS data. Its use extends from 

crop and vegetation monitoring to estimation of plant parameters. 

There are broad and narrowband indices, both designed to measure the overall amount and 

quality of photosynthetic material, which is crucial for understanding vegetation’s state. 

Broadband greenness VI are the simplest way to measure the general quantity and vigour of 

green vegetation. Narrowband greenness VI are intended for use with imaging spectrometers, 

making them suitable for precision agriculture since these can be used to identify, analyse and 

manage. Comparing both types, narrowband VI are more sensitive to smaller changes in 

vegetation health, mainly in areas with dense vegetation where broadband measures can 

saturate. 

Vegetation detection through images is possible due to the absorption of red and blue channels 

and a higher reflectance of the green and NIR channels. Different spectral signatures are 

obtained from different vegetation types concerning size, shape and colour of leaves (Salamí et 

al., 2014). 

Vegetation indices can also be used to calculate biomass, Leaf Area Index (LAI), disease 

detection, water stress presence and nitrogen content, assisting farmers and foresters in crop 

management, yield forecasting and environmental protection (Zhang & Kovacs, 2012). Series 

of used VIs can be found in (Baluja et al., 2012; Gnyp et al., 2014; López-López et al., 2016; 

Salamí et al., 2014; P. J. Zarco-Tejada, Ustin, et al., 2005). NIR vegetation indices are reported 

to have a good correlation with biomass and LAI (Thenkabail et al., 2000). López-López (2016) 

have separated some vegetation indices in different categories: structural indices, pigment 

indices or chlorophyll a+b indices, carotenoid indices, xanthophyll indices, R/G/B indices, 

chlorophyll fluorescence and plant disease index. Table 2.3 provides the necessary information 

about the most commonly used VI, including the formula allowing their calculation and their 

main applications. Theoretical basis regarding the VI are provided by Galiano (2012) mostly 

related to water stress vegetation indices. 

Indices based on NIR and visible spectrum combine NIR and red bands for biomass estimation, 

canopy structure, and LAI. Among them, the most commonly used index is the Normalized 

Difference Vegetation Index (NDVI) (Zhang & Kovacs, 2012) proposed by Rouse et al., 
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(1974). Figure 2.16 presents a false colour image obtained after NDVI calculation from a 

vineyard. 

 

Figure 2.16. False-colour representation of a normalized difference vegetation index (NDVI) image composed of 
red and near-infrared (NIR) bands corresponding to Figure 2.6–Figure 2.7. 

Wehrhan et al., (2016) compared different VI (NDVI, TSAVI and EVI) to the plant-related 

carbon dynamics in agricultural soils using a fixed-wing UAV with a multispectral camera 

array. EVI was pointed out as the best correlation index between ground-based measurements 

of fresh phytomass. 

With the use of visible band indices, it is also possible to acquire vegetation parameters. Bendig 

et al., (2015) showed that the visible band indices (GRVI, MGRVI, RGBVI) presented a better 

ability to model biomass in early growth stages rather than later ones, achieving a cost-effective 

alternative for ground-based reflectance measurements. 

Torres-Sánchez et al., (2014) compared different visible spectrum vegetation indices: ExG 

(Woebbecke et al., 1995), ExGR, Woebbecke Index (Woebbecke et al., 1995), Normalized 

Green-Red Difference Index (NGRDI) (Gitelson et al., 2002), Vegetativen (VEG) (Hague et 

al., 2006) and two VI combinations in two different flight altitudes (30 and 60 metres) using 

multiple flights during the early-season in a wheat field, among them ExG and VEG achieved 

the best performance.  

The need to identify diseases in early stage is crucial to provide a proper crop protection. 

Regarding this topic, Salamí et al.,  (2014) concluded that indices based on crown temperature 

(CWSI) and visible ratio indices proved to be effective. Calderón et al. (2015) used 

classification methods (linear discriminant analysis—LDA—and support vector machine—

SVM—to classify the verticillium wilt severity on olives through hyperspectral and thermal 

imagery data. SVM achieved better overall results than LDA. However, LDA is more effective 

for initial and low severity disease levels. The type of indices that suited better for verticillium 
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wilt identification were normalized canopy temperature, chlorophyll fluorescence, structural, 

xanthophyll, chlorophyll, carotenoid and disease indices. A similar study was conducted by 

López-López et al. (2016) to evaluate disease incidence and severity in almond orchards 

affected by the red leaf blotch fungal. Several indices where described and used to detect disease 

symptoms: the better results were achieved by pigment indices (chlorophyll a+b indices) and 

chlorophyll fluorescence in disease and severity detection, making them appropriate for 

decision support and implementation of precision crop protection techniques. Thermal imagery 

can be used to detect low transpiration rates caused by root diseases. 

Burn indices have been useful for forestry professionals, land resource managers and fire 

officials to estimate areas of potential fire hazards, fire perimeter mapping and study and 

measure post-fire burn and vegetation regrowth areas. In this type of indices, a pre-processing 

stage is needed in order to mask water presence in the images. Chuvieco et al. (2002) compared 

different spectral indices, including NDVI, SAVI and BAI to distinguish burned land. They 

have demonstrated that BAI provided a better discrimination than the other tested indices, with 

a consistent behaviour along a considerable variability of scorched areas. 

Table 2.3 sums up the presented indices, bands needed for their computation, formulas and 

references. Regarding the symbology, NIR, Red, Green, Blue, SWIR are related with the 

spectral broadband and Rn stands for the reflectance value, in nanometres, on a certain 

narrowband. Broadband indices can also be computed with narrowband reflectance values from 

each spectral band. In thermal indices there are different formulas that use temperature as T. 

There are also variables (e.g. L, G, a) representing parameterized features. Some authors use 

normalization schemes (J. Torres-Sánchez et al., 2014) as a pre-processing step before the use 

of values in the indices (e.g. green = Green/Red+Green+Blue; red = Red/ Red+Green+Blue; 

blue = Blue/ Red+Green+Blue). 
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 Segmentation 

Image processing techniques are frequently used as a complement to the vegetation indices 

calculation. In this topic, segmentation is particularly important for agroforestry, agriculture 

and related areas inasmuch as it is responsible for the simplification of imagery data into subsets 

that enable an easier analysis regarding features of interest. Thresholding is a common 

segmentation method that can be applied to mask certain features and/or to highlight the desired 

information. Within this category, there is a noteworthy algorithm that relies in the Otsu’s 

method (Otsu, 1979) and which can be applied to obtain two classes of pixels (e.g. to distinguish 

bare soil from vegetation). Summing up, this method calculates an optimal threshold requiring 

low computational costs. 

Meyer and Neto (2008) used VI to determine a colour vegetation index with an automatic 

threshold and to determine their accuracy using plant-soil-residue images. They compared the 

ExG, ExG−ExR and NDV indices results with manual plant pixel extraction after applying 

Otsu’s method. Among the tested indices, the ExG-ExR allow reaching the best results in the 

successful discrimination of plants from the bare soil.  

Regarding early season vegetation detection, Torres-Sánchez et al. (2015) used two image 

acquisition sensors (RGB and Multispectral) in three different types of crops: maize; sunflower 

and wheat. The developed algorithm for object-based image analysis (OBIA) was based on a 

multiresolution segmentation algorithm whilst the Otsu’s method was applied for thresholding 

two vegetation indices, more specifically ExG and NDVI. 

Another used method is the watershed transform: a gradient magnitude-based method that 

consists in finding the pixels with the highest gradient intensity corresponding to region 

boundaries. It was successfully applied in the extraction of canopy from palm orchards (Cohen 

et al., 2005). Baluja et al. (2012)used watershed algorithm combined with NDVI image to 

identify rows in vineyard crops. 

OBIA (Blaschke, 2010) relies in the reduction of intra-class spectral variability caused by crown 

textures, gaps and shadows. Firstly, a group of spatially adjacent pixels is aggregated into 

spectrally homogeneous features which are then classified using objects as the minimum 

processing units (Torres-Sánchez et al. 2015). OBIA was used to identify different types of 

plant canopy, in pure olive crowns detection (R. Calderón et al., 2013), in discontinuous and 
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continuous olive orchards (Díaz-Varela et al. 2015) and also for weed map generation in maize 

fields (Peña et al. 2013). 

In order to successfully detect vine rows using UAS imagery, Comba et al. (2015) used Hough 

Space Clustering and total least square. Their method can be applied to different types of images 

resulting from VI calculation (e.g. NDVI) or in a simple grayscale image, based on a single-

band (e.g. NIR). Nolan et al. (2015) used skeletisation techniques to accurately segment 

vineyard rows to produce precise vine maps. The proposed algorithm uses as inputs single-band 

images from any type of sensor with the only requirement of having a high spatial resolution to 

distinguish vine rows and soil. The application of such an algorithm allowed Nolan et al. (2015) 

to achieve an accuracy of 97,1% regarding the identification of vineyard rows. The 2,9% failure 

rate occurred because of trees obscuring vine rows, shadows and also segmentation 

discontinuities. Bobillet et al. (2003) also classified vine rows; however, their method required 

manual adjustments in pre and post-processing stages to the achievement of valid results. 

Moreover, problems identifying vine rows with grass in between were reported. 

 3D reconstruction 

In agroforestry applications, vegetation can be accurately virtualized using 3D scanning 

methods. One of the most known of these methods involves the extraction of a point cloud from 

ground, crops and other field elements. As it was previously mentioned, LiDAR can be used 

for 3D scanning. For example, Wallace (2013) used this sensor to digitalize forest’s canopy. 

Another known technique is the Structure from Motion (SfM) which provides the ability to 

create 3D models from 2D images. Digital Surface Models (DSMs) and Crop Surface Models 

(CSMs) can be achieved using this technique. In turn, these models can be used to obtain 

important data regarding the elevation models and in crop development (Flener et al., 2013). 

The reconstruction process consists in the following steps: (1) matching the overlapping images 

containing the similar features; (2) extraction of geometry; (3) point cloud processing; and (4) 

3D model and texture generation accordingly with the provided images. The main constraint of 

this method is the high demand of computational requirements and, consequently, the 

processing time. Bendig et al. (2014) conducted a study to monitor barley crops using the post-

flight generated CSM computed by images acquired form an RGB camera mounted on a UAV. 

The study introduced a method to estimate biomass based on the plant height derived from 

CSM, demonstrating that RGB images are highly suitable for deriving barley plant height. 

Mathews and Jensen (2013) opted by applying SfM to compute a point cloud of vine canopy 
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structure to estimate LAI. Figure 2.17 shows an example of a DSM obtained from 2D nadir 

images. Gatziolis et al. (2015) used a multi-rotor UAV to capture images and achieve 3D 

reconstructions of trees with SfM algorithms. SfM techniques are becoming increasingly used 

due to their cost-effectiveness in comparison with expensive systems such as LiDAR. More 

recently, Thiel and Schmullius (2017) compared point clouds from UAV images with those 

created from LiDAR systems over a forested area and showed that the photogrammetric 

accuracy compares well with LiDAR, yet the density of surface points is much higher from 

images, which is of particular importance for the detection of small trees. Alternatively, there 

are other valid techniques for 3D reconstruction that are getting increasingly accessible, like 

the ones based on stereo cameras (Frankenberger et al., 2008; Eija Honkavaara et al., 2013).  

Wallace et al. (2016) carried out a comparison of airborne LiDAR scanning and SfM. Both 

methods proved to be capable of providing useful information about canopy and terrain in areas 

with low canopy closure. However, LiDAR outperformed SfM in capturing terrain under denser 

canopy cover. Díaz-Varela et al. (2015) worked with SfM-based DSMs to estimate olive crown 

parameters such as tree height and crown diameter, in continuous and discontinuous canopy 

cropping systems. The estimation of crown parameters presented a high compliance with the 

real measurements. 

 

Figure 2.17. Digital surface model (DSM) of a UTAD’s vineyard determined in the post-processing stage of a 
flight with an UAV carrying an optical sensor. 

Different applications are provided in the next section depending on the application area: 

agriculture, forestry or both. 
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 Applications 

UAS provide high-resolution aerial imagery opening new cost-effective horizons that are 

capable of tackling the traditional and expansive remote sensing platforms such as manned 

aircraft or satellites. In this section, some of the works that constitute the state of the art on 

applications relying on UAS will be reviewed to provide a better insight of the potential of these 

unmanned flight devices in agriculture, forestry and related areas, as presented in Table 2.4. In 

agriculture, the main applications include crop monitoring, invasive weed mapping, water 

status estimation, biomass estimation, chlorophyll estimation and nitrogen estimation. For 

forestry applications, bellow forest canopy mapping, forest inventory, measuring and 

monitoring structural forest properties, forest fire detection and monitoring have been explored 

by the use of UAS. There are also applications common to both areas such as land-use 

classification, wildlife detection and vegetation height maps.  

 Agriculture 

UAS-based remote sensing can help determining plant parameters as leaf area index, canopy 

cover and volume. UAVs provide flexibility to assess crop parameters as vigour, quality and 

yield estimation which is needed to be measured during the whole growing season, as presented 

in Ballesteros et al. (2015). For parameters that are hard to detect with visible spectrum sensors, 

hyperspectral sensors are more suitable. These sensors enable the acquisition of imagery data 

with very high spectral and temporal resolutions, which is especially adequate for disease 

detection in early stages (Calderón et al. 2015) or precision agriculture (Candiago et al. 2015), 

reducing future losses. Farmers’ interests are to have healthier crops and, at a same time, to 

manage resources (e.g. water and pesticides) in an efficient way. This can be provided by UAVs 

data to create maps for better crop management (Ballesteros et al. 2015). These maps are 

adequate to expose problems as irrigation, soil variation, fungal or pest investigation. 

Usually, NIR sensors are not used separately, but in combination with RGB sensors or as a 

component in multispectral sensors. Navia et al. (2016) used multispectral imagery acquired 

from a multi-rotor UAV to generate multispectral mosaics computed with NDVI, to assist 

farmers in the assessment of plant health monitoring. Lukas et al. (2016) compared the basic 

growth parameters obtained from a fixed-wing UAV equipped with a NIR camera and from 

Landsat 8. Both methods showed a high correlation with ground spectrometer measurements 

of biomass and nitrogen content but the satellite data had a coarse resolution. Kalisperakis et 
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al. (2015) used different UAS imaging sources, more specifically, hyperspectral, RGB 

orthophotos and 3D crop surface models to access LAI estimation in vineyards. The comparison 

between estimated LAI and ground truth LAI measurements showed that the lowest correlation 

rates occurred from RGB orthophotos. On the other hand, the highest correlation was noticed 

in hyperspectral data and 3D crop surface models. 

Table 2.4. UAS-based remote sensing applications on agriculture, forestry and common to both areas. 

Application Main objective References 

Agriculture 

Crop monitoring 

(Ballesteros et al., 2015; Berni, Zarco-Tejada, 
Suarez, et al., 2009; Rocío Calderón et al., 2015; 
Candiago et al., 2015; Comba et al., 2015; Díaz-
Varela, de la Rosa, et al., 2015; Kalisperakis et al., 
2015; Lukas et al., 2016, 2016; Navia et al., 2016, 
2016; Nebiker et al., 2008; Jacopo Primicerio et al., 
2012; Suomalainen et al., 2014; J. Torres-Sánchez et 
al., 2014, 2015; D. Turner et al., 2011) 

Invasive weed mapping (D. Gómez-Candón et al., 2013; Peña et al., 2013) 

Water status estimation 
(Baluja et al., 2012; Bellvert et al., 2013; Bellvert & 
Girona, 2012; Park et al., 2015; Pablo J. Zarco-Tejada 
et al., 2012) 

Biomass estimation 
(Bendig et al., 2014, 2015; Eija Honkavaara et al., 
2012, 2013, 2013; Pölönen et al., 2013) 

Chlorophyll estimation (Uto et al., 2013; Pablo J. Zarco-Tejada et al., 2012) 

Nitrogen estimation (Caturegli et al., 2016; Pölönen et al., 2013) 

Forestry 

Bellow forest canopy mapping (Chisholm et al., 2013; Getzin et al., 2012) 
Forest inventory (Rokhmana, 2015; Luke Wallace et al., 2012) 

Measuring and monitoring structural 
forest properties 

(Gatziolis et al., 2015; L. Wallace, 2013; Luke 
Wallace et al., 2016) 

Forest fire detection and monitoring (Merino et al., 2011) 

Agriculture 
& Forestry 

Land-use classification (Lagüela et al., 2015) 
Wildlife detection (Israel, 2011; Ward et al., 2016) 

Vegetation height maps 
(Ballesteros et al., 2015; Bendig et al., 2015; 
Mathews & Jensen, 2013; Suomalainen et al., 2014; 
D. Turner et al., 2011) 

Another application area in agriculture is invasive weed mapping. A study to distinguish the 

invasive weeds from other crops was carried out by Peña et al. (2013). It consisted on detecting 

weed in early stages of maize using a six-band multispectral camera attached to an UAV in 

which the applied OBIA procedure computed multiple results and statistics that could be 

exported in the form of weed maps, vectors or table file format and provide relevant 
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information. Another study to distinguish crops from invasive weed was carried out by Gómez-

Candón et al. (2013) in wheat. 

Water status estimation is a task that can be performed by UAVs with quick turnaround times. 

Bellvert et al. (2013) demonstrated the feasibility of using high resolution thermal imagery for 

irrigation management across vineyards for precision agriculture purposes (optimal irrigation). 

According to Bellvert et al. (2013) the best time of the day to acquire thermal images is around 

noon, because there is an almost complete absence of shadow effects and, consequently, the 

sensitiveness for the identification of water stress problems is higher. Multispectral and thermal 

imagery was applied by Baluja et al. (2012) and Bellvert and Girona (2012) to determine water 

status variability in vineyards. This data can be used for better irrigation management in a 

vineyard parcel scale. Zarco-Tejada et al. (2012) addressed the detection of water stress in a 

citrus orchard by using fluorescence, canopy temperature and narrow-band indices, from data 

acquired by a micro-hyperspectral and a thermal camera.  

Biomass estimation was studied by Bendig et al. (2014) with vegetation indices and plant height 

maps derived from RGB imagery on barley. Three vegetation indices were computed, with the 

main issue of the visible band being reliable only in early growing stages. However, combining 

the vegetation indices with plant height by using multiple linear regression or non-linear 

regression models, a better performance was achieved, in comparison with the indices itself. 

Chlorophyll estimation was addressed in the study carried out by Uto et al. (2013) focusing on 

the estimation of rice chlorophyll density, based on low altitude flights carried out by an UAV 

equipped with a hyperspectral sensor. Experimental results showed that the chlorophyll density 

can be estimated with high accuracy, even under unstable light conditions. Suomalainen et al. 

(2014) developed a hyperspectral sensor based on low-cost components, to apply it on multiple 

types of crops. Chlorophyll concentration was examined using Red Edge-based indices. Martín 

et al. (2015) used hyperspectral sensing to investigate the relation between leaves chlorophyll 

a+b concentration and grapes composition in vineyards affected by iron chlorosis and to assess 

if the leaves chlorophyll concentration acquired from hyperspectral images could be useful to 

map potential quality zones in these vineyards. The results suggest a promising application for 

predicting grapes’ quality in vineyards affected by the iron chlorosis. 

Caturegli et al. (2016) focused on the estimation of nitrogen status in turfgrass. This kind of 

knowledge can lead to both economic and environmental benefits inasmuch as it enables the 
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balanced application of fertilizers. Also, pesticides are extensively applied for eliminating pests 

and weeds infesting the crops. Pölönen et al. (2013) were able to estimate both biomass and 

nitrogen content with a hyperspectral sensor and a machine learning approach. 

 Forestry 

Getzin et al. (2012) used a fixed-wing UAV to take aerial images of a forest aiming the further 

examination of canopy gaps and the assessment of the floristic biodiversity existent in the forest 

understorey. The obtained images led the authors to conclude that detailed, spatially implicit 

information on gap shape metrics is sufficient to reveal strong dependency between disturbance 

patterns and plant diversity. Chisholm et al. (2013) conducted a trial with a LiDAR mounted 

on an UAV for mapping the forest below the canopy. The main goals were to map tree stems 

and to measure the diameter of trees at breast height (DBH). The LiDAR along with a developed 

algorithm enabled the detection of trees in flights of 3m that took place 20cm above the DBH. 

To calculate wood stock of a teak wood forest in Indonesia, Rokhmana (2015) used orthophoto 

mosaics and 3D models. The main prerequisite for this task was to distinguish individual trees 

so its height could be measured as well as the canopy diameter. As it was previously mentioned 

in Section 2.4.4, LiDAR is a good tool for the accurate extraction of 3D data. The comparison 

between tree canopy mapping and photogrammetric SfM was already addressed in Wallace et 

al. (2012), showing that LiDAR outperforms SfM in bellow canopy mapping.  

Gatziolis et al. (2015) were able to reconstruct 3D models using RGB cameras from UAV along 

with SfM algorithms. This methodology can be applied to individual or to a group of trees 

providing useful information related, with for instance tree growth among time. 

Merino et al. (2011) developed an UAS for automatic forest fire monitoring and measurement. 

It was based on multiple UAVs and a central station. The main payload consisted in infrared 

and visual cameras which extract fire related features  

 Agroforestry 

There are tasks that can be applied in both agriculture and forestry. The case of generation of 

thermographic mosaics and thermographic DSMs from thermal sensors attached on a low-cost 

multi-rotor UAV were used (Lagüela et al. 2015). Although agroforestry was not the primary 

focus, the methodology can be extended to land use classification and water management 

according to the thermal response of objects.  
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Industrialization of agriculture brought many benefits but also an increased danger for wild 

animals living in agroforestry areas. Israel (2011) presented a light weight infrared thermal 

sensor attached to an UAV which is capable of preventing many fatalities among the roe deer 

fawn communities on meadows and pastures, caused by machines. Ward et al. (2016) took the 

concept even further and created a system that can autonomously detect animals, determine 

their coordinates and generate maps displaying their locations ahead of the user. They have 

proved the effectiveness of UAS over ground-based techniques like camera traps or surveys on 

foot.  

Vegetation height maps can be applied in agriculture or forestry areas. Several studies were 

conducted making good use of this information for creation of crop surface models (Bendig et 

al., 2014; Mathews and Jensen, 2013) or even to forest canopy cover (Wallace 2013). 

 Recommendations towards UAS platform selection 

Table 2.5 presents budget estimations for the acquisition of an UAS according to the coverage 

area and the sensor type, which is influenced by the intended application. For large areas 

(greater than 50 ha) a fixed-wing UAV is recommended due to the ability of quicker area 

coverage; on the other hand, a multi-rotor UAV is more suitable for smaller area coverage. 

However, the usage of a fixed-wing UAV requires a large space to perform safe landing 

operations—at least an area of 20 by 100 metres (for linear landing)—which is a drawback of 

this type of UAV. A practical example is the Douro wine region in Portugal, where the vineyard 

layout disposed in slopes along the river Douro makes the landing task challenging due to the 

lack of secure areas to accomplish it. Complementary to Table 2.5, Figure 2.18 illustrates the 

process of selecting the most appropriate UAS and sensors for the required task. 

Essentially, rotor-based UAS are used to cover small areas whereas the fixed-wing UASs are 

more suitable for being applied in wider areas, as detailed in Table 2.5. On the other hand, the 

use of sensors is highly dependent of the application’s purpose.  

On the subject of forestry applications such as inventory and canopy mapping, the usage of 

LiDAR sensors represents an effective tool capable of gathering data below canopy. When it 

comes to perform forest fire monitoring and wildlife detection, thermal sensors are a suitable 

option, while for determining burned areas in post-fire scenario multi-spectral sensors can be 

applied. 



Chapter 2. 
UAS, sensors, and data processing in agroforestry: a review towards practical applications 

43 

 

Figure 2.18. Diagram depicting an appropriate selection of a UAS platform—including UAV and sensor—
depending on the area of application and the task. 

To obtain vegetation height maps, optical sensors are a plausible choice, because of their ability 

to process the acquired images using SfM algorithms and the cost-effectiveness comparatively 

to sensors like LiDAR. Crop monitoring along the whole growth season can be performed 

through multispectral sensors which seem to present the most compromise between cost and 

effectiveness. In spite of it, other sensors can also be applied to do crop monitoring related 

tasks. For those who are interested in biomass estimation, optical sensors might be a good 

choice. Multispectral sensors can be applied to map invasive weeds and nitrogen estimation. 

Whilst the first results from post-flight image processing algorithms (e.g. OBIA), the latter is 

by providing fertilization maps. 

Disease detection and identification have a significant importance in agricultural applications, 

either for resource optimization and/or timely actions for preventive purposes. Thus, and 

notwithstanding the costs, hyperspectral sensors are recommended even for early stage disease 

detection. Alternatively, depending on the crop type and disease, multispectral sensors can be 

used. Hyperspectral sensors are also suitable for chlorophyll estimation through narrow-band 

VI calculation on the acquired data, accordingly to the addressed studies. 

Finally, water status can be estimated through a set of spectral VI that are calculated to 

determine vigour, based on data acquired from multispectral or optical sensors, yet thermal 

sensors can provide this type of data in a faster way, although some cautions concerning day 

time must be taken due to effects of shadows, according to Bellvert et al. (2013). Thereby, it is 

recommended to use these sensors when the sun heading is at, approximately, 180º (solar noon). 
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Table 2.5. Recommended UAV platforms for different agroforestry applications and respective estimated budgets. 
Each UAV platform considers a UAV type (fixed-wind or multi-rotor) and an attachable sensor (Optical, 
Multispectral, Hyperspectral, Thermal and LiDAR). 

Area of application 
Coverage 

area 
Recommended 

sensor(s) 
Recommended 

UAV 
Estimated 

budget (Euros) 

Crop monitoring 
Large Multispectral Fixed-wing 25 000 
Small Multispectral Multi-rotor 10 000 

Disease detection and 
identification 

Large Hyperspectral Fixed-wing 120 000* 
Small Multispectral Multi-rotor 10 000 

Invasive weed mapping 
Large Multispectral Fixed-wing 25 000 
Small Multispectral Multi-rotor 10 000 

Water status estimation 
Large Thermal Fixed-wing 35 000 
Small Thermal Multi-rotor 15 000 

Biomass estimation 
Large Optical Fixed-wing 20 000 
Small Optical Multi-rotor 2000 

Chlorophyll estimation 
Large Hyperspectral Fixed-wing 25 000 
Small Hyperspectral Multi-rotor 10 000 

Bellow forest canopy 
mapping 

Large LIDAR Fixed-wing 30 000 

Forest inventory Large LIDAR Fixed-wing 30 000 
Measuring and monitoring 
structural forest properties 

Large LIDAR Fixed-wing 30 000 

Forest fire detection and 
monitoring 

Large Thermal Fixed-wing 35 000 

Post-fire burn area estimation Large Multispectral Fixed-wing 25 000 
Wildlife detection Small Thermal Multi-rotor 8000 

Nitrogen estimation 
Large Multispectral Fixed-wing 25 000 
Small Multispectral Multi-rotor 10 000 

Vegetation height maps Small Optical Multi-rotor 3000 
Small areas up to 50 ha; Large areas between 50 ha and 5km2; The estimated budged includes UAV + sensor + processing 
software; * the prices have been decreasing 

Table 2.6 provides an overview of the reviewed studies regarding the main objective and 

conclusions, along with the used UAV types and the used sensors. It is noteworthy that fixed-

wing UAVs are widely applied to land use classification, water assessment or even to provide 

data towards the optimization of agricultural tasks (e.g. crop management and pesticide 

administration) through the use of optical, thermal, multi and hyperspectral sensors. Most of 

the reviewed studies preferred multi-rotor UAVs that can vary the specified set of sensors to 

perform fire monitoring, canopy development assessment, detection of vineyard rows, etc. and 

also because they are usually cheaper and more flexible for demonstrative/scientific studies. 

Notwithstanding the great number of successful approaches, there is an important aspect that 

should be retained: the specifications of each platform (in terms of area covering, flight time 

durability, payload capacity) should be attended along with the recommendations left on this 

paper inasmuch as they intend to represent general guidelines to prevent unnecessary costs for 

mission accomplishment or potential failure in performing the required surveys in demanding 
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situations. In the way that a fixed-wing UAV for water status assessment in a small crop area 

could be exaggerated, a regular rotor-based UAV could be time-consuming at monitoring 

biodiversity in an extensive forestry area due to the lower autonomy in terms of flight time. 

Regarding UAV sensors, whilst the RGB sensors are suitable to find features within a certain 

area (e.g. vineyard rows detection, tree crown size estimation), to estimate LAI for green 

vegetation and invasive weed mapping. The infrared, multispectral and hyperspectral sensors 

are specialized in identifying the presence/absence of certain components or materials (e.g. 

disease detection, water status estimation) within a scene through reflectance analysis and 

processing at certain wavebands that can range out of the visible spectrum. LiDAR sensors can 

provide accurate measurements through laser pulses targeting land objects (e.g. vegetation 

height determination). The cost/task-effectiveness binomial has a relevant role when it comes 

to select a tool for data extraction. If the precision on estimating the presence of a certain feature 

in the environment (e.g. vineyard disease) is required, the use of a hyperspectral sensor should 

be considered. In an alternative scenario, when a low-budget system is required, for instance to 

produce 3D models of a certain culture for analysing different development stages, an RGB 

camera allied to photogrammetric techniques will be sufficient (despite the probable loss of 

information—e.g. soil—over the obvious, but usually expensive, LiDAR sensor). 

Table 2.6. Compilation of the reviewed studies presenting their respective main objectives and conclusions and 
UAV type and sensors used in each case. 

Reference Objective Main conclusion 
UAV type Used sensors 

FW RB O T M H L 

(Lagüela et 

al., 2015) 
Land-use classification 

Successful land use classification (buildings, tall 

vegetation, short vegetation). 
 ●  ●    

(Jacopo 

Primicerio et 

al., 2012) 

Producing of vigor maps of 

vineyards based on NDVI 

Results highly correlated with ground truth 

spectrometer. 
 ●   ●   

(Getzin et al., 

2012) 

Use canopy gaps in forests to 

assess floristic biodiversity of 

the forest understory 

High-resolution imagery can effectively assess 

biodiversity in temperate forests. 
●  ●     

(D. Gómez-

Candón et al., 

2013) 

Assess the parameters that 

affect the accuracy of 

orthomosaics. Early weed 

mapping in wheat 

Different altitude intervals did not show large 

differences in accuracy in generation of 

orthomosaics between (30 to 100m). 

 ● ●     

(Baluja et al., 

2012) 

Assessment of water status 

variability in vineyards 

Both multispectral and thermal methods were 

successful 
●   ● ●   

(Israel, 2011) 
Detection of roe fawn deer on 

meadows 

Field campaigns confirmed reliable real-time 

manual fawn deer detection. 
 ●  ●    
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Reference Objective Main conclusion 
UAV type Used sensors 

FW RB O T M H L 

(Ward et al., 

2016) 

Detection of animals and 

displaying their location on a 

map 

Successfully tested and development of a 

smartphone app integrated with the system. 
 ●  ●    

(Bendig et 

al., 2014) 

Barley biomass monitoring 

by combining plant height 

and vegetation indices 

Optical images were highly suitable for deriving 

barley plant height from CSM for biomass 

estimation 

 ● ●     

(D. Turner et 

al., 2011) 
Vineyard mapping 

UAVs provide flexible on-demand multiple 

sensor data for the whole growing season and 

especially for the critical times with high spatial 

resolution. 

 ● ● ● ●   

(Candiago et 

al., 2015) 

Evaluation of multiple 

vegetation indices for 

precision agriculture 

applications 

The VI were computed based on pixel values and 

delivered mainly qualitative results. 
 ●   ●   

(E. 

Honkavaara 

et al., 2012) 

Combination of hyperspectral 

imagery and point clouds for 

biomass estimation 

Successful implementation of the use of 

hyperspectral reflectance mosaics with point 

clouds for biomass estimation. 

 ● ●   ●  

(Uto et al., 

2013) 

Development of a low-cost 

light hyperspectral sensor for 

chlorophyll estimation in rice 

paddies 

Experimental results proved that chlorophyll 

densities can be estimated with high accuracy. 
 ●    ●  

(Ballesteros 

et al., 2015) 

Leaf area index, green canopy 

cover and volume 

characterization of vineyards 

The developed work could be useful in decision 

support to improve crop management, and 

optimize usage of pesticides and fertilizer. 

●  ●     

(Lukas et al., 

2016) 

Comparison of basic growth 

parameters of winter wheat 

obtained from UAV and 

satellite 

Both methods showed a strong correlation with 

ground spectrometer measurements but satellite 

imagery provided a smaller resolution. 

●    ●   

(Comba et 

al., 2015) 
Vineyard row detection 

Successful detection of wine rows in grey scale 

images obtained from a multispectral sensor. 
 ●   ●   

(Nebiker et 

al., 2008) 

Producing of vigor maps of 

vineyards 

Results highly correlated with ground truth 

classification. 
 ● ●  ●   

(Peña et al., 

2013) 
Weed mapping in maize 

The algorithm efficiently identified crop rows, 

inner row weeds were successfully detected. 
 ●   ●   

(Caturegli et 

al., 2016) 

Nitrogen status estimation in 

turfgrass 

The knowledge of the nitrogen status can lead to 

both economic and environmental benefits by a 

reasonable application of fertilizers. 

 ● ●  ●   

(Navia et al., 

2016) 

Multispectral orthomosaic 

generation and NDVI 

calculation 

Calculated NDVI showed that it can determine 

weak spots in crop areas and also see change in 

plant health over time. 

 ●   ●   

(Rokhmana, 

2015) 

Teak wood forest stock 

estimation 
Successful wood stock estimation. ●  ●     

(Pölönen et 

al., 2013) 

Biomass and nitrogen content 

estimation of wheat and 

barley 

Results showed that the radiometric uniformity 

amongst individual images forming the image 

mosaics had impact the biomass estimation 

quality. 

 ●    ●  

(Suomalainen 

et al., 2014) 

Development of a 

hyperspectral sensor and 

evaluation on various types of 

A lightweight hyperspectral mapping system 

was developed specifically for rotor-based UAV 

and presented the potential for agricultural 

mapping and monitoring applications. 

 ●    ●  
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Reference Objective Main conclusion 
UAV type Used sensors 

FW RB O T M H L 

crops for orthomosaics and 

vegetation height maps 

(Chisholm et 

al., 2013) 

Bellow forest canopy 

mapping 

The UAV-measured DBH estimates were 

strongly correlated with the human-based ones. 
 ●     ● 

(Luke 

Wallace et 

al., 2012) 

Development of a low-cost 

UAV LIDAR sensor applied 

in forest inventory 

applications 

Comparing with LIDAR sensors used in other 

remote sensing platforms UAV-borne LiDAR 

produced point clouds with only slightly worse 

accuracies but with much higher point densities. 

 ●     ● 

(Luke 

Wallace et 

al., 2016) 

Measuring and monitoring 

structural properties of forests 

with airborne laser scanner 

and SfM techniques 

Airborne laser scanner got better results in 

penetrating the upper canopy and vertical 

distribution of vegetation. SfM lacked the ability 

to penetrate dense canopy parts, which resulted 

in a poor definition of the mid and under-store. 

 ● ●    ● 

(Bendig et 

al., 2015) 

Estimating biomass in barley 

using vegetation indices and 

plant height information 

Visible band indices showed a better ability to 

model biomass in early growth stages in 

comparison to late growth stages. 

 ●   ●   

(Pablo J. 

Zarco-Tejada 

et al., 2012) 

Water stress detection in 

citrus orchards using 

hyperspectral imager and 

thermal camera 

The experiment enabled water stress detection 

assessment by using crown temperature, visible 

and NIR narrow-band indices and chlorophyll 

fluorescence. 

●   ●  ●  

(Bellvert et 

al., 2013) 

Generating maps using CWSI 

for precision irrigation 

management in vineyards 

Demonstration of the viability of thermal 

imagery for detecting the level of water stress in 

vineyards. 

●   ● ●   

(Rocío 

Calderón et 

al., 2015) 

Automatic methods for early 

detection of plant diseases 

The results demonstrated that the developed 

methods at orchard scale are validated for flights 

in large areas consisting of olive orchards with 

different characteristics. 

●   ●  ●  

(A. P. Nolan 

et al., 2015) 

Automated detection and 

segmentation of vine rows 

using high resolution UAS 

imagery in a commercial 

vineyard 

The vine row detection algorithm achieved 

average precision and sensitivity results. Some 

sections of vine rows have been falsely 

classified as being non-vine row pixels, due to 

overhanging trees, shadows or initial binary 

segmentation discontinuities. 

●  ●     

(Mathews & 

Jensen, 2013) 

Using SfM to model vine 

canopy structure 

Measured LAI of vine canopy had good results 

with metrics. 
●    ●   

(Kalisperakis 

et al., 2015) 

Estimating crop LAI using 

hyperspectral data, 2D RGB 

mosaic and 3D crop surface 

models 

The lowest correlations against the ground truth 

data were derived from the calculated greenness 

levels from the 2D RGB orthomosaics. The 

highest correlation rates were established for the 

hyperspectral and the 3D canopy levels. 

 ● ●   ●  

(Wehrhan et 

al., 2016) 

Quantification of spatial 

patterns of fresh phytomass 

and its relation to carbon 

export of lucerne 

Among different tested vegetation indices, the 

EVI got the highest correlation between ground-

based measurements of fresh phytomass of 

Lucerne. 

●    ●   

(Berni, 

Zarco-

Tejada, 

Suarez, et al., 

2009) 

Vegetation monitoring 

through the use of thermal 

and multispectral sensors 

The obtained results make this platform suitable 

for a number of applications including precision 

farming and irrigation scheduling. 

 ●  ● ●   
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Reference Objective Main conclusion 
UAV type Used sensors 

FW RB O T M H L 

(Bellvert & 

Girona, 

2012) 

Usage of multispectral and 

thermal images for irrigation 

scheduling in vineyards 

It was demonstrated the viability of high-

resolution thermal imagery for detecting the 

water stress level in grapevines 

●   ●    

(J. Torres-

Sánchez et 

al., 2014) 

Early-season crop monitoring 

in wheat using vegetation 

indices 

The ExG index is most suitable to calculate 

early stages crops with accuracy and spatial and 

temporal consistency. 

 ● ●     

(J. Torres-

Sánchez et 

al., 2015) 

Detection of vegetation in 

early-season herbaceous 

crops (maize, sunflower and 

wheat) 

An automatic thresholding for vegetation 

classification was achieved based on OBIA 

algorithm. Demonstrating its ability to 

automatically select a threshold from gray-level 

histograms. 

 ● ●  ●   

(Park et al., 

2015) 

Estimation of crop water 

stress in a nectarine orchard 

The mapping of spatial variability of nectarine 

water stress was proved to be effective and an 

optimal tool to help in irrigation management. 

 ●  ●    

(L. Wallace, 

2013) 

Investigating the use of UAV-

borne LIDAR systems as a 

platform to gain knowledge 

of the canopy structure within 

forested environments. 

UAV-LiDAR data is suitable for use in 

monitoring changes in the canopy structure. The 

method based on alpha shapes was the most 

stable across repeat measures. 

 ●     ● 

(Gatziolis et 

al., 2015) 

Developing an affordable 

method for obtaining precise 

and comprehensive 3D 

models of trees and small 

groups of trees 

The developed work proved to be capable of 

handling most conditions encountered in 

practice to deliver detailed reconstruction of 

trees. 

 ● ●    ● 

(Eija 

Honkavaara 

et al., 2013) 

Investigating the processing 

and use of UAS image data in 

precision agriculture 

Fundamental need to develop reliable methods 

for the geometric and radiometric processing of 

huge numbers of small, overlapping images as 

well as developing all-weather processing 

technology in order to take full advantage of this 

new technology and to make this technology 

operational in practical applications was 

identified. 

 ●    ●  

Díaz-Varela 

et al. (2015) 

Estimating of olive crown 

parameters 

Comparison between reference field 

measurements and remote sensing estimation of 

crown parameters confirmed as a good solution 

in terms of performance and cost-effective 

alternative for the characterization of the olive 

tree crown in discontinuous canopy. 

●  ●     

(Mathews, 

2015) 

The use of compact digital 

cameras to remotely estimate 

spectral reflectance based on 

UAV imagery. 

There was found that the red and NIR bands 

were the most accurate at estimating reflectance. 
●    ●   

(Merino et 

al., 2011) 
Automatic fire detection 

A system for fire monitoring was developed, 

based on several UAVs and a central station. 

Infrared and visual cameras were the main 

payload used for the environment perception. 

 ● ● ●    

FW - Fixed-wing; RB - Rotor-based; O - optical; T - thermal; M - multispectral; H - Hyperspectral; L - LiDAR. 
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 Conclusion 

This survey presents a brief comparison of remote sensing platforms, their pros and cons, and 

how UASs can complement the established manned aircraft and satellite platforms. Most 

common types of UAVs and sensors are also presented aside with processing methods and 

applications in agroforestry. This study provides agroforestry professionals with information to 

assist them in choosing the most suitable UAS for their remote sensing purposes. To achieve 

this, recent studies were reviewed with the focus on UAV types, sensors, data processing and 

applications in agroforestry. 

Before selecting a proper UAS, the end-user should understand the capabilities and the 

restrictions of the available systems regarding not only the kind of results that are expected, but 

also what to do with them since mosaics, digital surface models, vegetation indices, etc., are 

not the final products but resources for further goals. UAS-based remote sensing in precision 

farming and forestry aims to provide the adequate decision support, which has a crucial role for 

the management optimization of farms, woodlands and other similar territorial areas. 

Nowadays, farmers and foresters are dependent on companies to perform the processing and 

presentation of agroforestry-related information, sometimes in a way that will not fulfil the end-

user needs. The next step of this ongoing revolution will focus in the development of user-

friendly interfaces where just a few parameters are required, releasing the user from a deeper 

knowledge on data processing, allowing agroforestry professionals to perform interpretation of 

collected data by UAS in an autonomous and easy way. Our research group is already 

developing effective solutions allowing the professionals an autonomous analysis. 

Better data processing software working with different sources of temporal and spatial data 

(e.g. meteorological and environmental) for a more effective decision support regarding 

agroforestry applications will also appear in the near future. Ideally, the future of both precision 

agriculture and agroforestry remote sensing would be to have the UAVs platforms constantly 

sensing the environment and sending the resulting data to intelligent entities (centralized or 

distributed) that control actuators to optimally solve eventual issues such as the lack of water 

or disease detection in a complete solution of Internet of Things for agroforestry. This kind of 

proactivity would allow farmers and foresters to be concentrated on the final products and 

services instead of being concerned with the middle-level processes. 
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Summing up, UAS platforms with the addressed sensors are going mainstream and its 

importance for decision support is getting increasingly relevant for researchers, farmers, 

foresters and related business professionals as innovative techniques are being developed for a 

sharpen optimization of the agroforestry underlying processes. DroneDeploy (2016) use case 

statistics confirm that agriculture, including forestry, is the leading application in the UAS 

market and Simelli and Tsagaris (2015) refer that by 2018, the usage of UAS will continue to 

grow with increasing affordability and autonomy. In spite of the fact that the UAV can fly 

autonomously, nowadays it is still required the presence of a pilot. The reasons of this are the 

lack of device intelligence. Hopefully this issue will be solved in the next years due to the 

expansion of UAS usage in many sectors and mainly because of the progress of the artificial 

intelligence, which is capable of providing the autonomous decision support to those devices 

including law awareness. The optimal scenario of using UAVs is the entire automated process 

from taking off the vehicle to the processing the data and turning on the pro-active actions. In 

the agricultural industry, the UAV would do the flights in the area of interest whenever it would 

be needed, based on previous flights. The collected data would serve as information for another 

automated machines like irrigation systems or intelligent pesticide sprayers.  
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 Introduction 

Unmanned aerial systems (UASs) allow professionals, acting in different areas of society, to 

capture up-to-date, high resolution, and accurate positional data that may be used for generating 

advanced data products—such as 3D point clouds, orthomosaics (orthophoto maps), digital 

surface models (DSMs) and vegetation indices—which are very useful for classification and 

segmentation. As occurs in many other technological fields, the number of applications is 

increasing every day, causing a rapid increase in UAS usage around the world, with exponential 

growth expected in the coming years (Ermacora et al., 2014; Oleire-Oltmanns et al., 2012). 

The main factors supporting this growth are related to the: (1) increasing awareness about the 

benefits that this kind of technology can bring to a wide range of industries and non-commercial 

sectors; (2) introduction of relatively low-cost systems, and user-friendly controls, as well as 

general technological advancements and miniaturization of individual components and; (3) the 

introduction of pragmatic and business-friendly UAS legislation. 

According to the Association of Unmanned Vehicle System International (AUVSI), the 

integration of UASs into the United States national airspace in the decade 2015–2025 is 

expected to create more than 100,000 jobs and generate an economic impact of $82 billion 

(Jenkins & Vasigh, 2013). 

As a new method of geo-data collection, UASs complement existing techniques, filling the gap 

between large area imaging (satellites and manned aircrafts) and smaller coverage, time-

consuming, but highly accurate terrestrial techniques (Pádua, Vanko, et al., 2017). Compared 

to high altitude data, UAS data is fairly low cost, with the advantage of allowing frequent and 

flexible flights (Alessandro Matese et al., 2015). UASs are thus very useful when small and 

medium-sized land parcels need to be frequently surveyed, allowing a rapid response option for 

time-sensitive deliverables, disaster situations, or search and rescue operations. 

Moreover, the use of UAS brings the benefit of performing inventory analysis based on the 

collection and archive of aerial imagery, allowing temporal comparison. Recently, multi-

temporal analysis has been explored by several authors (Atzberger, 2013; Mirijovský & 

Langhammer, 2015; Tanteri et al., 2017). In contrast, traditional aerial methods of data 

acquisition (e.g., satellites and manned aircrafts) may be limited for this type of analysis, due 

to the high cost involved in obtaining repeated imagery (Jomaa et al., 2008). 
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Given their very specific characteristics, UASs have been progressively used in several research 

applications, covering a growing diversity of fields that range from public safety (Niethammer 

et al., 2012) and infrastructures inspections (Cho et al., 2015), to environmental 

conservation/preservation (Dooly et al., 2016; Funaki et al., 2014; I. L. Turner et al., 2016), 

agriculture (Candiago et al., 2015), and forestry (Lisein et al., 2013). It is precisely in the latter 

for which the greatest economic impacts are expected to occur in the next decade (Jenkins & 

Vasigh, 2013). A detailed review of the different types of UASs and applications can be found 

in the work developed by Colomina and Molina (2014). 

Considering the mentioned applications there are two fields of particular interest: (1) forestry 

preservation/conservation; and (2) coastal monitoring for prevention purposes. Regarding the 

former, diseases and pests cause tremendous economic losses and drastically reduce the quality 

of many cultivated crops, as well as wild vegetation species, which is of economic relevance 

for respective exploring communities. Therefore, early detection and assessment of crop 

symptoms and damage are crucial for plant health (Jia et al., 2016). When in presence of biotic 

stress, the disease’s damage mechanism influences the plants’ physiological response, which 

manifests through certain symptoms (e.g., wilting, stunted growth, reduction in leaf/canopy 

area, chlorosis or necrosis in some parts, leaf curling), creating some difficulties when trying to 

obtain an accurate quantification of the affected plants, usually by direct observation in the 

field. Remote sensing platforms such as the UAS can provide an alternative and cost-effective 

method, allowing the application of non-destructive and non-invasive methods to obtain 

accurate spatial data for entire crop fields at frequent intervals (Prabhakar et al., 2012). In the 

same way, this technology can aid in the prediction and prevention of occurrences related to 

coastal environments wherein the water progress—for example, caused by coastal perimeter 

degradation (I. L. Turner et al., 2016), may cause serious problems for local businesses and 

dwellers as well. 

In this paper, two case studies based on the analysis of multi-temporal data acquired using 

UASs are presented. The first study concerns the monitoring of the health status of chestnut 

trees in Portugal, particularly in the Padrela region (the north-eastern part of the country). This 

region generates the highest production of chestnuts in the country (Instituto Nacional de 

Estatística, I. P., 2016), representing the greatest source of income for the entire region. The 

second case study is associated to one of the main challenges for the next years: the 

identification of ways to reduce/reverse the effects of climate change, which are causing 
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alterations to natural resources and ecosystem dynamics. The coastal zones are some of the 

most affected areas, making sand dune protection an important issue due to their role in coastal 

defense. In fact, sand dunes play a crucial role in fauna and flora protection and provide 

sediment supplies to maintain the beaches that, in turn, are responsible for the protection of 

coastal agriculture systems and inland areas from storms and the rise in sea level (Chen et al., 

2004; Mancini et al., 2013). Therefore, the second study presented in this paper focuses on the 

application of UAS multi-temporal data for monitoring the erosion occurring in coastal zones, 

particularly in the Cabedelo area where one of the most important and sensitive natural areas 

of Portugal is located: the Cabedelo sandspit, located in the Douro River estuary (Porto, 

Portugal). This natural structure is responsible for the preservation of ecosystems and for the 

protection of the sand area. Thus, these dunes are crucial for preserving the dwellings situated 

on the coastline as well as those of the local population. In each one of the referred case studies, 

flights were carried out at different times under similar conditions—light, temperature, etc. to 

ensure radiometric and geometric consistency. 

This paper’s main objectives are: (1) to identify the advantages and challenges associated with 

the use of a reliable, robust and cost-effective solution-using UAS to acquire aerial imagery 

data in forestry and coastal monitoring contexts; and (2) to demonstrate this remote sensing 

platform flexibility to cover such distinct environments. Moreover, the benefits of multi-

temporal analysis in change detection will also be explored. Five sections comprise this paper: 

after this introduction, Section 3.2 presents a background on UASs including historical context, 

supported sensors, achievable products, and several applications towards environmental 

monitoring. In Section 3.3, the investigation methodology addressing data collection and 

processing is presented. Case studies are described in Section 3.4. The paper finishes with 

conclusions and future perspectives in Section 3.5. 

 Background 

In the last 60 years, with developments in electronics, computing, and remote sensing, 

technological has advanced and platforms suitable for aerial data acquisition have been 

produced. With respect to this topic, satellites have been the most used system over the past 30 

years (Pettorelli et al., 2014). However, its use can represent a high cost when studying small 

or medium-sized areas (Alessandro Matese et al., 2015), which occurs in many remote sensing 

applications in the scope of forestry and coastal environments. Ponti (2013) suggests the 

adoption of an alternative technology, such as UASs. This technology presents itself as a viable 
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alternative to satellites (Zhang & Kovacs, 2012), mostly because of: (1) the higher temporal (up 

to daily) data acquisition and the higher spatial (up to millimetric) resolution of acquired 

imagery it typically offers (Lisein et al., 2013; Whitehead & Hugenholtz, 2014); (2) its ease in 

terms of scheduling and programming image acquisition operations; (3) its flexibility to operate 

in different environments (often with difficult access); and (4) its versatility, since surveys can 

be conducted in different contexts and extensions/heights. 

Sensors coupled to unmanned aerial vehicles (UAVs) represent the most important system part, 

as it is through them that data will be acquired and, therefore, valuable data products will be 

generated(e.g., orthomosaics, DSMs, 3D point clouds, vegetation indices) (Fraser et al., 2016; 

Gevaert et al., 2017; Suomalainen et al., 2014; Xie et al., 2008). Sensors are classified as active 

or passive and a large variety can be found. Regarding passive sensors, they are used for 

detecting natural emissions from both the atmosphere and the Earth’s surface (e.g., red-green-

blue (RGB), near-infrared (NIR), and thermal emissions), while active sensors transmit their 

own radiation pulses through their energy sources (e.g., light detection and ranging—LIDAR, 

radio detection and ranging—RADAR) (Pádua, Vanko, et al., 2017). 

The interest in the UAS as a form of remote sensing technology has grown because it allows 

user-controlled image acquisition and fills the gap—both in scale and resolution—between 

terrestrial observations and conventional manned aircrafts and satellite sensors. It is a cost-

effective solution and enables adapting acquired imagery of the observed objects’ real 

dimensions to the monitored processes and to alteration speed within a given 

landscape(Laliberte et al., 2011). When compared with traditional remote sensing platforms for 

imagery acquisition, UASs are considered both more effective and accurate when used in areas 

up to 10 km2 (Puliti et al., 2015). 

Despite the many advantages of remote sensing technologies, it is necessary to consider that 

there are some factors that may limit their performance, such as (Garcia-Torres et al., 2014): 

frame mosaicking, band-to-band registration, natural dynamics (such as atmospheric 

conditions), the Sun’s angle, and technical problems (like viewing angle definition or changes 

in sensor calibration over time). However, if the best usage/operation practices are ensured at 

the pre-processing stage and during image acquisition, such limitations can be mitigated. In 

what concerns geographic data acquisition, UAS application is of superlative importance when 

addressing areas where access is difficult or dangerous by conventional means. UASs can be 

used for several purposes, such as (Jha, 2016; Watts et al., 2012): spotting, tracking, and 
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fighting fires; support in natural disaster scenarios, timely distribution of medication and aid; 

air quality monitoring; wildlife surveys (e.g., survey migration flows); crime fighting, 

surveillance tasks and other protection-related activities; delivering products; monitoring 

natural phenomena so that preventive actions can be taken; 3D mapping; and search and rescue 

actions. However, it is worth noting that when measuring and mapping activities are performed, 

it is imperative to geocode and geometrically correct the acquired images (Aber et al., 2010). 

The number of scientifically published case studies involving UAVs as remote sensing 

platforms is growing, making the application of UASs an interesting subject, especially in the 

environmental field for tasks such as: weed control monitoring (Gutiérrez et al., 2008); crop 

pest management (Y. Lan et al., 2009); Artic sea ice and atmosphere monitoring (Fladeland et 

al., 2011); soil properties monitoring (Oleire-Oltmanns et al., 2012); vineyard vigor mapping 

(Jacopo Primicerio et al., 2012); water monitoring (Gonzalez-Dugo et al., 2013); habitat 

mapping (Tamminga et al., 2015); and landslide dynamics (Darren Turner et al., 2015). The 

diversity of these contributions clearly shows the increasing importance of UASs for remote 

environmental monitoring. 

In addition to these scientific contributions, those which involve protection and preservation of 

ecosystems’ dynamics in coastal zones and vegetation monitoring are considered especially 

relevant to this paper. During the last years, coastal zones have suffered significant erosion, 

primarily due to the rising sea action, wind, and storms, mostly triggered by climate change. As 

such, beaches have experienced rapid morphological changes, which means that it is even more 

important to preserve natural barriers such as sand dunes (Gonçalves et al., 2011). 

Topographical changes in beaches and natural barriers need to be monitored and assessed on a 

regular basis to build models and to simulate scenarios that can help in predicting these natural 

environments evolution. Nowadays, UASs represent a valuable tool to provide data to compute 

scenarios and monitor events (Gonçalves & Henriques, 2015). For instance, UASs were applied 

for quantifying the coastal impact before and after a storm, allowing for the monitoring of the 

evolution of a rubble-mound breakwater on the mid-New South Wales Australian coast and 

mapping of the vegetation in a coastal estuary entrance (Drummond et al., 2015). Messinger 

and Silman (2016) investigated the suitability and application of UASs in environmental 

emergency response, in the case of coal ash spills. In Portugal, this kind of technology was used 

for surveillance and control of maritime traffic, fishing surveillance, and the detection/control 

of coastal hazards (E. Pereira et al., 2009). Hodgson et al. (2013) investigated the conservation 
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and management of marine fauna through the application of UAS, to monitor mammal species 

population status. Rhee et al. (2017) applied this remote sensing technology on fluvial waters, 

with the objective of monitoring riparian vegetation, hazardous aquatic algae blooms and 

submerged morphology, and water-surface slope, among other phenomena. 

Regarding vegetation monitoring, protecting and increasing food and water supplies for a global 

population that is growing quickly and in an exponential manner must be a priority (Abdullahi 

et al., 2015). Indeed, crop management becomes a critical factor to maximize yield while 

reducing and environmental risks and impacts where UAS platforms have been playing an 

important role in this context. Some of applications include tree canopy health mapping in a 

macadamia orchard for plantation management purposes (Felderhof & Gillieson, 2012), early 

site-specific weed detection in wheat fields (D. Gómez-Candón et al., 2013), automated crop 

lodging detection in maize (Chu et al., 2017), and vegetation filtering for river riparian zones 

(Wei et al., 2017). 

UAS flexibility increases its applicability for surveying of the same area over time, especially 

in very dynamic environments requiring close monitoring, which is not possible—at least, in a 

cost-effective manner—by means of other remote sensing platforms. This approach has already 

been applied in some studies, where this remote sensing technology has been used to acquire 

multi-temporal data with different purposes, in several types of agricultural crops, such as 

barley (Bendig et al., 2013), sunflowers (Vega et al., 2015), silage maize (Castaldi et al., 2017), 

rice (Willkomm et al., 2016), wheat (Du & Noguchi, 2017; Holman et al., 2016), and vineyards 

(Ballesteros et al., 2015). In the aforementioned studies, multi-temporal imagery acquisition 

gave results that, in some cases, were noticeable only after a certain vegetative cycle stage of 

the studied crops. Moreover, this approach was already employed in coastal environments 

(Long et al., 2016), assessment of landslides displacements (Lucieer et al., 2014), and in 

monitoring of forest growth and biomass estimation (Guerra-Hernández et al., 2017). 

Thus, applying UASs can be advantageous for monitoring certain areas, since it allows to assess 

them and to identify potential problematic zones, and/or to evaluate implemented 

mitigation/prevention measures in an effective way. The next section will address the 

methodology used in the two case studies presented in Section 3.4, which benefit from the usage 

of multi-temporal UAS-based imagery. 
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 Methodology 

This section describes the methodology used in the presented case studies. The applied 

methodology was similar for both studies and consists essentially of two phases: (1) field work-

data collection by acquiring high-resolution images using UASs and, when necessary, some 

ground control points (GCPs); and (2) data processing-manipulation and analysis of the 

collected data (through specific software) to produce valuable and meaningful information. 

Since atmospheric influence is of minor impact while using UASs for land surveying (Pádua, 

Vanko, et al., 2017) and also because conditions—e.g., light and temperature—were 

consistently ensured between flights, radiometric corrections were considered negligible for 

both addressed case studies (monitoring of Padrela’s chestnut trees and Cabedelo’s sandspit) 

and, thus, they were not performed. These stages are further described in the following 

subsections. 

 Data collection 

The selection of a UAV for data acquisition is influenced by the specificities of each case study. 

In that selection, some characteristics have to be considered: ground sample distance (GSD); 

minimum coverage; ability to be deployed in rugged terrain, ability to operate from unprepared 

surfaces and in constrained conditions; autonomy of at least 30 min; being easy to carry over 

long distances; ease of simple field maintenance and reparability; reduced environmental 

emissions and noise signature; and reliable and low cost. The UAVs used in the case studies 

presented in this paper are described in Section 3.4. All flights were conducted in parallel rows 

with the minimum longitudinal overlap of 75% and lateral overlap of 60% (Long et al., 2016). 

The flights were planned by using specific software, wherein the user defines the area of 

interest, flight direction, longitudinal and lateral overlapping, and pixel-size on the ground 

(GSD) (Figure 3.1). 

The imagery used in this study was collected using the Canon IXUS 127 HS camera (16 mega-

pixels) and the Canon PowerShot ELPH 110 HS camera (12 mega-pixels). The former provided 

the possibility of collecting images in the visible part of the electromagnetic spectrum, i.e., red-

green-blue (RGB) bands, while the latter allowed the collection of imagery in RedEdge (RE), 

green and blue bands. RE is the spectral region where the plant’s reflectance changes from low 

to high (from 680 nm to 730 nm) while RGB acquires data in the visible spectrum (from 380 

nm to 700 nm). 
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Figure 3.1. Planning a mission using eMotion software (senseFly SA, Lausanne, Switzerland) adjusting all the 
required parameters (e.g., lateral and longitudinal overlap, ground resolution). 

The used UAVs’ navigation system includes a global navigation satellite system (GNSS) 

receiver, with a positional accuracy of a few meters. The direct georeferencing achieved by this 

equipment does not follow the image’s pixel resolution, enabling only an approximate location. 

Therefore, it is necessary to refine the external orientation through the support of tie points 

included in the automatic aerial triangulation processes. Ideally, these points must be uniformly 

distributed throughout the surveyed area, because parts that are not properly covered by GCPs 

are prone to more significant errors (Jianghao Wang et al., 2012), since the determination of an 

image’s exterior orientation will mainly rely on conjugate points between overlapping images. 

In general, UAV cameras are non-metric (including moving parts), and usually require a self-

calibration in the bundle adjustment (Fryskowska et al., 2016). Correlation between exterior 

and interior orientation parameters (e.g., flying height and focal distance) may lead to model 

deformations (James & Robson, 2014), which in some cases may not be obviously detected. 

Not only should there be good GCPs, but independent checkpoints should also be used to verify 

the quality of the extracted DSM (Martha et al., 2010). If camera pre-calibration (interior 

orientation parameters) is available, it should be used. 
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In an urban environment, especially when road markings are present, it is relatively easy to find 

well-defined points that can be used as GCPs. However, in the case studies presented in this 

paper, it was not always possible to apply this method. As such, the option was to use panels 

(approximately with 1 m2 area) with centre-marked crosses, placed before the flight at selected 

locations and fixed with metal studs. Figure 3.2 provides an example of a target in use, observed 

from two perspectives: one on the ground (Figure 3.2a) being surveyed by GNSS, and another 

presenting an UAV aerial image result (Figure 3.2b). 

 

Figure 3.2. Example of an artificial ground control point (GCP) measuring 100 × 65 cm: in (a) the ground being 
surveyed with a global navigation satellite system (GNSS) device placed in the middle of the marker, and in (b) 
an aerial image taken using an unmanned aerial system (UAS) flying at 175 m. 

 Data processing 

Each performed flight generates large amounts of data that need to be contextualized, filtered, 

and analysed in post-flight operations in order to extract information that will support the 

creation of knowledge for decision-making processes within forestry/agriculture (e.g., disease 

treatment) and preservation (e.g., natural protection) contexts. 

Specific software for photogrammetric processing is required to extract information from the 

collected data. This type of processing usually considers the following steps. Firstly, the images 

are imported and the approximate internal and external orientation parameters (position-based 

only) provided by the navigation system are identified. Secondly, conjugate points and relative 

orientation blocks are generated, resulting in a 3D sparse point cloud with the approximate 

georeferenced location calculated from the projection centres’ positions. Points with obvious 

errors can be eliminated from this 3D sparse point cloud and therefore from the conjugate points 

list. Thirdly, there is GCP insertion and refinement of the external orientation with self-

calibration. Adjustments in focal length (in the principal point position), polynomial 

coefficients of the radial distortion (K1, K2, K3) and tangential deformation coefficients should 

also be considered. Moreover, other correction parameters are not especially relevant for 
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cameras with relatively small deformations and they can increase the risks of introducing new 

ones due to correlations with the external orientation parameters. Fourthly, there is the 

generation of a dense point cloud, obtaining a dense surface model in a grid. Finally, there is 

orthorectification (“true ortho” to be used in the DSM) and final mosaic creation. 

 Case studies 

The case studies presented in this paper consist of applying UASs in distinct fields—forestry 

and coastal environments—that have particular relevance in the development of socio-

economic activities and in environmental sustainability. Regarding forestry, the selected UAS 

was applied to monitor chestnut tree health. Indeed, chestnut fruit is the main income source of 

the “Castanha da Padrela” region (Portugal). As for conservation and preservation, the selected 

UAS was applied to monitor and assess topographic changes that occurred in the Cabedelo 

sandspit, one of the most important and sensitive natural areas in Cabedelo (Porto, Portugal). 

 Chestnut health monitoring 

Since the mid-1980s and mainly due to the increase in its economic importance, the area of 

chestnut (Castanea sativa Mill.) cultivation has been growing in Portugal. Currently, chestnut 

trees occupy around 36,000 hectares, of which 88% is located in northern Portugal (Instituto 

Nacional de Estatística, I. P., 2016). The growing area of cultivation is clear in the “Castanha 

da Padrela” region (the north-eastern part of Portugal), where this case study took place. In this 

region, chestnut fruit is the main source of income for the local population (Instituto Nacional 

de Estatística, I. P., 2016). However, agricultural practice intensification has favoured the onset 

of phytosanitary problems, such as ink disease and chestnut blight. Both are considered as the 

main causes of chestnut tree decline (Gomes-Laranjo et al., 2012). 

Chestnut ink disease, caused by the soil-borne Phytophthora cinnamomi Rands (Santos et al., 

2015) dates back to the end of the 19th century and, since then, it has been recurrently causing 

chestnut tree death to the present day. With respect to chestnut blight (Cryphonectria parasitica 

(Murr.) Barr.) (Robin et al., 2010), two decades after its first detection in Portugal, 

hypovirulence began to be observed in some locations. Many of the sub-populations of C. 

parasitica belong to the well characterized and specific vegetative compatibility type EU–11 

—in spite of having a spectral response that can be similar to other chestnut disorders caused 

by, for example, abiotic factors, inadequate pruning practice, or insect defoliation—that appears 

only in some orchards in Italy (Ambrosini et al., 1997). Successful treatment depends on the 
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way the fungus population propagates in the area of interest. In 2014 the oriental chestnut gall 

wasp was detected for the first time in Portugal, near Barcelos (Braga, Portugal). Scientifically 

known as Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae), it is considered the 

world’s worst pest for chestnuts, and has become a serious concern for chestnut culture in 

Portugal due to the potential losses to fruit and timber production (DRAPN, 2014). In three 

years, has rapidly spread to the most significant chestnut production areas. Many of Europe’s 

southern and western countries have been reporting this phytosanitary issue after its accidental 

introduction into Piemonte (north-western Italy), where it was found for the first time in 2002 

(Sartor et al., 2015). 

Remote sensing techniques, such as conventional aerial photography or satellite images, are 

usually applied for evolution monitoring purposes. However, acquiring those images is costly, 

especially when the areas to be evaluated are small or there is a need to make several campaigns 

in relatively short periods of time (Mozas-Calvache et al., 2012). 

In this case study, a UAS approach composed of a fixed-wing UAV (senseFly SA, Lausanne, 

Switzerland) was used to acquire high-resolution aerial data. This type of UAV enables the 

acquisition of various samples over a significant geographic area (up to 10 km2) in a short 

amount of time, especially due to the developments in sensors and their spectral and spatial 

resolutions (Xiang & Tian, 2011). As an example, and when addressing the vegetation 

monitoring field, this kind of aerial image has been used mainly due to its advantages when 

compared with ground observations. Temporal and spatial high resolutions, combined with the 

low complexity and operation costs, make all the difference (Laliberte et al., 2010). 

The case study area (438 ha) is located between the villages of “São João da Corveira” and 

“Padrela e Tazém”, in Valpaços (in the north-eastern region of Portugal). For monitoring the 

chestnut area and recognizing the most disease-affected areas, aero photogrammetric flights 

were made in three campaigns in 2014, 2015, and 2017 at an average flight altitude of 550 m 

(GSD ~16 cm), along six flight lines, oriented in the north–south direction. Figure 3.3 shows 

the evolution of a small part of the case study area, over time. Later on, these aerial images—

both in colour (RGB) and near-infrared (NIR)—were used to compare the evolution in 

consecutive campaigns. RGB images acquired in 2006 by the Portuguese Forest Authority for 

the National Forest Inventory, with one-meter GSD (ICNF, 2010), were also included in the 

case study in order to extend the analysed period of time. After the flights, image 
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orthorectification and geocoding were performed based on natural GCPs directly identified in 

the images. 

 

Figure 3.3. Temporal evolution of a portion of the study area in each campaign. RGB: red-green-blue. 

3.4.1.1. Considerations about surveys of chestnut trees 

Photographic keys relating to chestnut trees with different physiological conditions were 

developed for photo interpretation purposes. Moreover, field data acquired during the 

campaigns were compared with the acquired aerial images (Figure 3.4), which in turn were 

processed using Pix4Dmapper software (Pix4D SA, Lausanne, Switzerland). 

A geographic information system (GIS) was used for distributing 438 circular plots in the case 

study area (500 m2 area, each), by using a systematic distribution of 100 × 100 m2, 

corresponding to a 1-ha grid. Colour and NIR orthorectified aerial photographs obtained in the 

different campaigns were used in the GIS environment to determine differences in the chestnut 

canopy between three consecutive campaigns (2006–2014, 2014–2015 and 2015–2017). 

Canopy cover index (CI) (Equation (1)) considers the ratio between the area covered by the 

chestnut canopy and each plot’s surface (500 m2). This ratio represents ranges from 0 to 100. 

The same procedure was adopted in all campaigns. 
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Figure 3.4. Chestnut trees affected by (a) ink disease and (b) chestnut blight. The same trees are represented in 
colour and infrared aerial photographs. NIR: near-infrared. 

CI =
𝐶𝐴

𝑃𝐴
× 100 (1) 

In Equation (1), CA represents the plot’s canopy area and PA the plot’s area (500 m2 in this 

specific case). To estimate health of the chestnut trees, as well as mortality and new plantation 

areas, a Student’s t-distribution was used. A sampling error with a 95% confidence level was 

considered. To assess the geographical evolution of vitality, methods to estimate parameters 

based on attributes observed in neighbour points were used (Soares, 2000). These methods are 

used to explain the spatial structured phenomena (such as forest diseases) because they do not 

have a random distribution. 

The existence of spatial correlation between georeferenced random variables correlation (that 

depends on the distance between points, which tends to decrease with distance), can be found 

using geostatistical methods (Sousa & Muge, 1990). These methods use specific observations 
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for a single regionalized variable of interest, Z(xi), referred to a set of points (Dong et al., 2015) 

of the study area (univariate methods). Alternatively, auxiliary regionalized variables, whose 

values can contribute to the improvement of estimates of the main interest variable, can be used 

to provide the correlation rate. 

The behaviour of regional variables in the interpolation, Z(xi), whose spatial continuity could 

be modelled by a semi variogram represented by Equation (2), was observed. The chestnut 

growth (CG) for each multi-temporal survey was used as the variable in the geostatistical 

approach. The model does not use negative or null values. In this sense, the CG was converted 

into a scale ranging from 1 to 20. The higher the value, the better the tree’s health condition.  

CI =
1

2
× 𝐸[𝑍ሺ𝑥𝑖 + ℎሻ − 𝑍ሺ𝑥𝑖ሻ]

2 (2) 

The results obtained in two consecutive campaigns were used to evaluate the difference 

between CIs. For example, the results obtained by using the 2006 and 2014 campaign images 

were used to estimate CG during that period of time. The CG (Equation (3)) reflects the 

predictable growth (where CG > 0), but also the chestnut decline (if CG < 0). A 5% chestnut 

growth rate was admitted for the 8-year period. This is the predictable chestnut trees 

development considering the soil and climatic conditions of the case study area (Gomes-

Laranjo et al., 2012). For the other two periods (2014–2015 and 2015–2017), a 0% minimum 

growth rate was considered (Gomes-Laranjo et al., 2012).  

𝐶𝐺ሺ14 − 06ሻ  =  𝐶𝐼14 − 𝐶𝐼06 (3) 

where: CG—Chestnut growth (%); CI06—Canopy cover index in 2006; and CI14 —Canopy 

cover index in 2014.  

3.4.1.2. Results and discussion 

Table 3.1 presents the CI results for all the campaigns, with different values for each one. 

Regarding the 2006–2014 period, CI has significant differences and an important decline can 

be noticed in 55% of the plots. As for the 2014–2015 period, the decline was even more 

pronounced, occurring in 60% of the chestnut plots. Between 2015 and 2017, the decline 

occurred in 35% of the chestnut plots. As it can be observed in Table 2, new plantations were 

made in forestry areas, abandoned areas, or in soils with less profitable cultures (cereals, 

pastures, potatoes, etc.). These practices positively influenced the results obtained in the latter 

analysed period (2015–2017). A significant contribution for this overall result was given by 

new plantations that increased the total chestnut area by 40%. The 247 ± 10 ha area in 2006 
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now measures 347 ± 14 ha (Table 3.2). For this reason, the decline can also be related to 

inadequate soils for such a demanding culture as Castanea sativa (Bounous & Conedera, 2014). 

Table 3.1. CI and chestnut area for the period of the study (2006–2017). The sampling error is according to 
Student’s t-distribution. The average values with (*) are significantly equal. 

Parameter/Year 2006 2014 2015 2017 
Canopy cover index (CI) 21.6 ± 2.5% (*) 19.5 ± 1.8% 22.2 ± 2.0% (*) 25.9 ± 2.1% 

CI minimum 5 5 0 0 
Canopy cover per hectare (CC/ha) 2160 ± 250 m2 (*) 1950 ± 180 m2 2220 ± 200 m2 (*) 2590 ± 210 m2 

CI maximum 100 90 90 90 
Sampling error (SE%) for CC 11.7% 9.2% 9.2% 8.2% 

Total area (SE% = 4%) 438 ± 18 ha 438 ± 18 ha 438 ± 18 ha 438 ± 18 ha 
Chestnut area (SE% = 4%) 247 ± 10 ha 303 ± 12 ha 295 ± 12 ha 347 ± 14 ha 

Table 3.2. Chestnut area and chestnut decline affecting the whole study area (438 ha). 

 2006 2014 2015 2017 
Other cultures 191 (44%) 135 (31%)  143 (33%)  91 (21%)  
Chestnut area 

(ha) 
247 (56%) 303 (69%)  295 (67%)  347 (79%)  

Chestnut 
decline 

  135 (55%)  182 (60%)  104 (35%) 

Chestnut 
growth 

  112 (45%)  121 (40%)  191 (65%) 

Chestnut area 
variation 

  
[303–247] 

(18%) 
 

[295–303] 
(−3%) 

 
[347–295] 

(15%) 
Total (ha) 438 438 247 438 303 438 295 

The geostatistical approach allowed for the detection of the three important affected areas 

(Figure 3.5). The decline in foci detected in the 2006–2014 period worsened in the 2014–2015 

period. However, an improvement in the health condition of chestnut trees was observed in the 

2015–2017 period. These results are in accordance with Table 3.2. 

Moreover, these results also demonstrate that RGB and RE/NIR aerial imagery obtained by 

UAS is a cost-effective alternative to other remote sensing platforms, as they are reliable for 

monitoring chestnut tree health, allowing mapping affected areas quickly and accurately, 

namely in:  

• detecting chestnut ink disease symptoms (L. Martins et al., 2007); 

• monitoring tree canopy cover decline by means of multi-temporal analysis (assess 

chestnut blight presence); 

• providing the means for evaluating gall wasp biological control strategy effectiveness. 

Furthermore, this approach also demonstrated to be an effective tool for classifying soil 

occupation, detecting areas of interest for new cultures and evaluating new plantations. 
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Figure 3.5. Chestnut growth (CG) and decline for the 2006–2014, 2014–2015, and 2015–2017 periods. CG was 
converted into a scale ranging from 1 to 20. The higher the value, the better the tree’s health condition. 

This study also confirmed interest in chestnut culture, as it showed the new plantations that 

increased the area of chestnut cultivation from 247 ha in 2006, to 347 ha in 2017 (a 40% greater 

chestnut area in the case study area in the referred time period). The last period studied (2015–

2017) shows a positive value on CG. This growth is related to the new practices used for 

controlling biotic agents. In fact, the lower soil tillage to reduce chestnut ink disease and the 

application of hypovirulence strains to control chestnut blight may be directly responsible for 

this improvement (Gehring et al., 2015). 

Lastly, using this approach (when compared with field observations) enables the recognition 

and quantification of the chestnut tree decline, disease dispersion and the respective most-

affected areas. It was also possible to evaluate the decline of the chestnut tree at a substantially 

lower cost compared to other field surveys or manned aircraft-based images (L. Martins et al., 

2001). In Portugal, chestnut is currently facing severe climatic conditions characterized by heat 

and drought stresses with important consequences for species’ health. Thus, it is convenient to 

model yield forecast and species area redistribution according to climatic constraints. 

Due to the similar aerial imagery behaviour presented by other species with high economic 

impact in Portugal (Quercus suber L. and Olea europea L.), the obtained results allowed us to 
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conclude that it could be possible to adapt the present methodology to be applied in those 

species. 

 Cabedelo sandspit variation assessment 

The Cabedelo sandspit is responsible for the preservation of ecosystems and for the protection 

of the sand area. Its dunes are crucial for preserving the dwellings situated on the coastline and 

those of the local population, as it prevents the Douro River banks being reached by waves. 

Moreover, there are financial interests in terms local business activities being run in the Douro 

River estuary navigation channel, and these are highly dependent upon the sandspit 

conservation (Teodoro et al., 2014). 

At present, the Cabedelo sandspit has an approximate size of 800 × 400 m and is well known 

for its frequent changes in position and shape. Before the construction of a detached jetty, the 

sandspit morpho dynamics were related to extreme river flow, sea turbulence, and wind. After 

the construction, the sandspit shape was stabilized and an increase in its area and volume was 

observed as well (Bio et al., 2015). Figure 3.6 shows orthoimages of different periods that show 

the large variations in shape and location, as well as the stabilization that occurred after 2006. 

Through Figure 3.6 it is possible to obtain a multi-temporal view of the morphological 

dynamics of the case study area. 

 

Figure 3.6. Orthoimages of the sandspit in five different periods (images provided by aerial national mapping 
agency aerial photography archives). 

A monitoring program has been developed by the University of Porto, based on GNSS land 

surveys as well as photogrammetric surveys, using the digital camera ZI–DMC–I (Bio et al., 

2015; Gonçalves et al., 2011). Some conventional aerial photography campaigns were carried 

out, covering a coastline extension of 15 km. Aerial photography would not be affordable just 

for the Cabedelo sandspit monitoring. The best solution for fast, frequent, and cost-effective 

monitoring surveys of this area is the use of a UAS. The first survey was carried out in 2013. 
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In the next few subsections the changes that occurred between the three multi-temporal series 

are analysed and quantified. Several aspects related to the accuracy of the extracted DSM are 

also analysed as they may strongly affect the alteration assessment. Although GCPs were not 

exactly the same in number, eight of them were placed at the same location in all flights, using 

a global positioning system (GPS) navigation device. Their location was rigorously surveyed 

using differential GPS, in real-time kinematic (RTK) mode. 

3.4.2.1. Considerations about surveys in sand areas 

The main purpose of UAS surveys in coastal areas is to assess topographic changes in sand 

volume. For this reason, geometrical accuracy of the resulting surface models and orthoimages 

are fundamental for the analysis. Sandy areas pose several challenges that must be carefully 

analysed First, there is the need for accurate GCPs, which must be well defined on both the 

ground and on the images. Unlike in built-up areas, the natural environments of coastal areas 

do not provide such points, so artificial marks must be previously placed on the ground (Section 

3.3.1). 

For this case study, vertical checkpoints are most important since they allow for control of sand 

volume variation. These are relatively simple to acquire, since surveys of RTK GNSS can be 

very fast and points do not need to be marked. For a vertical checkpoint of coordinates (E, N, 

h), residuals (Δh) are calculated by subtracting the height measured by GNSS (hGNSS) and the 

height interpolated from the DSM, on coordinates (E, N), using bi-linear interpolation (hDSM) 

(Equation (4)). The overall accuracy is given by the root-mean-square error (RMSE), for n 

observed checkpoints, as in Equation (5). The mean and the standard deviation can also be 

determined to assess if some systematic trend may exist in the data. 

△ ℎ𝑖 = ℎ𝑖,𝐺𝑁𝑆𝑆 − ℎ𝐷𝑆𝑀ሺ𝐸𝑖 , 𝑁𝑖ሻ, 𝑖 = 1, . . . , 𝑛 (4) 

𝑅𝑀𝑆ℎ√
∑ △ ℎ𝑖

2𝑛
𝑖=1

𝑛
 (5) 

Beside these challenges, others that are typical of sandy areas must be considered to obtain 

success in applying UAS in this kind of environment. These challenges include, for example, 

the lack of patterns that sand may have, reducing the quality of the conjugate points obtained 

by stereo matching. This is especially the case when the sun is high, which may result in too-

bright images. It is preferable to perform surveys on cloudy days or in the early morning, when 

the sun is low (Dandois et al., 2015). Another difficulty, which is combined with sun 

illumination and the tide, is the requirement of relatively low wind. This is not the regular 
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situation in the Portuguese coastal zone (Troen & Lundtang Petersen, 1989), which makes the 

availability of adequate moments for the surveys relatively difficult. In this case study, there 

was also the need to combine the flight time with a low tide. The first flight made in 2013 was 

performed in the early morning of a cloudy day. In fact, it gave the best vertical accuracy. 

Finally, it was possible to verify that waves also pose some difficulties. Although low tides 

were chosen, with instantaneous sea level height at −1m or below, waves may be present in 

heights of up to 1 or even 2 m. The extracted DSM has very poor quality in these areas. For that 

reason, contour comparisons between different campaigns were made for an elevation of 2 m 

above the sea level. 

3.4.2.2. Results and discussion 

The first survey was conducted in 2013 with a smaller resolution camera (when compared with 

the two more recent campaigns) coupled on senseFly Swinglet (senseFly SA, Lausanne, 

Switzerland) with a GSD of 4.5 cm. The other two surveys were performed in 2015 and 2017, 

using the UAV SenseFly eBee (senseFly SA, Lausanne, Switzerland) and a GSD of 5.2 cm. 

This latter GSD meant that for practical purposes the resolution was slightly decreased, while 

keeping the standards for the monitoring objectives. 

The first campaign was performed for experimental reasons and included detailed quality 

control analysis, which is described in Gonçalves and Henriques (2015). The image orientation 

process by bundle adjustment was done in Agisoft Photoscan (Agisoft LLC, St. Petersburg, 

Russia) and provided residuals similar to the GSD, both in planimetry and altimetry. The main 

concern, especially because the models are intended to rigorously assess height changes, was 

with vertical accuracy. Although the bundle adjustment may be good in terms of the control 

points, in areas not so well covered by GCPs the model may have deformations, especially if 

many adjustment parameters are used. As referred to before, an independent verification with 

altimetric checkpoints is important to verify that deformations do not occur. Elevation 

checkpoints were obtained by differential GNSS at the same time as GCP collection, with care 

taken to choose places where sand had not been moved and without leaving the pole in the sand. 

At least 100 checkpoints—well distributed throughout the area—were to be acquired, per 

survey. 

The second campaign—done in May 2015—was performed during the breeding season of some 

birds, such as sand plovers, which limited the access to some areas. Therefore, a smaller number 
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of checkpoints were collected. However, the distribution was reasonably complete. Table 3.3 

presents data from the three campaigns, namely their characteristics and the accuracy analysis 

results. 

The vertical errors found on the independent check points (ICP) have positive and negative 

values, and approximately follow a Gaussian distribution with an average close to zero 

(Gonçalves & Henriques, 2015). This fact reveals that no systematic trends exist in the surface 

models. There is an error propagation to the calculated volumes but this is not as significant as 

if a systematic vertical trend were to exist on the surface. 

Table 3.3. Cabedelo sandspit campaigns (2013, 2015, 2017) characteristics and analysis results. UAV: unmanned 
aerial vehicle; GSD: ground sample distance. 

Date and Start Time 
(h:min) 

UAV/Camera 
Resolution 

GSD 
# Images 

Used 
GCPs Total/3D 

RMS 
ICPs 

Total/RMSh 
22 July 2013 07:22 Swinglet/12 Mp 4.5 cm 308 11/12.8 cm 114/4.6 cm 
06 May 2015 10:55 eBee/16 Mp 5.2 cm 204 8/3.0 cm 34/6.3 cm 

29 March 2017 11:15 eBee/16 Mp 5.2 cm 196 9/4.2 cm 146/7.1 cm 

DSMs were generated for the tree campaigns, which enabled the assessment of differences due 

to the sand movements. Figure 3.7a shows a colour-coded image of the 2017 campaign DSM. 

Figure 3.7b shows the hill shaded image of the DSM, together with the corresponding contours 

of height of 2 m. The 2-m contours of the 2013 and 2015 campaigns DSMs are overlaid on top 

of the 2017 DSM, in different colours to perceive the sand accumulation, profiles were traced 

in the place of largest separation between the contours, along the steepest slope (A and B). 

These profiles are represented in Figure 3.8. 

 

Figure 3.7. Differences in Cabedelo sandspit due to the sand movements: (a) colour coded DSM of 2017 and (b) 
hillshaded DSM with contours of the 2013 and 2015 DSMs overlaid. 
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Figure 3.8. Profiles along the steepest slope, in the part of largest sand increase for the three epochs: red for 2013, 
blue for 2015, and black for 2017. Profile A had larger increase from 2013 to 2015, while in profile B the largest 
increase was from 2015 to 2017. 

The main change occurred from 2013 to 2015, with a large accumulation of sand (around 60 

m) in the northern and central parts of the sandspit, facing the sea. From 2015 to 2017 there 

was an accumulation in the southern part of around 40 m. The models were subtracted to 

calculate the volume difference between consecutive DSMs as the sum of vertical prisms. The 

largest volume calculated for the increased area facing the sea was of 170,000 cubic meters 

(volumes above height zero), between 2013 and 2015. The increase from 2015 and 2017 was 

of approximately 60,000 cubic meters. Sand accumulation that was observed with the DSMs 

acquired in the successive UAV flights is due to the detached breakwater built in the area. Its 

aim is to disperse wave energy and fix the sandspit to facilitate boat navigation in the Douro 

river mouth. As expected, there is an accumulation of sand in the sandspit (Teodoro et al., 

2014). Its increase rate (that can be measured from the UAV data) can help in taking measures 

for the coastal engineering management of the area. 

An additional remark on the profile analysis is the noise effect present on the DSMs. The first 

DSM (2013) was smoother than the other two, especially the one from 2017, which may be 

explained because it was done on a cloudy day. In the other two, especially that of 2017, there 

was sun and they were done in the middle of the morning: images were much brighter and with 

less contrast and patterns for the matching process. This is concordant with the lower vertical 

accuracy (ICP RMSh in Table 3.3). In any case, detection and quantification of the differences 

between the three DSMs was possible due to the sand deposition by the sea. This study confirms 

the feasibility of this methodology for change assessment in sandy beaches. Many studies 

recently published reveal that it is being regularly used to assess changes in critical areas. From 
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the experience obtained with this study, which involved a relatively sparse dataset along the 

time with an average revisit period of two years, more frequent surveys would be needed to 

perceive the continuity of the change process. Some limitations were found due to 

environmental issues, such as the frequent strong winds in the Portuguese Atlantic coast. 

Another important constraint was due to logistic effects, because of the need for signalized 

ground control points. Although flight times were as short as 30 min, several hours were needed 

to place the signals, survey their coordinates with GNSS, and collect them back. This 

requirement makes surveys rather time consuming and not so simple to implement with higher 

frequencies. 

A very important improvement can be achieved with UAVs equipped with precise GNSS 

equipment, working in RTK or post processing kinematic (PPK) mode. Surveys without ground 

control points, keeping a suitable accuracy (Rehak & Skaloud, 2015; I. L. Turner et al., 2016), 

can be conducted, allowing for much simpler logistics of data collection. With smaller 

requirements for field work, a more frequent observation would be possible, allowing not only 

for change assessment and quantification, but also for a better perception of periodical 

phenomena, with regular data collection before and after winter seasons. 

 Conclusions 

This work presents two applications of unmanned aerial systems, one of the most recent remote 

sensing technologies. In the first case study, RGB and NIR high-resolution aerial images were 

used to monitor the evolution of a chestnut tree area over time. The feasibility of this approach 

was demonstrated by comparing the results with ground true data. A good agreement was found. 

Tree canopies, computed in both RGB and NIR high-resolution images, were also used to detect 

the coverage’s evolution. In that way, it was possible to correlate that evolution (growth or 

decline) with biotic and abiotic factors. Thus, UAS-based methods allow us to detect and fight 

the major issues affecting chestnut trees. 

The second case study presented in this work focuses on the monitoring of the Cabedelo 

sandspit. In sensitive ecosystems (like this one), the use of UAVs avoids having to walk the 

terrain, which usually leads to severe damage which, for instance, occurs with ground vehicle 

tracks. It was possible to detect a significant change between 2013 and 2015, with a large build-

up of sand in the northern and central parts of the sandspit. In the study’s most recent period 

(2015–2017), there was an accumulation in the southern part of the sandspit. Within the total 
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period analysed, the sandspit’s total volume increased by more than 200,000 cubic meters of 

sand. 

The continuity of both studies will support better knowledge and understanding in assessing the 

effects of corrective measures that have been applied by chestnut tree producers in the last 

years, and a better understanding of the dynamics and coastal protection works performed in 

the Cabedelo sandspit study area. 

The UAS may be considered a well-suited configurable tool which is fairly flexible for 

application in such distinct areas as forest and coastal environments. Moreover, they constitute 

a cost-effective and non-invasive form of technology capable of covering considerably-sized 

areas in a single flight, supporting different sensors within their payload. Currently, UASs 

continue to evolve, offering new opportunities and presenting new challenges. 
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Chapter 4. 
UAV-Based Automatic Detection and Monitoring of Chestnut Trees 

 Introduction 

In the early 1980′s, the European chestnut tree (Castanea sativa, Mill.) assumed an important 

role in the Portuguese economy (Luís Martins et al., 2015). However, phytosanitary problems, 

such as: the chestnut ink disease (Phytophthora cinnamomi) (Valverde et al., 2017; Vettraino 

et al., 2005) and the chestnut blight (Cryphonectria parasitica) (Rigling & Prospero, 2017; 

Valverde et al., 2017), along with other threats, e.g. chestnut gall wasp (Dryocosmus kuriphilus) 

(Battisti et al., 2014) and nutritional deficiencies (Portela et al., 2003), are responsible for a 

significant decline of chestnut trees, with a real impact on production (Luís Martins et al., 2014). 

Thus, to mitigate the associated risks, it is crucial to establish an effective monitoring process 

to ensure crop cultivation sustainability. Usually, chestnut trees health condition assessment 

relies on time-consuming and laborious in-field observation campaigns. Alternatively, the use 

of remote sensing platforms is becoming attractive in performing dull tasks that are related with 

land monitoring operations, in which vegetation monitoring can be included (Colomina & 

Molina, 2014). 

Among the different available aerial remote sensing platforms, Unmanned Aerial Vehicles 

(UAVs) can provide high-resolution imagery, which is acquired using different sensors with a 

remarkable versatility, ease-of-use, and cost-effectiveness (Pádua, Vanko, et al., 2017). Data 

resulting from usage of Unmanned Aerial Systems (UAS, composed of UAV, sensor(s), and 

ground station), along with photogrammetric processing, enable reaching advanced data 

products, such as orthorectified mosaics (orthophoto mosaics), digital elevation models (DEM), 

three-dimensional (3D) point clouds, and vegetation indices (VI). Thus, vegetation monitoring 

is possible, since these types of outcomes enable vegetation detection and features extraction, 

such as tree height, canopy area and diameter, and individual tree counting. These features help 

to promote agriculture and forestry sustainability, in both single and multi-temporal 

perspectives (Pádua, Vanko, et al., 2017). 

Järnstedt et al. (2012) used airborne laser scanning (ALS), RGB, and colour infrared (CIR) 

imagery, to generate 3D point clouds and high-resolution imagery from forests. In that way, it 

was possible to extract vegetation height and perform vegetation monitoring operations while 

using high-resolution imagery with cost-effectiveness in comparison to the LIDAR-based 

approaches. A comparison between point-clouds driven from imagery and ALS was carried out 

to evaluate different attributes in both models—e.g. tree crown diameter and height, basal area, 

and volume of growing stock. Zarco-Tejada et al. (2014) used a fixed-wing UAV that was 
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equipped with RGB and NIR sensors to assess olive trees height with discontinuous canopy, 

through photogrammetric processing. The results highlighted that an approach based on 

consumer-grade cameras coupled in a hand-launched UAV provide similar accuracies to those 

of the more complex and costly LIDAR systems, which are commonly used in forestry and 

environmental applications. Mohan et al. (2017) evaluated the applicability of low-cost 

consumer grade sensors that were mounted in an UAV for automatic individual tree detection, 

using a local-maxima based algorithm on Canopy Height Models (CHMs) computed from 

UAV-based photogrammetric processing. In this way, the resulting model only contains height 

information from objects above ground. 

Regarding the automated Individual Tree Crown Detection and Delineation (ITCD) task, while 

using remotely sensed data, it plays an increasingly significant role in the efficient, accurate, 

and complete forests monitoring process (Lindberg & Holmgren, 2017; Zhen et al., 2016). 

ITCD algorithms have advanced focusing in two main goals: the improvement of traditional 

algorithms to address specific issues and the development of novel algorithms that take 

advantage of active data sources or the integration of passive and active data sources. Wallace 

et al. (2014) used high-resolution LIDAR data acquired from UAS to determine the influence 

of detection algorithms and the point density on tree detection. The authors implemented five 

different detection routines to directly delineate trees from the point cloud, the determination 

of voxel space, and the computation of CHM. The method that used both the CHM and the 

original point cloud information achieved the best performance. Liu et al. (2015) developed a 

novel ITCD approach using airborne LIDAR data in natural forests using crown boundary 

refinement, based on the proposed Fishing Net Dragging (FiND) method and segment merging 

based on boundary classification. The authors used a machine learning method (random forest) 

to classify the boundaries between trees and between branches that belong to a single tree. There 

were some limitations in their approach, since FiND is based on watershed segmentation, and 

might not work well over areas where the valley shape between trees was not ‘V’ or ‘U’ shaped. 

Specifically, this limitation becomes serious in cases where a small tree is close to a 

neighbouring big tree, resulting in a possible merged tree crown. Eysn et al. (2015) 

benchmarked and investigated eight ALS-based methods for individual tree delineation. The 

authors claim that, in general, all of the methods achieved comparable results for the matching 

rates, but they differ in the extraction rates and omission/commission rates. 
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Ok and Ozdarici-Ok (2017) presented an approach to individually detect and delineate citrus 

trees based in Digital Surface Models (DSMs) that were computed from the photogrammetric 

processing of UAV-based imagery. The basis of their approach was the orientation-based radial 

symmetry transform that was designed for an input as a DSM. The approach was tested in eight 

different DSMs. However, this approach detects and delineates every circular object above-

ground that reduces its precision performance. 

Regarding the focus of this study, Martins et al. (2014) carried out a study addressing chestnut 

trees development, while using high-resolution aerial imagery. UAV-based data that was 

acquired in July of 2014, at the average height of 550 m (ground sample distance—GSD ~16 

cm), was compared with the 2006 imagery, acquired by the Portuguese Forest Authority for the 

National Forest Inventory, with 1 m GSD. The analysis process used by Martins et al. (2014) 

was manually performed while using a visual sample-based approach in GIS software, which 

is a time-consuming procedure. The method that is proposed in this article consists of a fully 

automatic process to monitor chestnut plantations, allowing for overcoming the major 

drawbacks that are associated with manual-based methodologies. The area and the data 

presented in Martins et al. (2014) and Pádua et al. (2017) and representative ground-truth data 

validate the method. Algorithmic-driven tree identification and counting, individual extraction 

of tree height, tree crown diameter and area features are at the core of the proposed method, 

aiming to improve data handling, and processing time, thus ensuring effectiveness towards the 

outlined goal. Moreover, the proposed method also supports multi-temporal analysis for a 

decision support system that correlates with features extracted from aerial images of the same 

area, taken at different epochs. 

 Materials and Methods 

 Surveyed Area and Data Acquisition 

The selection of an UAV for data acquisition is influenced by the specificities of each case 

study: the size of the area together with UAV’s autonomy influence the ground sample distance 

(GSD), which may make obtaining an acceptable spatial resolution impossible—this 

considering, of course, the completion of a single flight. In this specific study, while considering 

the final purpose of the experiment and the UAV characteristics, a fixed-wing UAV, the 

senseFly’s eBee (senseFly SA, Lausanne, Switzerland), was used to collect aerial imagery. The 

flights were conducted over a chestnut trees area (438 ha), located in the Padrela region 
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(Valpaços, Vila Real, Portugal: 41º33′51”N, 7º29′40”W), Trás-os-Montes region (Northeast of 

Portugal). This region concentrates the highest production of chestnuts in Portugal (Instituto 

Nacional de Estatística, I. P., 2017), representing one of the major agronomical sources of 

income of the region (Borges et al., 2008). Specific software was used to plan the flights, 

wherein the user defines the area of interest, flight direction, longitudinal and lateral 

overlapping, and GSD (Table 4.1). At each epoch, two flights respecting the same flight plan 

were carried out, each one with a different imagery sensor. A standard RGB sensor and a 

modified sensor were used to collect colour infrared (CIR) imagery in RedEdge (RE), green, 

and blue bands (Table 4.1). RE is the spectral region where plant’s reflectance changes from 

low to high (from 680nm to 750nm). These data were acquired on 19 July 2014, 8 September 

2015, and 10 July 2017. All of the flights were conducted close to the solar noon time, 

minimizing shadows, and the same flight plan was used at 550 m height (GSD ~16 cm). Figure 

4.1a presents a general overview of the study area. For validation purposes, an extra flight was 

conducted in June 2017, using the multi-rotor UAV, DJI Phantom 4 (DJI, Shenzhen, China), in 

two smaller areas within the study area, as presented in Figure 4.1c, at 100 m height (GSD ~ 3 

cm). Table 4.1 summarizes the main characteristics of the flight campaigns. 

Table 4.1. Flight campaigns (2014, 2015, 2017) characteristics and analysis results. UAV: unmanned aerial 
vehicle; GSD: ground sample distance. 

Date UAV Sensor and Resolution 
Overlap (%) 
(front/side)  

GSD 
(cm) 

# Images 
Area 

Covered 
(ha) 

19 June 2014 

Sensefly 
eBee 

RGB: Canon IXUS 12 7 
HS (16.1 MP) 

CIR: Canon PowerShot 
ELPH 110 HS (16.1 MP) 

75/60 

16.21 
85 RGB 
85 CIR 

490 

08 September 2015 14.99 
92 RGB 
90 CIR 

436 

10 July 2017 16.2 
86 RGB 
84 CIR 

517 
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Figure 4.1. General overview of the surveyed area: (a) colour infrared (CIR) orthophoto mosaic computed using 
data from the flight conducted on July 10, 2017; (b) complex area used for vegetation coverage validation; and, 
(c) chestnut plantations used for tree height and tree crown diameter validation. Coordinates in WGS84 
(EPSG:4326). 

 UAV Imagery Pre-Processing 

Pix4Dmapper Pro software (Pix4D SA, Lausanne, Switzerland) was used for the 

photogrammetric processing of the UAV-based imagery. The following processing pipeline 

was applied: (1) imagery coregistration—data corresponding to each sensor was separately 

processed in different projects and throughout the identification of common point (tie points), 

allowing for the generation of a sparse point cloud of the surveyed area, for each sensor’s 

imagery; (2) project merging—both blocks were aligned relative to each other by using points 

that are clearly identifiable in the imagery and then merged and geometric correction was 

applied using ground control points (GCPs), using both natural features and artificial targets 

that are deployed in the area (Pádua, Hruška, et al., 2017); (3) dense point clouds computation– 

two dense point clouds were computed (RGB and RE) using an high point density; (4) point 

clouds combination—finally, the two sets of point clouds were combined, increasing the total 

number of points, and ensuring, this way, height information for most of the trees, as shown in 

Figure 4.2. Orthorectified mosaics, DSM and DTM were the main outcomes that were 

generated from this pipeline. Data from each flight campaign has resulted in an excess of area 
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surveyed and different GSDs (Table 4.1). As such, a section was chosen and resampled to meet 

the same area (200 ha), as shown in Figure 4.1a with 16.21 cm GSD. 

 

Figure 4.2. Differences in the dense point clouds generated from data of each sensor: (a) RGB; (b) colour infrared; 
and, (c) combination of both. Example of areas that benefited from the merging process are highlighted. 

The CHM is computed by subtracting the DTM from the DSM, which makes it almost invariant 

with respect to terrain’s slope, as illustrated in Figure 4.3. The use of CHM is crucial, since it 

allows for obtaining the height of the objects above ground level, enabling the filtering of 

undergrowth vegetation, such as grass and shrubs, and only analysing the vegetation of 

interest—in this specific case, chestnut trees. 

 

Figure 4.3. Computation of the canopy height model (CHM) obtained from the digital terrain model (DTM) and 
digital surface model (DSM): (a) profile line upon four chestnut trees; (b) DTM and DSM profiles; and, (c) 
resulting CHM profile line computed from the subtraction between the DTM and the DSM. 

Regarding the geometric correction of the obtained photogrammetric processed data, and from 

a multi-temporal analysis perspective, it is mandatory to assure a subpixel alignment of all the 

epochs, otherwise the results may be biased. The used UAVs’ navigation system includes a 

Global Navigation Satellite System (GNSS) receiver, with a positional accuracy of a few 

meters. Thus, the georeferencing that is achieved by this equipment does not follow the image’s 

pixel resolution, only enabling an approximate location. Therefore, it is necessary to use tie 

points to refine the external camera orientation. Ground Control Points (GCPs) must be 

distributed throughout the surveyed area in order to avoid significant errors (Jianghao Wang et 

al., 2012). However, not only should good GCP coverage be done, but also independent check 

points should be used to verify the quality of the extracted products. In an urban environment, 
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especially when road markings are present, it is relatively easy to find well-defined points that 

can be used as GCP. However, in the specific case of this study, it was not always possible to 

apply this method. In fact, only a few areas that were occupied by man-made objects allowed 

for the identification of such points. As such, the option was to use targets (approximately with 

1 m2 area (Pádua, Hruška, et al., 2017)) with centre-marked crosses, placed before the flight at 

selected locations, and fixed with metal studs (see Figure 4.4). In total, 16 (6 natural + 10 

artificial) GCPs and 20 natural check points were used in every flight. 

 

Figure 4.4. Example of an artificial ground control point (GCP) measuring 100 x 100 cm:(a) being surveyed with 
a global navigation satellite system (GNSS) receiver placed in the middle of the marker, (b) aerial image taken by 
the unmanned aerial vehicle. In the left, RGB representation, and in the right, colour infrared representation. 

The imagery geocoding was performed while using the 16 GCPs and the alignment quality 

assessment was carried out using the 20 check points. For this case study, horizontal check 

points are the most important, since they allow for controlling the geometric alignment of the 

different outcomes, which crucial in implementing the multi-temporal analysis. These points 

are relatively simple to acquire, since surveys of real time kinematic (RTK) GNSS can be 

quickly acquired in the marked points. A GNSS receiver, in RTK mode, with an accuracy of 

approximately 2 cm, was used. For a check point of coordinates (E, N), the residuals are 

calculated by subtracting the coordinates that were measured by GNSS ሺ𝐸𝐺𝑁𝑆𝑆, 𝑁𝐺𝑁𝑆𝑆ሻ and the 

corresponding point on the corresponding point interpolated over the reference (ref) orthophoto 

mosaic. The overall accuracy is given by the root mean square error (RMSE), for the n observed 

check points, as in equation (1). The mean and the standard deviation can also be determined 

to assess whether some systematic trends may exist in the data. However, the final results will 

not be influenced, since the orthophoto mosaics were independently geocoded and the 

distribution and geometry of the GCPs remained (Agüera-Vega et al., 2017). 

𝑅𝑀𝑆𝐸𝐸,𝑁 = √∑
(𝐸𝑖,𝑟𝑒𝑓 − 𝐸𝑖,𝐺𝑁𝑆𝑆)

2
+ (𝑁𝑖,𝑟𝑒𝑓 − 𝑁𝑖,𝐺𝑁𝑆𝑆)

2

𝑛

𝑛

𝑖=1

 (1) 
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Depending on the combinations of campaigns, the reference orthophoto mosaics may vary. The 

oldest orthophoto mosaics was used as reference and then the differences between the 

coordinates of the remaining two epochs were computed to assess the geometric quality of the 

alignment. 

 Proposed method 

The outputs that are described in Section 4.2.2 were processed to extract the chestnut trees 

features. Figure 4.5 shows the main steps of the method that was developed in this research. 

The different steps are described in detail in the next sub-sections. Two imagery data sets (RGB 

and CIR orthophoto mosaics) and the CHM are loaded as inputs to fully exploit the proposed 

method. It should be noted that the method remains functional, even if RGB or CIR images are 

individually used as input. This way, the proposed method still fully operational, even in the 

cases where only imagery resulting from cost-effective platforms, which normally only 

supports RGB sensors, is available. 

 

Figure 4.5. Proposed method general flow chart. 

In addition, the proposed method also supports multi-temporal analysis, enabling the temporal 

vegetative evolution monitoring of chestnut plantations. 

4.2.3.1. Segmentation and First Clustering 

The first step relies on the preliminary selection of pixels that represent all of the vegetation, 

mainly associated to chestnut trees. To achieve this, common segmentation thresholding 
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techniques are not appropriate, since those techniques will not distinguish between vegetation 

and non-vegetation areas, resulting in an image with other objects besides vegetation (e.g. 

infrastructures, bare soil, roads, and the possible shadowing effects from the chestnut trees 

canopy). To overcome this issue, the use of broadband spectral VIs was considered. A 

comparison of different segmentation techniques and vegetation indices was conducted to select 

the most performant. Appendix A presents the results of this study. 

The image resulting from the application of VI-based segmentation (Figure 4.6b) enables the 

creation of a vegetation mask by applying the Otsu’s method (Otsu, 1979) (Figure 4.6c). From 

this selection, a binary image is created that contains all of the pixels that potentially correspond 

to vegetation. The same approach is applied to the CHM being binarized using a height 

threshold, then both binary images are joined with a logical AND operation. Next, a set of 

morphological operations is applied to the thresholding operation result. A 3×3 morphological 

structuring element is used for the open operation (to remove small objects from the 

foreground), and to the close operation (to remove small holes in the foreground, changing 

small islands of background into foreground). Thus, the implemented morphological operations 

allow for simplifying the resultant binary image by improving the detection of sets of 

interconnected pixels C (i.e. clusters of pixels), forming a set of all clusters 𝒞, where 𝐶 ∈ 𝒞, 

which enables the individual analysis of the regions. When located close to each other, the 

larger trees may be represented as being connected in the binary image (overlapped trees) and, 

consequently, grouped into the same cluster (Figure 4.6d). 

 

Figure 4.6. Segmentation and first clustering: (a) the original colour infrared image; (b) colour-coded image 
resulting from the application of ExRE vegetation index; (c) binary image resulting from both the threshold and 
morphological operations; and, (d) clusters including connected trees highlighted in red. 

To prepare the proposed method’s step 2—cluster isolation—a data structure is created with 

individual cluster parameters. Those parameters are retrieved from the binary image and they 

are composed of the clusters’ area and centroid. The cluster’s centroid is crucial in associating 
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an identification (ID). At this stage, the cluster’s area value will be used to find clusters that 

represent inter-connected trees. 

4.2.3.2. Cluster Isolation 

The approach that is applied in the first step of the method can correctly remove most of the 

non-vegetative areas, allowing for the detection of large vegetation areas. However, even 

though chestnut trees plantations for chestnut production are usually evenly distributed across 

the field, their canopy can grow considerably in height and width, forming connected tree 

crowns, resulting in clusters with interconnected pixels that may include several trees, in the 

segmented images. Due to this fact, it is necessary to individually distinguish each tree for 

precise chestnut trees’ monitoring. To achieve this, an individual analysis per cluster C, detected 

in the first step, needs to be performed. Chestnut plantations generally have a group of trees 

that typically depict the tree canopy coverage area. As such, the presence of interconnected 

trees can introduce significant differences on clusters’ area, which can result in a skewed 

distribution. Therefore, the statistical mode of this set of values—that represents the value 

appearing most often, i.e. the value that is most likely to be sampled—is determined and a 10% 

threshold is applied to this value. Clusters’ area mode is used to define the reference area (𝐴𝑀𝑜), 

which will then be compared—in an iterative process—with the area of each detected cluster 

𝐴𝐶 . Areas higher than 𝐴𝑀𝑜 are divided by it, to estimate the number of trees (�̂�) present in each 

cluster, as shown in equation (2). Figure 4.7a presents an example of clusters meeting this 

condition. 

�̂� =  ⌊
 𝐴𝐶
𝐴𝑀𝑜

⌉ (2) 

Afterwards, a morphological operation of erosion (see the example of Figure 4.8) is performed. 

It consists in interactively removing a line with a pixel thick from the borders, until a new 

cluster is formed. This new cluster is removed from the selection and the process continues 

until �̂� is achieved (Figure 4.8b). Finally, the application of the thickening morphological 

operation to properly separate the clusters by using a one pixel-thick line reverses the process 

(Figure 4.8c). This process is achieved by adding pixels to the boundaries of the unconnected 

clusters (as shown in Figure 4.7b), nevertheless preserving the total number of clusters, without 

connecting them. The resulting image is also known as skeleton by zone of influence (SKIZ). 

Figure 4.7c presents an example of this operation, being highlighted in red. The SKIZ mask is 

then used to separate the initially connected clusters by performing per-pixel binary AND 
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operation, resulting in the disconnection of the previously connected clusters. The newly 

created clusters will be submitted to a second pixel clustering to update the original set, created 

in step 1. Figure 4.7d presents the result of this operation, highlighting the separated clusters. 

 

Figure 4.7. Cluster isolation operation applied to an entire chestnut plantation: (a) clusters with area higher than 
the reference area value, highlighted in red; (b) eroded image; (c) skeleton by zone of influence boundaries, in red, 
on top of the eroded image; and, (d) image with the separated clusters highlighted in red. 

 

Figure 4.8. Cluster isolation process: (a) original cluster composed by five connected chestnut trees; (b) clusters 
resulting from the morphological erosion operation represented with their centroids; and, (c) effect of the 
thickening morphological operation, resulting in five unconnected clusters. 

4.2.3.3. Parameters Extraction 

At this point, each cluster corresponds to a single tree and their centroids are used to extract the 

tree crown diameter, canopy area, and height. Combining the masks that were obtained from 

the previous pixel clustering process, it is possible to extract the correct parameters from each 

chestnut tree. Regarding the diameter extraction, the centroids are overlapped to the binary 

image that was obtained in the method’s second step. The diameter is extracted by measuring 

each cluster’s Euclidean distances. Thus, the maximum distance is selected and transposed to 

estimate each tree’s crown diameter. The same approach is applied to obtain the tree’s height. 

However, the height value is directly extracted from the CHM, by matching the cluster’s 

centroids with the corresponding CHM and retrieving the maximum value, which is then 

assumed to be the tree crown’s top. The mean vegetation index value per cluster can also be 

computed. This value can be interesting to assess chestnut trees vigour and the potential 

presence of phytosanitary problems. 
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Furthermore, it is also possible to calculate parameters of the whole plantation, such as the total 

number of trees and total canopy coverage area and its percentage, by summing out all of the 

individual areas. 

4.2.3.4. Multi-Temporal Analysis 

Data acquired in different epochs can be used to create time series, allowing for the comparison 

between different periods. It is an excellent tool for the management of chestnut plantations, 

enabling the evaluation of their evolution over time both at the plantation scale and at the 

individual tree scale. In addition to parameters extraction, it is also possible to detect missing 

trees and new plantations over the years, through a multi-temporal analysis. This achieved by 

applying the proposed method to different epochs. By overlapping the detected clusters, 

missing and new trees can be detected. The implemented multi-temporal analysis can also be 

performed at the tree crown level. Performing a pixel-wise comparison between the evaluated 

epochs achieved the chestnut tree canopy growth/decline. The following scenarios may occur: 

(1) common vegetation in both epochs—vegetation is present in both epochs in the same pixel 

(i, j) coordinates; (2) vegetation growth—vegetation is not detected in the first epoch, but it is 

detected in the second epoch, meaning a chestnut tree growth; and, (3) vegetation decline—

pixels considered as vegetation in the first epoch that were not represented in the second epoch. 

Chestnut trees with a decline percentage greater than 15% are signalled as potentially having 

phytosanitary problems, meaning that they need to be inspected in the field, reducing time-

consuming and laborious field inspections. Therefore, these results can be analysed both at a 

plantation level and at the individual tree level. 

 Validation 

To validate the proposed method and the feasibility of the data that was obtained from 

photogrammetric processing of the UAV-based imagery, different tests were conducted for 

different parameters, namely: VI selection; vegetation coverage area assessment; number of 

detected trees; and, tree crown diameter and tree height estimation. This way, five test areas 

were selected for this purpose. All of the chestnut trees present within each area were manually 

segmented for validation purposes. The first test area represents about 23% of the whole 

surveyed area (46.89 ha), as presented in Figure 4.1b. The area was selected, since it includes 

several types of elements/objects. Beyond recently planted chestnut trees, non-controlled 

chestnut plantations, several vegetation outliers (e.g. lawns), and infrastructures, such as 

buildings and roads cover the area. It was considered to analyse the general behaviour of the 
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method when facing outliers and it was only tested in vegetation coverage area. Apart from this 

area and since the proposed method focus is the monitoring of chestnut plantations, four other 

chestnut plantations were selected and analysed as the test areas (Figure 4.9). Plantation #1 

(Figure 4.9a) has approximately 1.45 ha, Plantation #2 (Figure 4.9b) has 1 ha, Plantation #3 

(Figure 4.9c) has an area of 0.26 ha, and the area of Plantation #4 (Figure 4.9d) is about 1.3 ha. 

While Plantations #1 and #2 are composed of fully developed chestnut trees, Plantation #3 has 

chestnut trees at different development stages and Plantation #4 is mainly composed of more 

recent chestnut trees. These four areas were used for determining the area coverage, assessing 

the number of trees detected, and for selecting the optimal vegetation indices (Appendix B). 

Reference masks of these areas were manually created for the three available flight campaigns. 

 

Figure 4.9. Chestnut plantations used for validation: (a) Plantation #1; (b) Plantation #2; (c) Plantation #3; and, 
(d) Plantation #4. Black lines represent the boarder of the plantation. Coordinates in WGS84 (EPSG:4326). 

4.2.4.1. Vegetation Coverage Area 

The purpose of this validation is to evaluate the behaviour of the proposed method in the 

detection of chestnut trees vegetation. The method was applied in a large and heterogeneous 

area (Figure 4.1b) with different vegetation covers, in an uncontrolled environment, and to four 

different plantations (Figure 4.9). The computational time of the algorithm to perform in the 

complex area was measured to be compared with the time that is required to manually create 

the reference mask of the same area. Validation was conducted comparing the method’s 
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obtained results with the binary images that were created from the manual segmentation. This 

way, each pixel (i, j) was analysed, and it is classified as being true and false positive (TP/FP, 

exact/over detection), which refer to the number of correct/incorrect pixels that are classified 

as chestnut vegetation and similarly true and false negatives (TN/FN, exact/under detection) 

for non-chestnut trees vegetation. For this purpose, different parameters were evaluated, 

namely: producer’s accuracy, user’s accuracy, and the overall accuracy. Producer’s accuracy is 

obtained by the percentage of how many pixels on the map are correctly labelled as 

corresponding to chestnut and to non-chestnut vegetation, encompassing errors of omission. 

User’s accuracy is obtained by the percentage of all pixels that were identified as a chestnut and 

non-chestnut vegetation that were correctly identified, encompassing errors of commission. 

4.2.4.2. Number of Detected Trees 

This validation consisted in the comparison of the number of trees that were detected by the 

proposed method with the real number existing into a specific plantation at a specific epoch. 

Since the area that is used for vegetation detection validation contains thousands of trees, which 

makes the segmentation difficult, it was decided to use a controlled environment consisting of 

the four different plantations (Figure 4.9). The selection was done assuring the 

representativeness of most real cases present in the study area. 

In what regards this validation, different parameters were evaluated: (1) good detection—the 

three was correctly detected when compared with the reference mask; (2) missed detection—

the tree was not detected; (3) extra detection—corresponding to a wrongly detected chestnut 

tree; (4) over detection—a single chestnut tree being classified in multiple clusters; (5) under-

detection—multiple trees classified in a single cluster; (6) larger detection—tree is larger than 

its actual size; and, (7) smaller detection—chestnut tree is smaller than its actual size. 

4.2.4.3. Tree Height and Crow Diameter Estimation 

To validate trees height estimation, 12 chestnut trees, as presented in the right side of Figure 

4.1c, were measured in the terrain using a laser rangefinder with a precision of ± 20 cm 

(TruPulse 200, Laser Technology, Inc., Colorado, United States of America). Chestnut experts 

from University of Trás-os-Montes e Alto Douro have consistently monitored Padrela’s region 

regarding chestnut trees cultural practices, environmental context, phytosanitary conditions, 

and an evolution, in recent decades. This monitoring activity resulted in several publications (J. 

Castro et al., 2010; L. Martins et al., 2007, 2009; L. M. Martins et al., 2001, 2015; Luís Martins 

et al., 2005, 2014, 2015; Pádua, Hruška, et al., 2017), which conclude that both cultural 
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practices and environmental context are identical throughout the region. Therefore, the 12 trees 

selected from plantation #2—the selection was made based on the main characteristics of an 

adult chestnut tree, well represented in this Plantation—can be considered representative for 

the entire area under study. Regarding tree crown diameter estimation validation, two groups 

of trees were selected: the 12 trees that were used for the tree height estimation validation 

composed the first group and 28 chestnut trees composed the second group (both areas 

presented in Figure 4.1c). These measurements were obtained in the 2017 flight campaign day. 

Tree crown diameter were obtained by tape measuring. Two measurements were considered 

that corresponded to the four quadrants and the mean value was used as ground-truth. These 

values were compared with those that were estimated from the proposed method. Finally, a 

comparison was performed and the overall agreement between the observed in-field 

measurements (o) and the root mean square error (RMSE) verified the estimated values (e), as 

in equation (3), where n represents the total number of analysed trees. In general, RMSE is a 

good metric to evaluate (punctually) the quality of the method’s measurements. 

RMSE = √
∑ ሺ𝑒𝑖 − 𝑜𝑖ሻ
𝑛
𝑖=1

2

𝑛
 (3) 

The coefficient of determination (R2), which consists in a statistical measure of how close the 

data is to the fitted regression line, was also calculated. 

 Results 

This section presents the results of accomplishing the validation procedures that are described 

in Section 4.2.4, concerning the proposed method’s validation and extracted features reliability. 

Moreover, a multi-temporal analysis, by applying the proposed method to four chestnut 

plantations in three different epochs, is also presented. 

 Data alignment 

Table 4.2 presents data from the three campaigns combinations, namely the results from their 

accuracy analysis. Analysing the values that were obtained for the residuals mean and standard 

deviation—the mean value is close to zero meters and standard deviation is lower than RMSE—

means that there are no systematic errors. The results presented in Table 4.2 also allows to 

conclude that the geometric adjustment between epochs is very similar in less than one pixel. 

These results validate the multi-temporal analysis that is performed by applying the proposed 

method. 
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Table 4.2. Geometric quality of the orthophoto mosaics used in the multi-temporal analysis. 

Orthophoto 
Mosaics 

Compared 

N. 
Checkpoints 

RMSE 
(px) 

RMSE 
(cm) 

Standard 
Deviation 

(px) 

Mean of 
Residuals 

(px) 

Min/max 
Residuals 

(px) 
2014 – 2015 

20 
0.61 9.94 0.25 0.06 -0.93/1.28 

2014 – 2017 0.90 14.44 0.38 0.10 -1.12/1.82 
2015 – 2017 0.71 11.38 0.32 -0.04 -1.36/1.03 

 Vegetation Coverage Area 

Figure 4.10 illustrates the result of the proposed method, when compared with the manual 

segmented image, in an uncontrolled environment (RGB representation presented in Figure 

4.1b). The proposed method obtained 94.31% of exact detection and an error rate of 5.69%, 

from which 3.05% is of under detection (FN) and 2.63% over detection (FP). 

 

Figure 4.10. Validation of the vegetation coverage area by comparing the automatic binary mask, in an 
uncontrolled environment, produced by the proposed method, with the reference mask, represented in three 
colours, overlaid in the orthophoto mosaic, in the left. In the right, contours of the detected trees of the area marked 
in the dashed polygon. Coordinates in WGS84 (EPSG:4326). 

According to the manual binary mask, in a total area of 48.2 ha, only 12 ha contains chestnut 

trees, corresponding to 25% of the total area. From this area, the proposed method identified 

12.2 ha of chestnuts trees, which corresponded to an over estimation of 1.6%. Producer’s 

accuracy was around 88% and user’s accuracy is 89.5% (see Table 4.3 for further results). 

For reference, the manual mask was created in eight hours, while the method was performed in 

approximately 10 minutes using a laptop computer with an Intel core I7-4720HQ CPU @ 2.6 

GHz, 8 GB of RAM, a NVIDIA GeForce GTX 950 GPU with 2 GB of dedicated memory, and 

a 700 GB HDD. For a more realistic study, four chestnut plantations, as presented in Figure 
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4.9, were selected for evaluation. Figure 4.11 shows a visual interpretation of the results. Table 

4.3 provides the results per plantation, in each epoch, for the parameters that were considered 

in this evaluation. Producer’s and user’s accuracy were only evaluated for chestnut vegetation 

class. Regarding, the non-chestnut vegetation class was not deeply analysed, but it was higher 

than 95% in most of cases, with a mean of 97% for producer’s accuracy and 96% for User’s 

accuracy. 

 

Figure 4.11. Validation of the vegetation coverage area by comparison of the automatic binary mask, produced 
by the proposed method, in four chestnut plantations, with the reference mask, represented in three colours: (a) 
Plantation 1; (b) Plantation 2; (c) Plantation 3; and, (d) Plantation 4. Left represents 2014; centre 2015, and in the 
right 2017. Percentage and area of exact, over and under detection are also presented. Coordinates in WGS84 
(EPSG:4326). 

When analysing the four chestnut plantations in the three epochs, the mean overall detection 

reaches 95%. Evaluating these results in a plantation basis, higher detection values were 
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observed in plantation #4 (97.4%) and lower in plantation #2, with 93.8%. The remaining 

plantations reached accuracies of around 95%. When observing results by epoch, the highest 

detection rates were obtained in 2014 (96.3%), whereas 2017 reached the lower mean values 

(94.2%). As for the 2015 flight campaign, its mean accuracy value was of 95.2%. The higher 

values were obtained for plantation #4, in 2014, and the lowest was 93.1%, for plantation #3. 

As such, it can be stated that the method is suitable for chestnut detection, with accuracy greater 

than 93% and varying up to approximately 99%, depending on the plantation characteristics. 

Table 4.3. Chestnut trees vegetation coverage results for the bigger and complex area in 2017 epoch and in four 
plantations (P#epoch) for the three epochs (2014, 2015, and 2017). Area of true and false positives (TP/FP) and true 
and false negatives (TN/FN), in m2 along with producer’s accuracy (PA) and user’s accuracy (UA) for chestnut 

vegetation, and overall accuracy (OA) percentage values. Mean values for the plantation in all parameters are also 
presented. 

Area / 
Plantation 

TP (m2) FP (m2) FN (m2) TN (m2) UA (%) PA (%) OA (%) 

Complex area 107610 14698 12687 346582 89.45 87.98 94.31 
P114 4951 246 365 9630 93.13 95.27 95.97 
P115 5096 425 366 9305 93.30 92.30 94.79 
P117 5248 187 752 9004 87.47 96.55 93.82 
P214 3460 415 186 6355 94.91 89.28 94.23 
P215 3632 471 161 6152 95.77 88.51 93.93 
P217 3929 446 262 5780 93.75 89.80 93.20 
P314 554 57 33 2033 94.42 90.62 96.64 
P315 569 75 55 1977 91.20 88.31 95.13 
P317 719 149 36 1773 95.25 82.84 93.09 
P414 780 44 147 11645 84.15 94.66 98.49 
P415 1216 99 299 11002 80.28 92.45 96.85 
P417 1648 223 174 10572 90.46 88.09 96.86 

Mean of P 2650 236 236 7102 91.17 90.72 95.25 

 Number of Detected Trees 

To evaluate the number of trees detected by the proposed method, the same test plantations that 

are presented in Figure 4.9 (see Figure 4.1 for location) were used. The results were compared 

with the manual counting of the number of trees present in the plantations and the three epochs 

(2014, 2015, and 2017) were evaluated. Table 4.4 presents the obtained results, per plantation 

in each epoch. 
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Table 4.4. Chestnut trees detection accuracy in four plantations (P#epoch) for the three epochs with number of 
estimated trees and its detection type. 

Plantation 
Number 
of Trees 

Estimated 
Trees 

(Variation) 

Detection Type (%) 

Good Missed Extra Over Under Larger Smaller 

P114 146 145 (-1) 97.93 0.69 - - - 0.69 1.38 
P115 146 147 (+1) 98.64 0.68 - 0.68 - 0.68 - 
P117 148 147 (-1) 97.96 1.36 - 0.68 - - 1.36 
P214 80 80 (0) 100.00 - - - - - - 
P215 80 80 (0) 97.50 - - - - 2.50 - 
P217 80 79 (-1) 93.67 1.27 - - - 1.27 5.06 
P314 44 43 (-1) 93.02 - - - 2.33 - 4.65 
P315 43 42 (-1) 85.71 - - - 2.38 4.76 7.14 
P317 44 44 (0) 86.36 - - 2.27 2.27 6.82 2.27 
P414 91 88 (-3) 89.77 3.41 - - - - 10.23 
P415 97 89 (-8) 91.01 8.99 - - - 3.37 5.62 
P417 93 90 (-3) 92.22 3.33 - - - 2.22 5.56 

Mean detection (%) 93.65 1.64 - 0.30 0.58 1.86 3.61 

In total, 1092 chestnut trees were included in the analysis. The proposed method was able to 

detect 1074 chestnut trees. However, six of those corresponded to wrongly estimated trees 

(approximately 0.5%), i.e. trees classified as extra, over or under detections. Globally, 1068 

trees were correctly classified, representing an accuracy rate of about 98%. This way, 

exclusively concerning the detection of chestnut trees (i.e. good, larger, and smaller detections), 

the method has a mean classification of 99%, per flight campaign. Regarding this detection in 

a plantation basis, the mean accuracy of all flight campaigns is also of about 99%, being the 

lower value corresponding to plantation #3 (approximately 97%). Moreover, no cases of 

wrongly estimated trees (extra detections) were observed. In total, 19 chestnut trees were not 

detected (1.7%).  

 Tree Height and Crow Diameter Estimation 

Figure 4.12 presents the results that show the relationship agreement between in-field 

measurements (ground-truth data) and the measurements that were estimated by applying the 

proposed method. The height values ranged from 7.6 m to 10.2 m, with a mean value of 8.8 m. 

For the model with 16 cm GSD (Figure 4.12a), the linear regression presents a R2 = 0.79 and a 

RMSE of 0.69 m, and the estimated maximum, minimum, and mean values were 10 m, 6.4 m, 

and 8.2 m, respectively. Using data resulting from a flight at lower height, there was a 

significant increase in this parameter accuracy. Indeed, to test the influence of the flight height 

in tree’s height estimation, a 100 m height (GSD ~ 3 cm) flight was carried out with DJI 

Phantom 4, in the same area. In this case, the accuracy significantly improved, R2 = 0.86 with 



Chapter 4. 
UAV-Based Automatic Detection and Monitoring of Chestnut Trees 

98 

a RMSE of 0.33 m (Figure 4.12b), the maximum, minimum, and mean height values were also 

closer to the measured values, being, respectively, 10.2 m, 7.3 m, and 8.8 m. 

 

Figure 4.12. Trees’ height estimation validation: comparison between the trees’ height retrieved by the proposed 

method and those measured in-field using a: (a) 16 cm GSD data and (b) 3 cm GSD data. 

Concerning tree diameter validation, analogously to tree height validation, the estimated 

diameter values that were obtained from the proposed method were compared with ground-

truth data, where the 40 chestnut trees’ diameter ranged from 2.45 m to 12.23 m, with a mean 

value of 6.71 m. Figure 4.13 presents the relationship between in-field measurements and those 

that were estimated by the proposed method. From the data acquired at 550 m (GSD ~ 16 cm), 

the linear regression presents a R2 = 0.92 (Figure 4.13a), which indicates that the estimated tree 

crown diameter fits the real data in an 92% accuracy rate. As for the RMSE value, an error of 

0.44 m was obtained. Regarding the minimum, maximum, and mean values that were estimated 

from the 16 cm GSD data were 2.1 m, 10.66 m, and 6.73 m, respectively. Concerning tree’s 

crown diameter estimation that was obtained when using the flight conducted at 100 m height 

(GSD ~ 3 cm), similarly to tree height estimation, there was an improvement in this parameter 

(see Figure 4.13b). The linear regression presents a R2 = 0.96 and the RMSE shows a value of 

0.44 m, minimum, maximum, and the mean estimated values were, respectively, 2.92 m, 11.55 

m, and 6.67 m. 

 

Figure 4.13. Trees’ diameter validation: comparison between the in-field measurements by the diameter values 
estimated by the proposed method: (a) 16 cm GSD data and (b) 3 cm GSD data. 
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 Multi-Temporal Analysis 

One of the major advantages of the proposed method, compared to the actual state of the art, 

consists of its capacity to perform multi-temporal analysis, both at the tree and plantation levels.  

4.3.5.1. Plantation-Level Analysis 

The data available from the 2014, 2015, and 2017 campaigns was used to perform a multi-

temporal analysis. The number of chestnut trees in the plantation and their respective coverage 

areas were compared. The same plantations that are presented in Figure 4.9 (see Figure 4.1 for 

location) were used. Table 4.5 shows the occupation area of the chestnut trees in the four 

plantations for each flight campaign, along with the mean values of tree height, canopy 

diameter, and area. Figure 4.14 shows the evolution over time of the four chestnut plantations, 

representing the differences between 2014–2015, 2015–2017, and 2014–2017 campaigns. 

Table 4.5. Multi-temporal analysis at the plantation level for: total chestnut area, chestnut coverage area (CA), 
and mean values of chestnut trees present at the plantation (height, canopy diameter, and area). Values retrieved 
from four chestnut plantations in each epoch (P#epoch). 

Plantation Chestnut Area 
(m2) 

Chestnut  
CA (%) 

Mean Tree 
Height (m) 

Mean Tree 
Diameter (m) 

Mean Tree 
Area (m2) 

P114 5197 34.2 6.2 7.0 36 
P115 5521 36.3 6.0 7.2 38 
P117 5436 35.8 6.7 7.4 37 
P214 3876 37.2 6.6 8.1 48 
P215 4104 39.4 6.7 8.5 51 
P217 4375 42.0 7.1 8.6 55 
P314 611 22.8 3.2 4.4 14 
P315 645 24.1 3.9 4.7 15 
P317 868 32.4 4.2 5.3 20 
P414 824 6.5 4.1 3.6 9 
P415 1315 10.4 4.6 4.5 15 
P417 1870 14.8 5.2 5.3 21 

Regarding the number of trees (Figure 4.15), plantation #4 presented more changes during the 

analysed period, constituting a total of 20 new or missing chestnut trees (10 new trees and 10 

missing trees). Plantation #1 presented a total of four changes: a missing tree and a new tree 

were detected in the 2017 period; two new trees were also detected in the 2015 period. Five 

changes were observed in plantation #2: two new trees were detected in 2015; and, three were 

considered as missing in 2017. When considering plantation #3, four chestnut trees were 

considered missing, two in each period (2015 and 2017), and four new trees were detected, one 

in 2015 and three in 2017, performing a total of eight changes. Potential phytosanitary problems 

were also detected in all of the analysed plantations. 
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Figure 4.14. Multi-temporal analysis between three different periods: (a) Plantation 1; (b) Plantation 2; (c) 
Plantation 3; and, (d) Plantation 4. Left represents 2014 to 2015; centre 2015 to 2017; and, in the right 2014 to 
2017. 

4.3.5.2. Tree-Level Analysis 

The proposed method is also able to perform a multi-temporal analysis at the tree-level. This is 

only possible due to method’s step 3—cluster isolation—where the trees are properly separated. 

To illustrate the method’s performance, Figure 4.16 highlighted the results of ten trees. Those 

trees refer to the line of trees that is present in the top of plantation #2 (Figure 4.9b) and it is 

used to illustrate the behaviour of the proposed method. 
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Figure 4.15. Missing trees, new trees and trees with potential phytosanitary problems detected in the multi-
temporal analysis of the chestnut plantations and the period when the detection occurred: (a) Plantation 1; (b) 
Plantation 2; (c) Plantation 3; and (d) Plantation 4; and, (e) example of a tree affected by ink disease from plantation 
2. 

 

Figure 4.16. Multi-temporal analysis at the individual tree-level: (a) RGB image from 2014 campaign; (b) RGB 
image from 2017; and, (c) difference mask retrieved by the application of the proposed method. 

Table 4.6 presents the quantitative results obtained from applying the proposed method to the 

ten trees selected. 
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Table 4.6. Multi-temporal analysis at the individual tree-level: canopy coverage area (CA), canopy diameter (D), 
and trees’ height (H) estimation for each tree presented in the studied plantation. 

ID 
2014 2015 2017 

CA (m2) D (m) H (m) CA (m2) D (m) H (m) CA (m2) D (m) H (m) 
1 65.7 10.1 7.2 63.9 9.5 7.4 73.1 10.2 8.1 
2 51.8 8.9 7.2 47.1 8.2 6.6 55.4 9.1 6.4 
3 45.4 8.4 6.4 43.3 8.1 6.8 59.1 9.3 7.1 
4 35.2 7.7 5.6 34.7 7.2 5.5 33.7 7.1 4.0 
5 33.7 7.4 5.6 24.7 6.4 5.5 9.2 4.8 4.8 
6 39.2 7.3 6.3 37.2 7.2 6.0 45.5 7.9 6.8 
7 44.3 7.8 7.0 43.0 7.9 6.8 48.7 8.2 7.2 
8 61.9 9.5 8.2 64.5 9.8 8.4 72.1 10.1 8.4 
9 54.9 9.2 7.4 55.4 9.5 7.5 63.7 9.5 8.1 

10 52.1 8.3 6.7 54.1 8.9 6.9 62.5 9.2 7.7 

 Discussion 

 Vegetation Coverage Area 

The method achieved good overall results, even in the presence of a complex and larger scenario 

(Figure 4.11), which constitutes an extreme limit situation. For the complex area (Figure 4.1b), 

there was a slight tendency for the method to overestimate chestnut vegetation rather than 

underestimate it. Still, both of the values are around 11%. Concerning these errors, it was 

observed that a large part of the over detection is related to the difficulty of discriminating some 

lawns—since there were trees within the lawns—and due to some undergrowth, which have a 

considerable height in the CHM, making it difficult to discriminate. This was also reported in 

(Yin & Wang, 2019). Regarding under detection, some errors were observed on the VI in trees 

that had few leaves and from the CHM in some recent chestnut trees where the height 

information was not representative, causing misclassifications from the method. These 

problems persist, even when considering higher resolution UAV-based imagery (Pádua, 

Marques, Adáo, et al., 2018; Surový et al., 2018). Probably, those trees may be misclassified 

due to the absence of leaves, while considering the imagery resolution. At the same time, this 

fact may be used in a multi-temporal approach to highlight the trees that are potentially affected 

by phytosanitary problems. An important aspect is that non-vegetation features present in this 

area were correctly classified as being so, which includes most of undergrowth vegetation and 

infrastructures as buildings, which have height values that are similar to some chestnut trees. 

It is worth noting that this large area (Figure 4.1b) is not representative of a chestnut plantation 

used for economic purposes. Indeed, most chestnut plantations, namely the more recent ones, 

follow a well-defined alignment. In these cases, the method’s performance reaches higher 

overall accuracies (93 to 99%). However, when excluding non-chestnut vegetation (true 
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negatives: soil and undergrowth vegetation), the results differ from the overall accuracy. When 

considering the producer’s accuracy, its mean value is 90.7%, being that the higher and lower 

values were reached in the 2017 campaign, for plantations #1 (96.6%) and #4 (88.1%), 

respectively. When analysing the results in a plantation-basis, plantation #1 obtained the higher 

values in this parameter (94.7%), while plantation #3 obtained the lowest producer’s accuracy 

(87.3%). When considering the producer’s accuracy per epoch, this value is closer, with lower 

precision in 2017 (89.3%), while the higher values were obtained in 2014 (92.5%). In 2015, 

this value was of 90.4%. As for user’s accuracy, which encompasses all chestnut vegetation 

present in the image (i.e. also considers chestnut vegetation classified as being not), plantation 

#4 is the most influenced by these errors (mean of 85.0%). This fact can be related with the 

type of trees present in this plantation—more recent than other plantations—and due to the lack 

of pixels that represent each tree at this GSD, which caused the method to not detect part of the 

canopies. On the other hand, plantation #2 provided higher rates in all of the seasons, with a 

mean value of 94.8%. The epoch with lower user’s accuracy was 2015 (90.1%), followed by 

2014 (91.65%) and 2017 (91.7%). 

Despite the mean user’s and producer’s accuracy values being similar (~91%), it can be sated 

that the method tends to overestimate chestnut vegetation (FP), rather than underestimate it 

(FN). Plantation #1 was the less influenced by FP and FN, while plantation #4 was the most 

influenced, especially by FN. These results clearly contrast with the ones that were obtained in 

the overall accuracy, where plantation #4 obtained higher overall accuracy (97.4%) the 

remaining with accuracy around 94% to 95%. If only accuracy was analysed, the results could 

be wrongly interpreted, since the non-chestnut part in some plantations is considerably higher 

than other plantations. Indeed, the area of FN and FP is not so different and is, in most of the 

cases, mainly located in the borders of canopies. This way, when considering the obtained 

results, it can be pointed out that plantation #1 was the area with the best results, while 

plantation #4 was the less performant in chestnut vegetation detection. Nevertheless, another 

aspect is that reference masks were manually created, which means that small errors can be 

present. 

The proposed methodology was developed with the underlying premise that it was to be used 

to detect and monitor chestnut trees plantations whose own characteristics and those of the trees 

that constitute them lead to few crown overlaps. Nevertheless, regular development of trees 

may bring—even when regarding with ordered plantations—canopy overlaps. These are well 
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resolved by applying the proposed method (Figure 4.8). The study area also has some older 

(and therefore disordered) chestnut plantations, where the proposed method presented high 

precision results (Figure 4.10 right). As such, the proposed method may be potentially adapted 

to other plantation types. Nevertheless, further studies are needed to evaluate this issue. 

 Number of Detected Trees 

Despite the high accuracy in the results that was obtained in the evaluation of this parameter 

(presented in Table 4.3), some trees were not detected, mostly in cases where trees crown was 

too small. This is the case of plantation #4, where the missing detection reached a mean value 

of 5%, when considering the three epochs. Being this mainly related to the used data, since 

flights were performed at 550 m height, making these small trees almost imperceptible in the 

image. Moreover, detection also fails when the trees present few or no foliage due to 

phytosanitary problems, making it almost impracticable to detect canopy vegetation through 

VIs. This is the case of a tree with considerable size (approximately 50 m2), which was not 

detected in plantation #2 on the flight campaign of 2017 (see Figure 4.11b right). However, this 

apparent limitation constitutes a strong point of the method, since when applied in a temporal 

perspective, it allows for the detection of trees that are potentially affected by phytosanitary 

phenomena. As for over detection cases, these are related to the method’s cluster separation in 

chestnut trees that had an irregular canopy shape, causing it to be divided into multiple clusters. 

However, the number of cases is relatively small (mean of 0.3%). In regards to under detection, 

it was only verified in plantation #3, being caused by a small tree adjacent to a considerably 

larger tree. Larger detections mainly occurred in chestnut trees with a considerable canopy area 

(see Figure 4.11b), in the other hand, smaller detections cases were observed in smaller chestnut 

trees (see Figure 4.11d). The proposed method accuracy is above or in line with the existing 

similar methods for tree detection. In Mohan et al. (2017), an open canopy mixed conifer forest 

was surveyed and a total of 312 trees were detected by their method, from a total of 367 

reference trees with an accuracy of 85%, missing 55 trees. However, 46 trees were over 

detected, performing a total of 358 trees. Ok and Ozdarici-Ok (2017) evaluated individual citrus 

trees delineation from UAV-based DSMs, and an overall precision of 91.1% in a pixel-based 

analysis and 97.5% in the object-based analysis was obtained by the method. The results from 

the proposed method are also greater or in line with the ones that were obtained from the 

application of complex and expansive LIDAR data (Liu et al., 2015; Luke Wallace et al., 2014). 



Chapter 4. 
UAV-Based Automatic Detection and Monitoring of Chestnut Trees 

105 

 Tree Height and Crow Diameter Estimation 

The results that were obtained for tree height and crown diameter estimation are in line or even 

better than the ones from another studies. Tree height estimation was the less accurate when 

comparing both parameters. However, when considering that the instrument used in the 

measurements has an intrinsic error of about 20 cm, this accuracy is perfectly acceptable 

(Mohan et al., 2017). Moreover, some errors can be related to the used digital elevation models, 

since the flight was performed at 550 m height (GSD ~16 cm). When considering the 

differences for the flight performed at 100 m height (GSD ~3 cm), as expected, there is a direct 

correlation between height accuracy and image resolution: the better the spatial resolution the 

better the reached accuracy. It is worth noticing that, in most cases, the flight height will be 

lower than 120 m (UAV regulations (Regulamento no 1093/2016, 2016)), which assures the 

method’s effectiveness, even in the estimation of trees’ height. The results prove the 

effectiveness of the proposed method in the estimation of structural properties (tree height and 

canopy diameter) of chestnut trees, with a good hit rate and with a relatively low error. Zarco-

Tejada et al. (2014) conducted a tree height assessment of 152 olive trees, with heights that 

range between 1.16 and 4.38 m, a R2 = 0.83 and a RMSE of 35 cm was obtained. Similarly, to 

this study, the results tended to be less precise in lower spatial resolutions. Panagiotidis et al. 

(2017) obtained a R2 = 0.72 to 0.75 and RMSEs of 3 m in two plots (48 and 39 trees, ranging 

from 15 to 35 m). As for tree crown diameter a RMSE of 0.82 and 1.04 m and R2 = 0.63 and 

0.85, for plot 1 and 2, respectively, with a diameter varying from 11 to 19 m. Díaz-Varela et al. 

(2015) acquired UAV-based imagery to estimate parameters from olives (150 trees, heights 

ranging between 1 and 3 m) with 7 cm GSD, obtaining a RMSE of 0.45 (R2 = 0.07) for tree 

height and for tree crown diameter obtained an RMSE of 0.32 (R2 = 0.58), with values that 

range from 1 to 2.5 m. Lim et al. (2015) evaluated tree detection using DSM from 

photogrammetric processing of UAV-based imagery, and obtained a RMSE of 0.84 m for tree 

height coniferous trees and 2.45 m for deciduous coniferous trees, tree crown width of crown 

an RMSE varying from 1.51 m to 1.53 m was obtained for each area. Iizuka et al. (2018) 

obtained a RMSE of 1.7m from heights that ranged from 16 to 24 m. Guerra-Hernández et al. 

(2018) compared the accuracy in tree detection using ALS and UAV-based imagery in 

eucalyptus trees with heights that ranged from 10 to ~20m. The authors obtained RMSE values 

from 1.83 to 2.84 and correlation coefficient (r) 0.61 to 0.69. Moreover, it was reported that 

ALS performed better in steep slope areas. Guerra-Hernández (2016) extracted properties from 

52 Pinus pinea L. trees also evaluating crown diameter and tree height using UAV-based 
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imagery (GSD of 6.23 cm). Obtaining R2 = 0.81 and RMSE of 0.45m for tree height (7 to 12 

m), as for tree crown diameter, the authors found an RMSE of 0.63 m and R2 = 0.95 for tree 

diameter (6 to 14 m). Pádua et al. (2018) obtained R2 values that ranged from 0.91 to 0.96 from 

an area that was composed mostly by chestnut trees, in flights ranging from 30 to 120 m and 

RMSEs from 0.6 to 0.33 m. Despite the overall good results, the flights at lower heights had 

lower accuracies than flights that were performed higher, it was also reported that double-grid 

flights had an increase in accuracy. Popescu et al. (2003) obtained R2 from 0.62 to 0.63 for tree 

crown diameter estimation and a RMSE 1.36 to 1.41 m using LIDAR data for pines and 

deciduous trees. Despite both parameters showing a good regression agreement, further studies 

must be done, especially by evaluating recent chestnut plantations composed of trees with lower 

heights and, therefore, irregular canopy shapes (Surový et al., 2018). Different spatial 

resolutions can also be evaluated. 

 Multi-Temporal Analysis 

UAV-based multi-temporal analysis remains a topic not broader explored, and some studies 

have focused on this topic. Guerra-Hernández et al. (2017) proposed a method for multi-

temporal analysis to monitor the growth of Pinus pinea L. with different treatments. Michez et 

al. (2016) employed a multi-temporal analysist for riparian forests monitoring. UAVs can carry 

different sensors, providing more properties to be evaluated for chestnut trees monitoring, as, 

for instance, UAV-based thermal infrared imagery can provide insights on water status level of 

trees (David Gómez-Candón et al., 2016; Park et al., 2015), or vegetation indices, from 

multispectral imagery, to provide plant vigour and disease detection (Gago et al., 2015). 

Concerning the multi-temporal analysis that was conducted in Section 4.3.5, the four 

plantations had a growth in its chestnut canopy area, for the spanned period addressed in this 

study. The higher development was observed in plantation #4, with a growth of more than 1000 

m2 (126%). A similar behaviour is also noticeable in the mean tree development values, with 

+1.1 m in height, +1.6 m in canopy diameter, and 11.5 m2 in canopy area. This plantation was 

mostly composed by younger chestnut trees when compared to the other plantations, then with 

a greater margin of development. The plantation with the lowest development was plantation 

#1, which had a growth of around 240 m2 (4.6%) in the period of 2014 to 2017. However, a 

case of chestnut decline was verified in this plantation from 2015 to 2017 period with -85 m2 (-

1.5%). As for the remaining two plantations, plantation #2 had an overall growth of 499 m2 

(12.9%) and plantation 3 growth was 257 m2 (42.1%). By analysing the obtained results, it can 
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be stated that plantations that contained more recent chestnut trees had the higher growth rates 

(plantations #3 and #4), whereas plantations with adult chestnut trees presented lower growth 

rates (plantations #1 and #2), which was expected. When observing the mean chestnut tree 

parameters per plantation, the higher values were verified in plantation #4, as previously 

mentioned, followed by plantation #3, with a mean growth of approximately 1 m for tree height 

and canopy diameter, and finally by plantations #1 and #2, which presented 0.5m growth for 

tree height, as tree diameter plantation #2 presented a mean growth of 0.5 m and plantation #1 

showed the lower value of 0.3 m. Regarding the mean canopy area, plantation #2 presented 6.9 

m2 growth, while plantation #3 presented 5.5 m2 growth. Again, plantation #1 showed the lower 

growth value, being 1.1 m2. 

As for the number of trees in the plantations (Figure 4.15), it was observed that more changes 

were verified in more recent plantations (plantations #3 and #4), with this being mainly related 

to some chestnut trees that were cut off from the plantation as well with the detection of smaller 

trees, whereas the older chestnut plantations presented less changes. Concerning the detection 

of potential phytosanitary problems, for plantations #2 and #4, these cases were only verified 

in data from 2017 campaign. There was one case in plantation #3 of a chestnut tree with 

potential phytosanitary problems detected in 2015, which lead to the tree to be removed and 

become missing in 2017 campaign. Consecutive decline was verified in two trees from 

plantation #1. Two trees that were detected in plantation #4, in 2015, where signalled as 

potentially affected by phytosanitary problems in 2017. Thus, the method showed its 

effectiveness in the multi-temporal analysis of chestnut plantations. Figure 4.15e presents a 

chestnut tree that was infected by ink disease, as observed in the 2017 campaign at plantation 

#2. This represents that, despite some problems in the development of young trees and the 

presence of phytosanitary problems, there is still an interest in the this crop, as reported in 

Martins et al. (2015) and Pádua et al. (2017). 

Regarding the results from the multi-temporal analysis of individual trees, as presented in 

Section 4.3.5.2, a growth in the canopy coverage and diameter of the analysed chestnut trees 

was verified (Figure 4.16 and Table 4.6). However, trees #4 and #5 showed a regression in 

those parameters. Particularly, chestnut tree #5 had a coverage area regression of 25.3 m2 (-

78%) and a decrease of 3.6 m in its diameter (-53%). A field campaign confirmed that this 

decline was due to the chestnut ink disease (Figure 4.15e). Apart from these two cases, the 

chestnut trees that are represented in Figure 4.16 had an average growth of 7.5 m2 (+15%) in 
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their canopy coverage area and 0.6 m (+7%) in their diameter. Regarding trees’ height, it was 

referred before that the model quality influences the measurement quality. However, chestnuts 

trees #2, #4, and #5 showed a regression in height well beyond the expected error. Despite these 

regressions in the trees’ height, the remaining chestnut trees showed an average growth of 0.4 

m (+5%). 

This way, the method that is proposed in this study as the ability to individually detect chestnut 

trees and to extract dendrometric parameters in chestnut plantations with the ability to perform 

multi-temporal analysis and to detect trees with potential phytosanitary problems. When 

considering other remote sensing platforms, this approach makes use of the flexibility that is 

provided by UASs to acquire data on-demand with higher spatial resolution that other 

platforms, which cloud coverage (Pádua, Vanko, et al., 2017) and lower operational costs can 

also affect, when compared to manned aircrafts (Alessandro Matese et al., 2015). When 

comparing the UAV-based approach against field surveys, the method can quickly cover larger 

areas in a lower temporal window and directing management operations to trees with potential 

phytosanitary problems 

 Conclusions and future work 

An automatic method was developed to assist chestnut tree management operations from aerial 

images. The presented research used several types of chestnut plantations with mixed tree 

density, size, and background covers, covering most of the real-world scenarios to develop and 

validate the proposed method, which includes image segmentation, based on CHM and VIs, 

and the extraction of chestnut tree parameters. 

For image segmentation, different VIs that are based on NIR and RGB bands combinations 

were evaluated on a complex area composed of thousands of trees in a mixed environment. 

Moreover, a novel VI was proposed for vegetation segmentation in CIR imagery, ExRE. The 

segmentation accuracy on a pixel-based level was evaluated and a rate that is greater than 95% 

was reached. VIs using NIR band on its computation allowed for obtaining slightly better 

results, however the overall RGB-based VIs performance allows for the proposed method to be 

applied to aerial images that were acquired from low-cost consumer-grade cameras, commonly 

used in UAS. 

Experiments were conducted to evaluate the behaviour of the proposed method estimating the 

global parameters of chestnut plantations, such as the total vegetation cover area, the total 
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number of trees, and the trees’ height and crown diameter. The values that were estimated for 

the proposed method were compared with ground-truth data obtained in-field measurements. 

In the case of vegetation coverage and trees counting, the accuracy was greater than 90%, 

respectively, 91% and 97%. Regarding parameters that can be adjusted by a linear regression, 

as the case of tree heights and crown diameter, two sets of images, obtained at 550 m and 100 

m height were used, and the proposed method fits the model with an accuracy of 86%, with a 

RMSE of 0.33 m, for the tree heights, and with an accuracy of 96% with RMSE of 0.44 m for 

the crown diameters. In the determination of these parameters, a correlation with the accuracy 

and the flight height was found. Indeed, the accuracy increases with image resolution. Thus, at 

the maximum legal flight height (120 m), the proposed method performs very well.  

In summary, this research has proven that UAV-based imagery is a fast and stable method in 

chestnut tree parcel management. The overall results suggest that the proposed method can be 

used as an effective alternative to the manual method for monitoring chestnut plantations.  

The experiments that were made in the different study plantations allow for us to conclude that 

the method is generally used for chestnut trees monitoring. Of course, it is more effective if 

applied to parcels that were created for sustainable production. Usually, in this type of 

plantations, the trees are distributed in a grid-shape. Moreover, the method would be performant 

in other plantation sites (e.g. olives, orchards) so long as they are planted in a grid-shape and 

the shape of those specific trees, in an aerial image, is very similar. Research towards chestnut 

plantations that were affected by different phytosanitary problems (chestnut ink disease, 

chestnut gall wasp and nutritional deficiencies) and how chestnut trees in-season growth is 

affected is being conducted. 

Furthermore, the method allows a multi-temporal analysis, which constitutes a useful and 

powerful tool in chestnut plantation management. Therefore, by enabling the substitution of 

time-consuming and costly field campaigns, this automatic method represents a good 

contribution for managing chestnut plantations, providing equivalent results when applied at 

the tree-level and plantation-level studies, both for static and multi-temporal analysis. Thus, the 

proposed approach exposed the future potential of UAV-based analysis for plantation 

monitoring. Future research should focus on forest monitoring and management, but also in the 

estimation of individual tree attributes, such as tree height, crown size, and diameter, and 

thereby develop predictive models for estimating biomass and stem volume from UAV-imagery 

as to discriminate/detect chestnut trees that are affected by biotic or abiotic problems. 
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Chapter 5. 
Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data 

 Introduction 

Chestnut trees (Castanea sativa Mill.) are one of the most important species in Portugal for 

both forestry and agricultural purposes. In an agricultural context, in 2018, this species 

represented a surface of 38,728 ha with 33,929 tons of chestnuts produced. It is especially 

relevant in the northern region of the country, where it represents 89% of planted surface 

(34,504 ha) and 88% of yield (29,908 tons) (Instituto Nacional de Estatística, I. P., 2019). 

Chestnut trees can be affected by several phytosanitary issues due to both biotic or abiotic 

factors. These issues can significantly impact the chestnut development and yield (Luís Martins 

et al., 2014). Chestnut ink disease (Phytophthora cinnamomi Rands) (Valverde et al., 2017), 

chestnut blight (Cryphonectria parasitica (Murr.) Barr.) (Rigling & Prospero, 2017), nutritional 

deficiencies (Portela et al., 2003) and, more recently (June 2014), the chestnut gall wasp 

(Dryocosmus kuriphilus Yasumatsu) (Aebi et al., 2006), are among the most meaningful biotic 

and abiotic factors that can affect chestnut trees. The phytosanitary condition of chestnut stands 

is usually evaluated by in-field observations, which are time-consuming, laborious, demand 

specialized human resources, and are based on small samples. Using currently available 

methods and tools, all based on manual and laborious measurements, phytosanitary conditions 

monitoring over a longer period of time is even more challenging. 

Remote sensing can be considered as a viable approach to help in monitoring and managing 

chestnut stands regarding phytosanitary issues caused by either biotic or abiotic factors. There 

are several studies published using remote sensing platforms coupled with different sensors that 

have chestnut trees as their research subject. Small format aerial photography via manned 

aircrafts was used to assess chestnut ink disease (Ambrosini et al., 1997; L. M. Martins et al., 

2001; Vannini et al., 2005) and chestnut blight (Ambrosini et al., 1997). The same aerial 

imagery format was also used to assess chestnut ink disease and blight spread through the use 

of geostatistical methods (J. Castro et al., 2010; L. Martins et al., 2007) and to discriminate 

different phytosanitary statuses (Luís Martins et al., 2005). Airborne low-density LiDAR (Light 

Detection and Ranging) data were also used for biomass estimation (Montagnoli et al., 2015). 

However, these initial attempts to use aerial images to assess chestnut trees’ health status 

revealed low correlation. More recently, Marchetti et al. (2019) proposed an approach for 

mapping chestnut stands using WorldView satellite multispectral imagery, enabling the 

classification of chestnut stands within a heterogeneous landscape. 
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Meanwhile, unmanned aerial vehicles (UAVs) have been established as a versatile remote 

sensing platform capable of being coupled to an array of different sensors and to operate under 

diverse flight and terrain conditions. Furthermore, they are also able to adapt to specific 

requirements for monitoring different crops (both temporal and spatial). Precision agriculture 

and forestry have greatly benefited from this remote sensing platform in the last few years, with 

many advances being published and already in use. As for studies related to chestnut trees, 

orthophoto mosaics obtained through photogrammetric processing of high-resolution imagery 

acquired from UAVs were used by Martins et al. (2015) to monitor 231 ha of chestnut trees. 

By comparing these data with aerial imagery acquired almost ten years earlier, it was possible 

to measure areas of new plantations and to assess the decline of chestnut trees. The main 

conclusion drawn by this study was that the decline was very significant along that time period. 

The study was extended to subsequent years, and the results are presented in Pádua el al. (2017), 

where a decline from 2014 to 2015 was confirmed. A novel method based on image processing 

was proposed in Marques et al. (2019), enabling the automatic monitoring of chestnut trees 

through estimation of some of the main parameters, such as tree height and crown diameter and 

area. By applying this methodology, multi-temporal analysis was possible both at the tree and 

plantation level. Di Gennaro et al. (2020) used a similar method to estimate the pruning wood 

biomass of chestnut trees. Finally, in Pádua et al. (2018), the impact of different flight heights 

in the estimation of tree height and crown diameter was evaluated using UAV-based RGB 

imagery. It was concluded that flight altitudes of 60 and 120 m (corresponding to a spatial 

resolution of 2.65 and 5.25 cm, respectively) presented the best overall results. 

Nonetheless, despite the numerous advances in monitoring chestnut trees provided by the use 

of UAV-based high-resolution aerial imagery, little progress has been made in both automatic 

detection and classification of the biotic or abiotic factors that can affect them. The ability to 

act (or react) in the timely detection of factors that can negatively affect the phytosanitary 

condition of a chestnut stand will be essential to improve management practices and, therefore, 

have a significant social and economic impact. In this study, we explore UAV-based 

multispectral imagery with high spatial and temporal resolutions (Pádua, Vanko, et al., 2017) 

of chestnut stands to detect potential phytosanitary problems. 

There are studies with comparable objectives for vineyards (Albetis et al., 2017) to detect 

Flavescence dorée, for olive groves (P. J. Zarco-Tejada et al., 2018) to detect symptoms of 

Xylella fastidiosa, and for oil palm plantations (Shamshiri et al., 2018) to assess health status 
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and disease detection. Balasundram et al. (2020) provided insights into the deployment of site- 

and time-specific approaches to manage plant disease problems. However, and according to the 

authors’ best knowledge, there are no similar studies or approaches applied to chestnut trees. 

Indeed, the challenge is even greater when dealing with chestnut trees as there are several biotic 

and abiotic factors that can cause similar symptoms, with very different mitigation treatments 

or methods. 

As such, seeking to determine precisely which factors are affecting a given tree, the proposed 

methodology also includes an incremental approach based on machine learning methods. 

Several flight campaigns were accomplished to acquire multispectral imagery over a chestnut 

stand located in north-eastern Portugal. Furthermore, field surveys were also conducted, by an 

expert, to obtain the phytosanitary characterization of every individual chestnut tree within the 

monitored area. The proposed methodology begins by applying photogrammetric processing to 

the acquired high-resolution aerial imagery. Then, tree crowns are detected using the outcomes 

of the first step. A random forest (RF) classifier is then applied to distinguish healthy trees from 

those affected by any biotic or abiotic factor. This process is repeated to determine which 

phytosanitary problem is affecting each tree. Multi-temporal analysis comes into play by 

applying the proposed methodology to data acquired in different flight campaigns that occur in 

the same growing season. It is a contributing factor to improve this methodology’ precision as 

some chestnut trees were asymptomatic or showed a low incidence of phytosanitary issues early 

in the growing season. The proposed methodology is able to distinguish healthy chestnut trees, 

and it can also identify which is the specific limiting factor affecting the development of each 

tree. 

 Materials and Methods 

  Study Area Characterization 

Research involving trees, in general, and chestnut trees, in particular, requires keen knowledge 

of the area under study. The studied chestnut stand is a laboratory area located in north-eastern 

Portugal (Figure 5.1a, 41°22–42.8N, 7°35–01.4W, altitude 760 m) within one of the main 

chestnut production regions in Portugal (M. Pereira et al., 2011). It has an area of approximately 

0.4 ha and is composed of 52 trees from which 46 are chestnut trees (marked in Figure 5.1b). 

This area was rigorously characterized by experts from the University of Trás-os-Montes e Alto 
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Douro (Vila Real, Portugal), and to ensure the representativeness of this area, the most common 

cultural practices were also used (Marques et al., 2019). 

In-field observations were carried out during the 2018 growing season, on the same dates as the 

flight campaigns, to assess the phytosanitary condition of the chestnut stand. Issues such as 

chestnut ink disease and potential nutritional deficiencies were evaluated using a discrete scale 

ranging from zero (absence) to four (strong incidence). Furthermore, the condition of each 

chestnut tree was evaluated using a five-level scale ranging from 1 = very bad condition to 5 = 

excellent condition, considering the severity of the phytosanitary issues along with the overall 

tree status. This qualitative classification was performed by an expert and based on the severity 

of visible symptoms (L. M. Martins et al., 2015). Dendrometric measurements of each tree were 

also acquired. Soil analyses were also conducted to assess the nutrient levels. 

 

Figure 5.1. Study area overview: (a) geographic location in Portugal’s mainland; (b) aerial overview of the 

chestnut stand, where chestnut trees are marked (WGS84, coordinate system, EPSG:4326). Ground perspective of 
some of the monitored trees, showing (c) absence of visual symptoms, (d) chestnut ink disease, and (e) nutrient 
deficiency. Unmanned aerial vehicle during take-off (d), used sensors are highlighted. 

  UAV-Based Data Acquisition 

A DJI Phantom 4 (DJI, Shenzhen, China) was used to acquire the aerial imagery used in this 

study. This multi-rotor UAV comes equipped out-of-the-box with a complementary metal oxide 
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semiconductor (CMOS) sensor—mounted in a 3-axis gimbal—capable of acquiring 

georeferenced RGB imagery with 12.4 MP resolution (details about UAV and sensor 

specifications can be found at (DJI Official, n.d.)). The UAV was modified to support 

multispectral imagery acquisition (Figure 5.1f) using the Parrot Sequoia (Parrot SA, Paris, 

France). This sensor is composed of a camera array responsible for acquiring green, red, red-

edge (RE), and near-infrared (NIR) single-band images. Each band has a 1.2 MP resolution. 

For radiometric calibration of the multispectral imagery, irradiance data are acquired during 

flight (from a sensor positioned at the top of the UAV—see Figure 5.1f) and, prior to each 

flight, reflectance data are acquired using a calibration target. 

Flight campaigns were carried out throughout the growing season of 2018 to acquire 

multispectral aerial imagery. A flight mission was planned to provide a complete overview of 

the area, in a double-grid pattern, with 80% overlap between images and 70% overlap between 

flight lines. Flight height from the take-off point was set to 60 m, and the total area covered by 

flights was approximately 2 ha. Considering the planned imagery overlap and the flight height, 

the sensor was set up to acquire images at each 11 m travelled. The same flight plan was used 

for all flight campaigns. 

The selected dates—27 May, 24 June, 8 July, 8 August, 25 September, and 16 October—

allowed spanning across the most important stages of chestnut tree development: sprouting, 

flowering, fruiting, and defoliation. The vegetative dormancy of chestnut trees usually spans 

from November to March (Bergonoux et al., 1978). 

  Data Processing 

Figure 5.2 presents the main steps of the proposed methodology as applied to each flight 

campaign’s data. Outcomes generated from the initial photogrammetric processing enable 

output of a crop height model (CHM) and several vegetation indices. The latter are computed 

from different combinations of the four acquired bands and can be used for different purposes: 

(1) individual tree crown detection; (2) object-based image analysis (OBIA); and (3) dataset 

features. Training and prediction processes are the same to (1) classify the presence of 

phytosanitary issues, and (2) to identify the specific phytosanitary issue (if any). Only the 

number of classes varies. The proposed methodology remains functional, regardless of the 

sensor used. 
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Figure 5.2. Main steps of the proposed methodology for data of a single flight campaign. 

5.2.3.1.  Photogrammetric Processing and Vegetation Indices Computation 

Pix4DMapper Pro (Pix4D SA, Lausanne, Switzerland) was used to achieve the 

photogrammetric processing of the acquired aerial imagery. It provides a complete processing 
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pipeline dealing with imagery correction, alignment, and radiometric calibration, producing 

dense point clouds.  

Within this study, RGB orthophoto mosaics were computed for visualization purposes only. 

Despite the flight campaigns being carried out at the same height with both sensors, their spatial 

resolution differs. Indeed, due to different sensor resolutions, the ground sample distance (GSD) 

of the RGB imagery is approximately double that of the multispectral imagery (2.6 and 6 cm, 

respectively). Point cloud density, per m3, was, respectively, ~500 and ~40 points. Data from 

both sensors were aligned relative to each other by using points that are clearly identifiable in 

the imagery and then merged, and geometric correction was applied using ground control points 

(GCPs) using both natural features and artificial targets. 

In projects using multispectral imagery, a radiometric calibration is performed. Reflectance 

maps are generated for each band, and the most relevant vegetation indices—suggested in the 

literature—to monitor spatiotemporal variations in biomass and yield and to estimate leaf 

pigments (Albetis et al., 2017) are computed (Table 5.1). A digital surface model (DSM) and a 

digital terrain model (DTM) are also generated, and a CHM is computed. This process was 

accomplished in QGIS software by subtracting the DTM to the DSM. 

Table 5.1. Computed vegetation indices found in the literature and their respective equations. 

Name Equation Ref. 
Normalized Difference 

Vegetation Index 
NDVI =  

N − R

N + R
 (Rouse et al., 1974) 

Green Normalized Difference 
Vegetation Index 

GNDVI =  
N − G

N + G
 (Gitelson et al., 1996) 

Green Red Vegetation Index GRVI =  
G − R

G + R
 (Tucker, 1979) 

Normalized Difference Red Edge NDRE =  
N − RE

N + RE
 (Barnes et al., 2000) 

Soil Adjusted Vegetation Index SAVI =  
N − R

N + R + L
× 1 + L (Huete, 1988) 

Renormalized Difference 
Vegetation Index 

RDVI =  
N − R

√N + R
 (Roujean & Breon, 

1995) 

Simple Ratio SR =  
N

R
 (Birth & McVey, 1968) 

Transformed Chlorophyll 
Absorption Reflectance Index 

TCARI = 3 ሺRE − Rሻ − 0.2ሺRE − Gሻ ×
RE

R
൨ (Haboudane et al., 2004) 

G: Green; R: Red; N: NIR; RE: Red edge; L = 0.5. 

In addition to the vegetation indices shown in Table 5.1, new ones are proposed in this study. 

In fact, knowledge about the typical spectral signature of symptomatic and asymptomatic 

chestnut trees, allowed to conclude the relevance of the red-edge (RE) and near-infrared (NIR) 
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regions. Figure 5.3 presents the spectral signatures for the main issues identified in the chestnut 

stand (chestnut ink disease and nutritional deficiencies) and for chestnut trees with no visible 

symptoms obtained from UAV-based hyperspectral data using the Nano-Hyperspec® VNIR 

(400–1000nm) imaging sensor (Headwall Photonics, Inc., Massachusetts, USA). Significant 

differences among them are observed along spectrum; in the visible part (400–690 nm), a higher 

reflectance is achieved in trees with nutritional deficiencies, followed by trees with no visible 

symptoms, while in the RE and NIR parts (690–900 nm), the opposite is verified. Trees affected 

by the ink disease always presented the lowest reflectance. 

 

Figure 5.3. Typical spectral signatures and standard error, computed using the average of 100 points, in chestnut 
trees with no symptoms and from trees with chestnut ink disease and nutrient deficiency. Spectral band width of 
the four Parrot Sequoia bands is highlighted. 

Therefore, customized vegetation indices were developed considering the strong influence of 

the RE and NIR bands. These vegetation indices are inspired by the Excess Green Index (ExG) 

(D. M. Woebbecke et al., 1995) that showed effectiveness in weed discrimination (D. M. 

Woebbecke et al., 1995), crop identification (Kiani & Jafari, 2012; G. E. Meyer & Neto, 2008) 

and quantification (Kim et al., 2018), early-season crop monitoring (Marcial-Pablo et al., 2019), 

and multi-temporal mapping of vegetation fractions (J. Torres-Sánchez et al., 2014) using both 

close-range and UAV-based imagery. Thus, the assumption that added weight of both RE and 

NIR bands would improve the detection of phytosanitary problems was made (Figure 5.3). Two 

new vegetation indices are proposed and were named Excess NIR (ExNIR) and Excess RE 

(ExRE) and are represented by the following equations: 

ExNIR = 2 × Nn − Gn − Rn − REn, (1) 

ExRE = 2 × REn − Gn − Rn − Nn, (2) 

where Gn, Rn, NIRn and REn corresponds to the division of, respectively, green, red, NIR and 

RE bands by the sum of the four bands. Normalized difference versions of the two proposed 

indices, the Normalized Difference Excess NIR (NDExNIR) and the Normalized Difference 

Excess RE (NDExRE), were also computed as follows: 
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NDExNIR =  
2 × Nn − Gn − Rn − REn
2 × Nn + Gn + Rn + REn

 (3) 

NDExRE =  
2 × REn − Gn − Rn − Nn
2 × REn + Gn + Rn + Nn

 (4) 

5.2.3.2.  Individual Tree Crown Detection and Multi-Temporal Analysis 

For extraction of individual tree parameters (Step 1 from Figure 5.2), each tree must be isolated 

from its surrounding environment (soil, vegetation, and other trees). However, given its 

planting distance and crown size, chestnut trees tend to be too close from each other, giving rise 

to the need for their segmentation and isolation. In this way, the orthorectified outcomes can be 

used as input in an image processing method for individual tree crown detection. For this 

purpose, the principles enunciated in Marques et al. (2019) were used with slight modifications 

to encompass multispectral imagery. The method was developed for chestnut plantation 

monitoring with the scope of performing multi-temporal analysis. It relies on the combination 

of photogrammetric outcomes in a raster format which, in turn, is automatically binarized. Some 

changes were implemented to ensure that all monitored chestnut trees within the study area 

were included for analysis. Taking both the NIR band and the CHM as inputs, a locally adaptive 

threshold (Bradley & Roth, 2007) is used in the binarization of the stand. A visual analysis 

allowed us to conclude that apart from trees of significant size (chestnuts and other trees) the 

amount of green vegetation in the study area was low or almost absent (depending on the flight 

campaign). For that reason, a value of 0.20 m was selected for CHM thresholding. Both binary 

images were then concatenated. 

In the output, most of the pixels in the binary image (Figure 5.4b) belong to the crowns of 

chestnut trees. Still, some clusters of pixels can eventually represent more than one tree, leading 

to the need for a cluster isolation step (see Figure 5.4). The inverse of the binary imagery is 

used to compute a distance transform (Figure 5.4c) based on the Euclidean distance transform 

(Maurer & Raghavan, 2003), where a value is assigned for each pixel corresponding to the 

distance to the nearest pixel with a zero value. In turn, the complement image is used in the 

watershed transform (F. Meyer, 1994). This way, in an ideal scenario, clusters representing 

multiple trees are separated into individual clusters representing a single tree (Figure 5.4d). 

However, given the high spatial resolution, there can be cases where small parts can be 

erroneously separated. The process is reversed by analysing the bounding boxes overlap ratio, 

namely, if it is higher than 90% relative to another. Binary images as presented in Figure 5.5b,d 

were used to mask the colour–infrared image. 



Chapter 5. 
Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data 

122 

 

Figure 5.4. Individual tree crown isolation process: (a) colour–infrared image; (b) detected vegetation; (c) color-
coded representation of the complement distance transform result; and (d) unconnected clusters from the watershed 
transform. 

After cluster isolation, it is possible to obtain individual tree parameters. Several parameters 

can be driven by the analysis of each cluster, such as the crown diameter, perimeter, and area. 

Moreover, values retrieved from remotely sensed data, such as the CHM (tree height), 

vegetation indices, or spectral bands, can be obtained by matching each cluster to the raster 

data. This information can be presented as geospatial data in vector format (shapefile) to be 

analysed in a geographic information system (GIS) or in a table format. 

Finally, multi-temporal analysis can be carried out using the values extracted for each flight 

campaign by comparison with the subsequent campaign. This way, the extracted parameters 

can be used for individual tree monitoring or to obtain an overview of the chestnut stand at the 

time of each flight campaign. In this study, the tree crown area and the mean NDVI value are 

analysed in a multi-temporal perspective, focusing on the overall stand development and on 

trees affected/non-affected by phytosanitary issues. 

  Detection of Phytosanitary Issues Using a Random Forest Classifier 

Apart from the possibility of doing multi-temporal analysis using the extracted parameters, they 

can be used in a machine learning (ML) approach to distinguish chestnut trees in different 

phytosanitary conditions. Then, it is possible to (1) classify healthy chestnut trees and chestnut 

trees with phytosanitary issues and (2) distinguish among phytosanitary issues. The clusters 

resulting from the automatic individual tree detection were labelled in two ways according to 

their phytosanitary status: in two classes—with or without phytosanitary issues; and in three 

classes—to distinguish the different major phytosanitary problems (no visible symptoms, ink 

disease, and nutritional deficiencies). 

An RF algorithm was used to carry out these classifications. It is a type of ensemble classifier 

that generates several decision trees using a random subset of training samples capable of 

handling high data dimensionality and multicollinearity and is insensitive to overfitting (Belgiu 
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& Drăguţ, 2016). This method is widely used in remote sensing applications (Ö Akar, 2016; 

Feng et al., 2015; Ma et al., 2017), including tree species classification (Goodbody et al., 2018; 

Michez et al., 2016; Nevalainen et al., 2017). 

5.2.4.1.  Data Augmentation from Object-Based Image Analysis 

As mentioned in Section 5.2.1, the use of a well-characterized area with well-known behavior 

is essential for validation of results. However, the fact that the stand used in the study is 

composed of a relatively small number of samples is a challenge for ML techniques. In fact, 

the essence of ML is based on using a high number of observations/samples. To overcome this 

limitation, the number of available samples was substantially increased using an OBIA 

approach (Step 2 from Figure 5.2). This was done using large-scale segmentation based on the 

mean shift algorithm (Michel et al., 2014) from the Orfeo ToolBox (OTB) (Inglada & 

Christophe, 2009). It requires a raster as input and results in a set of objects in vector format 

with a similar spectral similarity. To better discriminate tree crowns, the NIR, green, and red 

bands (NGR, example in Figure 5.4a) were concatenated and rasterized to produce a three-band 

false-colour image. This combination of bands was revealed to be the best compromise for this 

specific task. To increase the number of objects produced in this procedure, its sensitivity was 

augmented. Therefore, the spectral radius was set to 10 while the spatial radius and minimum 

segment size were kept at five and 50, respectively. The originated objects which intercept the 

detected tree crowns inherit the same classification as their correspondent tree, being classified 

according to its predominant phytosanitary issue that was observed in the field. Figure 5.5a 

presents part of the output obtained from the OBIA step; the objects matching tree crowns 

(Figure 5.5b) are then used for further model training and testing (Figure 5.5c). 

5.2.4.2. Feature Selection, Training, Validation, and Prediction 

The created dataset is composed of the mean values of 16 features: the eight vegetation indices 

presented in Table 5.1; the green, red, RE and NIR bands; and the last four corresponding to 

the vegetation indices proposed in this study (see Section 5.2.3.1). As such, the database 

connected to the objects representing the tree crowns include a column with the mean value of 

these features. However, given the number of features to discriminate, those may behave 

differently by class. Hence, to decrease the number of features, an intermediate step was 

introduced. For this purpose, recursive feature elimination (RFE) (Guyon et al., 2002) was used 

(Step 3, from Figure 5.2). This method ranks features recursively based on their respective 

importance (Granitto et al., 2006). 
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Figure 5.5. Data augmentation procedure: (a) objects from the mean-shift algorithm; (b) objects intersecting the 
detected tree crowns; (c) train-test split of the objects used for training (orange for training an and grey for testing). 

For training and evaluation of the RF models (Step 3, from Figure 5.2), a hold-out strategy was 

used by randomly performing train-test splits (70% to train and 30% to test). To avoid possible 

discrepancies in the solution, an average of 10 repetitions was used. The data split operation is 

made by considering the area of each object within each tree and using 70% of the tree crown 

area for training and the remaining 30% for testing. This step is applied to the datasets from 

each flight campaign. 

To evaluate the classification procedure in the different flight campaigns, the resultant 

confusion matrices were analysed. For this purpose, the following metrics were used: 

precision—the number of objects correctly classified for a given class divided by its total 

number of samples; recall—the number of correct classifications for a given class divided by 

its row total; and F1score—the harmonic mean of precision and recall measures. The overall 

accuracy and the Cohen’s kappa coefficient (K) (McHugh, 2012)—a statistic used to measure 

inter- or intra-rater reliability for qualitative items—were also analysed for a general 

perspective of the models’ behaviour. While the overall accuracy indicates the proportion of 

correct classifications in the total number of samples, the kappa coefficient evaluates the 

performed classification while considering the possibility of the agreement occurring by 

chance. 

To predict potential phytosanitary issues in the analysed stand (Step 4, from Figure 5.2), the 

mean value of each tree is used. The mean feature value differs from the training values since 

the mean value of the whole tree crown is different from the mean value of their objects (used 

from training and testing). To evaluate the performance, the overall accuracy and the 

classification errors for each class were assessed. The predictions were made for two classes 

(with or without phytosanitary problems) and categorized according to the detected issue (no 

visible symptoms, ink disease, and nutritional deficiencies). 
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  Results 

  Phytosanitary Characterization of the Study Area 

The phytosanitary issues detected in affected trees were mostly ink disease and nutritional 

deficiencies. Both show symptoms on tree crown and foliage: while for chestnut ink disease, 

the dieback can be observed by low-density foliage or even its absence in some parts of the 

canopy (Figure 5.1d), nutritional deficits are noticeable by leaf discoloration and stress 

symptoms (Figure 5.1e). From the 46 chestnut trees assessed, 16 presented nutritional 

deficiencies (Figure 5.6a), eight had a higher predominance of ink disease symptoms (Figure 

5.6b), and the remaining 22 were considered to be without symptoms. The latter had 6.5 m 

mean height and a mean crown diameter of 6.5 m. Those presenting ink disease symptoms had 

6.2 m mean height and 6.1 m mean crown diameter. Chestnut trees with symptoms of nutritional 

deficiencies had a mean height of 4.5 m and a mean crown diameter of 4.0 m. The overall mean 

chestnut tree height was 5.8 m, and the overall mean crown diameter was 5.6 m. The global 

condition of each evaluated chestnut tree is presented in Figure 5.6c. 

 

Figure 5.6. Phytosanitary assessment of chestnut trees for (a) nutrient deficiency; (b) chestnut ink disease; and (c) 
global condition. 

  Multi-Temporal Analysis 

The estimated individual parameters of the chestnut trees from the different flight campaigns 

allowed for an understanding of the overall evolution of the stand. From these, the crown area 

and vegetation indices are the foremost parameters that can support multi-temporal analysis. 

Figure 5.7a presents the overall area occupied by chestnut trees, while Figure 5.8 depicts the 

individual crown area for each chestnut tree. A growth trend from the first (late May) to the 

fourth flight campaign (August) can be observed. From the fourth up to the last flight campaign, 

an overall decline occurred. The first three flight campaigns (May to June and June to July) 
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presented a growth in area of 9% and 5%, respectively (from 767 to 877 m2), while from the 

third to the fourth flight campaign, a growth of 13% was verified (991 m2). In the last two flight 

campaigns, a decline was registered (16% and 6%, respectively), resulting in a final chestnut 

tree crown area of 783 m2. 

Considering trees with no visible symptoms (22 trees, ~48% of the total number of trees) and 

trees otherwise affected by phytosanitary issues (24 trees affected by ink disease or/and 

nutritional deficiencies), the former represents between 63% to 67% of the crown area along 

the flight campaigns. Figure 5.7a presents the crown area of the chestnut trees (i) that had no 

visible phytosanitary issues detected in the in-field characterization; (ii) with phytosanitary 

issues, regardless of which (24 trees); (iii) affected by ink disease (8 trees); and (iv) with 

nutritional deficiencies (16 trees). In general, the various curves fit well in their behaviour, 

presenting an almost linear increase in crown area until the third flight. Maximum crown area 

was reached in the fourth flight. Crown area decline for trees affected by phytosanitary issues 

was 29% (–98 m2, from 341 to 244 m2), with data acquired in the two last flight campaigns. As 

for chestnut trees with no visible symptoms, the area decline was 17% (–108 m2, from 626 to 

519 m2). Crown areas of chestnut trees affected by ink disease or/and with nutritional 

deficiencies have a 30 m2 mean difference, representing 14% and 18% of the overall crown 

area, respectively. 

The distribution of tree crown area is presented in Figure 5.7b–d. While some trees present a 

tree crown area higher than 40 m2, others present an area lower than 1 m2 (Figure 5.7b). Such 

discrepancies can be justified by the fact that the trees of smaller area represent recent 

plantations, carried out to replace dead trees. Considering all flight campaigns, the mean 

chestnut tree crown area is 18 m2. Whereas chestnut trees with no visible phytosanitary issues 

had a higher mean crown area (26 m2), trees affected by ink disease had 15 m2, and trees with 

nutritional deficiencies presented a mean crown area value of 10 m2. 



Chapter 5. 
Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data 

127 

 

Figure 5.7. Overall chestnut tree crown area (a), its distribution per flight campaign (b) and per class (c, d). 

 

Figure 5.8. Crown area of each analysed chestnut tree per flight campaign, from 27 May to 16 October 2018. 

The mean NDVI value of each chestnut tree is presented in Figure 5.9. Slight variations can be 

detected in the first two flight campaigns. However, a constant decline was verified in the 

remaining campaigns. Chestnut trees with symptoms of phytosanitary issues presented a lower 
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NDVI value in all flight campaigns when compared to healthy trees. Indeed, the lowest mean 

values were presented by trees with nutritional deficiencies. This difference increased 

throughout the flight campaigns. While for the first four campaigns, the mean difference—tree 

crown growth—was –0.06 for trees affected by ink disease and –0.17 for those that showed 

nutritional deficiencies, for the last two flight campaigns—tree crown decline—these were –

0.09 and –0.32, respectively. 

 

Figure 5.9. Mean NDVI values for the chestnut trees analysed throughout the flight campaigns (27 May to 16 
October 2018). 

  Detection of Trees with Phytosanitary Symptoms 

The individual tree crown projections obtained with each flight campaign were subjected to an 

OBIA procedure to output a set of objects (step 2, in Figure 5.2). Naturally, each set has a 

different number of objects due to canopy area evolution and appearance over time. An average 

of 1650 objects was obtained throughout all flight campaigns. While 1527 objects were 

identified in May, that number grew in the following two flight campaigns—1668 in June and 

1720 objects identified in July—and decreased in August (1389 objects). Then, it grew again 

in the last two flight campaigns, with 1452 objects identified in September and 2165 in October. 
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These variations can be explained by changes in the canopy appearance over time, which result 

in reflectance alteration. The latter can be justified either by the dieback observed in the overall 

leaf discoloration and/or by the presence of some chestnut fruits, which results in higher spectral 

differences among each tree crown. As for the distribution of objects per class (considering the 

average of all epochs), the class of healthy trees has a higher number (67%), while the class 

with phytosanitary issues is left with the remainder (33%). Ink disease represents 15% and 

nutritional deficiencies 19% of the latter class. 

5.3.3.1.  Dataset Description and Feature Selection 

Figure 5.10 presents the trends for vegetation indices throughout the flight campaigns. 

Excluding RVI—for the first campaign—the majority of the vegetation indices present values 

disposed in a shorter interval. However, in the last flight campaigns, values are spanned on a 

larger interval. An example is NDVI: it tends to decrease in value but presents an increased 

value span in the last two flight campaigns. GNDVI shows a different trend, increasing in the 

first four flight campaigns and decreasing in the last ones. As for GRVI, it presents an overall 

decline along the flight campaigns. ExNIR, NDExNIR, NDRE, ExRE, and NDExRE present a 

similar behavior, increasing in value from the first to the second flight campaigns, followed by 

a small decrease in the third flight campaign. Hereinafter, values increase again in the fourth 

campaign and decrease in the last two flight campaigns. Lastly, RVI presents values spread 

over a larger interval in almost all flight campaigns, being lower in the last two. 

When analysing the values of the vegetation indices automatically extracted from the detected 

tree crowns—considering trees with or without phytosanitary symptoms (Figure C.1)—both 

classes are distinguishable by their interquartile range (IQR). Trees presenting ink disease 

and/or nutritional deficiencies can be clearly distinguished from those that are healthy in all 

flight campaigns and by vegetation indices, with the exception of ExRE (see distribution in 

Figure C.2). Moreover, ExRE is again the exception when comparing values between healthy 

trees and those affected by chestnut ink: in the remaining vegetation indices, the latter presented 

lower values. As for nutritional deficiencies, only the third flight campaign of ExRE presents a 

higher value when compared to healthy trees. It should also be noted that trees affected by 

chestnut ink disease had higher values in comparison with those affected by nutritional 

deficiencies. 
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Figure 5.10.Tree crown area and mean NDVI values of the chestnut trees analysed throughout the flight 
campaigns. 

Feature selection based on RFE allowed for understanding the influence of features extracted 

from each object on the RF classifier. These results are presented in Table C.1. By analysing 

the overall results—achieved by adding all ranks and sorting the features by their lower value—

when considering two and three classes, the top ten features are the same in both situations 

(highlighted in bold in Table C.1). As such, those features were selected to be used in the 

subsequent analysis. 

5.3.3.2.  Random Forest Classifier and Dataset Performance Evaluation 

The model was trained by using ten random selections of 70% of each tree crown area per 

epoch. It was then tested using the remaining 30%. The mean accuracy of the ten random splits 

and their standard deviations were used to evaluate the model performance. 

Table 5.2 presents the results when considering only two classes: absence or presence of 

phytosanitary issues. Datasets acquired from all flight campaigns obtained an overall accuracy 

equal or higher than 85%. The highest value (91%) was achieved in September’s flight 
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campaign. As for accuracy statistics (kappa index), a substantial agreement (kappa > 0.65) was 

obtained in all flight campaigns. From July onward, kappa was always equal or higher than 

0.71. Regarding metrics, when each class is analysed individually—precision, recall, and 

F1score—the healthy tree class achieved better results. When comparing each flight campaign, 

June and May showed similar results. However, a higher standard deviation was observed in 

May. Similarly, July, August, and October presented similar results. Still, results from August 

are slightly lower. 

Table 5.2. Performance evaluation results (and its standard deviation) of OBIA objects considering two classes 
(1: no visual symptoms; 2: phytosanitary issues) for each flight campaign. 

Month Class Precision Recall F1-score Kappa index Overall accuracy 

May 
1 0.89 (0.02) 0.92 (0.01) 0.90 (0.01) 

0.65 (0.04) 0.86 (0.01) 
2 0.79 (0.04) 0.72 (0.04) 0.75 (0.03) 

Jun. 
1 0.88 (0.01) 0.90 (0.01) 0.89 (0.01) 

0.66 (0.02) 0.85 (0.01) 
2 0.79 (0.02) 0.75 (0.02) 0.77 (0.02) 

Jul. 
1 0.90 (0.01) 0.92 (0.01) 0.91 (0.01) 

0.72 (0.02) 0.88 (0.01) 
2 0.83 (0.02) 0.80 (0.02) 0.81 (0.02) 

Aug. 
1 0.91 (0.02) 0.89 (0.01) 0.90 (0.01) 

0.71 (0.02) 0.87 (0.01) 
2 0.79 (0.02) 0.83 (0.02) 0.81 (0.02) 

Sep. 
1 0.93 (0.01) 0.94 (0.02) 0.94 (0.01) 

0.80 (0.02) 0.91 (0.01) 
2 0.88 (0.03) 0.85 (0.03) 0.86 (0.02) 

Oct. 
1 0.91 (0.01) 0.92 (0.01) 0.91 (0.01) 

0.72 (0.03) 0.88 (0.01) 
2 0.82 (0.02) 0.81 (0.02) 0.81 (0.02) 

Table 5.3 presents the results obtained when distinguishing between specific phytosanitary 

issues of ink disease and/or nutritional deficiencies. The minimum overall accuracy is 80% 

(May and August flight campaigns) and the highest (85%) was achieved in the September and 

October flight campaigns. However, the statistical significance of the results differs: a moderate 

agreement (kappa > 0.55) was registered in May, while in the remaining epochs, the value 

increased. Indeed, the highest value was in September (0.69). July and October also registered 

a kappa value of at least 0.65. Regarding each class classification, F1-score was always higher 

than 0.90 for trees without phytosanitary problems. As for the other two classes—affected by 

ink disease and/or by nutritional deficiencies—the F1-score was lower. Nonetheless, the class 

containing trees affected by nutritional deficiencies had better results. 
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Table 5.3. Performance evaluation results (and its standard deviation) from OBIA objects considering three classes 
(1: no visual symptoms; 2: ink disease; 3: nutritional deficiencies) for each flight campaign. 

Month Class Precision Recall F1-score Kappa index (STD) Overall accuracy (STD) 

May 
1 0.88 (0.01) 0.93 (0.01) 0.91 (0.01) 

0.55 (0.01) 0.80 (0.01) 2 0.58 (0.08) 0.53 (0.04) 0.55 (0.04) 
3 0.58 (0.04) 0.49 (0.03) 0.53 (0.02) 

Jun. 
1 0.88 (0.01) 0.92 (0.02) 0.90 (0.01) 

0.60 (0.02) 0.81 (0.01) 2 0.64 (0.04) 0.55 (0.06) 0.59 (0.03) 
3 0.66 (0.03) 0.61 (0.04) 0.64 (0.03) 

Jul. 
1 0.89 (0.01) 0.94 (0.01) 0.91 (0.01) 

0.65 (0.03) 0.83 (0.02) 2 0.66 (0.04) 0.63 (0.07) 0.64 (0.05) 
3 0.74 (0.06) 0.62 (0.04) 0.67 (0.03) 

Aug. 
1 0.89 (0.02) 0.91 (0.01) 0.90 (0.01) 

0.60 (0.03) 0.80 (0.01) 2 0.58 (0.06) 0.58 (0.07) 0.58 (0.05) 
3 0.64 (0.06) 0.60 (0.05) 0.62 (0.02) 

Sep. 
1 0.92 (0.02) 0.94 (0.01) 0.93 (0.01) 

0.69 (0.02) 0.85 (0.01) 2 0.60 (0.03) 0.57 (0.05) 0.58 (0.03) 
3 0.77 (0.05) 0.73 (0.05) 0.75 (0.03) 

Oct. 
1 0.90 (0.01) 0.94 (0.01) 0.92 (0.01) 

0.67 (0.03) 0.85 (0.01) 2 0.62 (0.04) 0.60 (0.04) 0.61 (0.03) 
3 0.83 (0.04) 0.71 (0.04) 0.76 (0.03) 

5.3.3.3.  Detection of Chestnut Trees Affected by Phytosanitary Issues 

The mean value of each tree crown feature was used to assess whether it was affected by 

phytosanitary issues. Results are presented in Figure 5.11 and Figure C.3a. The overall accuracy 

is equal to or higher than 85%. The lowest value was achieved in May (85%) and the highest 

in the last two flight campaigns (96%). In the remaining flight campaigns, the overall accuracy 

is 91% in both June and August, and 94% in July. Indeed, the earliest flight campaign in the 

season (May) had the most misclassifications—seven chestnut trees, representing about 15% 

of the total number of chestnut trees monitored (46): two healthy trees were classified as being 

affected by phytosanitary issues and five the exact opposite. The number of misclassified 

chestnut trees without visible symptoms was consistently low in the remaining flight 

campaigns: one in June, and two in both July and August. As for misclassified chestnut trees 

with phytosanitary issues, there were three in June, one in July, and two in the remaining flight 

campaigns. 
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Figure 5.11. Detection of phytosanitary issues in chestnut trees throughout the flight campaigns. 

Figure 5.12 presents the assessment results when using three classes (no visual symptoms, ink 

disease, and/or nutritional deficiencies). The higher overall accuracy value is achieved in 

September (91%) and the lowest in May (78%); see Figure C.3b. The remaining flight 

campaigns present a relatively stable overall accuracy value, ranging between 83% and 87%. 

Chestnut trees without visible symptoms present the lowest misclassification values (5% 

overall). No misclassifications were observed in both September and October. Moreover, in 

July, there were no misclassifications in chestnut trees affected by ink disease. Affected trees 

were mainly misclassified as having no phytosanitary issues: there were two misclassifications 

on average (August and October had three). Regarding chestnut trees affected by nutritional 

deficiencies—an average of four misclassified trees considering all flight campaigns— they 

were misclassified in both of the other two classes: 10 in healthy trees and 12 in trees affected 

by ink disease. 
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Figure 5.12. Detection of ink disease and nutritional deficiencies in chestnut trees throughout the flight campaigns. 

  Discussion 

The multi-temporal data analysis enabled characterization of both spatial and temporal 

variability of the studied chestnut stand. Studies on chestnut trees management rely only on 

yearly flight campaigns (Pádua, Hruška, et al., 2017) to monitor the overall condition and to 

study vegetation decline (L. M. Martins et al., 2015), limiting the intra-seasonal monitoring of 

potential issues. Indeed, no intra-seasonal multi-temporal studies were found for chestnut trees, 

and these can be fundamental for detecting potential phytosanitary issues earlier on, which will 

enable timely mitigation actions. Furthermore, each tree can automatically be classified 

regarding its phytosanitary status as affected, ink disease or nutritional deficiencies, or healthy. 

Regarding the crown area for the monitored chestnut trees throughout the season, it is of note 

that it increased from May to August and decreased hereinafter. This trend is verified more 

often in healthy chestnut trees (see Figures 5.7 and 5.8). Those affected by phytosanitary issues 

presented a smaller crown area growth in the first three flight campaigns. The west side area of 

the stand had higher NDVI values throughout the analysed period (Figure 5.9) while the 

opposite was verified in the east. Whereas the size of the chestnut trees—smaller precisely in 

the east area (Figure 5.8)—can explain this because it usually means lower foliage density, trees 

affected by phytosanitary issues are mostly located in that area (see Figure 5.6). A clear 
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distinction between trees with and without phytosanitary problems (Figure 5.7c), and between 

phytosanitary problems can be observed. 

The crown area of chestnut trees affected by ink disease are usually larger when compared to 

the ones from trees affected by nutritional deficiencies (Figure 5.7d). The latter present a small 

increase in crown area in August. As for NDVI, while chestnut trees affected by phytosanitary 

issues presented decreasing values throughout the season, this trend is less clear-cut in chestnut 

trees affected by ink disease. With reference to the feature selection procedure, the proposed 

vegetation indices were among the ones with best discrimination performance. This can be 

explained by the fact that spectral differences are more significant when addressing symptoms 

caused by the studied phytosanitary issues (Figure 5.3). Spectral bands can also be considered 

less relevant features than vegetation indices. Indeed, green, NIR, and RE bands did not perform 

well when compared to the VIs, which was not verified in studies using RGB-based vegetation 

indices (Pádua, Guimarães, et al., 2019). 

The employed methodology can be regarded as accurate not only when classifying chestnut 

trees as affected (or not) by phytosanitary issues (Figure 5.7c), but also (when affected) in 

distinguishing which phytosanitary issue is present in each case. The crowns detection for 

individual trees employed in this study allow for discarding most outliers unrelated to chestnut 

trees, such as soil and low-height vegetation, while other studies relied on OBIA with more 

steps (Jorge Torres-Sánchez et al., 2015). As such, an ML classification step to detect trees is 

not a requirement. 

When considering the possibility of having a chestnut tree affected by a phytosanitary issue 

(Table 5.2, Figures 5.11 and C.3a), the obtained results show that, both in testing and detection, 

September’s flight campaign data had the best accuracy rates. While similar results were 

achieved in October, the kappa value was slightly lower. Remaining campaigns also achieved 

good accuracy values. May corresponds to an early phase of the chestnut’s phenological cycle, 

when most symptoms caused by phytosanitary issues are not yet clearly noticeable. This 

justifies the higher standard deviation observed in May. However, when three classes are 

considered—healthy, ink disease, and nutritional deficiencies—the overall accuracy generally 

decreases (Table 5.3, Figures 5.12 and C.3b). Again, September’s data outperform those of the 

remaining flight campaigns. Whilst the October flight campaign presented better results when 

distinguishing ink disease, this can be explained by environmental factors: chestnut trees were 

exposed to longer periods of low/no precipitation (causing low soil moisture) and higher 
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temperatures than those registered in the summer, which result in trees having more stress and, 

therefore, to manifest a higher incidence of phytosanitary symptoms (Camisón et al., 2019). On 

the other hand, this decrease in classification can also be related to the chestnut harvesting 

season (and, therefore, trees start their senescence). Currently, to mitigate the occurrence of 

chestnut ink disease, hybrid chestnut trees are being used with good results (Brito et al., 2012). 

It should be noted that some chestnut trees did not present symptoms uniformly. Indeed, some 

parts had similar spectral responses than healthy trees. Despite values in Figures C.1 and C.2 

having a different separation between classes in the training phase, objects formed from the 

OBIA procedure have similar objects in the classes, since the whole tree was considered as 

being affected by only one issue. In other works, different types of classes were classified as 

different tree species (Hill et al., 2010; Lisein et al., 2015; Melville et al., 2019; Michez et al., 

2016) or distinguished completely different types of classes (Özlem Akar, 2018; Akcay et al., 

2019; Guerrero et al., 2012; Pádua, Guimarães, et al., 2019). Moreover, in Gini et al. (2018), 

multispectral imagery was combined with texture features for tree species classification, 

increasing the overall accuracy. In this study, only Castanea sativa Mill. trees were evaluated 

using UAV-based multispectral data to automatically distinguish the presence (or absence) of 

phytosanitary issues. Therefore, it was more challenging when considering data classification 

into three classes since there were more spectral similarities. 

When compared to traditional in-field approaches that require several days of field 

surveys/measurements, the whole pipeline proposed in this study can deliver the final results in 

a single day. Future developments would rely on data processing and results being delivered on 

the fly, similar to what was demonstrated from tree counting (Salamí et al., 2019). Data from 

sensing payloads other than multispectral imagery can help improve the differentiation between 

the phytosanitary issues analysed in this study. Indeed, thermal infrared, hyperspectral, and 

fluorescence data (R. Calderón et al., 2013; López-López et al., 2016; P. J. Zarco-Tejada et al., 

2018) are options to be considered (e.g. allowing the creation of narrow-band vegetation 

indices). However, hyperspectral data require more complex data processing and with higher 

computational and financial costs compared to multispectral data. The proposed method can 

also be explored in other contexts such as arid and semi-arid land vegetation monitoring (T. T. 

Sankey et al., 2018). 
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  Conclusions 

This study shows the suitability of image analysis and processing to automatically detect 

phytosanitary issues in individual chestnut trees within a chestnut stand using UAV-based 

multispectral data. The results demonstrate the effectiveness of the RF classifier in 

discriminating trees with and without phytosanitary issues and to classify according to the issue 

affecting the trees (ink disease and nutrient deficiency). In addition, new vegetation indices 

were proposed, which helped to improve the results. The obtained results also allowed us to 

conclude that the latter stages of the season are the optimal time (less misclassifications) for the 

application of the proposed methodology. This way, the dormancy period can be used to apply 

corrective treatments on the trees identified as having phytosanitary issues (e.g., soil nutrient 

corrections, biomass pruning tree optimization, tree replacement). However, the results from 

early and mid-season (May to June) are also promising—phytosanitary issues can be detected 

even in cases when symptoms are not significant—and can be used to optimize field 

inspections, reducing the amount of work/time needed compared to manual/visual inspections. 

Some treatments can be directed to those trees to prevent the further development of issues. 

Moreover, the usage of multi-temporal data enabled the monitoring of the chestnut stand along 

the season. 

In the near future, the proposed methodology can be applied to monitor chestnut trees at a larger 

scale, providing a cost-effective and less laborious alternative to field surveys to assess overall 

phytosanitary condition. Moreover, it can also be used in the long-term monitoring of damage 

caused by the chestnut gall wasp in both phytosanitary and development status of individual 

chestnut trees. Lastly, the greater spatial resolution provided by UAV-based data when 

compared to other remote sensing platforms can allow for yield estimation by automatically 

detecting chestnut clusters, since they tend to grow in tree branch tips and are therefore visible 

from an aerial perspective. Other types of sensors should also be evaluated, such as thermal and 

hyperspectral, increasing the variety of features that can be used for analysis and in promoting 

efficient and sustainable management practices. 
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Chapter 6.  
Vineyard properties extraction combining UAS-based RGB imagery with elevation data 

 Introduction and background 

Requirements to optimize vineyards’ (Vitis Vinifera L.) performance in a Precision Viticulture 

(PV) context are high because both yield and quality should be maximized, while environmental 

risks and impacts should be reduced (A. P. B. Proffitt et al., 2006). Therefore, farmers achieve 

the utmost control over vineyard management by considering its variability. Grapevine quality 

and development directly relate with the vineyards’ spatial heterogeneity, which depends on 

several factors associated to the vineyard itself—soil, crop management, irrigation, nutritional 

status, pest and disease control and external variables, as the climate—to determine the inter-

annual and intra-vineyard variability of both yield and quality (Alessandro Matese et al., 2015). 

These factors can lead to the occurrence of biotic and abiotic issues. Depending on their 

severity, they can result in a significant production decrease and consequently in significant 

economic losses (Baofeng et al., 2016). Recent technological development opened the 

possibility of implementing both Precision Agriculture (PA) and PV, along with the 

combination of certain procedures, to improve the decision making process in several field-

related tasks (Zarco-Tejada et al. 2014). Hence, remote sensing data can provide a better 

understanding of a terrain’s variability and can be applied in the context of PV management 

(Bobillet et al., 2003). Indeed, sensors used in remote sensing platforms provide an effective 

way to extract spatial information about crops’ state in a non-destructive manner (Weiss & 

Baret, 2017). 

Regarding vineyards, the usage of remote sensing platforms is usually related to: grape varieties 

mapping (Lacar et al., 2001); vineyard Leaf Area Index (LAI) estimation (L. Johnson et al., 

2003; Kalisperakis et al., 2015; Mathews & Jensen, 2013); irrigation scheduling and water 

stress variability (Baluja et al., 2012; Bellvert et al., 2013; Bellvert & Girona, 2012; P. Zarco-

Tejada et al., 2004); grapevine phenology monitoring (Helder Fraga, Amraoui, et al., 2014; 

Lamb et al., 2004); disease detection and mapping (Albetis et al., 2017; A. Matese et al., 2013); 

grape quality mapping in vineyards affected by nutrients deficiency (Martín et al., 2015); and 

chlorophyll estimation (P. J. Zarco-Tejada, Berjón, et al., 2005), among others. However, the 

use of remote sensing techniques is challenging due to the alternation of vines’ canopies—

which form a set of parallel rows—along with the presence of bare soil or vegetation cover, 

within the vineyard plot (Burgos et al., 2015; Alessandro Matese et al., 2015). By considering 

the whole vineyard terrain, the presence of information other than vines’ canopy is added, i.e., 

the inter-row vegetation cover and shadows produced by vines’ canopy and its surroundings. 
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To detect vine’s canopy, several authors and research teams proposed approaches based on the 

use of vegetation indices (VIs) applied to the imagery data provided by remote sensing 

platforms (Albetis et al., 2017; Bellvert & Girona, 2012; Helder Fraga, Amraoui, et al., 2014; 

L. Johnson et al., 2003; Alessandro Matese et al., 2015; Naidu et al., 2009; Smit et al., 2010). 

VIs are simple arithmetic operations applied to the spectral narrow-band or broad-band 

imagery, with information from different parts of the electromagnetic spectrum (Pádua, Vanko, 

et al., 2017). However, VIs are often computed over the whole vineyard or at the plot level. 

Thus, information not related with vines is present. To produce correct vineyard maps, a 

separation of vine pixels from non-vine pixels in the remote sensing data is required. Although 

feasible manually, it is a laborious, error-prone and time-consuming task. Still, it is crucial since 

it heavily contributes to the obtained results’ global accuracy, which, in turn, increases 

vineyards’ management efficiency by providing information about crops’ variability. This 

enables the application of more efficient treatments to the plants and autonomous guidance for 

unmanned ground vehicles. 

Considering the previously presented requirements, satellite imagery is not suitable for 

vineyards management tasks. The spatial resolution provided is, in general, too sparse 

(Alessandro Matese et al., 2015) and the data acquisition frequency too low. Manned aircrafts 

and Unmanned Aerial Systems (UAS) provide more timely and flexible data acquisition 

solutions (Weiss & Baret, 2017). While manned aircrafts can cover larger areas with high 

resolution, they can be expensive for small sized-projects (Pádua, Vanko, et al., 2017). On the 

other hand, the ability of UAS (Unnamed Aerial Vehicle [UAV] + sensors and ground control 

station) to perform low-altitude flights—enabling the acquisition of very high-resolution data—

makes them an ideal tool to use when versatility, cost-effectiveness and temporal data are 

needed. 

To overcome the vine’s vegetation identification issue, different studies proposed 

(semi)automatic methods, using image-processing techniques on a single-band image, VIs or 

Digital Elevation Models (DEMs). Bobillet et al. (2003) proposed a method to classify vine 

rows based on a vineyard’ active contours. This method’s main issue was the requirement of 

manual adjustments in pre- and post-processing stages to achieve valid results. Furthermore, 

problems identifying vine rows with grass in-between them were also reported. Chanussot et 

al. (2005) studied the identification of missing vines and proposed a method that uses the Radon 

transform of the Fourier spectrum over a vineyards’ image. This image is computed by 
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subtracting the red band from the green band of the RGB image. The process allowed finding 

both the inter-row spacing and row orientation. Next, a set of morphological operations and a 

median filter over a binary image generate an image that signals missing vines. However, this 

method reportedly fails when dealing with irregularly spaced, too sparse or curved plantations. 

Comba et al. (2015) proposed a method that benefits from vegetation’s high reflectance in Near 

Infrared (NIR) imagery to apply the Hough space clustering over an image. This image is a 

result of local histogram equalisation thresholding to estimate vine’s canopy vegetation and 

Total Least Squares technique to estimate vine rows. The method uses techniques that require 

a large amount of processing time in big areas or images with lower Ground Sample Distance 

(GSD) values. The method developed by Comba et al. (2015) was also applied in other studies 

to produce vigour maps (J. Primicerio et al., 2015) and to estimate vines positions in a vineyard 

(Primicerio et al. 2017). In the latter, the trunk’s position was estimated along with the canopy 

shape of each individual plant. It was assumed that the plants are equally spaced along each 

vine row, which enabled the application of a machine learning procedure to discriminate 

between the presence or the absence of a plant along a row. Nolan et al. (2015) used 

skeletonization techniques to accurately segment vineyard rows for vineyard mapping. The 

proposed method used single-band images from distinct types of sensors as inputs, with the 

only requirement of having a high spatial resolution to distinguish vine rows from soil. The 

reported failure rate was related with the presence of trees obscuring vine rows, shadows, and 

segmentation discontinuities. To detect vine rows, Puletti et al. (2014) proposed a method that 

considers the lower reflectance values from the vineyard canopy red channel and the soil’s high 

reflectance. An image obtained by a high-pass filter is then processed and passed to a modified 

version of Ward’s technique (Ward Jr, 1963), which provides an unsupervised hierarchical 

cluster analysis. There were problems reported in areas with low contrast between vineyard 

canopy and soil. Poblete-Echeverría et al. (2017) studied different approaches to perform 

vineyard vegetation detection, using VIs and both supervised (artificial neural networks and 

random forests) and unsupervised (k-means clustering) classification methods in three classes: 

plant, shadow and soil. The obtained results showed that the combination of VIs with artificial 

neural networks provided good results. Poblete-Echeverría et al. (2017) stated that supervised 

classification methods needed human intervention for model calibration with a training dataset. 

On the other hand, VIs complemented with the Otsu’s method (Otsu, 1979) for thresholding, 

had a higher overall accuracy and performed very well in the detection of vineyards’ canopy. 
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This resulted in an easy and automatic method for vine vegetation extraction, even though VIs 

can also classify vegetation with the same reflectance in between vine rows. 

The problem of inter-row vegetation classification can be surmounted with a more 

straightforward method: using DEMs computed from the photogrammetric processing of UAV-

based imagery and by considering the vineyard plot structure’s height. DEMs are an accurate 

representation of the surface elevation. They can provide terrain’s surface elevation data – 

Digital Terrain Model (DTM) – and contain elevation data from features present in the ground 

surface – Digital Surface Model (DSM). Using this type of data, Kalisperakis et al. (2015) were 

able to estimate vineyards’ LAI, achieving good correlation rates when compared with ground-

truth measurements, whereas hyperspectral and RGB imagery obtained lower correlation rates. 

Burgos et al., (2015) used this type of data to separate non-vine pixels from vine pixels, by 

producing a Digital Differential Model (DDM) —that results from subtracting the DTM from 

the DSM—also known as Canopy Height Model (CHM) or Crop Surface Model (CSM), CSM 

will be the terminology used in this study. To assess CSM obtained from photogrammetric 

processing of UAS-based multispectral data in a vineyard plot (Alessandro Matese et al., 2016) 

found a relationship between vines’ heights—obtained from CSM—and Normalized Difference 

Vegetation Index (NDVI) values: higher vegetation heights coincided with higher NDVI 

values. Moreover, the authors also shown that UAS are suitable for vineyard’s biomass 

estimation. However, flight altitude allied with the sensor’s resolution caused a smoothness on 

the DSM, which lead the authors to consider only a vegetation’s height above 0.5 m. Both in 

Burgos et al. (2015),  Kalisperakis et al. (2015) and Matese et al. (2016), elevation data obtained 

from the UAS proved to be an effective technique to estimate vineyard’s vegetation, regardless 

of the terrain slope or outliers. Baofeng et al. (2016) proposed a method that used the DSM to 

estimate missing plants and plants potentially affected from biotic and abiotic problems. The 

method relied on the DSM’s local normalization with a sliding window to remove the terrain 

slope effect, transforming it in a binary image that differentiates vine from non-vine pixels. This 

approach requires the image to be both inverted and rotated to get a vertical row alignment and 

divided into a grid. If the non-vine pixels percentage is greater than 90%, it is considered as 

missing vine, whereas if it is between 20% and 90%, it is deemed to be affected vine. Weiss 

and Baret (2017) processed UAV-based RGB imagery to extract the vineyard’s macro structure, 

vine row orientation, cover fraction, row width, row spacing, percentage of vegetation and 

missing vegetation. The method analyses the percentage of points in the processed dense-point 

cloud, where a threshold was used to separate vine row pixels from background pixels. This 
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method also requires vertical vine rows alignment, obtained by estimating the row orientation 

using the Hough transform. Thus, row spacing results from using row peaks’ average value 

from a horizontal profile line. Moreover, a cover fraction estimation results from dividing the 

estimated row width by the row spacing or by computing the ratio between the number of pixels 

estimated as vineyard vegetation and the total number of pixels in the image. Missing plants 

calculation was done by individual analysis of each row based on the percentage of non-

vegetation pixels. This procedure, as stated by the authors, is not very sensitive to large 

variations of row width and height. However, depending on the flight characteristics (image 

overlapping, altitude, sensor, data processing software) and of the vineyard management 

practices or its phenological cycle, produced elevation models can be imprecise, rendering them 

unable to differentiate accurately between vines and soil. 

The aforementioned studies show the diversity of methodologies found in literature concerning 

the segmentation of vine rows and vineyard vegetation. Each has their own strengths and 

weaknesses and this work uses them in a complementary way, especially UAS-based 

methodologies. Indeed, photogrammetric processing of imagery—acquired during an aerial 

survey, as point cloud(s)—along with individual UAV imagery, can be used to compute 

orthophoto mosaics, DTMs and 3D models of the surveyed area (Pádua, Vanko, et al., 2017). 

By combining the very high-resolution outcomes produced from UAVs imagery, the proposed 

method’s main goals are to: (1) identify and extract vineyard’s vegetation by distinguishing it 

from soil, canopy shadow and eventual inter-row vegetation; (2) detect vine rows for a given 

vineyard plot; and (3) estimate possible missing vine plants. 

The proposed method works independently from the type of broadband imagery sensor coupled 

to the UAV, the vineyard plot orientation and terrain slope. In addition, it uses as few 

parameters as possible to be robust enough to achieve the defined goals. Finally, the proposed 

method also considers the potential of imagery data to estimate vineyard parameters. Thus, 

combining VIs with elevation data to provide accurate vineyard maps may be used to extract 

vineyard-related parameters in the scope of PV, helping in both the management and decision-

making tasks. The proposed method proved to be effective when applied with low-cost 

consumer-grade sensors carried by UAVs. 

This paper is structured in 6 sections. In this section, the motivation and main goals were 

described, along with some related works and applications of remote sensing in PV, which 

enabled to assess the actual state-of-the-art. Section 6.2 describes the data acquisition process, 
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the used UAV platforms and the vineyard data used in the study. Section 6.3 presents an 

evaluation of the different VIs’ suitability to detect vineyard vegetation. Then, the proposed 

method is described in Section 6.4. Section 6.5 presents the results, validation and discussion 

of the proposed method, when applied to different vineyard plots. Finally, Section 6.6 points 

out the main conclusions and future directions towards new developments and the method’s 

applicability. 

 Data description 

Data used in this study came from vineyards located in Portugal’s north-eastern, which has 

some unique features concerning the size, terrain slope and management practices. 

Aerial surveys were performed using the low-cost and light-weight (1380 g) rotary-wing UAV 

DJI Phantom 4 (DJI, Shenzhen, China), which has a maximum flight time of approximately 28 

minutes per battery, vertical take-off and landing (VTOL) capabilities. It is equipped with a 

remote controller, a Global Navigation Satellite System (GNSS) receiver, a camera and a frontal 

collision avoidance system. Regarding the camera—attached to a 3-axis gimbal that provides 

stabilization—it has a 12.4-megapixel sensor, which allows acquiring RGB images with a 

maximum resolution of 4000 × 3000 pixels. Autonomous flights were carried out using the 

Pix4Dcapture app (Pix4D SA, Lausanne, Switzerland) on an Android smartphone. 

This study’s flights took place during June and July 2017, using a double-grid configuration, at 

60 to 80 metres height, from the UAV take-off position and with an image overlap between 

70% and 80%. Acquired data was processed using Pix4Dmapper Pro (Pix4D SA, Lausanne, 

Switzerland), which can compute orthophoto mosaics, DSM and DTM from a dense point 

cloud. This type of very high-resolution data provides a general overview of the whole vineyard. 

Furthermore, it enables to associate operations—such as VIs—that allow the enhancement of 

certain vegetation features by using combinations from multiple bands and CSM, which can be 

computed to obtain surface’s objects’ heights. The computation of both the photogrammetric 

and the proposed method were performed by using a laptop equipped with a 2.6 GHz Intel i7-

4720HQ CPU, 16GB RAM (DDR3, 1600 MHz) and a NVidia GeForce GTX 970m (3GB 

GDDR5 5000 MHz) GPU. 

Aerial surveys included three different vineyards, from which 16 plots were used for further 

evaluation. Figure 6.1 shows the orthophoto mosaics of the three vineyards used in this study 

and presents details about the flight characteristics for each vineyard, along with the boundaries 
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of each analysed plot and the areas used for VIs and method’s validation. Vineyards B and C 

are used for commercial purposes, while vineyard A is not. When compared in-field, plots 

belonging to vineyard B show better management practices or are less affected by biotic issues 

than vineyards A and C. The latter has more missing vine plants along the plots. Vineyard C 

plots have larger areas and are surrounded by trees—that cover part of the rows—at their outer 

limits. Regarding the analysed plots, 11 plots were from vineyard A, 2 from vineyard B and 3 

from vineyard C, as presented in Figure 6.1. 

 
Figure 6.1. Resulting orthophoto mosaics from the three surveyed vineyard plots used to evaluate the proposed 
method along with their flight characteristics, surveyed area (SA), flight height (FH), ground sample distance 
(GSD), and number of acquired images (#Img). Vineyard A is located at 41°17'08.0"N, 7°44'12.0"W; vineyard B 
at 41°17'41.5"N, 7°29'51.3"W; and Vineyard C at 41°15'51.5"N, 8°14'12.1"W. The analysed plots are delimited 
by black lines and areas extracted from the orthophoto mosaics being polygons delimited in yellow (used in 
vegetation indices) and blue (used in the method’s validation). 
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 Vineyard vegetation detection using vegetation indices 

VIs behaviour with different vineyard images, vine rows orientation, shadow presence, inter-

row vegetation and missing vine plants, was observed and compared. Six different areas within 

the studied vineyard plots were analysed, as presented in Figure 6.2. 

 
Figure 6.2. RGB images of the areas used to evaluate VI behaviour (row orientation, shadow presence, inter-row 
vegetation, and missed plants were considered). 

The evaluation process is composed of the following steps: (1) VIs are computed in each area, 

producing a greyscale image from the arithmetic operations done on different bands; (2) then, 

a global threshold is applied on the resulting images to create a binary image, based on Otsu’s 

method (Otsu, 1979). This method is capable of automatically threshold a single-band image 

by dividing its histogram in foreground and background pixels; (3) morphological operations 

(open and close) are carried out to filter the binary images (small clusters of pixels are removed), 

thus improving the results obtained from VIs; and (4) lastly, the resulting binary image is 

compared with a manually segmented image that is used as reference. 

Accuracy is computed by comparing the resulting image obtained for each VI by applying the 

aforementioned steps with its reference image. Results are calculated by analysing the value of 

each pixel, from which one of three conditions can be observed: (1) same pixel value in both 

images (0 or 1), which is classified as ‘exact detection’; (2) a false detection, if the pixel value 

of the manually segmented image is one and in the resulting image is zero, being classified as 

‘under detection’; and (3) classified as ‘over detection’ if the situation is opposite to the one 

described in (2). Based on the bibliographic review, 13 VIs were selected, which are presented 

in Table 6.1, and evaluated in this process. From these, only some were directly applied to 

vineyards. 



Chapter 6. 
Vineyard properties extraction combining UAS-based RGB imagery with elevation data 

149 

Table 6.1. RGB vegetation indices evaluated in the estimation of vineyard vegetation. 

Index Formula References 

Normalized Green red difference 
index 

NGRDI =
Green − Red

Green + Red
 

(Falkowski et al., 2005; 
Gitelson et al., 2002; 
Kawashima & Nakatani, 
1998; Tucker, 1979) 

Normalized Green Blue Difference 
Index 

NGBDI =
Green − Blue

Green + Blue
 

(Kawashima & Nakatani, 
1998) 

Modified Normalized Green red 
difference index 

MNGRDI =
Green2 − Red2

Green2 + Red2
 (Bendig et al., 2015) 

Red Green Blue Vegetation Index RGBVI =
Green2 − ሺBlue × Redሻ

Green2 + ሺBlue × Redሻ
 (Bendig et al., 2015) 

Blue/Green Pigment Index BGVI =
Blue

Green
 

(P. J. Zarco-Tejada, Berjón, 
et al., 2005) 

Blue/Red Pigment Index BRVI =
Blue

Red
 

(P. J. Zarco-Tejada, Berjón, 
et al., 2005) 

Excess Green ExG = 2g
n
− rn − bn (Woebbecke et al., 1995) 

Woebbecke Index WI =
g
n
− bn

rn − g
n

 (Woebbecke et al., 1995) 

Vegetation Index Green VARIg =
Green − Red

Green + Red − Blue
 (Gitelson et al., 2002) 

Green Leaf Index GLI =
2Green − Red − Blue

2Green + Red − Blue
 

(Gobron et al., 2000; Hunt et 
al., 2013) 

Triangular Greenness Index 
TGI = Green − 0.39 × Red

− 0.61 × Blue (Hunt et al., 2013) 

2G_RGi 2G_RGi = 2Green − ሺRed + Blueሻ (Richardson et al., 2007) 

Green Percentage Index G% =
Green

ሺRed + Green + Blueሻ
 (Richardson et al., 2007) 

where, rn =
Red

ሺRed+Green+Blueሻ
; gn =

Green

ሺRed+Green+Blueሻ
;  bn =

Blue

ሺRed+Green+Blueሻ
  and Green, Red and Blue are the reflectance 

values of each band.  

An overall average result of 87% of vineyard vegetation exact detection was reached. The only 

exception was the WI VI that was very inconsistent amongst the tested areas (from 49% to 89% 

exact detection), as presented in Table 6.2. It is worth to note that many VIs had over 90% 

accuracy when applied to the different areas. 
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G%, with 91.9%, GLI with 91.8%, RGBVI with 91.6%, ExG and NGBDI, both with 91.4%, 

are the VIs with the highest average accuracy. Moreover, while NGBDI reached 4.6% of over 

detection, the remaining had lower values, around 2%. These five VIs were compared to select 

the most suitable for vineyard’s vegetation detection. Figure 6.3 presents the evaluation 

regarding the areas where VIs presented the same value. As depicted, the five VIs have an 

overlap of 94% for the six tested areas, which makes their performance very similar. However, 

G% has a slightly higher performance and was therefore selected for this study. 

 

Figure 6.3. Percentage of common pixels to the five-selected VIs in the test areas. 

Figure 6.4 shows the agreement between the automatic threshold value obtained from the 

Otsu’s method and a selected fixed threshold value. The obtained results are in line with the 

mean values given from the Otsu’s method in the six evaluated areas and the overall detection 

percentage assumes only one maximum value, proving the suitability of the Otsu’s method to 

automatically estimate a threshold value. 
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Figure 6.4. Vine vegetation detection accuracy based on the threshold values for the top five vegetation indices in 
area III. It is also presented a table with the averaged results. 

 Proposed method for vineyard analysis 

This section presents the proposed method to identify vineyard vegetation, distinguishing it 

from non-vineyard features that can be present in a vineyard plot. The main challenge when 

regarding vineyard vegetation monitoring is related with the similar reflectance that other types 

of vegetation can present, which is especially noticeable in common RGB imagery and less 

noticeable in NIR or hyperspectral imagery. Therefore, by considering the usual vineyards’ row 

structure and its regularity, the method explores the usage of the different outcomes provided 

by photogrammetric processing of UAS imagery in combination with image processing 

techniques, that namely use elevation data and orthophoto mosaic. This enables the 

classification of vine vegetation within a given vineyard plot and distinguish it from vegetation 

cover, shadows, and bare soil. Moreover, the proposed method is also capable to estimate 

potential missing vine plants. As inputs, the UAS-based photogrammetric outcomes are used. 

Features extraction from a given vineyard plot is achieved by masking non-vine vegetation. 

Figure 6.5 presents the proposed method’s operations sequences. There are three distinct steps 

composing it: (1) vegetation extraction and pixel clustering; (2) vine rows reconstruction, by 

means of analysing each formed pixel cluster retrieved in step 1; and (3) vineyard parameters 

extraction—vine rows, vineyard vegetation and potential missing vines. Each step plays an 
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essential role in the process of vineyard vegetation extraction. All are further detailed in the 

next subsections. The notation used in this section is explained in Table 6.3. 

 

Figure 6.5. Proposed method’s operation general flow chart. 

 Step 1: Vegetation extraction and pixel clustering 

Method’s step 1 aims to extract vine-related pixels from the aerial high-resolution images of a 

given vineyard plot, which defines the polygon P (Figure 6.6f). As such, data that does not 

represent vine vegetation, such as soil, grass and possible shadowing effects caused by vine 

canopies, trees, and buildings, is discarded. To accurately complete this step, both orthophoto 

mosaic (Figure 6.6a), and elevation data (Figure 6.6b and c), are used. The former is used to 

compute the VI (Figure 6.6d). Assuming that in the produced orthophoto mosaic, vegetation 

presents higher reflectance values than non-vegetation areas, a threshold operation can be 

applied to separate both. The computed VI, is used to create a binary image produced using 

Otsu’s method (Otsu, 1979), as presented in equation (1), where 𝐕 (Figure 6.6g), represents the 

computed binary image resulting from the Otsu’s method application, VI represents the image 

produced by the vegetation index computation and T represents the defined threshold from 

Otsu’s method. For each (i, j) pixel position in the image, i represents the line number and j the 

column number. In this way, vi,j represents the matrix V entry for the position (i, j). The same 

notation is used in the remaining equations. 
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Table 6.3. Notation table. 

Notation Meaning 
P Binary image of the polygon of the plot to be analysed 
VI Single band image obtained from vegetation index computation 
T Threshold value obtained from Otsu’s method application 
V Binary image resultant from VI thresholding step 
CSM Single band image obtained from subtraction of the DTM to the DSM computation 
ℎmax Maximum height range used for CSM thresholding 

ℎmin Minimum height range used for CSM thresholding 

C Binary image resultant from CSM thresholding according to ℎ𝑚𝑖𝑛 and ℎ𝑚𝑎𝑥 
W Binary image resultant from the conjunction of V, C and P 
B Group of interconnected pixels forming a cluster resultant from pixel clustering 
ℬ Set of all detected clusters B in W 
𝛼 Orientation angle of the cluster B 
𝜃 Mean orientation all 𝛼 values from the set of clusters ℬ 

𝐅𝜃 
Structuring element used to dilate W, forming E. It is constituted by a line with 
orientation 𝜃 

E Binary image resultant after dilation of W 

D 
Group of interconnected pixels forming a clusters resultant from the pixel clustering of 
E 

𝒟 Set of all detected clusters in E 
U Binary image containing estimated inter-row vegetation 
L Binary image with all pixels detected in V present in E 
�̅� Complement of L 

𝑆centr𝑒 
Line segment that intersects each cluster’s (D) centroid, ends in its extremities and has 
its orientation 

S Binary image contained all detected S𝑐𝑒𝑛𝑡𝑟𝑒 elements 

𝐅𝑟 
Structuring element used to dilate G, forming Q. It has a disk shape element with radius 
r 

G Binary image produced after intersection of all 𝑠𝑖,𝑗 pixels with 𝑙�̅�,𝑗, representing vine row 
areas with potential missing vines 

Q 
Binary image produced after G dilation, representing vine rows areas with potential 
missing vines 

K 
Property intended be used to calculate its area, which can assume the value of the binary 
images E, L, Q 

A 
Area of a given property to calculate K, which is the sum of all pixel values (0 or 1) of a 
binary image with m × n size 

 

vi,j = {
1, vii,j ≥ 𝑇 

0, vii,j < 𝑇
 (1) 

Next, CSM (Figure 6.6e) is computed using elevation data, as shown in equation (2) (Holman 

et al., 2016; Alessandro Matese et al., 2016). Each pixel contains a value h that corresponds to 

the height of objects above ground: values close to zero represent the ground. This operation 

removes the field’s topography. 

CSM = DSM− DTM (2) 

In the same way as V, the computed CSM has a thresholding operation, as represented in 

equation (3), where each height value (h) is analysed according to a height range (from ℎ𝑚𝑖𝑛 to 

ℎ𝑚𝑎𝑥), producing a binary image 𝐂 (Figure 6.6h), only containing pixels within the values 

defined for the height range. This process enables a CSM’s pixel-wise filtering to discard pixels 
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other than vineyard’s vegetation. Knowledge of the analysed areas allowed the selection of h 

values ranging from 0.5 to 2 metres, thus removing possible data other than vineyard’s 

vegetation. However, height range may depend on both the vineyard’s architecture and the 

management practices used. 

ci,j = {
1, ℎ𝑚𝑖𝑛 ≤ csmi,j ≤ ℎ𝑚𝑎𝑥  

0, otherwise
 (3) 

As shown in the RGB image presented in Figure 6.7a and in the false colour image, that results 

from applying G% vegetation index (Figure 6.7b), part of the inter-row vegetation has almost 

the same reflectance value of some vine canopies, which is not verified in the CSM 

computation, presented in Figure 6.7c. 

The method’s main steps are summarized in Figure 6.6, were plot 02 from vineyard A is used 

to illustrate its application, from the input data to the final extracted parameters. 

Figure 6.8 presents a fraction of a vineyard plot where the superimposed lines are related to the 

thresholded G%—in yellow—(V) and CSM above 0.5 m and below 2 m—in red (C). The 

detection of inter-row vegetation is noticeable in V. However, it is accurate in the row’s 

vegetation. On the other hand, shadows detection is also considered in the C threshold but not 

in V. 

By merging both types of data, it is possible to obtain areas where only pixels considered as 

vegetation and with a certain height are present, thus removing vegetation cover that could also 

be identified as vine vegetation, which would lead to erroneous classification of vine rows. In 

this way, the conjunction of the binary images produced after thresholding (V and C) are used 

to create a new binary mask image ሺ𝐖ሻ (Figure 6.6k), according to equation (4), where P is 

also considered to discard pixels outside the area under analysis. 

wi,j = {
1, if vi,j = 1 ∧ ci,j = 1 ∧ pi,j = 1

0, otherwise
 (4) 

The resulting binary image ሺ𝐖ሻ is submitted to a sequence of morphological operations (open, 

close and removal of small objects) to remove outliers and improve the detection accuracy. This 

step can evaluate different properties from each generated group of interconnected pixels 𝐵 ∈

ℬ, where ℬ represents all the detected clusters at the plot level. Resulting clusters are areas 

where vine canopies are present. At this stage, each vine row is not connected and therefore a 

reconstructive process takes place to join the unconnected clusters into row shapes. 
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Figure 6.6. Extracted parameters resulting from the proposed method’s step 3. Green colours represent detected 

vegetation – light green corresponds to vine row vegetation and dark green to inter-row vegetation; red represents 
the estimated missing vegetation; yellow represents the row centre; and grey the estimated vine rows boundaries. 



Chapter 6. 
Vineyard properties extraction combining UAS-based RGB imagery with elevation data 

157 

 

Figure 6.7. Different UAS-based outcomes from part of a vineyard plot: (a) RGB image; (b) corresponding false 
colour image from the green percentage index computation; and (c) CSM line profile from the line traced upon 
three vine rows. 

 

Figure 6.8. Method processing steps applied to the plot 02 from vineyard A, some images are in a false colour 
representation for better interpretation. 

 Step 2: Vine rows reconstruction 

Depending on the vineyards’ management practices and on the acquired data resolution, 

clusters of pixels obtained in the proposed method’s step 1 do not represent complete vine rows, 

requiring a reconstruction process. Therefore, the mean plot orientation 𝜃 is estimated based on 

the dominant angle of all detected clusters from the set of clusters ℬ. This angle (𝜃) is obtained 

by the orientation 𝛼 of each detected cluster, which is computed based on the angle between 

the x-axis and the major axis of the ellipse containing the same second-moments as B. 𝜃 

assumes the mean value of all 𝛼 ∈ ℬ. Then, clusters are submitted to a dilation process, 𝜙, 



Chapter 6. 
Vineyard properties extraction combining UAS-based RGB imagery with elevation data 

158 

using a linear structuring element 𝐒𝐄𝜃 with one-pixel width and orientation 𝜃, obtaining E, 

which depicts the vine rows map of the plot under analysis, as represented in equation (5) 

(Figure 6.6j). This forms a new set of clusters 𝒟, where D represents a single vine row. 

ei,j = 𝜙𝐒𝐄𝜃(wi,j),where ei,j ∧ pi,j = 1  (5) 

By applying this procedure, previously unconnected clusters begin to form a set of clusters 

representing the connection of clusters in each row, therefore enabling vine rows reconstruction.  

 Step 3: Vineyard parameters extraction 

Method’s step 3 relies on the final extraction of vineyard-related information, namely by 

estimating vine rows, vineyard vegetation and areas with missing vine plants (Figure 6.6i). The 

resulting vine rows estimation image ሺ𝐖ሻ—obtained after the proposed method’s step 2—

enables to estimate the number of rows and their occupation area present in P. After estimating 

rows, the mask with vegetation ሺ𝐕ሻ is used to detect vine’s vegetation, where all pixels present 

in ℬ and contained in 𝒟 form L, which represents the vine vegetation. 

Vegetation that lies outside vine rows area and that is considered in ℬ, is classified as inter-row 

vegetation (U). Areas with potential missing vine plants are predicted by matching the estimated 

vine rows mask central lines S with the complement of the estimated vine vegetation �̅�, forming 

a new binary image G. S is constituted by,  S𝑐𝑒𝑛𝑡𝑟𝑒 which is a line segment that intersects each 

cluster’s (D) centroid and ends at its extremities and has its orientation. However, detecting 

possible missing vine plants is typically a more complex problem, since, in many cases, 

adjacent vines tend to cover the empty space of the missing vine canopy, making the estimation 

more complicate. Next, the clusters pass through a process of image dilation, represented in 

equation (6), to compute a representative map of the detected areas, Q. However, this time, SE 

is a disk-shaped structuring element whose radius r is half of the mean value of all cluster’s 

width (𝒟ሻ. 

qi,j = 𝜙𝐒𝐄𝑟(gi,j) (6) 

The area 𝐴 of each estimated output can be calculated by equation (7), which represents the 

sum of all pixels contained (matrix with m lines and n columns) in the property to calculate K 

(vine rows area, vine vegetation, potential missing vine plants and inter-row vegetation), 

multiplied by the squared GSD value. 
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𝐴 = (∑∑ki.j 

𝑛

𝑗=1

𝑚

𝑖=1

)𝐺𝑆𝐷2 (7) 

Figure 6.9 presents the detected vegetation, potential missing vine plants and the estimated vine 

rows area. The method’s outputs are an accurate and quick way to provide vineyard status 

information in a PV context, to help viticulturists in their vineyard management activities.  

 

Figure 6.9. Visual interpretation of both the thresholding and the masking processes: vegetation index represented 
in yellow and the canopy height model in red. 

 Results and discussion 

For validation purposes, the proposed method was applied to 16 plots from three different 

vineyards presented in Section 6.2, Figure 6.1. As an accurate manual segmentation of the 

vineyard vegetation present in all the selected plots is a highly laborious and time-consuming 

task, small fractions of eight plots—A.02, A.04, A.10, B.01, B.02, C.01, C.02 and C.03—were 

extracted. This allowed a more precise and quicker process to create precise manual segmented 

images. The aforementioned fractions—four per plot, each with an approximated area of 100 

m2 (10 m × 10 m)—were selected assuring diversity in terms of rates of missing vine plants, 

rows orientation and inter-row vegetation. 

 Proposed method validation 

Regarding vine rows estimation, different parameters were evaluated: (1) good detection—the 

row was detected with a high overlap when compared with its real position; (2) missed 

detection—the row was not detected; (3) extra detection—wrongly detected vine row; (4) over 

detection—the row was classified in multiple vine rows; (5) under detection—multiple vine 

rows classified as one row; (6) larger detection—row is larger than its actual size; and (7) 
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smaller detection—vine row is smaller than its actual size. The proposed method validation 

occurred by using the extracted vineyards fractions and comparing the obtained results with the 

manual segmentation. 

As presented in Table 6.4, the proposed method achieved a good accuracy in vine rows 

estimation. Correct row detection was always greater than 90%, with 93.4% mean value. 

Moreover, the method could detect successfully all the vine rows, of 353 analysed. On the 

analysed fractions, missed, extra, over or under detection cases were not found. Regarding the 

detected vine rows, 19 were not correctly estimated and from those, 2.67% were classified as 

‘larger detection’ and 2.88% as ‘smaller detection’. Moreover, the percentage of real vineyard 

vegetation contained in the estimated vine rows area was calculated to further validate vine 

rows estimation achieving a mean value of 99.7%. This was achieved by intercepting the 

manual segmented vineyard fractions with the estimated vine rows. 

Table 6.4. Vine row detection accuracy in 8 different vineyard plots, with the number of rows analysed per plot 
and percentage of detected vineyard vegetation contained in the plot’s estimated vine rows. 

Plot no. 
Number 
of rows 

Detected 
vegetation 

portion 
(%) 

Type of vine rows detection (%) 

1. Good 2. Missed 3. Extra 4. Over 5. Under 6. Larger 7. Smaller 

A.02 28 99.78 92.86 - - - - 3.57 3.57 

A.04 34 99.97 91.18 - - - - 5.88 2.94 

A.10 45 99.40 95.56 - - - - - 4.44 

B.01 43 99.50 97.50 - - - - 2.50 - 

B.02 37 99.78 91.89 - - - - 2.70 5.41 

C.01 75 99.55 97.30 - - - - 1.35 1.35 

C.02 53 99.87 92.59 - - - - 3.70 3.70 

C.03 60 99.93 96.72 - - - - 1.64 1.64 

Mead detection (%) 99.72 94.45 - - - - 2.67 2.88 

Finally, vine vegetation extracted by applying the proposed method also underwent a validation 

process that consisted in comparing it with the manual segmented images. Figure 6.10a presents 

these results. The method achieved a 94.10% mean percentage of exact vegetation detection, a 

mean value of 2.93% regarding over classification and 2.97% of under classification. 

Differences between plots’ fractions were not meaningful. Indeed, even those with a higher rate 

of missing vines did not influence the vegetation extraction process. In what regards the 

validation of missing vegetation estimation, the process was the same as that applied to 

vegetation estimation. However, only the fractions that have missing vegetation were evaluated. 

Thus, all plot fractions from vineyard B, as well as those from plot 02 from vineyard C were 
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discarded, as they have low rates of missing vegetation. Results achieved a mean value of 

97.04% in exact classification of missing vegetation, as shown in Figure 6.10b. 

 
Figure 6.10. Results from validation of the vine vegetation extraction process (a) and potential missing vine 
vegetation process (b). 

Figure 6.11 shows only a fraction of the detected vine vegetation, its manual segmented image 

and the comparison between both. Most of the non-detected vegetation lies in the vine plants’ 

borders. In vineyard B plots’ fractions, variations are less noticeable than in the other vineyards’ 

fractions. This is due to fewer regions with missing vine vegetation in this vineyard. In 

vineyards A and C there are cases were the presence of shadows and grass in the row is also 

considered in the estimation of vine vegetation. 

 

Figure 6.11. Comparison between the estimated vine vegetation with manually segmented plot fractions. 
Represented in green are exact classifications, in blue over classifications, and in red under classifications. 
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These results are satisfactory, since the method proved to be able to accurately detect vine rows 

with vegetation in almost all scenarios: present inside the estimated vine rows (99.72%); to 

exactly estimate the actual vine vegetation (94.10%); with a low percentage of under detection 

of vegetation (2.97%); missing vine vegetation also achieved a good accuracy (97.04%). The 

various parameters automatically extracted by applying the proposed method support the 

generation of accurate vineyard maps and vine rows-related properties, such as: percentage of 

vineyard vegetation, missing vines and inter-row vegetation. This proves that the proposed 

method is useful in PV management and in its decision-making tasks. Furthermore, obtained 

results are in line with those of previous works (Comba et al., 2015; A. Nolan et al., 2015), 

which made use of different image acquisition sensors (NIR)—more expensive when compared 

with the sensors used in this study—to obtain imagery data. 

 Proposed method application 

The proposed method was applied to 16 plots from vineyards A, B and C. In all plots, the 

following parameters were extracted: vine rows estimation, vine vegetation and missing vines 

plants estimation. Figure 6.12 presents an overall view of the evaluated plots. In vineyard A, 

vine rows occupation area ranged from 40% to 55%; in vineyard B from 37% to 49%; and in 

vineyard C, from 53% to 61%. As expected, a higher percentage of missing vine vegetation 

was found in vineyard A (plot A.01 to A.11), with an average of 28% of missing vineyard 

vegetation. On the other hand, vineyard B presented only 1% of missing vegetation, while 

vineyard C presented approximately 7%. 

Figure 6.13 presents a visual interpretation, based on the results obtained by applying the 

proposed method to plots A.04, A.06, A.07, B.02 and C.03. These plots differ in size and in 

vine rows coverage area. Some of the noticed limitations are related with the absence of 

vegetation or highly affected vines that did not developed properly. These issues resulted in 

lower heights that correspond to low vine rows formed. For example, in plot A.06 that was not 

classified, as can be seen in Figure 6.13b. Green vegetation cover was considered as vegetation 

in plot A.07 (shown in Figure 6.13c). In plot B.02, vegetation absence in the estimated row 

centre caused an over estimation of missing vine vegetation (shown in Figure 6.13d). 
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Figure 6.12. Area of the evaluated vineyard plots, along with vine rows occupation area, vines, and potential 
missing vines percentage. 

The processing time spent in each vineyard was 8 minutes and 45 seconds for vineyard C and 

5 minutes and 32 seconds for vineyard A. Noticeably in vineyard B, the method took about 47 

seconds to complete the analysis due to the lower number of plots and the lesser amount of 

images’ detail – lower number of pixels due to the higher flight altitude that results in a lower 

GSD. Processing time is not related with the number of plots under analysis but with the areas’ 

characteristics. This can be observed in the time spent during the vineyard C processing (only 

3 plots were analysed) in comparison with vineyard A (11 plots analysed): vineyard C took 3 

min more to be completed. The average plot processing time was 30 seconds for vineyard A, 

23 for vineyard B and almost 3 minutes for vineyard C. 
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Figure 6.13. Results obtained by applying the proposed method to plots 4, 6, and 7 from vineyard A, plot 2 from 
vineyard B, and plot 3 from vineyard C. Faded RGB images are used as background; detected vegetation is 
represented in black and highlighted rows areas; and detected missing vegetation areas are represented in light red. 

 Conclusions and future work 

In this paper, a method to extract vineyard vegetation from high-resolution aerial imaginary is 

presented. It combines the benefits of VIs and CSM along with image processing techniques to 

automatically extract vine plot related parameters, overcoming the presence of inter-row 

vegetation and canopies shadowing effects. The method is able to estimate missing vegetation 

and its correspondent overall percentage. It provides useful information about the current 

vineyard state, which can be used as a tool to be effectively applied in the management process 

within PV scope. The usage of relatively low-cost UAV with an RGB sensor proved to have 
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enough accuracy to detect vineyard vegetation, being a cost-effective alternative to more 

expensive UAS and sensors used in PA surveys. The results obtained by applying the proposed 

method in RGB orthophoto mosaics and DTMs with very-high resolution (GSD from 2.4 to 3.8 

cm) demonstrated its efficiency in the estimation of vine rows (94.45%), vine vegetation 

(94.10%) and missing vines plants (97.04%). These results are in line with other methods that 

use imagery data from more expensive sensors types, such as NIR. Misclassifications were 

noticeable in areas where vine vegetation suffered from neighbouring trees shadows and in vine 

rows constituted only by dead vine plants. Small variations in vegetation detection were 

noticeable in vine rows’ edges. 

As future work, the proposed method will be applied at a multi-temporal level to detect possible 

biotic and abiotic problems in the vineyard and to study its in-season and inter-season evolution 

dynamics. Even though the used data was RGB, the method is also suitable to be applied 

alongside with multi-spectral or thermal UAS-based data. More parameters can be accurately 

estimated, such as vine vegetation vigour and water status, crucial to assist in the application of 

crop-variable treatments and irrigation scheduling. The presented method has also potential to 

be applied in different crops with the same row-oriented plantation structure, as fruit orchards 

and vegetable crops. The usage of UAVs can be useful to automate vineyard management using 

unmanned ground vehicles and/or ground sensors, from soil and meteorological data. It is also 

intended to provide the ability to automatically detect vine plots and to interpret its plantation 

shape type, so that correct methodologies can be applied in vine vegetation detection and 

analysis. Data acquisition parameters must be studied (altitude, image overlap, UAV speed, 

camera angle or resolution) to evaluate its influence in the photogrammetric processing to 

ensure maximum data quality. 
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 Introduction 

As with precision agriculture (PA), precision viticulture (PV) depends on the adoption of 

emerging technologies to acquire data that allow the assessment of field variability to support 

the PV decision making process (Ozdemir et al., 2017; Pablo J Zarco-Tejada et al., 2014). 

Grapevine (Vitis vinifera L.) yield has both spatial and temporal variability (R. Bramley & 

Hamilton, 2004) and several field- and crop-related factors can influence yield, such as the soil, 

terrain topography, and microclimate conditions. Therefore, it is important to have information 

allowing specific and proper operations for each identified management zone within vineyards 

(R. Bramley, 2005; R. G. V. Bramley, 2001; R. Bramley & Hamilton, 2004; Ozdemir et al., 

2017). 

Canopy management is critical for improving grapevine yield and wine quality (Smart et al., 

2017) by influencing canopy size and vigour and reducing phytosanitary problems (Vance et 

al., 2013). As such, it is important to estimate above-ground biomass (AGB), which helps with 

the monitoring of plant status and can potentially provide a yield forecast (Bendig et al., 2014). 

Grapevine biomass can be estimated through crop models (CeSIA et al., 1997) by using leaf 

area, global solar radiation, and air temperatures (Duchêne & Schneider, 2005), and based on 

vegetation indices, which correlate several grapevine biophysical parameters (Dobrowski et al., 

n.d.). More direct methods to estimate biomass require accurate field measurements and involve 

destructive processes (Kankare et al., 2013; Yu et al., 2013). 

Remote sensing is an effective solution, allowing the acquisition of several types of data with 

various spatial and temporal resolutions. Specifically, unmanned aerial systems (UAS) are 

considered to be cost-effective, able to acquire the needed data at the needed time and place, 

and able to provide greater spatial resolution compared with other remote sensing platforms, 

such as satellites and manned aircrafts (Alessandro Matese et al., 2015; Pádua, Vanko, et al., 

2017). Several research studies successfully applied UAS-based remote sensing in distinct 

vineyard monitoring contexts by coupling different sensors—such as red/green/blue (RGB), 

multispectral, thermal, hyperspectral sensors, and Light Detection And Ranging (LIDAR)—to 

unmanned aerial vehicles (UAVs), for the estimation of potential phytosanitary problems 

(Baofeng et al., 2016), water status assessment (Baluja et al., 2012; Romero et al., 2018; 

Santesteban et al., 2017), leaf area index (LAI) calculation (Kalisperakis et al., 2015), and 

grapevine biophysical parameters (Alessandro Matese et al., 2016). 
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Several studies explored UAV-based plant monitoring using hyperspectral sensors, namely for 

biomass and nitrogen estimation in wheat (Pölönen et al., 2013; Yue et al., 2017), in grassland 

with different treatments (Capolupo et al., 2015), for rice paddies characterization (Uto et al., 

2013), using UAV-based RGB photogrammetry for tree identification, and to estimate 

phytosanitary damages mapping (Näsi et al., 2015; Nevalainen et al., 2017). In Kalisperakis et 

al. (2015), a high correlation was found in a vineyard’s canopy greenness map, computed from 

hyperspectral data, compared with the three-dimensional (3D) canopy model. However, some 

current hyperspectral sensor data acquisition technology (e.g., push-broom sensors) does not 

support structure from motion (SfM). As such, geometric parameters’ estimation is difficult 

(Adão et al., 2017). These sensors are also highly dependent on cloud coverage (Pölönen et al., 

2013), leading to over- or under-exposure, which affects data reliability. LIDAR sensors have 

proven their usefulness and precision when applied to forestry inventory (Luke Wallace et al., 

2012), individual tree detection (L. Wallace et al., 2014), and forest understory studies 

(Chisholm et al., 2013). Despite providing high accuracy, they are costly (P. J. Zarco-Tejada et 

al., 2014). 

UAV-based RGB imagery stands out as a cost-effective solution, providing reasonable 

precision compared to LIDAR (Madec et al., 2017). Sensor fusion was a focus of other studies, 

such as Sankey et al. (2017), where hyperspectral and LIDAR sensors were both used for forest 

and vegetation monitoring (T. T. Sankey et al., 2018). Cost-effective sensors (RGB and 

multispectral) have been used for biomass estimation and parameters extraction in different 

contexts, such as in pasture lands (Von Bueren & Yule, 2013), near-infrared (NIR), sunflower 

crops (Vega et al., 2015) (NIR), maize (Castaldi et al., 2017; Li et al., 2016), winter wheat 

(Schirrmann et al., 2016), barley (Bendig et al., 2014, 2015), and vegetable crops (Kim et al., 

2018; Moeckel et al., 2018). These sensors were proven to be suitable for tree detection and 

height estimation (Karpina et al., 2016; P. J. Zarco-Tejada et al., 2014), and diameter at breast 

height estimation (Carr & Slyder, 2018). 

Regarding vineyard AGB estimation, Mathews and Jensen (2013) used UAV-based imagery 

with SfM algorithms to compute a vineyard’s point cloud to generate the canopy structure 

model. The authors stated that SfM-based point clouds can be used to estimate volumetric 

variables, such as AGB. Thus, providing this type of data throughout the different grapevine 

phenological stages would benefit winegrowers in assessing a grapevine’s canopy spatial 

variation (Mathews, 2014; Mathews & Jensen, 2013). Weiss and Baret (2017) used dense point 
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clouds, generated through photogrammetric processing of UAV-based RGB imagery, to 

characterize a vineyard’s properties, such as grapevine row height, width, spacing, and cover 

fraction. Matese et al. (2016) used a multispectral sensor mounted on a UAV to assess the 

photogrammetric processing of multispectral imagery. The authors concluded that greater 

normalized difference vegetation index (NDVI) (Rouse et al., 1974) value matched areas where 

grapevines were located were higher, proving the effectiveness of UAV-based data for vineyard 

mapping. Grapevine volume was estimated by considering three classes of grapevine height, 

width, and length. However, the low-resolution of the multispectral sensor caused a smoothing 

effect in the evaluated vineyard plot’s digital surface model (DSM). Caruso et al. (2017) used 

an UAV equipped with RGB and NIR sensors to obtain biophysical and geometrical parameters 

relationships among grapevines, using high, medium, and low vigour zones of a vineyard, 

determined from the NDVI. The volume was calculated for grapevines’ lower, middle, and 

upper parts. UAV-based data were acquired in four different periods: May, June, July, and 

August. De Castro et al. (2018) proposed an approach where a DSM computed from 

photogrammetric processing of UAV-based RGB imagery was used in object-based image 

analysis (OBIA) software to compute individual vineyard parameters. Unlike in Matese et al. 

(2016), the smoothing effect was less significant. The authors stated that multi-temporal 

monitoring of grapevine biophysical parameters using UAV-based data can be both efficient 

and accurate, constituting a viable alternative to time-consuming, laborious, and inconsistent 

manual in-field measurements. 

This article supports the findings of De Castro et al. (2018) about the relevance of using multi-

temporal data acquired from remote-sensing platforms in PV, to monitor the size, shape, and 

vigour of grapevines canopies. This study aimed to characterize vineyard vegetation evolution 

through multi-temporal analysis using a commercial low-cost rotary-wing UAV equipped with 

an RGB sensor, enabling the acquisition of very high-resolution imagery up to few millimetres 

of ground sample distance (GSD). The multi-temporal data acquired over the area of interest 

(AOI) were automatically analysed and grapevine vegetation was non-evasively estimated 

using vegetation area and volume, as well as identifying vineyard areas that need canopy 

management operations, by extracting several of the vineyard’s parameters. 

This article is structured as follows: the next section describes the study area and the methods 

used for data acquisition and processing. Section 7.3 presents the results of multi-temporal 
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analysis and Section 7.4 provides a discussion. Finally, Section 7.5 presents our most significant 

conclusions. 

 Materials and Methods 

The study area characterization; the description of the used UAS; and the methods applied to 

acquire, process, and interpret the UAV-based imagery are presented in this section. The 

methodology followed in this study was proposed by Pádua et al. (2017) and was intended for 

multi-temporal crop analysis of UAV-based data. The method is based on three main stages: 

vegetation segmentation, parameters extraction, and multi-temporal analysis. 

 Study Area Context and Description 

Typical Vitis vinifera L. phenological stages are well defined, occurring within known time 

periods depending on geographical context. In Portugal, budburst occurs from March to April, 

followed by flowering and an intensive vegetative growth in the period between May and June. 

Then, veraison occurs. During this stage, usually between July and August, grapevine ripening 

starts. Fruit maturity and harvesting typically happens between September and October. In the 

remaining months, grapevines are in a dormancy stage (Magalhães, 2008). However, these 

stages might vary slightly in time, depending on environmental conditions and grapevine 

variety (Costa et al., 2015). The warm and dry Portuguese summers can limit crop growth due 

to limited water availability during summertime (Helder Fraga, Malheiro, et al., 2014). To 

improve both fruit quality and yield, vineyard canopy management methods are performed, 

which involve different operations throughout the year. They include pruning, shoot thinning, 

leaf removal, cover crop cultivation, irrigation scheduling, and application of soil and crop 

amendments (L. Johnson et al., 2003). Regarding UAV-based aerial survey in vineyards, data 

should be acquired after the budburst stage, when grapevine leaves begin to be noticeable. 

These data can be used to monitor vineyard vegetation growth. 

Two experimental vineyard plots were selected as the AOI for this work. Figure 7.1 presents 

an overview of both plots, located at the University of Trás-os-Montes e Alto Douro campus in 

Vila Real, Portugal (41°17′09.7″ N, 7°44′12.9″ W). Plot 1 (P1) had an area of 0.33 ha and was 

composed of red grapevine varieties. Plot 2 (P2) had an area of about 0.55 ha and contained 

white grapevine varieties. The grapevine varieties planted in both plots are recommended in the 

Douro Demarcated Region (DDR), where this study occurred. Grapevines were planted in 1995 

in parallel rows, separated by 2 m, and with 1.2 m space between plants within a row. They 



Chapter 7. 
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery 

173 

were trained in a vertical shoot positioning (VSP) system, with a double Guyot training 

system—one of the most commonly used training systems in DDR (H. Fraga & Santos, 2017). 

 

Figure 7.1. Area of interest (AOI) general overview: analysed vineyard plots, validation areas, height validation 
points, and their location in the Douro Demarcated Region, coordinates in WGS84 (EPSG:4326). 

For a better understanding of the results obtained in this study, weather contextualization is 

necessary. Therefore, parameters such as monthly precipitation, potential evapotranspiration 

(PET) and mean, minimum, and maximum air temperatures were acquired from an automatic 

weather station (iMETOS 1, Pessl Instruments GmbH, Weiz, Austria), located 300 m from the 

AOI. Figure 7.2 represents daily mean air temperature parameters for each month and the 

monthly accumulated precipitation and PET for the period of September 2016 to September 

2017. 
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Figure 7.2. Monthly mean weather variables for the study areas in the period between September 2016 and 
September 2017: mean (Tmean), minimum (Tmin) and maximum (Tmax) air temperatures, and precipitation 
(Prec) and potential evapotranspiration (PET) values. 

The high air temperature during summer 2017, together with low precipitation in spring 2017 

and winter 2016 caused a drought period in Portugal and earlier grape maturation in the DDR 

region. As such, harvesting was anticipated in late August to mid-September: about two or three 

weeks earlier than usual. In the AOI, harvesting occurred in mid-September. This can be 

explained by comparing the weather data against the climatological normal of Vila Real 

(retrieved from the Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal) for the 

period of 1981 to 2010. Comparing the one-year period with the climatological normal, we 

noticed a difference of +3.2 °C in the maximum air temperature (+4.1 °C for the period of the 

flight surveys), +0.6 °C in the mean air temperature (+1.1 °C for the period of the flight 

surveys), –0.7 °C in the minimum air temperature (−0.6 °C for the period of the flight surveys), 

and approximately 220 mm less accumulated precipitation. 

 Flight Campaigns 

A commercial UAV, the DJI Phantom 4 (DJI, Shenzhen, China), was used in this study for data 

acquisition. It is a flexible and cost-effective off-the-shelf solution, able to perform manual or 

fully automatic flights in different configurations through a set of user-defined waypoints. The 

UAS consists of this multi-rotor UAV equipped with a rolling-shutter 1/2.3″ CMOS sensor 

attached to a 3-axis electronic gimbal, which acquires 12.4 MP resolution RGB imagery. 

Nine aerial campaigns were completed in the selected plots, covering the time span from 2 May 

to 15 September, 2017. Details about these flight campaigns are presented in Figure 7.3. The 

flight strategy enabled the inclusion of most of the plants' phenological development until 

harvesting season. The performed canopy management operations in the studied vineyard plots 
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were performed by the farmers and the aerial surveys were conducted within one week of its 

ending. All flights were conducted between 1:00 p.m. and 2:00 p.m. to minimize the sun angle 

influences and shadows. A double-grid configuration was used when planning each flight 

campaign to ensure a high overlap of 75% between images. Flight height relative to the UAV 

take-off position was set to 60 m. 

 

Figure 7.3. Flight campaign details. Flight number (F#), date, and the temporal difference in days between flights 
and the performed vineyard canopy management operations in dashed lines. Plot 2 images in different flight 
campaigns are also provided. 

 Data processing 

The imagery acquired in each flight was subjected to a photogrammetric processing using SfM 

algorithms to compute different orthorectified outcomes, which were used to segment vineyards 

and extract their features. This enabled a multi-temporal analysis of the AOI, along with the 

estimation of areas that potentially need canopy management operations. 

7.2.3.1. Photogrammetric Processing 

Photogrammetric processing was applied to the high-resolution aerial imagery using 

Pix4Dmapper Pro software (Pix4D SA, Lausanne, Switzerland). This software allows the 

generation of different orthorectified outputs, such as orthophoto mosaics, DSMs, and DTMs. 

The processing involved three main stages: (1) generation of a sparse point cloud by using SfM 

algorithms to establish relationships between the geo-tagged RGB imagery through matching 

corresponding points (tie points) in multiple images, thus estimating its three-dimensional (3D) 

position. In this study, the computed outputs were aligned by setting manual tie points in areas 

that were clearly identifiable in the imagery of all flight campaigns: five points were used. This 

ensured that all generated outputs shared the same relative latitude, longitude, and altitude 

coordinates, differing only on the surface’s changes as vegetation develops. (2) The next step 

was the generation of a dense point cloud by considering the computed tie points and enlarging 



Chapter 7. 
Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery 

176 

the number of candidate points (in this case point density was set to high); and (3) then 

computation of orthorectified outcomes, namely orthophoto mosaics, DSM, and DTM, which 

was achieved by submitting the dense point cloud to a noise filtering process, and by 

interpolating it using a triangulation algorithm. Since the mission plan was the same in all 

flights, the photogrammetric processing allowed the generation of orthophoto mosaics, DSMs, 

and DTMs with a GSD of 3 cm. 

7.2.3.2. Vineyard Properties Extraction 

Besides grapevine vegetation, inter-row vegetation and shadows cast by grapevines canopies 

are two examples of elements usually present in vineyard aerial imagery (Burgos et al., 2015). 

To automatically separate grapevine vegetation in aerial high-resolution imagery acquired by 

UAVs, different approaches have been proposed in the literature: digital image processing-

based techniques (Comba et al., 2015; A. Nolan et al., 2015), supervised and unsupervised 

machine learning classification techniques (Poblete-Echeverría et al., 2017), point clouds 

(obtained from SfM methods) filtering (Weiss & Baret, 2017); and the use of DEMs (Burgos 

et al., 2015; Kalisperakis et al., 2015). 

Pádua et al. (2018) proposed a method for segmenting vineyards. The method uses UAV-based 

RGB imagery—commonly available in most UAS— assumes that vineyards are organized in 

rows, and that grapevine heights are greater than inter-row vegetation. Grapevine canopy is 

often constrained to a certain area using a wire-based training system along the rows. This 

confines grapevines to both a given width and height. By complementarily using the different 

outcomes from photogrammetric processing of very high-resolution UAV-based imagery and 

resorting to vegetation indices, the method is able to filter vegetation within a certain height 

range in a given vineyard plot. Therefore, the method can extract parameters, such as grapevine 

vegetation, and estimate the number of vine rows, the inter-row vegetation, and potentially 

missing grapevines. Vegetation indices proved to be an accurate and quick mean to extract 

vineyard vegetation, compared to more complex supervised and unsupervised machine learning 

methods which, respectively, require datasets for both training and validation purposes or that 

provide lower accuracy rates (Poblete-Echeverría et al., 2017). Table 7.1 explains the notation 

used in this section. 
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Table 7.1. Notation table. 

Notation Meaning 
S Binary image containing the central lines of the grapevine rows 

ℎmax Maximum height range used for crop surface model (CSM) thresholding 
ℎmin Minimum height range used for CSM thresholding 

D Binary image resultant from CSM and G% thresholding  
F Binary image resultant from the intersection of clusters of pixels in D with S 
𝒞 Set of all detected clusters in F 
�̅� Complement of F 
L Binary image created from the intersection of �̅� with the thresholded G% binary image 

A 
Area of a given property to calculate (F or L), which is the sum of all pixel values (0 or 1) of a 
binary image with m × n size, multiplied by the squared GSD value 

𝐻𝒞𝑖 Mean height of a given cluster 𝒞𝑖, obtained from the CSM 
V Grapevines’ vegetation volume, given by the area of clusters 𝒞𝑖, multiplied by its mean height 
k Flight campaign number 

X 
Single-band image resultant from pixel-wise comparison of two consecutive flight campaigns (k 
and k + 1) 

w Maximum width that grapevines can assume 

This work proposes a modified and enhanced version of the method introduced by Pádua et al. 

(2018). The original method was applied to the AOI’s two plots, resulting in a mask (S) with 

the central lines of grapevine rows. Figure 7.4 illustrates the method’s main steps and the 

different outputs obtained from its application. 

 

Figure 7.4. General workflow of the proposed method and main outputs, illustrated with data acquired on 11 July 
2017 (F5) from plot 1 (P1). 
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The orthophoto mosaics obtained from photogrammetric processing of each flight campaign 

data were used to compute the green percentage index (G%) (Richardson et al., 2007) (Figure 

7.4a), as presented in Equation (1), where the green band was normalized by the sum of all 

RGB bands, allowing the extraction of the green vegetation cover. 

G% = Green/ሺRed + Green + Blueሻ (1) 

Next, an automatic threshold value based in Otsu’s method (Otsu, 1979) was applied to G% 

(Figure 7.4d), generating a binary image. From the difference between the DTM and DSM, the 

crop surface model (CSM) was generated, as shown in Equation (2) (Figure 7.4b). CSM values 

represent the height of objects above the terrain that, upon further processing, allows obtaining 

grapevine vegetation height. 

CSM = DSM − DTM (2) 

The CSM was filtered by height (h), ranging from ℎmin to ℎmax. The outcome was a new binary 

image (Figure 7.4e), in which each pixel (i, j) assumes the value “1” or “0”, based upon whether 

the matching pixel in the CSM has a height value within the defined range. A new binary image 

D, containing all the vegetation within the defined height range, was obtained by combining 

the binary images resulting from the threshold of G% and the CSM. Then, a set of 

morphological operations (e.g., open, close, or remove small objects) was applied to D to delete 

potential outliers that did not represent grapevines. This also contributed to reducing the 

proposed method’s computational burden. 

Each cluster of D was individually analysed and discarded if it did not intercept S (Figure 7.4c) 

at least once. The result was a set of clusters 𝒞, which constitute a new binary image F that 

contains only vegetation within a certain height range (Figure 7.4h). Hence, inter-row 

vegetation was estimated by the interception between F’s complement �̅� and the binary image 

resultant from G% thresholding (Figure 7.4g). The resulting binary image, L, was composed of 

vegetation that did not belong to grapevines. 

Thus, a vineyard’s plot parameters can be estimated. Equation (3) presents the method of 

calculating grapevine vegetation area A: the sum of each pixel (i, j) from F multiplied by the 

squared GSD value, where m and n represent the image’s number of rows and columns, 

respectively. The same approach can be used to determine inter-row vegetation area using L 

instead of F. 
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𝐴 = (∑∑𝑓𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

)GSD2 (3) 

In terms of grapevine volume V, expressed in m3, the estimation is performed by adding the 

individual volumes of F’s clusters of pixels (𝒞), which in turn are obtained by multiplying each 

cluster’s area by its mean height, as presented in Equation (4), where a cluster 𝒞𝑖 area is 

represented by 𝐴𝒞𝑖, and 𝐻𝒞𝑖 represents the mean height of a given cluster 𝒞𝑖 and its value is 

obtained from the CSM. 

𝑉 =  ∑𝑖=1
𝑛 𝐴𝐶𝑖 × 𝐻𝐶𝑖 (4) 

7.2.3.3. Multi-Temporal Analysis Procedure 

Although significant, parameters computed from individual flight campaigns are only capable 

of offering a snapshot about a crop’s developmental stage and its contextual environmental 

conditions. A multi-temporal approach allows analysis changes over time and to create data 

series that may prove valuable for extracting patterns about crops and environmental conditions, 

which can further improve PV management tools. 

As this study aimed to characterize vineyard vegetation evolution throughout the most 

significant grapevine vegetative growing cycles and given the importance of managing biomass 

for both fruit and yield optimization, a multi-temporal analysis was conducted. The process 

used grapevine vegetation detected in consecutive flight campaigns (k and k + 1) to perform a 

pixel-wise estimation of grapevine vegetation development. This produced one of the following 

three possible outcomes per pixel: (1) considered as grapevine vegetation in both flights and 

remains as such; (2) not considered as grapevine vegetation in k but considered in k + 1, 

representing grapevine vegetation growth; or (3) considered as grapevine vegetation in k but 

not in k + 1, representing a grapevine vegetation decline. 

A new image X with grapevine vegetative growth values was created by applying Equation (5) 

to both F images from k and k + 1 flight campaigns. Values 1, 0, and −1 represent grapevine 

vegetation growth, maintenance, and decline, respectively. No value (NaN) was attributed to 

areas with no grapevine vegetation detected in consecutive flight campaigns. 

𝑥𝑖,𝑗 =

{
 
 

 
 1, 𝑓ሺ𝑘ሻ𝑖,𝑗 = 0 ⋀ 𝑓ሺ𝑘 + 1ሻ𝑖,𝑗 = 1

0, 𝑓ሺ𝑘ሻ𝑖,𝑗 = 1 ⋀ 𝑓ሺ𝑘 + 1ሻ𝑖,𝑗 = 1

−1, 𝑓ሺ𝑘ሻ𝑖,𝑗 = 1 ⋀ 𝑓ሺ𝑘 + 1ሻ𝑖,𝑗 = 0

NaN, otherwise

  𝑘 = 1,… , 𝑛 (5) 
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7.2.3.4. Canopy Management 

Given the diversity and sheer number of field operations performed throughout a year to 

maintain and extend grapevine life and increase their productivity, the ability to identify 

vineyard areas in need of canopy management actions can significantly contribute to PV 

sustainable practices. This process can help evaluate, hierarchize, and schedule field operations 

based on the operation’s potential benefit evaluation in the identified vineyard area, while 

considering cost and environmental impact. 

Grapevine vegetation outside a defined area is considered as excess. To identify excess, S is 

dilated according to a given width (w) (Figure 7.4f), which represents the maximum width of 

grapevine vegetation in a row, according to its spacing. Afterward, the resulting binary image 

is combined with F. Grapevine vegetation pixels belonging to F outside the dilated S mask are 

estimated as excess vegetation. 

7.2.3.5. Validation Procedure 

To monitor the selected vineyards temporally, a total of nine aerial campaigns were carried out, 

covering the grapevines’ most significant life cycle. The first flight, performed on 2 May, 2017, 

corresponding to the beginning of the grapevine vegetative cycle; and the last flight was carried 

out on 15 September, 2017, corresponding to the grapes’ final maturation stage (i.e., harvesting 

season). Field data acquisition consisted of collecting vine row height and width measurements 

at marked positions to estimate the vine row area and volume to compare the estimated 

parameters by the proposed method and the one calculated with ground-truth data. Vine row 

height was obtained by taking measurements using a surveyor’s levelling rod (Figure 7.5a), and 

width by using a measuring tape and two surveyor’s levelling rods, used as presented in Figure 

7.5b. These validation points were selected from two 10 × 10 m areas (blue polygons in Figure 

7.1). They are limited by characteristic features present in all vineyards and easily recognised 

both in aerial images and in the field: posts equally spaced along the rows (every 5 m in our 

AOI). This way it was possible to identify the same area over the flight epochs and to compare 

ground measurements with those provided by the proposed method. In total, 50 measurement 

points were selected, 25 located in each validation area, to allow correct representation of the 

vine row. If the vine row presents a regular shape, five points were selected per row, with 2 m 

average separation. These areas were selected due to the presence of different vigour levels and 

missing grapevine plants. Moreover, 37 other points (see Figure 7.1 for location) outside the 10 

× 10 m areas were used as verification points (24 in P1 and 13 in P2). These points were selected 
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to ensure sample representativeness in different contexts (dense and sparse grapevine 

vegetation, different height values, etc.). In this case, only vine row heights were measured and 

compared with heights estimated by the CSM. 

 

Figure 7.5. In-field measurements at specific points: (a) row height measurements; and (b) row width 
measurements. 

Grapevine height and area of the two 10 × 10 m validation areas was estimated using three 

different approaches: (1) ground-truth data; (2) a mask produced by manual segmentation of 

the computed orthophoto mosaics for the computation of grapevine vegetation area, which was 

then multiplied by the vine row’s average height, computed using the results of the CSM; and 

(3) applying the proposed method to UAV-acquired data and extracting both row area and 

height in a fully automatic process. 

The accuracy of the method was assessed using vine rows heights and widths measured in-field 

as reference. Then, those values were compared with those obtained using the proposed method. 

The overall agreement between the observed in-field measurements o and the estimated values 

e were verified through the root mean square error (RMSE), as shown in Equation (6). 

RMSE = √
∑ ሺ𝑒𝑖 − 𝑜𝑖ሻ
𝑛
𝑖=1

2

𝑛
 (6) 

 Results 

As stated in Section 7.2.3., this modified and enhanced version of Pádua et al. (2018) method 

enabled the estimation of grapevine area and volume, as well as vineyard areas that can 

potentially benefit from canopy management operations. By using multi-temporal data analysis, 

this method enables monitoring grapevine vegetation evolution. 
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 Study Area Characterization 

Both vineyard plots analysed—one composed of red wine varieties (P1) and another by white 

wine varieties (P2)—were characterized by orthophoto mosaics, DSMs and DTMs with 3 cm 

GSD, resulting from photogrammetric processing of UAV-based RGB imagery, acquired 

during each flight campaign. Table 7.2 presents the mean error and RMSE values for each 

direction (X: easting, Y: northing, Z: height), obtained during photogrammetric processing, 

using five ground control points extracted from F1 coordinates, as reference. Higher deviations 

were found in Z, while the error rate is lower in both X and Y. 

Table 7.2. Mean error and root mean square error (RMSE) in each direction (X, Y, Z) on the five tie points for 
each flight and its global values, considering the deviations from all tie points. F1 coordinates were used as 
reference. 

Flight Campaign (F#) 
Mean Error (cm) RMSE (cm) 

X Y Z X Y Z 
F2 0.39 0.67 −2.62 2.10 2.72 9.51 
F3 −0.31 −0.64 1.28 4.21 3.16 3.90 
F4 −0.67 0.26 −2.57 3.38 2.79 10.48 
F5 0.03 0.07 −0.01 2.29 0.74 3.87 
F6 −0.35 −0.13 −2.00 1.65 0.61 4.81 
F7 −0.20 −0.17 −0.04 1.66 0.90 2.84 
F8 −0.08 −0.56 −0.44 1.75 1.29 2.37 
F9 −0.08 −0.02 −0.16 2.09 1.24 0.33 

Global −0.16 −0.06 −0.82 2.54 1.93 5.78 

Figure 7.6 presents the generated orthophoto mosaics along with the percentages of both 

grapevine vegetation and inter-row vegetation. Grapevine vegetation was denser in the right 

side of both studied vineyard plots, particularly in P2’s lower-right side and P1’s upper right 

side. Conversely, there was a greater incidence of missing grapevines in the studied vineyard 

plots’ left sides. Canopy management operations that occurred were also perceivable between 

flight campaigns when considering multi-temporal analysis, as observed in the flights of 16 

June (F3) and 11 July (F5). 
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Figure 7.6. Generated orthophoto mosaics for each flight campaign carried out in both vineyard plots (P1 and P2), 
along with grapevine vegetation (VV) and inter-row vegetation (IR) percentages. The result of canopy 
management operations, such as shoot thinning and leaf removal, is noticeable by comparing the orthophoto 
mosaics. Coordinates in WGS84 (EPSG:4326). 
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Regarding the other orthorectified outcomes, the DSM and DTM enabled obtaining the CSM, 

and G% was computed from the orthophoto mosaics. Figure 7.7 presents a color-coded 

representation from these results from data acquired on the 27 July, 2017 flight campaign. 

Regarding CSM height range in this study, ℎmin and ℎmax were set to 0.2 and 2 m, respectively. 

Those values were selected according to the known characteristics of the study vineyards.  

 

Figure 7.7. Examples of inputs used in this study, computed from the photogrammetric processing of imagery 
acquired on the 27 July, 2017 flight campaign: (a) green percentage index; and (b) crop surface model. Coordinates 
in WGS84 (EPSG:4326). 

 Vineyard Vegetation Change Monitoring 

By applying the proposed method to the orthorectified products from the photogrammetric 

processing of data acquired in each flight campaign, it was possible to (1) identify vine rows, 

(2) determine individual vine row’s central line, (3) estimate grapevines’ vegetation, and (4) 

distinguish grapevines from other types of vegetation (e.g., inter-row vegetation). Two relevant 

canopy management operations took place during this study (marked both in figures and tables): 

one in the first half of June 2017 (shoot thinning between the second and the third flight 

campaigns) and another one in the first week of July 2017 (leaf removal between the fourth and 

fifth flight campaigns). 

Figure 7.8 shows an estimation of grapevine vegetation area and volume per flight campaign, 

as well inter-row vegetation area. As expected, P1 and P2 begin by having the smallest 
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estimated grapevine vegetation area (F1, 2 May, 2017) with 172 m2 and 257 m2, respectively, 

representing 5% of the total plot occupation area. An intensive vegetative growth was expected 

between May and June, together with some relevant canopy management operations. These 

results coincide with the expected vegetative evolution of grapevines in DDR. Moreover, they 

allow not only identification but also estimation of the impact on grapevine vegetative area of 

two relevant canopy management operations. 

In terms of grapevine vegetation volume, the behaviour was similar to grapevines’ vegetation 

area: it increased from the first to the fourth flight campaigns and decreases thereafter, as 

presented in Figure 7.8. Whereas the first canopy management operation—shoot thinning—

that occurred a few days before the third flight campaign did not decrease the volume’s growth, 

the second canopy management operation—leaf removal—verifiable in the fifth flight 

campaign, clearly did. 

In general, no significant differences amongst red and white grapevine varieties in regards to 

either area or volume were detected. Both parameters presented a similar behaviour per flight 

campaign. 

 

Figure 7.8. Estimated outcomes from applying the proposed method to data acquired in all aerial campaigns, from 
(a) P1 and (b) P2: grapevines’ vegetation area, inter-row vegetation area, and grapevine vegetation volume. 
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In this study, we also estimated the area of non-grapevine vegetation (e.g., inter-row vegetation) 

in the same plots, P1 and P2 (Figure 7.8). After the winter and spring months, the first flight 

campaign data—about 300 m2 in P1 (6% of occupation area) and approximately 800 m2 in P2 

(14% of occupation area)—and the second flight campaign data revealed a slight increase in 

both plots. Data acquired in the following flight campaigns showed a decrease in inter-row 

vegetation area. 

 Multi-Temporal Analysis 

By applying the proposed method to consecutive flight campaigns’ data, a multi-temporal 

analysis of the study area was performed, as described in Section 7.2.3.4. This enabled the 

observation of canopy management operations that occurred during grapevines growing season. 

Figure 7.9 presents a visual representation of the multi-temporal analysis of grapevine 

vegetation area variation between flight campaigns. 

The main vegetative development occurred between the first and the second flight campaigns, 

with an estimated grapevine area increase of about 300% for P1 (~540 m2) and 320% for P2 

(~870 m2) and the lowest decline (nearly 26 m2 for P1 and 38 m2 for P2, corresponding to 4% 

and 3% of grapevine vegetation area in the fight campaigns) registered during this study. This 

result further supports those presented for grapevine’ vegetation area and volume (Section 

7.3.2). 

 Estimation of Vineyard Areas for Potential Canopy Management 

Operations 

By obtaining continuous information about grapevine vegetation evolution, it is possible to 

estimate which areas (if any) within a given vineyard plot that could potentially benefit from 

canopy management operations at any given time. This can be useful as a decision-support 

system for canopy management operations scheduling, enabling the optimizing of physical 

means, managing biomass, and further improving vineyards’ overall performance. 
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Figure 7.9. Multi-temporal analysis of grapevine vegetation: blue stands for vegetation present in both consecutive 
flight campaigns; green means vegetation growth; and red represents vegetation decline. Percentage and area (m2) 
values are also presented for each class. 

Both P1 and P2 were analysed to estimate areas that potentially needed canopy management 

operations. Grapevine vegetation is considered excessive when outside a defined area. To 

identify it, the binary image S was dilated according to a given width w, representing the 

maximum width of grapevine vegetation in a row. Several tests were performed in this analysis 

to determine the best value for w. Accordingly, for the canopy management operations 

performed in the field, a value of 0.6 m was considered optimal for the estimation of potential 

excess vegetation. This procedure was applied for all flight campaigns’ data. Figure 7.10 

presents the outcomes obtained for data from the second, third, fourth, and fifth flight 

campaigns. Those flights were the ones that revealed excess vegetation, except for F5, which 
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was included in Figure 7.10 to show an example where no excess vegetation was detected. F5 

occurred after the second management operation. After that, vegetation was contained in the 

range of w = 0.6 m until harvesting season. 

 
Figure 7.10. Estimated grapevines’ vegetation both in P1 and P2. Green identifies grapevines’ vegetation, red 

signals areas of excess grapevines’ vegetation and therefore that potentially could benefit from canopy 

management operations along with its area in m2. 

 Accuracy Assessment 

The results presented in the last subsections were obtained by automatically applying the 

proposed method. However, to assess the method’s accuracy and effectiveness, a validation 

procedure was used, as described in Section 7.2.3.5. Figure 7.11 presents the boxplots of the 

differences in height per flight campaign between the measurements taken in the field and the 

heights generated by the proposed method at the 50 points belonging to the validation areas. 

The influence of field management operations and the vegetative vigour of the plants are clearly 

detectable in the method’s height estimation accuracy. The dispersion of values increased with 

plant vigour and decreased after each field management operation, remaining stable after the 

last field operation, because after that time, the vegetative expansion was no longer so 

prominent. 
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Figure 7.11. Boxplots of the height differences per flight campaign. 

Table 7.3 presents the results of the comparison between heights estimated by the proposed 

method and measured in the field per flight campaign. In general, the RMSE indicates the 

expected difference between heights per campaign. As can be concluded from Table 7.3, Figure 

7.11, and demonstrated in the next section, the RMSE varied significantly and a direct 

correlation was obtained with canopy management operations and the grapevine vegetative 

cycle. 

Table 7.3. Accuracy assessment per flight campaign (F#) using the 50 points in the two validation areas and the 
37 sparse points used for control. RMSE: root-mean-square error, R2: coefficient of determination. Red dashed 
lines represent canopy management operations. 

F#—Date (dd/mm/yyyy) 
RMSE (m) Overall 

n = 50 n = 37 RMSE (m) R2 
F1—02/05/2017 0.20 0.19 

0.13 0.78 

Shoot thinning      F2—30/05/2017 0.15 0.14 
F3—16/06/2017 0.13 0.12 

Leaf removal        F4—26/06/2017 0.14 0.13 
F5—11/07/2017 0.10 0.11 
F6—27/07/2017 0.10 0.10 
F7—07/08/2017 0.12 0.11 
F8—22/08/2017 0.12 0.12 
F9—15/09/2017 0.13 0.12 

Regarding grapevine area estimation, three different approaches were used, as explained in 

Section 7.2.3.3. The method was validated by comparing manual segmentation of two different 

areas, each one located in a different vineyard plot where the following three conditions could 

be observed: (1) the pixel-value is the same and is classified as exact detection; (2) over 

detection, if grapevine vegetation estimated in the method’s application result is not classified 

as grapevine vegetation in the reference mask; and (3) under detection, corresponding to areas 

of grapevine vegetation that were not accurately estimated from the obtained results. The results 

from this evaluation are presented in Figure 7.12. Overall, the proposed method provided a 

mean accuracy of 94.40% in the exact detection of grapevine vegetation, similar to Pádua et al. 
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(2018). However, the mean exact detection percentage in P1 area was greater than the area 

located in P2, at 95.01% and 93.79%, respectively. 

 

Figure 7.12. Results from occupation row area validation from data from each flight in an area of 10 × 10 m from 
both studied vineyard plots (a) P1 and (b) P2. 

 Discussion 

A relationship was clearly established between grapevine vegetative cycle, field canopy 

management operations, and the different parameters obtained using the proposed method 

based on the results presented in Section 7.3. This section presents a discussion regarding 

vineyard vegetation evolution, determination of vine row height, and the impact that the 

proposed method can have in canopy management operations scheduling. 

 Vegetation Evolution 

AOI vegetation evolution over time can be observed in Figures 7.6 and 7.8. As expected, the 

grapevine vegetative cycle was verified. P1 and P2 begin by having the smallest estimated 

grapevine vegetation area (F1, 2 May 2017), at 172 m2 and 257 m2, respectively. This represents 

5% of the total vineyard area. An intensive vegetative growth follows, between the months of 

May and June. From the fifth flight campaign onward, grapevine vegetation area remained 

relatively stable, with only some minor variations. Some vegetation growth still occurred within 

the AOI, but grapevine vegetation steadily declined until the harvesting season, with a greater 

emphasis to the last two flight campaigns. 

The impact of the first canopy management operation (shoot thinning, which took place in mid-

June) is distinctly noticeable when comparing the second and third flight campaigns. Whereas 

vineyard vegetation area variation was not meaningful for both P1 and P2 (approximately −5% 

and 7%, respectively), the decline area was about 258 m2 for P1 and 373 m2 for P2, which are 

among the highest values registered in this study. As mentioned when presenting the grapevine 
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vegetation volume, the type of canopy management operation can be directly correlated to 

grapevine canopy. This can be further established by analysing vineyard vegetation evolution 

from the fourth to the fifth flight campaigns, in between which another canopy management 

operation, leaf removal, took place (Figure 7.9, F4→F5). Grapevine vegetation area variation 

was higher than when the first canopy management operation occurred. Larger vegetation 

decline values were registered, about −29% (413 m2) for P1 and −37% for P2 (843 m2), when 

considering that the more intensive grapevines vegetative growth period ended in late June. 

When comparing consecutive flights (Figure 7.9), the slight differences in the results 

concerning temporal evolution may be explained by the proposed method’s implementation. 

However, grapevine leaves can (and do) change colour either when entering in their later 

phonological stages or as a manifestation of potential phytosanitary problems. As an example, 

in P1, some misdetections occurred mostly in the last two flight campaigns, because grapevine 

leaves were turning red. 

Regarding grapevine canopy area, and when analysing each flight campaign individually 

(Figure 7.12), data from the flight prior to leaf removal (F4) showed the lowest accuracy in both 

analysed areas—91.50% and 90.73%, respectively—which can be explained by the existence 

of some grapevine branches that were not correctly detected in the CSM. This means F4 was 

the flight with the greatest overall under detection rate. The highest accuracy was achieved in 

F7 for P2 with 97.83% and F1 for P2 with a detection accuracy of 95.50%. Regarding 

misclassifications, under detection was verified in the boarders of grapevine plants and in the 

few thinner parts, whereas over detection was observed in shadowed areas and when there was 

more abundant vegetation, resulting in connected rows. Some inter-row vegetation was also 

classified. However, these misclassifications did not significantly influence the proposed 

method’s overall performance in terms of grapevine canopy area evaluation. 

With respect to grapevine vegetation volume, the behaviour was similar to grapevine vegetation 

area: it increased from the first to the fourth flight campaign and decreased thereafter, as 

presented in Figure 7.8. The first canopy management operation—shoot thinning—that took 

place a few days before the third flight campaign, did not decrease the volume’s growth. The 

second canopy management operation—leaf removal—verifiable in the fifth flight campaign, 

clearly did decrease the volume: P1 decreased by about 62% in its 1000 m3 and P2 grapevines’ 

vegetation volume decreased about 68%, from 1900 m3. This can be explained by the applied 

canopy management operations. 
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When assessing both grapevine area and volume from aerial imagery, management operations 

such as shoot thinning, which helps to focus grapevine development to have the best possible 

yield by removing secondary shoots and uncrowning areas to open up the canopy and help 

avoid diseases and improve air flow, may have no significant visual impact in grapevines’ 

canopy. This happens because much of this operation is performed in the grapevines’ canopy 

understory, and uncrowning does not completely remove surrounding vegetation—it only 

reduces it. Leaf removal effectively and unequivocally removes a significant amount of 

grapevine vegetation, with a visible impact on grapevine canopy level. In the sixth, seventh, 

and eighth flight campaigns, grapevine vegetation volume was about 240 m3 in P1, having 

decreased to 125 m3 (−53%) in the ninth (and final) flight campaign. P2 grapevine vegetation 

volume progressively decreased about 15% per flight campaign, until approximately 295 m3 in 

the ninth flight campaign. 

No significant differences amongst red and white grapevine varieties in regards to either area 

or volume were detected. Both parameters presented a similar behaviour per flight campaign. 

Inter-row vegetation (Figure 7.8) in P1 and P2 was practically non-existent after the fourth and 

seventh flight campaigns, respectively. By cross-referencing estimated non-grapevine 

vegetation area with environmental data (Figure 7.2), the evolution was as expected. Whereas 

some precipitation during May 2017 can account for the slight increase in area between the first 

and the second flight campaigns, the lack of precipitation, the non-existent irrigation system, 

along with the high air temperature, and some inter-row management operations justify a 

reduced or even non-existent inter-row vegetation until the harvesting season. 

 Grapevine Row Height 

The determination of grapevine row height is critical since it is used to compute vegetation 

volume, which was one of this study’s goals. As such, a thorough validation was carried out, 

following the procedure presented in Section 7.2.3.3. A total of 87 measurements were recorded 

both in P1 and P2 per flight campaign, separated in two groups: 50 points were used for the 

proposed method’s validation and the remaining 37 were used as control points. Field 

measurements were recorded simultaneously with flight campaigns and provided heights 

ranging from 1.01 m to 1.95 m. By analysing the results presented in Figure 7.11 and Table 7.3, 

an overall RMSE of 0.13 m was attained. These results are in line with other studies that used 

this type of validation: in De Castro et al. (2018) a R2 of 0.78 and a RMSE of 0.19 m were 

observed in measurements ranging from 1 m to 2.5 m, from three different vineyards, at two 
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different epochs. In Caruso et al. (2017), a R2 of 0.75 and a RMSE of 0.15 m were obtained, 

with heights ranging from 1.4 m to approximately 2 m. Again, grapevines’ vegetative cycle, 

together with the canopy management operations, influenced the quality of row height 

estimation. Leaves scarcity made it difficult to estimate heights using the proposed method in 

the first flight campaign; as a result, the highest RMSE (~0.2 m) was obtained. Then, vegetation 

development facilitated the use of photogrammetric tools, and the RMSE decreased in a 

consistent manner until ~0.13 m, just before the leaf removal canopy management operation. 

After that, RMSE drastically reduced (~0.10 m), influenced by the rows’ regularity after the 

canopy management operation and the density of leaves. In the last stage of the grapevine 

vegetative cycle, RMSE moderately increased, since some grapevine branches influenced the 

photogrammetric estimation. From this point onward, both phenological and environmental 

contexts contributed so that no further excess grapevine vegetation was detected until the 

harvesting season. 

 Field Management Operations 

Whereas the analysis of the data acquired in the second flight campaign identified some excess 

grapevine vegetation both in P1 and P2, a canopy management operation—shoot thinning—

conducted before the third flight campaign reduced it significantly (P1 had about 22 m2 and P2 

had 82 m2, representing 3% and 7% of the detected grapevine vegetation, respectively). 

However, given the intense grapevine vegetative growth until the end of June—the time when 

the fourth flight campaign took place—more excess grapevine vegetation was detected on both 

plots (P1 had about 113 m2, representing 11% of the grapevine vegetation, and P2 had 306 m2, 

representing 17% of the estimated grapevine vegetation). Another canopy management 

operation—leaf removal—which occurred before the fifth flight campaign, meant none excess 

grapevines vegetation in P1 and P2.  

Besides being a potentially useful tool to identify vineyard areas that can benefit from canopy 

management operations, the analysis in Figure 7.10 shows the estimation of excess vegetation 

is possible at any given point in time. Therefore, grapevine biomass management can be 

optimized accordingly. Together with multi-temporal analysis, this approach enables a more 

complete characterization of vineyard’s parameters’ evolution, as well as the construction of 

historical series to further define intra-seasons crops’ profiles. 
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 Conclusions 

Canopy management is critical to improving grapevine yield and wine quality by influencing 

canopy size and vigour and by reducing phytosanitary problems. As such, finding an 

operational method to estimate vineyards’ geometric and volumetric parameters via remote 

sensing would improve the efficiency of vineyard management. In this context, we introduced 

the potential of applying low-cost and commercially off-the-shelf UAS equipped with an RGB 

sensor in the PV context. The acquired high-resolution aerial imagery proved to be effective 

for vineyard area, and volume estimation and multi-temporal analysis. The image-processing 

techniques we used enabled the extraction of different vineyard characteristics and the 

estimation of its area and canopy volume. Our method provides a quick and transparent way to 

assist winegrowers in managing grapevine canopy. 

RGB orthophoto mosaics provide a context of the whole vineyard for visual interpretation of 

the surveyed area. By combining the different photogrammetric processing outcomes with 

image-processing techniques, we proved the possibility of automatically estimating vineyard 

geometric and volumetric parameters. Multi-temporal analysis of vineyard vegetation 

development enabled monitoring vineyard growth. We observed both volume and area growth 

until the period were the in-field grapevine canopy management operations were carried out for 

leaf removal, decreasing from that moment until the grape harvesting season. Inter-row 

vegetation decreased as the campaign progressed due to the high air temperatures and the almost 

absent precipitation during the summer period. These results were corroborated by a thorough 

validation using ground-truth data. The proposed method provided height estimations with a 

mean RMSE of 0.13 m, corresponding to an error of less than 10% in the row height, even 

considering the most complex scenarios of vegetation development (projected branches in the 

side and in the top of the row). After canopy management operations, the method’s 

effectiveness improves, benefiting from row shape regularity (RMSE ~0.10 m). Regarding the 

area evaluation, we validated that the overall method’s effectiveness was over 90% for all the 

flight campaigns. 

This study provides a more valuable and less complex crop-related data acquisition method for 

farmers and winegrowers. The acquisition of other UAV-based data from different sensors can 

also be employed to estimate other grapevine parameters, such as for multispectral and thermal 

infrared sensors. These sensors, despite being less cost-effective and sometimes requiring, more 

expensive UASs, can estimate other important parameters, such as vineyard water status by 
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estimating crop water stress for decision support in irrigation management, LAI estimation from 

vegetation indices, which can also support canopy management operations, and estimate the 

presence of potential phytosanitary problems in vineyards. 

In the near future, the growing attention given by UAS manufacturers to both PA and PV 

markets will provide new technology in these fields by designing sensors adaptable for different 

UAS. It is expected that cloud-based photogrammetric processing solutions and geographic 

information system (GIS)-based web platforms for data analysis and results interpretation will 

contribute to an easier and more flexible method of acquiring and interpreting crop-related 

UAV-based data. 
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 Introduction 

About 70% of the available worldwide clean water is used in agriculture (Gilbert, 2012). 

Moreover, by the year 2050, there will have to be an estimated 70% increase in food production  

(Gilbert, 2012) to sustain Earth’s population. Therefore, to attain a sustainable agriculture, it is 

essential to ensure proper water management. Global warming evolution throughout the years 

means these phenomena is one of the major threats to agricultural production, also with effects 

on society (Asseng et al., 2015; C et al., 2009; Lobell & Gourdji, 2012; Jinxia Wang et al., 

2009). Less precipitation, associated with more frequent and longer drought periods 

(Schmidhuber & Tubiello, 2007), ultimately leads to an increase in the use of water in 

agricultural activity. To improve water usage efficiency, the United Nations (UN) set 

sustainable development goals with the aim to create an expected increase in efficiency in all 

sectors by the year 2030. This will ensure sustainable extractions and the implementation of 

integrated water resources management (United Nations, 2015). It is crucial that the agricultural 

sector contributes to this effort by developing and implementing controlled irrigation 

management systems (Cancela et al., 2017; Gago et al., 2015). As such, it is necessary to have 

an efficient analysis of crops’ water status. 

The enduring search for resource use optimization, risks reduction, and minimizing 

environmental impacts led to the emergence of precision agriculture (PA) (Gebbers & 

Adamchuk, 2010). To understand both spatial and temporal variabilities of a production unit, 

PA’s tools and technologies enable the acquisition and processing of large data volumes (e.g., 

image processing techniques, geo-statistical methods) (Gebbers & Adamchuk, 2010; Pablo J 

Zarco-Tejada et al., 2014). The precision viticulture (PV) concept derived from PA involves 

applying different technologies to vineyard management and grape production (Alessandro 

Matese et al., 2015; Morais et al., 2008). However, grapevine (Vitis vinifera L.) development 

is strongly related to spatial heterogeneity, which depends on several factors to determine both 

its production and quality (A. P. B. Proffitt et al., 2006). Some of the more relevant factors are 

soil quality and type, vegetation management operations, irrigation systems, nutritional status, 

pest and disease control, air temperature, and precipitation levels (Alessandro Matese et al., 

2015; Steyn et al., 2016). Changes in one of these factors may result in the occurrence of biotic 

and abiotic problems. Depending on its severity, it may result in a significant decrease in 

production or quality, and therefore, considerable economic losses (Baofeng et al., 2016). The 

Douro Demarcated Region (DDR, north-eastern Portugal) spatial variability is high due mainly 
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to the terrain’s topographic profile, climatic variations, and soil characteristics, which causes 

vineyards to be unique throughout the DDR (Morais et al., 2008). 

In the last few years, due to their flexibility and efficiency in diverse environments, the use of 

unmanned aerial vehicles (UAVs) emerged in agriculture applications (Adão et al., 2017). 

UAVs can acquire georeferenced data with a high spatial resolution while using different types 

of sensors (RGB, near infrared, multi and hyper-spectral, thermal infrared (TIR) and LiDAR) 

(Pádua, Vanko, et al., 2017), which allow for the output of several digital products, such as 

ortho-rectified mosaics, digital elevation models (DEMs), land surface temperature, and 

vegetation indices (VIs) (Pádua, Vanko, et al., 2017). Indeed, their ability to carry different 

types of sensors make UAVs a suitable solution for agricultural applications. While 

multispectral sensors acquire data from the electromagnetic spectrum in the near and visible 

infrared region (400 to 1000 nm), thermal sensors can acquire data in the far infrared zone (5000 

to 18,000 nm), where the reflection value of each pixel can be transformed into a temperature 

value (Pádua, Vanko, et al., 2017). Among the different VIs, which can be considered as a set 

of arithmetic operations applied in different bands used to extract different vegetation 

characteristics (Pádua, Vanko, et al., 2017), the normalized difference vegetation index (NDVI) 

(Rouse et al., 1974) must be highlighted as it is frequently used in agricultural applications to 

estimate different crop-related parameters: biomass (Bendig et al., 2015); canopy structure, leaf 

area index (LAI), crop management (Candiago et al., 2015); and mapping vigour zones (J. 

Primicerio et al., 2015). Moreover, it was found to correlate well with grape quality properties 

(Alessandro Matese & Di Gennaro, 2018). As for temperature-based indices, they constitute a 

quick and practical way to estimate crop water status, therefore indicating the plants’ water 

content. The crop water stress index (CWSI) (Idso et al., 1981) is widely used in remote sensing 

to monitor plants’ water status and consequent irrigation management (Alderfasi & Nielsen, 

2001). TIR-based indices were employed to different crops, such as olives (Berni, Zarco-

Tejada, Sepulcre-Cantó, et al., 2009), grapevines (Bellvert et al., 2013), cotton (D. G. Sullivan 

et al., 2007), wheat (Banerjee et al., 2018), rice (Liu et al., 2018), sugar-beet (Quebrajo et al., 

2018) and maize (Romano et al., 2011). Remote sensing platforms can also be a helpful tool 

for a better understanding of spatial variability, which has a significant meaning in vineyard 

management activities. Actually, UAVs have already been used to, e.g., estimate the leaf area 

index (Kalisperakis et al., 2015; Mathews & Jensen, 2013), irrigation management and water 

stress mapping (Baluja et al., 2012; Bellvert et al., 2013; Romero et al., 2018), diseases 
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detection and mapping (Albetis et al., 2017; A. Matese et al., 2013), and detection of nutritional 

deficiencies (Martín et al., 2015). 

UAVs have already proved to be a cost-effective and flexible alternative for remote sensing, 

within a PA context. They present an improved decision-making process to the farmer and 

provide greater flexibility, when compared to other remote sensing platforms (Alessandro 

Matese et al., 2015). 

As for PV, vineyards have significant areas occupied by elements other than grapevines (e.g., 

inter-row vegetation, man-made structures, vegetation that usually surrounds the plot, and 

grapevines’ shadows) (Burgos et al., 2015; Alessandro Matese et al., 2015). These elements 

can be automatically identified by means of digital image processing methods. Indeed, several 

methods have been proposed to deal with UAV-based aerial imagery or with the resulting 

digital products from the photogrammetric processing. For example, grapevine segmentation 

(Comba et al., 2015; A. Nolan et al., 2015), supervised and unsupervised machine learning 

(Poblete-Echeverría et al., 2017), point clouds derived from photogrammetric processing 

(Comba et al., 2018; Weiss & Baret, 2017), and DEMs (Baofeng et al., 2016; Burgos et al., 

2015; Kalisperakis et al., 2015). Regarding VIs, they are one of the most common segmentation 

techniques applied in remote sensing (Ponti, 2013), mainly to segment a given image into two 

classes: vegetation or non-vegetation (Peña-Barragán et al., 2011). However, when considering 

vineyard vegetation, VIs acknowledges all types of vegetation without distinguishing 

grapevines from non-grapevines (e.g., inter-row vegetation). By using the DEM—or more 

specifically, the canopy surface model (CSM), which can be obtained by subtracting the digital 

terrain model (DTM) from the digital surface model (DSM)—quantifying and removing non-

grapevine vegetation in a vineyard’s segmentation process can be done as plant height is 

provided (Jiménez-Brenes et al., 2019). 

While different digital outputs can be generated from UAV-based imagery, the amount of data 

and its complexity can be overwhelming for the common farmer to interpret. Straightforward 

useful crop-related information is needed. Vigour maps are an example where by using the 

NDVI, vegetation is classified into different classes according to its characteristics. By applying 

it to PV, grapevines’ vigour can be defined as the measure of the growth rate during a given 

time period (e.g., the growing season). This not only enables the classification of vineyard 

homogeneity zones (T. Proffitt & Turner, 2017), which is a way to represent the impact of both 

environmental conditions and soil fertility (van Leeuwen, 2010). There have been some related 
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works done in this area. Khaliq et al. (2019) compared satellite imagery with UAV-based 

multispectral data in four different epochs of the grapevines’ vegetative cycle. Different 

comparisons were made by considering: (i) the whole vineyard, (ii) only the grapevines’ 

vegetation, and (iii) only inter-row areas. The authors reported that satellite multispectral 

imagery presented limitations due to the ground sampling distance (GSD, 10 m) and to the 

influence of inter-row information Primicerio et al. (2015) evaluated vigour maps produced for 

the whole vineyard and only encompassing grapevines’ vegetation, by applying an automatic 

segmentation method (Comba et al., 2015). Campos et al. (2019) used UAV-based vigour maps 

to create prescription maps for vineyard spraying operations. 

Studies supported by imagery acquired in one flight mission alone mainly focused on assessing 

non-grapevine vegetation removal when considering the whole vineyard, and in creating task-

oriented vigour maps (Campos et al., 2019; Costa Ferreira et al., 2007; J. Primicerio et al., 2015; 

Rey-Caramés et al., 2015). With reference to multi-temporal studies, there are those whose aim 

is to compare different growing seasons by evaluating biophysical grapevines parameters 

(Bonilla et al., 2015; A. Matese et al., 2019; Rey-Caramés et al., 2015). Furthermore, studies 

utilizing intra-season multi-temporal data, considered the whole vineyard information (Marcal 

& Cunha, 2007), or vineyard changes were not the main focus (Khaliq et al., 2019). As found 

in Primicerio et al. (2015), vigour maps using only grapevines’ vegetation showed a better 

representation of the variability within the vineyard. The spatial variability in grapevines’ water 

status can be assessed thought both multispectral and TIR imagery, where TIR imagery serves 

as an immediate way to estimate crops’ water status, while multispectral data can show 

cumulative water deficits (Baluja et al., 2012). As such, the TIR data has the potential to help 

understand water stress for near-real-time decision-making support (Espinoza et al., 2017). By 

integrating TIR and multispectral data, datasets to study grapevines’ response to climate change 

(Di Gennaro et al., 2017) can be created. 

This study aimed to evaluate vineyard vigour maps (NDVI) created using UAV-based 

multispectral imagery within a multi-temporal context and in different grapevines’ 

phenological stages. The main goal was to study grapevines’ vegetation dynamics during the 

growing season up until harvesting. Two approaches were used: (i) considering the whole 

vineyard area, and (ii) considering only automatically detected grapevines’ vegetation. Spatial 

assessment between the generated vigour maps, and grapevines’ canopy temperature and height 

data—obtained from UAV-based TIR and RGB imagery, respectively—were conducted with 
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the objective to correlate vigour maps with potential grapevines’ water stress and canopy height. 

This allowed for the assessment of non-grapevine features when analysing vigour maps. 

The next section presents the study area and the methods used both for data acquisition and 

processing. Results are presented in Section 8.3 and discussed in Section 8.4. Lastly, the most 

significant conclusions are shown in Section 8.5. 

 Materials and methods 

 Study Area and Environmental Context 

This study was conducted in a 0.30 ha vineyard located in the University of Trás-os-Montes e 

Alto Douro campus, Vila Real, Portugal (41°17’13.2” N 7°44’08.7” W WGS84, altitude: 462 

m), in the DDR (Figure 8.1). The vineyard (cv. Malvasia Fina) is trained in a double Guyot 

system, where each row has grapevines 1.20 m apart and there is 1.80 m distance in between 

rows. There is a total of 22 rows with a NE–SW orientation. Furthermore, it is a rainfed 

vineyard, with fertilization applied using foliar spraying and with phytosanitary management 

operations taking place throughout the entire season. Inter-row areas are composed of 

spontaneous vegetation, which is managed using mechanical interventions at least twice per 

season. 

 

Figure 8.1. General overview of the studied area delimited by a polygon. Coordinates in WGS84 (EPSG:4326). 

During the studied period (May to September 2018), a total of 170 mm of precipitation was 

registered, along with 590 mm of potential evapotranspiration. Mean values for maximum, 

mean, and minimum air temperatures were 29 °C, 20 °C, and 13 °C, respectively. Monthly 

values are presented in Figure 8.2. Higher air temperature values were observed in July, August, 

and September, while May and June presented higher precipitation values. In contrast, there 
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was almost no precipitation in August. This environmental data was acquired using a weather 

station located some 400 m away from the study area. 

 

Figure 8.2. Monthly mean values for maximum (Tmax), mean (Tmean), and minimum (Tmin) air temperatures; 
precipitation (Prec); and potential evapotranspiration (PET) for the studied area in the period ranging from May to 
September 2018. 

 UAV-Based Data Acquisition 

RGB, multispectral and TIR imagery were acquired using both a DJI Phantom 4 (DJI, 

Shenzhen, China) and a Sensefly eBee (senseFly SA, Lausanne, Switzerland). The former is a 

low-cost UAV equipped with an RGB sensor (12.4 MP resolution) attached to a three-axis 

electronic gimbal. For the purpose of this study, it was modified to support a multispectral 

sensor: the Parrot SEQUOIA (Parrot SA, Paris, France). This sensor consisted of a four-camera 

array, which was able to acquire data in the green (550 nm), red (660 nm), red-edge (735 nm), 

and near infrared (790 nm) parts of the electromagnetic spectrum, with a 1 MP resolution. 

Moreover, a Sunshine sensor (Parrot SA, Paris, France) was also added to the UAV’s top. It is 

responsible for acquiring the irradiance conditions during the flight mission in the same spectral 

bands as the multispectral sensor and to geolocate the acquired imagery. 

As for the Sensefly eBee, it is a fixed-wing UAV used to acquire TIR imagery with the 

thermoMAP (senseFly SA, Lausanne, Switzerland) sensor (between 7500 nm to 13,500 nm, 

with 640 × 512 pixels and a temperature resolution of 0.1 °C), with automatic in-flight thermal 

image-based calibration. Ground control points (GCPs), used for aligning the acquired imagery 

during the photogrammetric processing, were measured using a Global Navigation Satellite 

System (GNSS) receiver in real-time kinematic (RTK) mode based on the TM06/ETRS89 

coordinate system (GCP’s location in Figure 8.1). While the multi-rotor UAV was used mainly 

due to its capability to survey areas at lower flight heights, which provides higher spatial 

resolution (Pádua, Vanko, et al., 2017), the fixed-wing UAV surveyed a larger area, which 

included the studied area. Furthermore, the TIR sensor only operated as a fixed-wing UAV. 
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Data acquisition was conducted in five flight campaigns, from 17 May 2018 to 21 September 

2018. Each flight campaign corresponded to distinct grapevine phenological stages: flowering 

(May and June), fruit set (July), veraison (August), and harvest (September). Details are 

presented in Figure 8.3. All flight campaigns were conducted near solar noon to minimize sun 

and shadow influences. Flights for both the RGB and multispectral sensors were done at a 40 

m height, with a forward overlap of 80% and 70% side overlap between images. The GSD was 

approximately 1.8 cm for the RGB and of 4.4 cm for the multispectral imagery. Regarding 

flights for TIR imagery acquisition, they were carried out at a 75 m flight height, with a 90% 

forward overlap and 75% side overlap between images, resulting in an approximate 17.5 cm 

GSD. All flight campaigns utilized RGB and multispectral imagery, while TIR imagery was 

only acquired from F3 onward (see Figure 8.3), due to both in-field observations and the 

environmental context, since rainfall can induce an error in the remotely sensed grapevine water 

status in the subsequent days (Bellvert et al., 2016). Moreover, a radiometric calibration was 

performed prior to each flight for the multispectral imagery using a reflectance panel provided 

by the manufacturer, along with the irradiance data from the sunshine sensor. Irradiance and 

reflectance data enabled a reliable radiometric workflow for the collection of repeatable 

reflectance data over different flights, dates, and weather conditions. 

 

Figure 8.3. Flight campaigns’ details: flight number (F#), Day of Year (DOY), and temporal difference (in days) 

between flights. Vineyard images in different flight campaigns are also shown. 

 Data Processing and Parameters Extraction 

Imagery acquired in each flight campaign was processed using the Pix4Dmapper Pro (Pix4D 

SA, Lausanne, Switzerland). This software makes use of structure from motion (SfM) 

algorithms to identify common points in the images. It can create point clouds, and by 

interpolating them, generate different orthorectified outcomes depending on the sensor used. 

Imagery from each sensor was processed in different projects. The default processing options 

for each sensor were applied, but point clouds were generated with a high-point density. Point 
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cloud interpolation was achieved using inverse distance weighting (IDW) and by applying noise 

filters. The generated digital outcomes were: (i) RGB–orthophoto mosaic, DSM, and DTM; (ii) 

multispectral–VIs; and (iii) TIR–land surface temperature. By subtracting the DTM from the 

DSM, the CSM was obtained. From the multispectral imagery, the NDVI (Rouse et al., 1974) 

was obtained using a normalization between the near-infrared (NIR) and red bands, as given in 

Equation (1). 

NDVI =  
NIR − RED

NIR + RED
 (1) 

The land surface temperature was used to compute the CWSI through the empirical model 

presented in Equation (2). It was based in the usage of canopy temperature, Tc, and the lower 

and upper canopy temperature limits (Tdry and Twet), corresponding, respectively, to well-

watered and non-transpiring leaves. These values can be directly obtained in the field or by 

using UAV-based thermal infrared imagery (Alessandro Matese et al., 2018). CWSI values can 

vary between 0 (no stress signs) and 1 (high levels of stress). In this study, Twet and Tdry values 

were obtained as described in the work of Matese and Di Gennaro (2018): Twet was obtained 

by wetting some leaves and immediately measuring their temperature, while Tdry values were 

obtained by applying petroleum jelly in the leaves and registering their temperatures after some 

minutes had gone by. Temperature values were measured using a handheld infrared 

thermometer (Shenzhen Jumaoyuan Science and Technology Co., Ltd., Shenzhen, China), with 

a ±1.5 °C precision and operating between 8000 nm to 14,000 nm. 

CWSI =
Tc − Twet
Tdry − Twet

 (2) 

To remove non-grapevine elements from the acquired imagery, segmentation was performed 

by using the method proposed in Pádua et al. (2018). Both the CSM and the G% index 

(Richardson et al., 2007), computed from the orthophoto mosaic, were used as inputs, and 

through thresholding, considering both vegetation and height thresholds, it identified all 

vegetation within a given height range. While G% was automatically obtained using Otsu’s 

method for thresholding, CSM used a defined height range. An accurate grapevine 

segmentation was obtained, filtering out non-grapevine objects such as soil and inter-row 

vegetation. 

This method has already been used in a multi-temporal analysis of grapevines’ vegetation 

evolution throughout a season in two vineyard plots in Pádua et al. (2018). Similarly, in this 

study, the method to segment grapevines’ vegetation (Pádua, Marques, Hruška, Adão, Bessa, 
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et al., 2018) was applied to evaluate the multi-temporal vineyard evolution when regarding 

grapevine area and canopy volume, as well as the inter-row vegetation area. The grapevine 

canopy volume was computed according to Pádua et al. (2018), using the mean height of each 

cluster of pixels obtained during the segmentation process multiplied by its area, where the sum 

of the volume of each cluster represents the total vineyard volume. 

As such, the orthorectified outputs from each flight campaign were used for different purposes. 

The grapevines’ vegetation was detected and then CSM, NDVI, and CWSI values from the 

detected parts were considered, while non-grapevine pixels were discarded. Within the scope 

of this study, three different approaches were tested to create vigour maps. Figure 8.4 describes 

the main steps in each approach. Moreover, vigour classes were set to low, medium, and high. 

The workflow consisted in loading the orthorectified outcomes, followed by the vineyard 

segmentation method, depending on the used approach. Then, vigour maps were created by a 

applying a mean filter to the image, using a 2 × 2 m sliding window. Data could then be 

normalized before the vigour map creation. Again, this last step depended on the approach being 

used. 

 

Figure 8.4. Approaches tested to produce vigour maps using three vigour classes. 

The first approach relied on the usage of data from the whole vineyard. The outcome was 

directly smoothed and divided into three classes, using terciles. As for the second approach, it 

was similar to the first, but it only considered the grapevines’ vegetation. Lastly, the third 

approach, similar to the second approach, considered only normalized grapevines’ vegetation. 

Normalization was done based on the mean value of the 10% higher and lower values of the 

smoothed grapevines’ vegetation values. Then, three vigour classes are created by dividing the 

values in the normalized raster according to fixed thresholds: (i) values lower or equal to 0.4 

were considered low vigour; (ii) between 0.4 and 0.7 were considered medium vigour; (iii) and 

values above 0.7 were considered high vigour. 
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 Vigour Maps versus Spatial Statistics 

Vigour maps obtained from each flight campaign were compared with the CSM and the CWSI 

using statistical techniques that consider geospatial variability. This comparison was done by 

converting the three vigour classes maps to a 4 × 4 m grid. The grid size was selected by 

considering the studied vineyard’s characteristics: each grid square was confined to two vine 

rows. This pipeline was proposed by Matese et al. (2019). Regarding the methods used in this 

comparison process, they were the local bivariate Moran’s index (MI) and the bivariate local 

indicators of spatial association (LISA) (Anselin, 1995). Local MI (LMI) is based in the 

Moran’s index (Moran, 1950), which measures the global data correlation. While a positive 

correlation represents similar values in the area’s neighbourhood, a negative value represents 

the opposite, and zero represents a random spatial agreement. Regarding the LMI, a value is 

provided for each observation through permutation. The local bivariate MI was used in this 

study to assess the correlation between a defined variable and a different variable in the nearby 

areas. In turn, LISA measures the local spatial correlation, providing maps of local clusters with 

a similar behaviour, which is based on MI. This way, spatial clusters and its dispersion can be 

assessed. Bivariate LISA (BILISA) (Anselin, 1995) was used as in Anselin (2014) to examine 

the spatial relationship between the CSM and CWSI and the vigour maps. This comparison was 

made using GeoDa software (Anselin et al., 2006). Spatial weights were necessary to perform 

these analyses: an eight-connectivity approach (3 × 3 matrix) was used to create the weights 

map and BILISA was executed with 999 random permutations. The computed cluster maps and 

its significance were used. Cluster maps specify positive and negative spatial associations and 

are divided into four classes, based on the correlation of the value with its neighbourhood. The 

obtained associations are: (i) high–high (HH), where high values correlated with high values in 

the neighbourhood; (ii) low–low (LL), in which low values correlated with low values in the 

neighbourhood; (iii) high–low (HL); (iv) and low–high (LH). The three classes of vigour maps 

computed through the different approaches were compared with their correspondent vigour map 

in the following flight campaign, as well as with the CSM and CWSI three classes maps. 

 Results 

This study yielded different digital products through the methods employed, from which it is 

important to highlight the vineyard status, vigour areas, potential water stress areas, and a multi-

temporal vineyard characterization. 



Chapter 8. 
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts 

209 

 Multi-Temporal Vineyard Characterization 

Figure 8.5 presents the orthorectified outcomes from the photogrammetric processing. There 

was a noticeable overall NDVI decline throughout the season (Figure 8.5a). However, 

grapevines’ canopy height (Figure 8.5b) presented a growth from the first to the third flight 

campaign, while remaining constant from then on. As for the temperature (Figure 8.5c), a high 

temporal variability was observed due to both the day temperature and the inter-row vegetation. 

For example, in the third flight campaign, temperature differences between areas with or 

without grapevines’ vegetation were smaller, about 1.0 °C, than in the other flight campaigns: 

approximately 2.2 °C for F4 and 1.4 °C for F5. Moreover, registered land surface temperatures 

presented the same behaviour as the maximum air temperature (Figure 8.2) registered in each 

month. Indeed, they were lower in July (followed by September), and higher in August. 

 

Figure 8.5. Orthorectified outcomes generated with data acquired in each flight campaign using a colour-code 
representation: (a) normalized difference vegetation index, (b) crop surface model, and (c) land surface 
temperature. Orthophoto mosaics are presented as the background of (a) and (c). 

Due to early vegetation development in grapevines by the time the first flight campaign took 

place, the minimum height to consider as grapevines’ vegetation was 0.2 m. As for the 

remainder of the flight campaigns, minimum and maximum heights were set to 0.5 and 1.9 m, 

respectively. 

Table 8.1 presents the differences in NDVI, CSM, land surface temperature, and CWSI values 

when considering the whole vineyard plot and when analysing only detected grapevines’ 

vegetation. Generally, mean and minimum NDVI values were higher when considering only 

grapevines’ vegetation. As for maximum values, some high values were accounted for in areas 
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other than with grapevines’ vegetation. The same tendency was verified in the mean and 

minimum height values, obtained through the CSM. However, maximum values were 

practically similar, except for the first flight campaign. An inverse tendency was verified when 

analysing the land surface temperature and CWSI, i.e., higher values were found when 

analysing the whole vineyard plot. 

Table 8.1. Maximum, mean, and minimum values of the normalized difference vegetation index (NDVI), crop 
surface model (CSM), surface temperature, and crop water stress index (CWSI) when considering the whole 
vineyard plot and only grapevines’ vegetation in the five flight campaigns. 

Type Outcome Parameter F1 F2 F3 F4 F5 

Whole area 

NDVI 
Max 0.88 0.91 0.89 0.78 0.78 
Mean 0.57 0.74 0.68 0.42 0.38 
Min 0.13 0.26 0.27 0.17 0.01 

CSM (m) 
Max 1.17 1.48 1.59 1.51 1.53 
Mean 0.06 0.19 0.35 0.22 0.19 
Min 0.00 0.00 0.00 0.00 0.00 

Temp (°C) 
Max – – 38.74 59.90 45.84 
Mean – – 29.89 44.35 37.20 
Min – – 27.12 37.26 32.49 

CWSI 
Max – – 1.00 1.00 1.00 
Mean – – 0.60 0.83 0.78 
Min – – 0.04 0.23 0.07 

Grapevines’ vegetation only 

NDVI 
Max 0.87 0.89 0.89 0.75 0.78 
Mean 0.70 0.82 0.80 0.62 0.59 
Min 0.41 0.59 0.64 0.37 0.25 

CSM (m) 
Max 1.07 1.48 1.59 1.51 1.53 
Mean 0.40 0.89 1.16 1.01 0.99 
Min 0.20 0.47 0.52 0.27 0.20 

Temp (°C) 
Max – – 31.20 47.81 39.36 
Mean – – 28.92 42.17 35.84 
Min – – 27.12 37.26 32.49 

CWSI 
Max – – 0.82 1.00 0.91 
Mean – – 0.38 0.68 0.48 
Min – – 0.04 0.23 0.07 

Extracted vineyard parameters allowed for a multi-temporal analysis of both grapevines’ 

vegetation area and volume, as well as for other vegetation present in the studied area. Figure 

8.6 contains these results. The first flight campaign presented the lower values for the 

grapevines’ vegetation area: 82 m2, representing 3% of the vineyard plot. The grapevines’ 

vegetation area increased until the third flight campaign, from which a significant decline was 

verified in the following flight campaigns. The grapevines’ canopy volume presented the same 

behaviour. As for inter-row vegetation, a growth happened between the first and the second 

flight campaigns, from 6% to 20% of the vineyard plot. After the fourth flight campaign, inter-

row vegetation area decreased to 26 m2 (1% of the vineyard plot), whilst a small increase was 

verified in the last flight campaign. 
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Figure 8.6. Estimated grapevines’ vegetation area and volume, and inter-row vineyard vegetation, in each flight 
campaign. 

 Generated Vigour Maps 

Vigour maps were generated as described in Section 8.2.3 and assessment values are presented 

in this section. Each map was classified as one of three classes, namely as a low, medium, or 

high vigour area. 

8.3.2.1. Visual Assessment 

Figure 8.7 presents the vigour maps generated using three approaches. When encompassing the 

whole vineyard (i.e., considering bare soil and all existing vegetation), as presented in Figure 

8.7a, a perspective of the plot’s homogeneity throughout the season was obtained. Approaches 

considering only detected vineyard vegetation presented a higher diversity, providing a deeper 

perspective on the grapevines’ vegetation spatial variability (Figure 8.7b,c). Still, a tendency 

for a lower vigour classification in the left part of the studied area was noticeable in all 

approaches. The same situation was verified in the southern central part of the vineyard plot. 

This assessment was more pronounced in the first approach but had more detail in both the 

second and third approaches. 
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Figure 8.7. Generated vigour maps, based on the normalized difference vegetation index (NDVI), with three 
vigour classes (high, medium, and low) for each flight campaign, with the three evaluated approaches: (a) 
considering all vegetation present, (b) regarding only the grapevines’ vegetation, and (c) considering only 
normalized grapevines’ vegetation. 

Vineyard areas classified with high, medium, or low vigour were evaluated in all flight 

campaigns. Their percentages are presented in Figure 8.8a. As for the first approach, the 

vineyard plot showed a higher percentage of vegetation in the high vigour class (mean overall 

percentage of 48%). However, in the first flight campaign, there was a higher area classified in 

the low vigour class (mean overall percentage of 31%). The medium vigour class presented the 

lower mean overall percentage (21%). As for the second approach, the overall mean area 

percentage was similar: 43% in the high vigour class, followed by 33% in the low vigour class 

and 24% in the medium vigour class. Regarding the third approach, the medium vigour class 

presented the higher mean overall occupation area (42%), followed by the high vigour class 

(31%) and the low vigour class (27%). 

The vineyard vigour area behaviour may not correspond to the grapevines’ vegetation. As such, 

Figure 8.8b shows the grapevines’ canopy volume present in each class throughout all the flight 

campaigns. This was achieved by intercepting vigour classes with the detected grapevines’ 

vegetation canopy volume. There were variations when comparing the applied approach and 

when analyzing the flight campaigns in the same approach: the overall value corresponded to 

the grapevines’ canopy volume presented in Figure 8.6. When considering the NDVI values for 

the whole vineyard to generate a canopy map, the grapevines’ canopy volume presented a 

higher predominance in the high vigour class. However, when comparing this with the 

approaches that consider only the grapevines’ vegetation, the grapevines’ canopy volume was 

significantly lower in the low vigour class for the latter approach. Regarding the approach 
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where only grapevines’ vegetation was considered, a clear distinction among the grapevines’ 

vegetation volume was clear: the high vigour class had a greater grapevines’ canopy volume, 

followed by the medium and low vigour classes. As for the third approach (normalized 

grapevines’ vegetation), in the last two flight campaigns (F4 and F5), there was a higher volume 

in the medium vigour class, corresponding to the detected vineyard area (Figure 8.8a). 

 

Figure 8.8. Vineyard area (a) and grapevines’ canopy volume (b) per vigour class and approach in all flight 

campaigns (F#). 

8.3.2.2. Spatial Correlations 

To undergo a spatial assessment, the three approaches to generate vigour maps were applied to 

the CSM and CWSI outcomes of each flight campaign, when available. Ergo, maps with height 

values sorted in classes—low, medium and high height—could be obtained from the CSM. 

These results are presented in Figure 8.9. Height maps presented a high homogeneity among 

all approaches, especially from the third flight campaign onward. 

 

Figure 8.9. Generated height maps obtained from the crop surface models (CSM) for each flight campaign. Each 
height value was sorted into one of three height classes (low, medium, or high). The whole vineyard (a), 
grapevines’ vegetation only (b), and normalized grapevines’ vegetation (c) was considered. 
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From the CWSI, maps that could potentially point out grapevines’ water stress were obtained. 

They are presented in Figure 8.10. Again, three classes were considered to sort out each value 

on every map: low, medium, and high water stress. Results from considering all vegetation 

present in the vineyard (Figure 8.10a) showed a high homogeneity across the plot for all flight 

campaigns. However, when considering only grapevines’ vegetation (approaches two and 

three) the behaviour was different (Figure 8.10b,c). 

 

Figure 8.10. Generated crop water stress index (CWSI) maps for each flight campaign. Each CSWI value was 
sorted into one of three classes (low, medium, or high). The whole vineyard (a), grapevines’ vegetation only (b), 
and normalized grapevines’ vegetation (c) was considered. 

Maps presented in Figures 8.9 and 8.10 were compared with the vigour maps presented in 

Figure 8.7 in a 4 × 4 m grid using the LMI to measure their spatial correlation. Table 8.2 presents 

these results. Considering all the vineyards’ vegetation (first approach), stronger correlations 

were observed for the CSM. In turn, the other two approaches presented a more balanced trend 

for the CSM and CWSI. Stronger correlation values were found among vigour maps using data 

from the fourth flight campaign with the third approach (LMI = 0.70 for the CSM and LMI = 

0.66 for the CWSI). Lower correlation values were observed in the height maps when 

considering all the vineyard’s vegetation with data from the first flight campaign. The same 

was verified in the fourth flight campaign for the CWSI. 

The local spatial autocorrelation enabled the creation of clusters maps using BILISA to evaluate 

HH, LL, LH, and HL patterns between vigour maps of the different flight campaigns and 

between vigour maps and their correspondent height and water stress maps. 
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Table 8.2. Quantitative comparison using the local Moran’s index of the normalized difference vegetation index 

(NDVI) vigour classes in the three different approaches considered to the crop surface model (CSM) and crop 
water stress index (CWSI) classes with a p-value < 0.001, for each flight campaign (F#). 

Vigour map Approach 1 Approach 2 Approach 3 
F# CSM CWSI CSM CWSI CSM CWSI 
1 0.32 – 0.39 – 0.35 – 
2 0.53 – 0.50 – 0.50 – 
3 0.41 0.44 0.37 0.43 0.36 0.41 
4 0.65 0.40 0.67 0.63 0.70 0.66 
5 0.59 0.39 0.66 0.59 0.67 0.57 

BILISA cluster map for the three evaluated vigour map approaches and its association with 

height maps is presented in Figure 8.11. As for the first approach (Figure 8.11a), there was a 

clear spatial correlation with a higher significance in the left and right sides of the vineyard 

plot, corresponding, respectively, to LL and HH associations. However, a smaller number of 

significant LH and HL clusters were detected. Regarding the other two approaches (Figure 

8.11b,c) that considered only the grapevines’ vegetation, similar spatial patters were found for 

HH and LL. Furthermore, a significant HL cluster could be found in the southwestern part of 

the vineyard plot in the fourth and fifth flight campaigns. Significant LH clusters were found 

in the south-eastern part of the vineyard in the second, third, and fourth flight campaigns for 

the second approach (Figure 8.11b). 

 

Figure 8.11. BILISA cluster maps between NDVI vigour maps and CSM height maps for the three evaluated 
approaches: (a) first approach, (b) second approach, and (c) third approach. Associations with a p-value < 0.05 are 
highlighted with a black border. 

Figure 8.12 presents the BILISA cluster maps generated from the spatial associations among 

vigour maps and water stress maps (Figure 8.10). Significant associations were found when 

using the first approach, with a representative HH cluster present in the north-eastern region of 

the vineyard plot and a LL cluster in the vineyard’s left side. When considering only the 
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grapevines’ vegetation, a similar behaviour was observed in the third flight campaign. In the 

remaining flight campaigns, a significant LL cluster existed in the left part of the vineyard, but 

a lower significance was found for HH in the north-eastern part. A high significance among the 

values was detected in the southern region, which presented HH and LH associations. 

 

Figure 8.12. BILISA cluster maps between NDVI vigour maps and CWSI maps for the three evaluated 
approaches: (a) first approach, (b) second approach, and (c) third approach. Associations with a p-value < 0.05 are 
highlighted with a black border. 

Considering the BILISA clusters maps from the vigour maps for each evaluated approach when 

comparing consecutive flight campaigns (Figure 8.13), similar patterns were observed in all 

approaches and significant LH clusters were identified when comparing the first and second 

flight campaigns considering only the grapevines’ vegetation (Figure 8.13b,c). 

 

Figure 8.13. BILISA cluster maps between NDVI vigour maps of two consecutive flight campaigns for the three 
evaluated approaches: (a) first approach, (b) second approach, and (c) third approach. Associations with a p-value 
< 0.05 are highlighted with a black border. 



Chapter 8. 
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts 

217 

 Discussion 

In this section the most meaningful results achieved in this study are discussed: (i) the multi-

temporal analysis of the studied vineyard plot; (ii) the generated vigour maps; and (iii) spatial 

correlations between vigour maps, grapevines’ height, and potential water stress. 

 Multi-Temporal Analysis  

The vineyard multi-temporal dynamics can be better understood using the orthorectified results 

obtained via photogrammetric processing of the UAV-based imagery (Figure 8.5) though their 

visual inspection in a geographical information system (GIS) (Ozdemir et al., 2017). 

Orthophoto mosaics can be used to detect missing grapevines and to manage vineyard in-field 

operations (Pádua, Marques, Hruška, Adão, Peres, et al., 2018). Vegetation indices (e.g., NDVI) 

can provide an overall assessment of vegetation vigour and potentially detect phytosanitary 

problems, such as flavescence dorée (Albetis et al., 2017) and esca (Gennaro et al., 2016). Leaf 

canopy temperature maps and CWSI can suppress the need to manually measure leaf water 

potential in the field (Baluja et al., 2012)—a time-consuming approach, usually not performed 

in the whole vineyard—as well as be used for irrigation management (Bellvert & Girona, 2012). 

In this study, an overall NDVI decline was noticeable from the third flight campaign onward 

(Figure 8.5a F4, F5). This was related to the grapevines’ vegetative cycle and to the decline of 

inter-row vegetation. Regarding height values obtained from each flight campaign’s CSM 

(Figure 8.5b), a clear distinction existed between grapevine and non-grapevine vegetation (e.g., 

soil and inter-row vegetation), except for in the first flight campaign (Figure 8.5b F1). Land 

surface temperature (Figure 8.5c) was clear-cut between flight campaigns. In fact, in the fourth 

and fifth flight campaigns (Figure 8.5c F4 and F5), there were some signs of the grapevines’ 

water stress. 

Removing non-grapevine elements from the vineyard imagery provided a different perspective 

on the results, as confirmed in Table 8.1. Indeed, this enabled the production of estimate 

parameters such as the overall inter-row vegetation and the grapevines’ area and volume (Figure 

8.6). The estimated grapevines’ vegetation area in the first flight campaign was 81 m2 (3% of 

the vineyard plot) and in the second flight campaign, a 181 m2 growth took place (262 m2, 9% 

of the vineyard plot). As for the third flight campaign, there was a growth of 255 m2 to 518 m2 

(18% of the vineyard plot). In the following flight campaigns, the grapevines’ vegetation area 

was reduced by 199 m2 (−38%) to 319 m2. Regarding the grapevines’ canopy volume, it was 
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modified by +634%, +160%, −41%, and −12% in between each successive flight campaign, 

respectively. Concerning the inter-row vegetation area, it presented a behaviour consistent with 

the available precipitation data (Figure 8.2). Indeed, it had a 214% growth in between the first 

two flight campaigns (from 181 m2 to 569 m2), representing 20% of the vineyard plot area. A 

steep decline was noticeable in the third and fourth flight campaigns (a decline of 95% to 26 

m2), followed by a growth in the last flight campaign (88 m2). As such, the vineyard inter-row 

vegetation was a good indicator of soil water status. The same tendency had already been 

verified in Pádua et al. (2018). 

By comparing the mean, maximum, and minimum values observed in the different outcomes, 

either when considering the whole vineyard or only grapevines’ vegetation (Table 8.1), there 

was a clear difference among the flight campaigns. Mean NDVI values were superior in all 

flight campaigns when considering only the grapevines’ vegetation. The same tendency was 

verified in the CSM. This can be explained by the presence of a significant amount of lower 

values in the non-grapevine vegetation areas. However, the maximum NDVI values in the first, 

second, and fourth flight campaigns were registered in non-grapevine vegetation areas. Inter-

row vegetation can account for this. Regarding maximum CSM values, they were similar in all 

flight campaigns, except for the first one, where the maximum height was detected in a non-

grapevine area (probably a vineyard post). Minimum CSM and NDVI values were lower in 

non-grapevine areas. As for temperature-based outcomes (land surface temperature and CWSI), 

the opposite behaviour was found for the maximum values: they were located in non-grapevine 

vegetation areas. Mean temperature and CWSI values were lower in the grapevines’ vegetation 

areas, as it was expected due to the existence of bare soil areas in the vineyard. Minimum 

temperature and CWSI values were similar in both approaches since they were found in the 

grapevines’ vegetation areas. These results showed the importance of grapevines’ vegetation 

segmentation when analysing a whole vineyard plot. The grapevines’ vegetation segmentation 

could improve the results in studies where this operation was not automatically performed, 

which is beneficial for removing non-grapevine elements from the analysis. Such an automatic 

procedure could help in the evaluation of vegetation indices (Candiago et al., 2015), to detect 

flavescence dorée and grapevine trunk diseases (Albetis et al., 2019) and to estimate 

grapevines’ biophysical and geometrical parameters (Caruso et al., 2017). 



Chapter 8. 
Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts 

219 

 Vigour Maps 

Vigour maps generated when considering the whole vineyard provided an overall perspective 

(Figure 8.7a) about the studied area. Indeed, influences from bare soil and especially inter-row 

vegetation were clearly noticeable. Generally, the medium vigour class had the smaller area 

(Figure 8.8a) and the high vigour class encompassed the majority of the grapevines’ canopy 

volume (Figure 8.8b). The latter was, on average, 150% higher than the other vigour classes. A 

high homogeneity was verified for the last two flight campaigns. The same happened from the 

second to the last flight campaigns, when computing height maps from the CSM and all 

campaigns with CWSI. The whole vineyard was considered in both. Positive correlation values 

were found for the LMI (Table 8.2). Moreover, the verified homogeneity resulted in meaningful 

HH and LL areas when comparing vigour maps with CSM and CWSI in the same flight 

campaign. 

Different results were obtained in the other two approaches, where only the grapevines’ 

vegetation was considered to create vigour maps. The higher incidence of missing grapevine 

plants in the left area of the vineyard remained almost the same throughout all flight campaigns. 

This was not noticeable in the first two flight campaigns’ vigour maps when considering the 

whole vineyard, probably due to an effect caused by inter-row vegetation. Other studies 

reported similar trends using vigour maps produced from the UAV-based NDVI (Khaliq et al., 

2019; J. Primicerio et al., 2015), when excluding inter-row vegetation. Moreover, Vanegas et 

al. (2018) found positive correlations when comparing vigour maps created from UAV-based 

data and a vineyard expert assessment. 

As for vineyard area, when considering only grapevine vegetation, it presented a more balanced 

behaviour. The third approach, normalized grapevines’ vegetation, showed a considerable area 

of medium vigour class, particularly in the last three flight campaigns due to the fixed cut-off 

values to create vigour classes. Both approaches, grapevines’ vegetation and normalized 

grapevines’ vegetation, presented insignificant grapevines’ canopy volume values in the lower 

classes. Moreover, when considering normalized grapevines’ vegetation, canopy volume values 

were predominant in the medium vigour class, in agreement with the vineyard’s overall 

vegetative growth and decline (growth from first to the third flight campaigns and decline 

onward). Similar relations between vigour and the grapevines’ canopy volume were reported 

in other studies (Caruso et al., 2017; Alessandro Matese et al., 2016). A higher heterogeneity 

was verified when observing both the CSM and CWSI maps generated with the approach that 
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considered the normalized grapevines’ vegetation. In fact, when analysing the CWSI maps from 

the last two flight campaigns (Figure 8.10), a period of the grapevines’ water stress was 

observed. However, this period was not clearly distinguishable in a visual map inspection based 

on data from the first approach (when the whole vineyard was considered). These correlations 

were observed in the BILISA cluster maps (Figure 8.12b,c), where areas with a high vigour 

showed a HL relationship with the CWSI maps, and significant agreements could be observed 

in the third flight campaign. A similar trend was reported in Matese and Di Gennaro (2018). 

Significant spatial associations were found in all approaches—whole vineyard, grapevines’ 

vegetation, and normalized grapevines’ vegetation—when analysing the height class maps 

(Figure 8.11). Although lesser associations were found in the first flight campaign, this can be 

explained with the grapevines’ growth cycle. In this case, significant HL areas were found in 

the approaches considering only the grapevine vegetation. Similarly, Matese et al. (2016) 

observed that some areas with a higher vigour were linked to areas with higher heights. 

This study analysed a vineyard’s behaviour throughout a season with a multi-temporal approach 

based on multispectral data acquired using a UAV. Furthermore, correlations between the 

different digital outcomes were found. This presents a potential tool for multi-temporal 

vineyard assessment and can serve as a base to provide prescription maps, similar to Campos 

et al. (2019), since they can be correlated with agronomical variables (e.g. yield, berry weight 

and total soluble solids), as shown in Matese et al. (2019). Indeed, patterns detected when 

comparing vigour maps from consecutive flight campaigns (Figure 8.13) highlighted 

differences in the multi-temporal data, which helps to understand local and spatial grapevines’ 

vegetative development dynamics throughout the season. However, filtered data considering 

only values representing grapevines’ vegetation, therefore representing the plants’ 

physiological status, was proven to be more reliable when comparing the evaluated approaches 

(Table 8.2); that is to say, it had a higher overall correlation. As such, it stands to be an excellent 

tool for decision support systems within vineyard management processes. 

 Conclusions 

Climate change can heighten key environmental vectors that negatively impact vineyards. 

Grapevines can be weakened by both water stress and exposure to higher temperatures, which 

will increase their vulnerability to phytosanitary issues. UAVs equipped with different sensors 

can be used to regularly monitor grapevines, documenting changes in the vegetation or signs of 

diseases/infestation, as well as any stress caused by environmental constraints. 
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In this context, the need to evaluate current vineyard behaviour is crucial to proceed toward PV. 

Vigour maps can help to provide relevant insights, helping farmers and/or winemakers to 

understand their vineyards status and enabling timely actions to tackle problematic areas or 

observing response to treatments. Furthermore, the methods employed in this study to filter out 

non-grapevine vegetation presented a better vineyard representation, which can be used to 

assess a vineyard’s variability, but also to help in managing field-operations, such as those to 

inspect grapevines or to improve grapevines’ physiological status. 

The use of methods to compare spatial correlations allowed us to obtain a spatial distribution 

of significant clusters among the different approaches evaluated for creating vigour maps. The 

importance of using different UAV-based outcomes to estimate biophysical and geometrical 

parameters shows the suitability of UAVs as a remote sensing platform for vineyard multi-

temporal monitoring operations. This study allowed us to conclude that the need for UAV-

based data can be tracked according to a vineyard’s phenology. Moreover, TIR data should be 

acquired in periods of higher temperatures to assess areas potentially affected by water stress. 

Nevertheless, the analysis presented in this study should be assessed in other vineyard types, 

such as those with irrigation systems, with a lower rate of missing grapevines, and in other wine 

producing regions with different grapevine training parameters. 
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 Introduction 

The need to assess vineyard spatiotemporal variability is crucial in viticulture, as it is directly 

related to grapevine health status and yield (A. P. B. Proffitt et al., 2006), which can be achieved 

through precision viticulture (PV). Derived from precision agriculture concept (Pablo J Zarco-

Tejada et al., 2014), in PV different technologies for vineyard management and grape 

production are employed for data acquisition and processing, aiming, among others, to 

maximize the oenological potential of vineyards, according to their spatiotemporal variability, 

by adopting site-specific management practices to increase both quality and yield (Alessandro 

Matese & Di Gennaro, 2015; Zhang & Kovacs, 2012). Thus, individual grapevines 

identification is important to precisely assess the vineyard status, by estimating several metrics 

for each plant. In this way, a better knowledge of grapevines (Vitis vinifera L.) development 

and spatial heterogeneity within the vineyard (A. P. B. Proffitt et al., 2006) along with the 

factors influencing it (Steyn et al., 2016) can be reached enabling individual plant treatments. 

Traditional airborne remote sensing platforms, as satellites and manned aircrafts, both suitable 

for applications requiring a regional coverage, were used in PV to, among others, detect 

grapevine varieties (Karakizi et al., 2015), vigour assessment (Martín et al., 2007; Tisseyre et 

al., 2007), vineyard disease mapping (Hall et al., 2002), and for leaf area index (LAI) and 

canopy density estimation (L. Johnson et al., 2003; L. F. Johnson et al., 2001). However, given 

their coarser spatial resolution, crop and non-crop data are often mixed or represent multiple 

plants, lacking of true individual grapevine information (A. Matese et al., 2013). Nevertheless, 

data from these platforms can still deliver a general overview of vineyards, at least at a plot 

level (Khaliq et al., 2019). To overcome this scale-related issue, some approaches rely in 

proximal remote sensing (Mendes et al., 2016; Milella et al., 2019; Rosell et al., 2009). 

However, these approaches are time-consuming, requiring a passage through the whole 

vineyard and some issues can occur due to terrains’ topography and possible obstacles in 

between the vine rows (Morais et al., 2008). Vibrations induced by the vehicles can interfere in 

data quality and the high costs of LiDAR sensors constitutes a drawback to their widespread 

adoption. 

In the other hand, unmanned aerial vehicles (UAVs) provide aerial remote sensed data, with 

high temporal and spatial resolutions, and at lower costs for small to medium area coverages 

when compared to traditional airborne platforms (Alessandro Matese et al., 2015). UAVs are 

capable to acquire high-resolution georeferenced data from different sensors exploring different 
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parts of the electromagnetic spectrum (Pádua, Vanko, et al., 2017). The georeferenced images 

driven from these sensors can be used to compute orthorectified outcomes, through 

photogrammetric processing (Colomina & Molina, 2014): orthophoto mosaics, digital elevation 

models (DEM) and spectral indices (Pádua, Vanko, et al., 2017) are among the most used. The 

normalized difference vegetation index (NDVI) (Rouse et al., 1974) is a vegetation index 

widely used in different remote sensing platforms for different purposes (Pádua, Vanko, et al., 

2017). In the scope of PV, it is known to be correlated with LAI (Caruso et al., 2017), vegetative 

vigour (Campos et al., 2019) and yield (A. Matese et al., 2019). In turn, the crop water stress 

index (CWSI) (Idso et al., 1981) is used in different studies to assess vineyard water status 

(Baluja et al., 2012; Bellvert et al., 2013, 2015; Santesteban et al., 2017). In PA crop surface 

model (CSM) were used in different annual crops (Bendig et al., 2014; Du & Noguchi, 2017; 

Li et al., 2016; Tilly et al., 2014), where good agreements with crop height and biomass were 

observed. CSMs were also used in olive groves (Díaz-Varela, De la Rosa, et al., 2015), chestnut 

trees (Marques et al., 2019) and lychee trees (Johansen et al., 2018). As for PV, CSMs 

demonstrated a high agreement with grapevines’ height (Caruso et al., 2017; A. I. de Castro et 

al., 2018; Pádua, Marques, Hruška, Adão, Peres, et al., 2018), and with vineyard vigour 

(Alessandro Matese et al., 2016; Pádua, Marques, et al., 2019). Its usage also enabled the 

estimation of grapevine volume (Caruso et al., 2017; A. I. de Castro et al., 2018; A. Matese et 

al., 2019; Pádua, Marques, Hruška, Adão, Peres, et al., 2018). Regarding vineyard vegetation 

detection several methods were already proposed, based in different approaches using the 

photogrammetric outcomes from UAV-based imagery by applying image processing 

techniques, machine learning methods and by filtering dense point clouds and DEMs (Baofeng 

et al., 2016; Burgos et al., 2015; Comba et al., 2015, 2018; Kalisperakis et al., 2015; A. Nolan 

et al., 2015; Pádua, Marques, Hruška, Adão, Bessa, et al., 2018; Poblete-Echeverría et al., 2017; 

Weiss & Baret, 2017). Those are capable to distinguish grapevine from non-grapevine 

vegetation and to extract different vineyard macro properties such as the number of vine rows, 

row spacing, width and height, potential missing plants and vineyard vigour maps. 

In what concerns UAV-based approaches for individual identification of plants, the published 

studies mostly focus in tree detection within both forest and agriculture contexts (Dempewolf 

et al., 2017; Pádua, Marques, Adáo, et al., 2018; Surový et al., 2018). The outcomes resulting 

from photogrammetric processing can be used to estimate individual geometrical and 

biophysical grapevine parameters, providing a plant-specific application for PV (Jacopo 

Primicerio et al., 2017). In this scope, De Castro et al. (2018) proposed an object-based image 
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analysis (OBIA) method using very high-resolution vineyard DSMs (1 cm ground sample 

distance—GSD) to estimate grapevine vegetation within vineyard plots. The method is based 

in a chessboard algorithm to consider pixels as grapevine. Grapevines are then divided by 

considering the spacing between plants, wherein missing plants are also estimated. Different 

geometrical properties were extracted, per grapevine: area, height, width, length, and volume. 

Matese and Di Genaro (2018) assessed missing plant detection, in a semi-automatic procedure, 

by filtering the DSM (1 cm GSD) in an 40 × 60 m experimental vineyard plot and by manually 

placing polygons of 1.00 × 0.60 m, representing each grapevine plant and, then, analysing the 

number of pixels intercepted by each polygon by using a five-classes approach based in 

quantiles to verify the probability of a missing plant presence. Primicerio et al. (2017) used a 

Binary Multivariate-Logistic Regression model for the individual detection of grapevines, 

including missing grapevines, in orthophoto mosaics. Grapevine vegetation segmentation was 

addressed by the method proposed in Comba et al. (2015). While De Castro et al. (2018) only 

focused in the extraction of grapevine geometric parameters, Primicerio et al. (2017) and 

Matese and Di Genaro (2018) mainly relied in the detection of presence/absence of grapevines. 

In the previously mentioned studies, it is pointed out that the integration of data from other 

sensors can enable the extraction of single plant vigour, health and water status, allowing to 

solve some of the problems of correct representation of vigour zones within the vineyard. 

Usually vineyard vigour maps rely in the averaging and/or interpolation of vegetation indices 

values (Jacopo Primicerio et al., 2017). Moreover, De Castro et al. (2018) state that grapevine 

multi-temporal analysis would provide a rapid way to monitor its status when compared to time-

consuming and inconsistent in-field observations. 

In this study, it is intended to address the gaps that were not covered in those implementations, 

by performing an individual grapevine estimation for site-specific management in a multi-

temporal context, helping winegrowers into fully explore the potential of the high-resolution 

data provided by UAVs and to combine data resultant from the different imagery sensors for a 

more precise decision support and a quick vineyard inspection. This way, grapevine biophysical 

and geometric parameters extraction is performed using UAV-based data from different 

imagery sensors, namely: RGB, for grapevine vegetation detection, and geometrical features 

extraction; multispectral, for feature extraction from vegetation indices; and thermal infrared 

(TIR) imagery for grapevine temperature and water status estimations. 
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Next section characterizes the study areas, describes the data acquisition and processing, 

presents the method used for vineyard, as well as the validation procedures. The obtained results 

are shown in Section 9.3, considering grapevine estimation accuracy and the multi-temporal 

analysis. Section 9.4 discusses this study’s findings. Section 9.5 addresses the main conclusions 

and presents potential future developments using the proposed method. 

  Materials and Methods 

Aerial surveys were conducted in different vineyards, in the context of this study, and the most 

significant of their characteristics are shown in Table 9.1. Except for vineyard B, the analysed 

plots are located in the campus of the University of Trás-os-Montes e Alto Douro (UTAD, Vila 

Real, Portugal), in the Douro Demarcated Region. They are rainfed irrigated and trained in 

double guyot system. Vineyard B is located at Quinta do Suco (Amares, Braga, Portugal), in 

the Vinhos Verdes Region, it is trained in a single cordon and is irrigated through an irrigation 

system. Both training systems are the most common in these wine regions (Costa et al., 2015). 

The selection of these vineyard plots was based on the fact they present different row 

orientation, diverse levels of missing grapevines (0% to 33%) and plant height. The surveyed 

vineyard plots are presented in Figure 9.1. 

Table 9.1. Characteristics of the analysed vineyard plots, indicating the original number of grapevines and missing 
grapevines; its number of rows, spacing, and height. 

Vineyard 
plot 

Coordinates 
(Lat., Lon.) 

Area 
(ha) 

Number of grapevines Rows 
Original Missing Number Spacing (m) Height (m) 

A 
41°17'12.1"N 
7°44'15.2"W 0.36 1440 381 34 1.20 1.4—1.7 

B 
41°39'24.2"N 
8°22'24.5"W 

0.19 234 0 7 2.00 2.8 

C 
41°17'08.6"N 
7°44'13.6"W 

0.35 1439 448 36 1.20 1.4—1.7 

D 
41°17'13.2"N 
7°44'08.7"W 0.30 1228 320 22 1.20 1.4—1.7 

E 
41°17'08.1"N 
7°44'09.9"W 

0.57 2266 416 55 1.25 1.4 

F 
41°17'09.5"N 
7°44'09.1"W 

0.32 1224 405 45 1.25 1.4 
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Figure 9.1. Analysed vineyard plots. The uppercase letter in the upper left corner represents each vineyard plot 
ID. Coordinates in WGS 84 (EPSG: 4326). 

Aerial imagery acquisition was performed using two UAVs, a multi-rotor UAV, the DJI 

Phantom 4 (DJI, Shenzhen, China) and a fixed-wing UAV, the senseFly’s eBee (senseFly SA, 

Lausanne, Switzerland). The Phantom 4 was used to acquire RGB and multispectral imagery at 

lower flight heights, whereas eBee was used to survey a larger area for TIR imagery acquisition, 

which included the studied areas. RGB imagery was acquired using Phantom 4 native camera, 

FCC 3 model, a CMOS sensor with 12.4 MP resolution mounted in a 3-axis electronic gimbal. 

Multispectral imagery acquisition was conducted using the Parrot SEQUOIA (Parrot SA, Paris, 

France), using green (550 nm), red (660 nm), red-edge (735 nm), and near infrared (790 nm) 

bands, with 1.2 MP resolution. The radiometric calibration is performed based on the irradiance 

measured by the sensor located at the top of the UAV and using the reflectance from calibration 

target (Airinov, Paris, France) prior to each flight. TIR imagery was acquired using thermoMAP 

(senseFly SA, Lausanne, Switzerland) which can acquire TIR data between 7500 nm to 13500 

nm with 640 × 512 pixels and with a temperature resolution of 0.1 °C. The sensor’s calibration 

is automatically performed in-flight.  

UAV flight campaigns performed with the multi-rotor UAV were conducted with 80% front 

overlap and 70% side overlap at ≈40 m height from the take-off point in a double-grid 

configuration, resulting in GSDs of approximately 2 cm for RGB imagery and approximately 

5 cm for multispectral imagery. While, the flights conducted with the fixed-wing UAV had 

90% front overlap and 70% side overlap and were performed at 75 m height in a single grid, 
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these specifications were selected according to manufacturer recommendations, obtaining an 

approximate GSD of 18 cm. The preparation and execution of flight campaigns of the multi-

rotor UAV took 20 minutes, while the fixed-wing UAV took 30 minutes. 

  Data acquisition 

9.2.1.1. Validation dataset 

A validation dataset, composed of all the surveyed vineyard plots (A to F), was created for 

accuracy assessment of the individual grapevine detection procedure. Specifically, for the 

estimation of the number of grapevines and for canopy gaps detection, i.e. parts of vine rows 

where no grapevine canopy is present (missing plants). For this purpose, only RGB data was 

considered. The data was collected between May to August 2018 at the following at days of 

year (DOY):136 (vineyard plot B); 186 (vineyard plot A); 197 (vineyard plot D); 215 (vineyard 

plot C); and 219 (vineyard plots E and F). 

9.2.1.2.  Multi-temporal dataset 

Vineyard plots A and B were used for multi-temporal analysis and were surveyed using 

different UAV-based sensors, namely, RGB, MSP and TIR. The context of these vineyard plots 

is different: vineyard plot A, located at UTAD campus, it is mainly used for experimental 

purposes, while plot B is a commercial vineyard. Vineyard plot B was selected to be surveyed 

throughout the vegetative growth cycle. It is composed by seven rows of two white grapevine 

varieties, four rows of cv. Alvarinho and three rows of cv. Loureiro. Vineyard plot A had a 

higher incidence of missing grapevines and suffered from powdery and downy mildew due to 

the conjugation of high air temperature and high humidity levels. These fungi affect the 

grapevines yield and leaves, causing potential losses (Maria do Carmo Val, 2013). It is 

composed by a collection of recommended Portuguese grapevine varieties. 

In the case of vineyard plot A, flight campaigns were conducted in the first and fourth weeks 

of July and in the third week of August and September (2018), with an average time distance 

of approximately 26 days in between flight campaigns, covering most part of the fruit set and 

varaison phenological stages. As for vineyard B, the flight period is broader encompassing most 

part of grapevine’s phenological development, from the third week of May 2018 until the 

second week of October 2018, after grape harvesting. The remaining campaigns were 

performed at the third week of June and July, and at the second week of August 2018. The 

temporal mean distance between campaigns is 37 days. 
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For an accurate multi-temporal analysis, six ground control points (GCP) were acquired in 

different points from the surroundings of each analysed vineyard plot using a GNSS receiver 

in RTK mode in the TM06/ETRS89 coordinate system to perform imagery alignment during 

the photogrammetric processing. In order to ensure GCPs’ recognition in TIR imagery, 

aluminium foil was used, as in Hartmann et al. (2012). Figure 9.2 presents an example of the 

aluminium target appearance thermal and RGB images. 

 

Figure 9.2. Thermal target, indicated by the arrow, used for data alignment: (a) its representation in thermal 
infrared imagery and (b) in RGB. 

  Data processing 

The data acquired in each flight campaign passed through a pre-processing stage by means of 

photogrammetric processing for computation of different orthorectified outcomes. After this 

stage, the data was used as input for individual grapevine estimation and computation of 

different vineyard-related parameters. 

9.2.2.1. Data pre-processing 

Pix4Dmapper Pro (Pix4D SA, Lausanne, Switzerland) was used for photogrammetric 

processing. It supports the imagery from all the sensors used in this study, allowing to generate 

3D point clouds using Structure from Motion (SfM) algorithms and, therefore, different 

orthorectified outcomes. However, depending on the source data, different outcomes were 

computed. This way, when processing RGB imagery, orthophoto mosaics, DSMs and DTMs 

were generated. Moreover, crop surface models (CSM) were computed subtracting the DTM 

altitude values from the DSM. The G% index (Richardson et al., 2007) was computed according 

to Pádua et al. (2018), from the RGB orthophoto mosaic, as in (1), by normalizing the green 

band with the sum of all bands. The data from other sensors used in this study can also generate 

CSM, but they suffer from smoothing effects, since they have less spatial resolution and, 

therefore, lack of detail (Alessandro Matese et al., 2016). 
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G% = Green/ሺRed + Green + Blueሻ (1) 

The NDVI was computed using multispectral imagery. Using TIR imagery, the land surface 

temperature (LST) was computed. However, since crop temperature varies along the day and 

epoch of the year, it can penalize the multi-temporal data analysis representativeness (Bellvert 

et al., 2013). Thus, to ensure the most representative results from TIR data, LST from each 

flight campaign was used to compute the CWSI (Idso et al., 1981). This index relies in the usage 

of upper and lower temperature bounds (Twet and Tdry) which, respectively, correspond to the 

temperatures of well-watered leaf and a non-transpiring leaf. Since GSDs from different sensors 

were also different, to enable data integration, it was necessary to standardize the GSD. This 

operation was directly performed in the photogrammetric software, using the gaussian average, 

being the data resampled to 5 cm GSD. Obviously, this procedure did not improve the resolution 

of the thermal data, as in practice the original pixel was split divided allowing a direct 

comparison. This ensures the resolution of the remaining information is maintained and, at the 

same time, making the image processing stage quicker, and preserving all relevant information. 

This ensures the resolution of the remaining information is maintained and, at the same time, 

making the image processing stage quicker, preserving relevant information. CSM and G% 

were computed using QGIS software, an open source geographical information system (GIS). 

9.2.2.2.  Vine rows estimation and individual grapevine estimation 

The detection of vineyard vegetation and vine rows was accomplished using the method from 

Pádua et al. (2018). Figure 9.3 presents the main stages of the method for individual grapevines 

estimation and parameters extraction. 

Vegetation detection relies on the combination of CSM and G% with image processing 

techniques for a given vineyard plot P. Both CSM and G% are binarized by thresholding, 

automatically using the Otsu’s method (Otsu, 1979) for G%, and using a height range for the 

CSM. The resulting images are combined resorting in a new binary image V representing the 

estimated vineyard vegetation, forming different group of pixels (clusters). Then, the detected 

clusters are dilated according to their orientation resulting in the vine rows estimations. By 

eroding this image, a new image S with the rows central lines is obtained. Considering the 

equidistance space d between grapevines’ trunks along with S, grapevine plants can be 

estimated. This is the common scenario in modern vineyards were grapevines are mechanically 

implanted (Jacopo Primicerio et al., 2017). This way points are positioned along the vine rows 

and, then, dilated with a morphological line structuring element with the same orientation as 
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the vine rows. Depending on the vineyard training system trunk’s position can vary, being in 

the middle or in edges of the grapevine area. Taking this into account, the grapevines are 

correctly positioned. The resulting binary image is subjected to a thickening morphological 

operation, by adding pixels to border of the clusters, but maintaining the clusters unconnected. 

The binary image G forms the area where vegetation from each grapevine is confined, since 

they are trained with wires to grow vertically and horizontally in between rows. 

 

Figure 9.3. Main stages of individual grapevine estimation and its parameters extraction along with graphical 
examples of each step. Some graphical examples are presented in a colour-coded representation to highlight the 
different values. Binary images were used to mask the orthophoto mosaic. 

9.2.2.3. Parameters extraction 

By estimating the area of where each grapevine is present within a given plot, it is possible to 

individually estimate different parameters, from biological and physical characteristics. This 

way, the outcomes from different sensors can be useful to provide grapevine parameters. 

This procedure uses the estimated grapevine vegetation V along with G, both are combined as 

in (2). The result of this combination in a new image E, representing the vegetation for each 

estimated grapevine, enabling the extraction of biophysical and geometric grapevine parameters 

from the UAV-based photogrammetric outcomes. 

𝑒𝑖,𝑗 = {
1, if 𝑣𝑖,𝑗 = 1 ⋀  𝑔𝑖,𝑗 = 1

NaN, otherwise
 (2) 
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Depending on the available data, different parameters can be extracted for each grapevine, 

namely: 

• the area of each grapevine, which is computed by the number of pixels present in each 

cluster from E multiplied by its squared GSD value; 

• the grapevine height, these values are extracted from the CSM, only retrieved in the 

pixels of E (the remaining CSM pixels are not considered), mean, maximum and 

minimum values are estimated; 

• the volume of grapevine, it is estimated using both height and area, the different height 

estimates (mean, maximum and minimum estimated height values) are used to calculate 

different volume values; 

• features driven from multispectral and TIR imagery, in the case of this study, NDVI, 

LST and CWSI are masked according to E and its mean, maximum and minimum values 

are estimated. 

Mean value refers to mean value of a given cluster, maximum and minimum values are 

estimated from the mean value of the higher/lower 10% values, this way, potential outlier pixels 

are discarded, independently from the area of the clusters. Since CWSI needs upper and lower 

bound temperature values, this was achieved by using the mean temperature values retrieved 

from LST, considering the mean temperature value of the 10% lowest and highest temperature 

values to compute Tdry and Twet, respectively. The estimation of other vegetation indices from 

different sensors is also supported. In the scope of this study only NDVI and CWSI are 

estimated. Still, other parts of the electromagnetic spectrum can also be used. The grapevine 

mask clusters are associated with the extracted grapevine parameters, which, in turn, are 

converted to a point shapefile or in a table format. Statistical parameters as standard deviation 

of the estimated values is also calculated, but such values are not in the scope of this study. 

9.2.2.4. Multi-temporal analysis 

The estimated grapevine positions enable its multi-temporal analysis which is crucial to track 

the grapevine vegetative development over time. This way, the analysis is performed by 

considering the position of each detected grapevine in a given flight campaign, aiming to 

individually monitor them regarding the various estimated parameters extracted from the multi-

sensor data. This analysis is also performed at the vineyard plot scale, as proposed in Pádua et 

al. (2018). 
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Multi-temporal analysis is performed by using the detected grapevine estimation in each flight 

campaign. Using the mask created in G in the first flight campaign upon the estimated grapevine 

vegetation V from a flight campaign k, it is possible to estimate the different parameters from 

the available UAV-based data for n flight campaigns. Thus, data from flight campaign k can be 

used to evaluate the current vineyard status, by statistically assessing the distribution of the 

different extracted parameters, and to compare it with other flight campaigns. This enables to 

observe the grapevines vegetative evolution through the extracted biophysical and geometrical 

parameters. 

 Grapevine counting accuracy 

For accuracy purposes, the number of estimated grapevines was evaluated. This process was 

conducted by counting the plants in the vineyard plots, in each vine row, and then different 

cases were evaluated:  

1. the total number of estimated grapevines, this value helps to understand the robustness of 

the method, by considering the total number of grapevines for an analysed vineyard plot;  

2. the number of existing plants, by cross-referring the actual number of plants observed in-

field with the ones estimated from the method; and  

3. the number of missing grapevines, i.e. grapevines that were missing causing a canopy gap 

in the vine row. 

These values are compared at the vineyard plot level and at the row level. 

Grapevine detection was evaluated based in true and false positives (TP/FP) which refer to the 

number of correct/incorrect estimated grapevines as real grapevines and, similarly, true and 

false negatives (TN/FN) for non-grapevines. For this purpose, different parameters were 

evaluated (equation presented in Table 9.2), namely:  

• precision, the fraction of estimated grapevines that are correctly estimated (TP) rather 

than wrongly estimated (FP);  

• recall, the fraction of grapevines that are correctly detected rather than wrongly 

estimated;  

• false negative rate (FNR), percentage of grapevines falsely classified as being missing;  

• F1score, the harmonic mean of precision and recall measures; and  
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• overall accuracy, considering all correctly estimated grapevines and missing grapevines 

in all data. 

Table 9.2. Evaluation parameters in grapevine vegetation classification 

Parameter Equation 

Precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

False Negative Rate 𝐹𝑁𝑅 =  1 −
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1score 𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ൬
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
൰ 

Overall accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 Data alignment 

Data alignment is crucial in multi-temporal analysis to accurately extract individual grapevine 

parameters with minor alignment errors. Thus, the photogrammetric processing of the UAV-

based imagery from the different sensors was evaluated for each vineyard plot in the flight 

campaigns encompassed in the multi-temporal dataset. The mean error and root mean square 

error (RMSE) were used. RMSE equation is shown in (3), where ei is the error of each point in 

a given direction (X, Y, Z) and n the total number of GCPs. This evaluation can further provide 

the deviation of the acquired UAV-based imagery from each sensor along the flight campaigns. 

RMSE = √
∑ 𝑒𝑖2
𝑛
𝑖=1

𝑛
 (3) 

  Results 

  Grapevine counting accuracy 

Individual grapevine estimation for different plots of the study area is presented in Table 9.3. 

A perfect agreement was observed in vineyards A, B, D, and F, where the number of estimated 

grapevines per row matched with the ground-truth values. However, for vineyards C and E, the 

number of estimated vine rows differed in one in each vineyard plot, which was expectable 

since in these vine rows there were no grapevines, thus, these missing grapevines were 

discarded from further validation. The number of estimated grapevine plants differed in two for 

vineyard C and seven concerning vineyard E. Discarding the plants belonging to the undetected 

vine rows, the overall agreement was 99.88%, missing solely in nine plants (total: 7786, 

estimated: 7777). 
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Table 9.3. Number of estimated grapevines when compared to ground truth data observed in-field. 

Vineyard plot 
Number of grapevines 

Percentage (%) 
Observed Estimated 

A 1436 1436 100.00 
B 234 234 100.00 
C 1369 1367 99.85 
D 1238 1238 100.00 
E 2279 2272 99.69 
F 1230 1230 100.00 

Total 7786 7777 99.88 

Figure 9.4 presents the estimated grapevines in each vineyard plot, along with the 

corresponding numerical assessment shown in Table 9.4. The precision rate was above 99% 

(mean value of 99.59%), reaching 100% in vineyard B. Regarding recall, also quantifying FN; 

a mean value of 98.06% was obtained, being the lowest recall value obtained in vineyard C 

(93.98%). These cases reflect the number of grapevines that were incorrectly classified as 

missing grapevine (FN). Consequently, FNR was approximately 3% (vineyards C, D and F), 

while the mean FNR reached 1.94%. In what concerns the harmonic mean of precision and 

recall metrics (F1score) its mean value is above 98%. The lower value for this metric was 

observed for vineyard plot F (96.75%), in opposition to vineyards A and B (99%), which had 

the better ranks. For the remaining plots, F1score was within the range of 97-98%. Focusing on 

accuracy metrics, an overall value of 98% was obtained, with minimum occurrences above 

96%. These results seem to represent a good overall agreement concerning individual grapevine 

classification. 

 

Figure 9.4. Estimated grapevine plants in the validation dataset. The uppercase letter in the upper left corner 
represents each vineyard plot ID. Coordinates in WGS 84 (EPSG: 4326). 
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Table 9.4. Evaluation of the proposed method in the grapevine’s classification for the following parameters: 

precision, recall, F1score, false negative rate (FNR) and overall accuracy (OA). 

Vineyard plot Precision (%) Recall (%) F1score (%) FNR (%) OA (%) 
A 99.22 98.71 98.96 1.29 98.33 
B 100.00 100.00 100.00 0.00 100.00 
C 100.00 93.98 96.90 6.02 95.17 
D 99.90 96.62 98.23 3.38 97.09 
E 99.71 97.67 98.68 2.33 97.58 
F 99.00 97.07 98.03 2.93 96.75 

Mean 99.64 97.34 98.47 2.66 97.49 

  Multi-temporal vineyard monitoring 

Since the used methods anticipated a multi-temporal context application, supported through 

different photogrammetric outcomes from which individual grapevine parameters can be 

extracted, an analysis using UAV-based RGB, multispectral, and TIR imagery was conducted 

in vineyards A and B. Moreover, for this type of application, it is important to ensure a reliable 

imagery alignment, which was also evaluated. 

9.3.2.1.  Data alignment 

The spatial accuracy of each orthorectified outcomes, generated from the photogrammetric 

processing, were evaluated in their mean spatial deviations (X, Y, Z) and mean RMSE. In this 

case, the UAV-based imagery acquired from RGB, multispectral and TIR sensors, with 

different spatial resolutions, were used along with georeferenced GCPs. The projection errors 

obtained in vineyards A and B for each sensor are presented in Table 9.5, for each flight 

campaign. Overall, the errors are lower for RGB, below 5 cm; followed by multispectral 

imagery, with errors ranging from 5 cm to 10 cm; and when processing TIR imagery higher 

error rates were obtained ranging from 10 cm to 20 cm. Pixel projection error was similar in all 

sensors, i.e., from approximately 0.5 to 1 pixel, being, generally, higher for RGB imagery. The 

overall mean RMSE values in vineyard A were 3.61 cm for the RGB imagery, 7.35 cm for the 

multispectral imagery, and 15.50 cm for the TIR imagery, while in vineyard B were, 

respectively, 2.24 cm, 4.84 cm, and 14.34 cm. The mean pixel projection error of all campaigns 

was lower than one pixel in all sensors; it was higher in the RGB, followed the multispectral 

and TIR imagery. 
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Table 9.5. Mean error, root mean square error (RMSE) and projection errors for the alignment of each project 
during photogrammetric processing in both analysed vineyard plots, at each flight campaign (F#). 

Vineyard plot Sensor F# Mean (cm) RMSE (cm) Projection error (pixel) 

A 

RGB 

F1 -0.19 3.15 1.30 
F2 -0.19 4.55 1.21 
F3 0.08 3.65 0.57 
F4 0.06 3.09 0.58 

MSP 

F1 0.78 5.47 0.71 
F2 -0.40 5.90 0.43 
F3 0.41 8.22 1.25 
F4 0.24 9.82 0.51 

TIR 

F1 0.72 12.39 0.65 
F2 -0.98 13.34 0.54 
F3 3.82 19.38 0.74 
F4 4.70 16.87 0.90 

B 

RGB 

F1 -0.37 3.68 1.30 

F2 0.02 2.20 0.63 

F3 0.00 1.73 0.57 

F4 -0.03 1.81 0.57 

F5 -0.01 1.76 0.58 

MSP 

F1 -0.63 4.66 0.50 

F2 0.24 4.38 0.85 

F3 -1.16 3.84 0.93 

F4 -0.76 4.99 0.53 

F5 0.11 6.35 0.75 

TIR 

F1 2.84 11.30 0.47 

F2 3.14 16.52 0.76 

F3 2.35 15.55 0.66 

F4 2.60 14.02 0.59 

F5 1.55 14.30 0.77 

9.3.2.2. Vineyard plot A 

The applied method enables the estimation of vegetation (grapevine and. inter-row vegetation) 

present in the vineyard plot. In between the flight campaigns, an increment of grapevine 

vegetation area was observed from the first to the second flight campaign (from 675 m2
 to 782 

m2, corresponding to a 16% increase). From the second to the third flight campaign, there was 

a decline of 35% (-272 m2). For the remaining flight campaigns, the grapevine vegetation area 

remained unchanged (around 500 m2). The same behaviour was observed in grapevine volume, 

where 877 m3 were estimated in the first flight campaign, 939 m3 (growth of 7%) for the second 

flight campaign, followed by 619 m3 (decline of 34%) and 610 m3 (decline of 1%), for the third 

and fourth flight campaigns, respectively. Focusing in the inter-row vegetation, its area declined 

from the first to second flight campaigns (from 1221 m2 to 6 m2), and then remained unchanged 

on subsequent flights (lower than 90 m2). 
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Figure 9.5 provides the distribution of the mean values of the different parameters extracted 

from the estimated grapevine plants. The flight campaigns were carried with a significant 

vegetation development from fruit set to harvest. This way, the height distribution in the 

different flight campaigns (Figure 9.5a) did not varied significantly, starting with a mean height 

of 1.23 m, in the first flight campaign, and stabilizing around 1.13 m, in the remaining 

campaigns. In what concerns the grapevine area and volume (Figure 9.5b and c) both 

parameters presented a similar behaviour, declining from the first to the last flight campaign. 

Grapevines mean area starts with 0.44 m2 in the first campaign and a progressive decrease can 

be observed until the last campaign, in which grapevine mean area ends up with 0.32 m2. In 

terms of the mean grapevine canopy volume, it is 0.69 m3 in the first flight campaign, 0.58 m3 

in the second one and 0.50 m3 in the remaining flight campaigns. Considering the distribution 

of the NDVI values (Figure 9.5d), a decline was verified when comparing the values of the 

previous campaigns sequence in which 0.80, 0.73, 0.66, and 0.55 of grapevine mean NDVI 

were respectively reached. Regarding the parameters extracted from the thermal infrared 

imagery, both grapevine temperature and CWSI (Figure 9.5e and f) presented distinct 

distributions. The temperature values were lower in the first flight campaign and higher in the 

third flight campaign. Despite the mean temperature variability through the flight campaigns, 

CWSI distribution is similar. 

 

Figure 9.5. Boxplots of height (a), area (b), volume (c), normalized difference vegetation index (d), land surface 
temperature (e), and crop water stress index (f) of each flight campaign in vineyard A. Mean values are marked 
with •. 



Chapter 9. 
Individual grapevine analysis in a multi-temporal context using UAV-based multi-sensor imagery 

241 

Figure 9.6 presents the main parameters extracted for the estimated grapevines. The grapevine’s 

height distribution (Figure 9.6a) suffered a decline along the flight campaigns. In fact, 87% of 

estimated heights were higher than 1.0 m in the first flight campaign, falling to 77% in the 

second flight campaign, 64% in the third and 72% in the fourth flight campaign. Regarding 

plants with heights lower 0.5 m, no estimates were presented in the first flight campaign, 

whereas in the following campaigns this number represented 0.3%, 8% and 2%, of the total 

estimates. Individual grapevine canopy volume (Figure 9.6b) presented a similar trend. In the 

first flight campaign, 53% of the grapevines showed a volume greater than 0.75 m3, while in 

the following flight campaigns only 39%, 24% and 19% where greater than 0.75m3. Regarding 

plants with a volume greater than 1 m3, they represented 19%, 10%, 6% and 4% of the estimated 

grapevines. Considering individual grapevine NDVI values (Figure 9.6c) bigger than 0.7, a total 

of 85% higher were identified in the first flight campaign, 60% in the second, 38% in the third, 

and 16% in fourth flight campaign. Focusing on the CWSI (Figure 9.6d), 75% of the grapevine 

plants were lower than 0.6 in the first three flight campaigns, while in the last flight campaign 

this value is 70%. 

 
Figure 9.6. Estimated grapevine parameters in vineyard A, for three flight campaigns (DD/MM/YYYY): (a) 
height; (b) volume; (c) normalized difference vegetation index; (d) crop water stress index. 
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9.3.2.3.  Vineyard plot B 

In what concerns vineyard B, a broader period was analysed (from May to October 2018), 

encompassing most of the vineyard vegetative development, from flowering to harvesting. A 

growth trend of the grapevine vegetation area and volume is observed across the first four flight 

campaigns (growth of 218%, from 262 m2 to 833 m2 and 463%, from 339 m3 to 1301 m3). In 

the last campaign, a decline of 15% (–128 m2) in area and 21% (–401 m3) in volume was 

verified. From the second to third flight campaigns, there was a canopy management operation 

(leaf removal), due to the smaller growth area in between these flights (20% and 101 m2). As 

for inter-row vegetation, this value increases until July (from 34 m2 to 546 m2) and decreases 

in August (34 m2), whit a small growth in October (to 83 m2). 

The estimation of the individual grapevines position in the vineyard enabled to estimate several 

parameters. Their distribution is presented in Figure 9.7. Height distribution (Figure 9.7a) was 

lower in first flight campaign with a mean value of 1.24 m, which growth until the forth flight 

campaign and declined in the last one. Similar trends are observable in other geometrical 

parameters as area and volume (Figure 9.7b and c), as well as in the NDVI (Figure 9.7d). 

Indeed, from the first to the second flight campaigns, a significant growth was registered. The 

mean grapevine area increased almost to the double (from 1.10 m2 to 2.12 m2), and the mean 

grapevine volume increased 193% (from 1.38 m3 to 4.04 m3). In what respects the grapevines 

NDVI values, the mean value ranged from 0.56, in the first flight campaign, to 0.84 in the 

second, 0.86 in the third, 0.89 in the fourth and declined to 0.76 in the last flight one. As for 

LST (Figure 9.7e) and CWSI (Figure 9.7f), values a different trend was observed, the first flight 

campaign presented a higher temperature than the remaining ones (approximately 10 °C 

higher), while CWSI values spanned towards higher values in the first flight campaign and 

lower values in remaining flight campaigns, where most of the data is located below 0.5. 
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Figure 9.7. Boxplots for height (a), area (b), volume (c), normalized difference vegetation index (d), land surface 
temperature (e), and crop water stress index (f) of each flight campaign in vineyard B. Mean values are marked 
with •. 

The individual grapevine values estimated for each parameter in the most representative flight 

campaigns is presented in Figure 9.8. From first to the reaming flight campaigns (Figure 9.8a, 

b and c), an overall numerical increase of assessed characteristics can be noted, while a decline 

from the fourth to fifth flight campaign is better observable in the NDVI, rather than with height 

or volume. Most of the height values (Figure 9.8a) in the first flight campaign are below 1.5 m, 

whereas in the remaining flight campaigns those are higher than 1.5 m. As for grapevine canopy 

volume (Figure 9.8b), in the first flight campaign all plants show a value below 4 m3, 

estimations made upon data from the second flight campaign point out a rate of 57% of 

grapevine plants greater than 4 m3, being above 94% in the remaining flight campaigns. NDVI 

values (Figure 9.8c) are lower than 0.7 in the first flight campaign (0.56 mean value) and higher 

than it in the remaining flight campaigns, excluding the last one where 82% of the grapevines 

were higher than 0.7. For CWSI, 53% of the grapevines presented a value higher than 0.6 in the 

first flight campaign, but in the remaining campaigns it is lower, as an example, it represents 

21% and 28%, respectively, in the fourth and fifth campaigns. 



Chapter 9. 
Individual grapevine analysis in a multi-temporal context using UAV-based multi-sensor imagery 

244 

 

Figure 9.8. Estimated grapevine parameters in vineyard A, for three flight campaigns (DD/MM/YYYY): (a) 
height; (b) volume; (c) normalized difference vegetation index; (d) crop water stress index. 

  Discussion 

 Grapevine counting accuracy 

The results presented in Section 9.3.1 document the method’s effectiveness in the individual 

grapevine estimation using the six vineyard plots analysed. As for the number of grapevines 

presented in each vineyard plot (Table 9.3) the method showed 100% accuracy for vineyard 

plots A, B, D and F. However, for vineyard plots C and E, there was an under estimation in the 

number of grapevines, in both cases, due to the lack of one plant per vine row. Still, a mean 

accuracy value of 99.88% was achieved. This is related with the way that the vine rows were 

estimated, the distance of the rows were smaller than its ground-truth, possibly related to the 

automatic vine row orientation used during their estimation. Furthermore, as stated in the results 

section, there were two vine rows that were not detected, one in vineyard plot C (three 

grapevines) and another in vineyard D (five grapevines). However, since there were no 

grapevines present in those plots, they were discarded from this evaluation procedure. 
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As for grapevine identification, the results from the performed evaluation were slightly lower 

(Table 9.4), which is related with FP and FN estimations for grapevines. Nevertheless, a mean 

overall accuracy of 97.5% was achieved. It can be stated that the method tends to overestimate 

grapevines rather than underestimate, since more FN cases were identified (mean of 2.0% and 

mean of 0.4% FP). In vineyard A, the percentage of FP and FN was 1.6% representing, 

respectively, 8 and 10 cases. The higher number of FP was verified in vineyard F with 10 cases 

(1%), whereas the higher number of FN was reached in vineyard E with 49 cases (2.4%). 

However, vineyard F had the higher percentage of FN cases with 3% (30 occurrences). Cases 

of grapevines classified as being missing (FP) can be justified by erroneous three-dimensional 

reconstruction of the surveyed vineyard plots. Increasing the imagery overlap in the mission 

plan stage can help to mitigate this issue, since more common tie points will be found in 

correspondent images. The grapevine plants from the commercial vineyard (vineyard plot B) 

were correctly estimated, being this plot only composed by seven vine rows and with only two 

missing grapevine plants. In Primicerio et al. (2017), this issue was addressed by evaluating a 

total of 211 missing plants (incidence of 9.4%), in which the parameter found with most 

correlation was the grapevine area. Different area thresholds where considered, based in the 

cardinality of each cluster attributed to grapevine plants, wherein lower values showed to be 

more suitable for missing plants discrimination, but inducing the FP number growth, while 

higher values result in the inverse behaviour. In Matese and Di Genaro (2018), the results 

demonstrated 80% accuracy in missing plants detection with the application of their method. 

Authors stated that FP results (plants estimated as missing plant) were related to their low 

vegetative development, while FN results (missing plant classified as plant) were related to the 

high presence of weeds and overlap of adjacent plants. However, neither of these studies 

considered height properties. In De Castro et al. (2018) an overall accuracy of 95.3% was 

obtained in the analysis of three vineyard plots, in North-eastern Spain, at two different epochs 

(July and September). Similarly, to this study, according to the authors most of misclassification 

cases were related to grapevines lower vegetative development (thin branches and less leaves) 

which led to issues in the 3D canopy reconstruction through photogrammetric processing. 

Regarding FN cases, it can be justified by the growth of adjacent grapevines which tends to 

cover missing spots in the wires, making difficult to estimate missing plants. This way, as a 

future direction, machine learning classification should be considered to detect the number of 

missing grapevines. Moreover, as stated by Matese and Di Genaro (2018), by selecting an 

anticipated period to conduct this type of survey would increase the results accuracy, by having 
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plants with less vegetative development, which would avoid the presence of adjacent grapevine 

vegetation in missing plant areas. 

  Data alignment 

Since one of the main goals of this study is to extract grapevine properties from different 

outcomes through photogrammetric processing of UAV-based imagery from different sensors, 

a correct data alignment must be ensured to mitigate data alignment errors. Aiming to reduce 

geolocation errors from few metres to some centimetres (D. Turner et al., 2011). In Turner et 

al. (2014) the same tendency was inferred, when comparing with results obtained in this study. 

More specifically, the overall RMSE values were approximately 1.9 cm for RGB imagery (1 

cm GSD), 6.4 cm for multispectral imagery (3 cm GSD), and 17.8 cm for TIR imagery (10 cm 

GSD). In their study, the authors used a higher number of GCPs along with a lower flight height 

and almost half of spatial resolution used in this study. The need of GCPs for multi-sensor data 

alignment will be mitigated by the technological development of sensors by combining visible, 

multispectral and TIR data into a single sensor, this is the case of the MicaSense Altum 

(MicaSense Inc., Washington, United States of America) which provides radiometrically 

corrected blue, green, red, red edge, NIR spectral bands along with TIR imagery. This way, in 

a single UAV flight all data is acquired and photogrammetric processing can be achieved in a 

single project. 

  Multi-temporal vineyard monitoring 

By analysing the results obtained through the method application in both vineyards A and B 

(Sections 9.3.2.2 and 9.3.2.3) the spatial grapevine variability is noticeable. Furthermore, the 

multi-temporal analysis enabled to track the changes throughout the analysed periods. 

In what concerns the experimental vineyard (vineyard A), it presented a higher incidence of 

missing grapevines, which is associated with the occurrence of phytosanitary problems and to 

the presence of different grapevine varieties wherein a higher data variability is clearly visible 

(Figure 9.6). Areas with better grapevine overall status are located in the upper right and bottom 

left parts of the vineyard. Higher NDVI values and grapevine volume were detected in those 

areas throughout the flight campaigns, being this more notorious in all flight campaigns for the 

estimated grapevine volume and in the first three flight campaigns for NDVI. With respect to 

CWSI, only in the first and last two flight campaigns highlighted this behaviour. On the other 

hand, the southern central part showed the lower results. The grapevines in this region presented 
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lower volume—particularly in the last two flight campaigns—, along with higher CWSI values 

(potential water stress) and lower NDVI values. 

The commercial vineyard plot (vineyard B) presented a high vegetative dynamic over the 

analysed period, its parameters growth throughout the flight campaigns and declined after the 

harvest season (Figure 9.7). Its geometrical features (height, area, and volume) along with 

NDVI showed a higher development from the first to second flight campaigns. These results 

are related to both phenological stages and training systems implemented in the Vinho Verde 

wine region. This vineyard presented overall good results as confirmed by the estimated 

grapevine values in the flight campaigns (Figure 9.8). The northern part presented higher 

grapevine volume, when analysing each flight campaign, while for NDVI this was only verified 

in the last two campaigns. The southern part presented some water stress signs (Figure 9.8d) in 

the last two flight campaigns, along with lower grapevine volume verified all flight campaigns, 

lower NDVI values were only observed in the last flight campaign. Regarding CWSI, the 

inferior grapevine vegetative development verified in the first flight campaign led to the 

estimation of potential water stress in the upper part of the vineyard, while in the last flight 

campaign the higher CWSI agreed with the lower NDVI values. 

When comparing the commercial (vineyard B) and the experimental (vineyard A) vineyard, the 

former obtained better results in almost all parameters. A higher spatial heterogeneity was 

verified in vineyard A, while vineyard B presented a more homogeneous development, as can 

be seen when analysing the grapevine canopy volume and NDVI. However, some similar trends 

were detected in both vineyards, an overall decline of the NDVI values in the last flight 

campaigns and an agreement between NDVI with the estimated grapevine volume and with the 

CWSI values was observed. The decline of NDVI in the last flight campaigns can be related to 

the leaf senescence and, consequently, its discoloration (Junges et al., 2017, 2019). The 

relationships among the NDVI and volume relationships were verified in other studies (A. 

Matese et al., 2019) that shown that both of these parameters are related with LAI, which, in 

fact, is also verified in this study. 

Grapevines located in the south parts (first plant of the rows) of the analysed vineyards 

presented potential water stress in the CWSI, an observation that gains meaning in the last two 

flight campaigns of vineyard B and in the first, third and fourth flight campaigns in vineyard A. 

This can be considered as outliers, since higher temperatures are observed due to heat advection 

from the soil in proximity of the edges of the rows to the grapevine canopy, which can affect in 
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a significant manner the air temperature, with an increase of the loss of water by 

evapotranspiration (Yunusa et al., 2004). These results corroborated with Tucci et al. (2019) 

were external rows in a terrace vineyard presented higher temperatures due to solar exposition 

and shadowing effects when compared with internal vine rows. Although the individual 

grapevine temperature is estimated, this parameter shown to be ineffective to be evaluated in a 

multitemporal analysis. It is useful to understand the global temperature context in the flight 

campaign day. The CWSI trends shown a more stabilized distribution since this index 

represents a normalization throughout flight campaigns. Moreover, other TIR-based indices can 

be computed, as it is the case of stomatal conductance indices Ig and I3 (Jones, 1999), which, 

respectively, implicated in increases with stomatal conductance and correlates with stomatal 

resistance. The same applies to other multispectral-based vegetation indices and to 

hyperspectral data, as long as it comes in an orthorectified format. Usually, published studies 

resort to NDVI to produce vigour maps and use that information to improve the decision support 

at the vineyard plot scale (Campos et al., 2019; Khaliq et al., 2019; J. Primicerio et al., 2015). 

The approach proposed in this study provides a more incisive analysis. Multi-sensor parameters 

are extracted at the plant level, and are not exclusively relying on a qualitative analysis. 

  Conclusions 

This study explores the usage of UAV-based photogrammetric outcomes to extract individual 

grapevine geometrical and biophysical parameters within vineyard plots. Missing plants and 

other vegetation are detected but not considered to perform multi-temporal analysis over a 

series of flight campaigns. Three different types of sensors (RGB, multispectral and TIR) were 

used. By estimating vine rows and, the individual position of each plant, several parameters can 

be extracted at the plot level, namely the: number of vine rows; number of plants; number of 

missing plants and grapevine vegetation area; and at the plant level the: position; length; width; 

area; volume; vigour (driven from NDVI); temperature from TIR and water status (driven from 

CWSI). The two multi-temporal analysis conducted in the two different vineyards presented in 

this study confirmed the method’s suitability for plant-specific analysis, allowing to assess the 

different estimated parameters and to establish relationships among them and between flight 

campaigns. This way, the methods employed in this study enable an overview of the current 

status of the grapevine plants and the monitoring of their evolution over time. The estimated 

geometrical and biophysical parameters can significantly help farmers and/or winemakers 

understanding the current vineyard overall status and can be used as a decision support tool to 
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apply treatments in certain plants and to observe their response with multi-temporal analysis, 

helping to improve grapevines health. Moreover, it can be used to compare growth seasons 

from different years, by extending the flight campaigns. 

The potential of the method can be extended for different applications, it can help in the decision 

support, by means of grapevine growth and status evaluation, and the individual grapevine 

water status estimation. Moreover, the different extracted parameters can be used to create 

datasets for supervised and unsupervised classification methods for disease detection and to 

improve the results in the detection of missing grapevines. The extracted individual grapevine 

parameters can be used for computation of prescription maps for individual grapevine treatment 

in PV plant-specific applications and to estimate individual grapevine production. The 

topographical data produced from the photogrammetric processing along with the position of 

each grapevine and its estimated parameters can be used to reproduce a 3D virtual vineyard 

environment. As such, this information can be used in augmented reality applications for easier 

vineyard in-field inspections. 
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This thesis presents a series of contributions in the fields of computer vision, remote sensing, 

and precision agriculture. The multidisciplinary nature of the conducted research motivated the 

proposal of advances in different areas converging the novel approaches to assist farmers in 

decision support. This was reached allying data processing algorithms with very high resolution 

remote sensed data from multiple sensors, improving precision agriculture practices. The 

presented research work can be divided into two categories: (1) the proposal of new methods 

and approaches for multi-temporal data processing; and (2) the application of those methods to 

extract/estimate crop-related parameters. 

The work chain was designed to answer the research questions (RQ): 

RQ1: “Can multi-temporal data from multi-sources be combined to provide better management 

of agricultural and forest crops, in particular in vineyards and chestnut plantations?” 

To answer this question, several algorithms/approaches were developed for the specific purpose 

of the detection of grapevines and chestnut trees which suffered an iterative process with the 

work progress. In fact, more features were added over time in an incremental logic, making it 

possible to respond to identified needs of farmers or winegrowers. The segmentation methods 

presented in Chapters 4 and 6 rely in the most cost-effective approach regarding UAV data 

acquisition, since it only relies in imagery from RGB sensors. Another aspect to consider is 

data extraction capabilities for multi-temporal analysis that was set to provide parcel-level and 

plant-level estimations. Moreover, the methods require few parameterization (depending on the 

level of analysis) and revealed potential to be applied in other crops with similar plantation 

styles (in rows or spaced). 

By relying in the obtained results, it can be stated that multi-sensor data acquisition from 

unmanned aerial systems (UAVs) poses as an important process to substantially contribute for 

an improvement on crop analysis. The data obtained from each sensor proved to be useful for 

different or multiple tasks: 

• the photogrammetric processing of RGB imagery leads to the computation of digital 

elevation models (DEM), which, in turn, can be used to detect crops and to retrieve 

geometrical features, this is particularly noticeable in crop height estimation on Chapter 

4, grapevine volume and height estimation in Chapters 7 and 9, in a multi-temporal 

context can help to acknowledge the crop vegetative growth or decline; 
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• when using multispectral imagery for vegetation monitoring, the spectral response from 

other wavelengths can be considered (outside the visible spectrum)—particularly the 

near infrared region, where spectral differences among different crops and among crops 

with different health/vigour status are noticeable—this opens the possibility to monitor 

crops at an individual scale to estimate parameters that correlate with their biophysical 

status, in a multi-temporal context,  enabling to extend the use of UAV multispectral 

data to understand the temporal dynamics of the crops along a growing season, to detect 

potential problematic areas (Chapters 8 and 9) and to estimate potential phytosanitary 

issues (Chapter 5); 

• the use of thermal infrared imagery can help into the assessment of crop water status, 

which in a multi-temporal approach, is crucial for the maintenance and improvement or 

crops health status, and to provide a better water management efficiency (Chapter 9); 

• when comparing data from different sensors, it is possible to notice common points 

highlighted areas, where crops tend to be less and more vigorous, as the comparison of 

a multispectral outcome with thermal and geometrical data products performed in 

Chapter 8, but their complementarity usage provides a wider range of possibilities in 

both crop monitoring (Chapter 9) and disease detection. 

So, it was possible to answer to the RQ2: 

“Can the agriculture and forest management process be automated based on the developed 

algorithms specifically for the extraction of valid information from data acquired from different 

types of sensors?” 

In fact, the automatization process that was achieved in the findings documented in the 

presented study, allows to save time and resources spent in field inspection activities by 

covering and analysing, in a faster and efficient manner, wider areas and providing warnings to 

only certain parts of the terrain (Chapter 8) or certain trees (Chapters 4 and 5). Thus, the ability 

of the developed algorithms to automatically detect anomalous situations is a key factor to 

reduce the time required to perform interventions and to allocate the necessary human 

resources. This way, it is possible to reach a controlled monitoring of problems affecting 

cultures, with the economic benefits that come from it, as well as the monitoring of vegetative 

development. 
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A general methodology for UAV-based high-resolution multi-temporal data analysis can be 

withdrawn from this work. The methodology relies in five main steps: (1) UAV data 

acquisition, by planning multi-temporal campaigns for crucial stages of the growing season and 

ensuring the data alignment/co-registration, among sensors and flight campaigns; (2) data pre-

processing, by means of photogrammetric processing or using a specific software for UAV data 

processing, depending on the used sensors; (3) vegetation segmentation, for an accurate 

detection of the crop or tree under analysis; (4) parameters extraction, depending on the data 

availability, can be adapted. Data from different sensors is not always needed, for example, the 

usage of thermal infrared imagery can be discarded when the weather is not propitious of water 

stress; and finally; (5) data from different periods will enable multi-temporal analysis through 

comparison over time. This methodology can be implemented in an agricultural management 

system to improve the support to the decision-making process. 

Some paths can be taken as future research and development. The methods proposed in this 

thesis can be merged into a specific software for multi-temporal data analysis of a given crop 

providing the use with semi-automatic ways for quicker crop parameters estimation, and to 

adjust the results for more precise outcomes. The study of the correlation of the crop yields with 

parameters estimated from the UAV-based data products, can be of special interest for the wine 

section of the Douro Demarcated Region. This kind of approach can lead to a better harvest 

planning and resources allocation. In the field of crop phytosanitary monitorization, the aerial 

spectroscopy was not explored, in this work, and the availability of UAV hyperspectral sensors 

allows to cover a wider range of the electromagnetic spectrum, providing high spectral, spatial 

and temporal resolutions, supplying ways for early disease detection. 
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Appendix A. Supplementary material for Chapter 4 

This appendix presents a comparison of different segmentation approaches for chestnut trees 

segmentation. To identify the proper segmentation approach different techniques were 

considered, namely: thresholding techniques, the Otsu’s method, and adaptive thresholding; 

unsupervised clustering based in K-means; colour spacing thresholding using the Hue 

Saturation and Value (HSV) colour space; and based in vegetation indices. This evaluation 

motivated the selection of the segmentation approach from the method presented in section 

4.2.3. 

To evaluate these approaches, the area presented in Figure A.1 was selected as reference. This 

area was selected based on the existence of other features than vegetation, as infrastructures, 

such as houses with different roofs, roads, bare soil, and shadows casted by trees canopy. 

 

Figure A.1. Reference area used for the evaluation of the different segmentation approaches: (a) the RGB image; 
(b) colour infrared image; and (c) manually segmented image. 

Otsu’s method is a simple global thresholding technique. It assumes that the image contains 

two-pixel classes following a bi-modal histogram: one class is composed by the background 

pixels – corresponding, in this case, to non-vegetated areas – and the other class is composed 

by foreground pixels, corresponding to vegetation. In this evaluation the method was directly 

applied to the greyscale images of the RGB and CIR images obtaining a binary image after the 

method application. The adaptive thresholding technique differs from the Otsu’s method in the 

number of used thresholds T. Whereas Otsu’s method is globally applied to the image, this 

approach applies different thresholds to sub-regions of the image. Similarly, to the Otsu’s 

method, this technique was applied to the RGB and CIR grayscale images, resulting in a binary 

image. K-means clustering is a non-supervised method that groups pixels in a K number of 

clusters in accordance with their likelihood. In this case the method was applied to the RGB 
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and CIR images of the selected area and K was set to two, i.e. it was intended to divide the 

image into two distinct clusters, one representing vegetation and other non-vegetation, the 

vegetation cluster was then binarized for comparison against the manually segmented image. 

HSV is a colour space composed by Hue, Saturation and Value (or Bright), instead of the 

commonly used RGB colour space. This way, both RGB and CIR images were converted to 

HSV colour space, and the Hue band was used, it contains colour information, its thresholding 

was based in upper and lower limits, Hue values differ from zero to one, the values used for the 

RGB image were between 0.2 to 0.27, corresponding to the green colour, whereas, in the CIR 

case, as vegetation assumes a magenta colour the selected values where located between 0.85 

to 1. The values within these ranges were then binarized (set to one) whereas other values where 

considered as background (set to zero). The last evaluated approach, which is commonly found 

in studies dealing with vegetation segmentation, is the usage of VI. This way, two different VI 

were applied, the RGBVI to the RGB image and the ExRE to the CIR imagery, these VIs were 

selected based in the results from the VI selection, see Appendix B for more information. To 

segment the vegetation the Otsu’s method was applied to resulting VI images. 

The evaluation of the different approaches was based in a pixel-wise comparison against the 

manually segmented image (Figure A.1c), and three classes were considered, exact detection, 

over detection and under detection. The obtained results applied to the RGB and CIR images 

from the reference scene are shown in Figure A.2. 

 

Figure A.2. Results obtained from the different segmentation approaches of the same area for the RGB and colour 
infrared (CIR) images. Exact detection of vegetation areas represented in green and exact detection of non-
vegetation areas represented in black; red represents over detection; and blue signals under detection. 

Table A.1 presents the percentage of exact, over and under detection, for each evaluated 

approach in the two tested images. According to the obtained results it is possible to conclude 
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that K-means had a good performance in the CIR image with an exact detection rate of 96%. 

However, when applied to the RGB image this rate decreases to 74% with an over detection of 

25%. The over detection mainly corresponds to infrastructures and shadows, being this 

approach not ideal to apply for vegetation detection in RGB images. As for the results obtained 

for the segmentation approach based in the Otsu’s method, obtained a high over detection rate 

in the CIR image (18%), the same was verified for the under detection (17%). When analysing 

the results obtained from the RGB image the over detection rate decreases to 2%, however the 

under detection remains with a considerable percentage (16%). The adaptive thresholding 

approach did not provide satisfactory results for both images, the method obtained error rates 

higher than 40%. This is due to the method not being capable to discriminate between shadows 

and infrastructures from the vegetation since it is based in local threshold values. In what 

concerns the results obtained from the HSV-based technique, the results were acceptable in 

both tested images. The HSV conversion of the CIR image, showed an exact detection of 96%, 

although, in the case of the RGB image it decreased to 84%, being this a considerably 

acceptable value. However, the former, suffers from the same problem as other approaches, 

some outliers were wrongly classified (shadows and roads). The good detection accuracy in K-

means and HSV-based techniques in CIR imagery can be explained due to the high reflection 

of the RedEdge in the vegetation, contributing for a clearer vegetation discrimination. The VI-

based approach obtained the best overall results, with exact detection rates greater than 93%, 

being this value higher in the CIR image (96%), still the accuracy obtained in the RGB image 

was satisfactory (93%). 

Table A.1. Results of the performance of the different methods classified in exact, over and under detection when 
compared to the manually segmented image of the same area for the RGB and colour infrared (CIR) images. 

Method Image type 
Exact 

detection (%) 
Over 

detection (%) 
Under detection 

(%) 

Otsu 
RGB 82 16 2 
CIR 65 18 17 

Adaptive 
threshold  

RGB 59 38 3 
CIR 45 46 9 

K-means 
RGB 74 25 1 
CIR 96 3 1 

HSV 
RGB 84 13 3 
CIR 96 2 2 

Vegetation index 
RGB 93 1 6 
CIR 96 3 1 

This way, when comparing the results of all approaches tested for vegetation segmentation the 

one based in VI was the one with the best overall performance for both types of images (94.5% 

mean value). The two evaluated thresholding methods (Otsu’s and adaptive) were the 
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approaches with lower exact detection accuracy with, respectively, 73.5% and 52% mean 

accuracy in vegetation detection. However, with image processing these methods provide more 

accuracy, as de case of the VI-based approach were the Otsu’s method is applied to the images 

driven from the VI computation. The K-means and HSV-based segmentation approaches 

reached a reliable performance in the CIR image, which can be explained by the difference 

caused by the RE band where vegetation has higher pixel values, although when to the RGB 

image their performance decreases, their overall accuracy is 85% and 90%, respectively. Thus, 

the VI-based approach, more specifically using ExRE for CIR imagery and RGBVI in the case 

of RGB images (see Appendix B), corresponded to the selected approach for vegetation 

segmentation, since it had better behaviour, in both CIR and RGB images, thus providing a 

flexible and robust approach with respect to the type of image being used, with low error rates. 

These results motivated the selection of the VI-based approach for vegetation segmentation 

procedure of the method proposed in this study. 

Appendix B. Supplementary material for Chapter 4 

To select the most suitable VI, a study was accomplished using the 17 VIs listed in Table B.1): 

six based exclusively on RGB bands and 11 VIs based on RGB and NIR/RE band combinations. 

These VIs were chosen due to their potential relevance in vegetation segmentation (highlighting 

vegetation areas). The validation was performed in the different areas, in the three epochs, 

presented in Figure 4.9 (location in Figure 4.1), selected to be representative: recent chestnut 

plantations, adult chestnut trees and both types, were included. The proximity between chestnut 

trees was also considered in the areas’ selection: plantations with regular space between trees 

and trees with overlapping canopy areas. These areas were used as input of the proposed method 

and the first two phases of method’s step one were performed (VI application and image 

thresholding). Results provided by the application of the VI-based segmentation (binary 

images) were compared with manual segmentation. To evaluate the segmentation accuracy, 

false negative and false positive rates of image pixels were calculated. False negatives are 

defined as vegetation pixels that were classified as background pixels (under detection). False 

positives are defined as background pixels that were classified as vegetation (over detection). 

Over detection values correspond to false positives, i.e. values detected as vegetation but that 

are not classified as vegetation in the manual segmentation; and under detection values that 

correspond to false negatives, i.e. values that were classified as vegetation in the manual 

segmentation but were not detected as such by the applied VI. 
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Table B.1. List of broadband vegetation indices implemented and tested in the proposed method. 

Vegetation indices requiring NIR and RGB bands 
Name Equation Reference 

Blue Normalized Difference 
Vegetation Index BNDVI= 

N-B

N+B
 

(Hancock & 
Dougherty, 2007) 

Difference Vegetation Index DVI = N − R (Tucker, 1979) 

Enhanced Vegetation Index EVI = 2.5 × ൬
N − R

N + 6 × R − 7.5 × B + 1
൰ (Justice et al., 1998) 

Excess RedEdge ExRE = 2 × ren − gn − bn 
Proposed in this 

study, derived from 
ExG 

Green Difference Vegetation 
Index 

GDVI = N − G (Sripada et al., 2006) 

Green Normalized Difference 
Vegetation Index GNDVI =

N − G

N + G
 (Gitelson et al., 1996) 

Green Soil-Adjusted Vegetation 
Index GSAVI =

N − G

N + G + 0.5
× 1.5 (Sripada et al., 2006) 

Modified Soil-Adjusted 
Vegetation Index MSAVI =

ሺN − Rሻ × 1.5

N + R + 0.5
 (Qi et al., 1994) 

Normalized Difference 
Vegetation Index NDVI =

N − R

N + R
 (Rouse et al., 1974) 

Optimized Soil-Adjusted 
Vegetation Index OSAVI =

1.5 × ሺN − Rሻ

N + R + 0.6
 

(Rondeaux et al., 
1996) 

Soil-Adjusted Vegetation Index SAVI =
N − R

N + R + 0.5
× 1.5 (Huete, 1988) 

Vegetation indices requiring only RGB bands 
Name Equation Reference 

Excess Green ExG = 2 × gn − rn − bn (Woebbecke et al., 
1995) 

Green-Blue Vegetation Index GBVI =
G − B

G + B
 

(Kawashima & 
Nakatani, 1998) 

Green-Red Vegetation Index GRVI =
G − R

G + R
 (Tucker, 1979) 

Modified Green Red Vegetation 
Index MGRVI =

G2 − R2

G2 + R2
 (Bendig et al., 2015) 

Red Green Blue Vegetation 
Index RGBVI =

G2 − ሺB × Rሻ

G2 + ሺB × Rሻ
 (Bendig et al., 2015) 

Vegetation Index Green VARIg =
G − R

G + R − B
 (Gitelson et al., 2002) 

where, the reflectance values of each band are represented by R: Red; G; Green; B: Blue; N: NIR; and 

ren =
R

ሺR+G+Bሻ
; rn =

R

ሺR+G+Bሻ
; gn =

G

ሺR+G+Bሻ
;  bn =

B

ሺR+G+Bሻ
 . 

Figure B.1 presents the mean results of the performed validation, using the VIs listed in Table 

B.1. For a complete overview, the results are presented, per tested area, in Table B.2 which 

shows the exact detection percentage. 
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Figure B.1. Mean accuracy of exact, over and under detection in the evaluated vegetation indices from the 
comparison with manual segmentation masks from the seven evaluated areas. 

Table B.2. Mean near-infrared (NIR) and RGB vegetation indices (VI) exact, over and under detection percentages 
for the evaluated chestnut plantations in epoch (year). 

VI 
2014 2015 2017 

Exact 
(%) 

Over 
(%) 

Under 
(%) 

Exact 
(%) 

Over 
(%) 

Under 
(%) 

Exact 
(%) 

Over 
(%) 

Under 
(%) 

Vegetation indices requiring NIR and RGB bands 
BNDVI 94.9% 0.8% 4.3% 94.4% 0.2% 5.4% 93.7% 0.7% 5.6% 

DVI 94.2% 3.7% 2.1% 92.8% 4.8% 2.4% 94.4% 3.6% 2.0% 
EVI 92.1% 6.1% 1.7% 89.9% 7.8% 2.3% 91.6% 6.9% 1.4% 

ExRE 95.8% 2.1% 2.1% 95.9% 1.3% 2.9% 95.3% 2.5% 2.2% 
GDVI 94.7% 4.4% 0.8% 95.8% 2.9% 1.3% 94.3% 4.9% 0.8% 

GNDVI 93.8% 5.8% 0.4% 95.1% 4.0% 0.9% 92.5% 7.2% 0.3% 
GSAVI 94.2% 5.3% 0.5% 95.5% 3.5% 0.9% 93.2% 6.4% 0.3% 
MSAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7% 
NDVI 92.6% 5.2% 2.2% 90.7% 6.6% 2.7% 91.8% 6.4% 1.8% 

OSAVI 93.5% 4.4% 2.0% 91.9% 5.7% 2.4% 93.3% 5.0% 1.7% 
SAVI 93.5% 4.5% 2.0% 91.8% 5.8% 2.4% 93.1% 5.1% 1.7% 

Vegetation indices requiring only RGB bands 
ExG 95.8% 0.9% 3.3% 95.2% 1.2% 3.5% 94.9% 0.9% 4.3% 

GBVI 88.8% 8.1% 3.2% 80.4% 16.3% 3.4% 89.7% 5.7% 4.6% 
GRVI 89.5% 5.1% 5.4% 85.5% 8.6% 5.9% 87.7% 6.2% 6.0% 

MGRVI 89.4% 5.1% 5.5% 85.4% 8.3% 6.3% 87.6% 6.2% 6.2% 
RGBVI 95.9% 1.1% 3.0% 95.2% 1.4% 3.3% 95.1% 1.1% 3.9% 
VARIg 87.2% 5.1% 7.8% 81.6% 7.7% 10.7% 84.7% 6.5% 8.8% 

The results allow to conclude that, in general, NIR-based VIs presented a better overall 

performance, mean exact detection of 93% with a standard deviation of 0.7% considering the 

three flight campaigns. However, the performance achieved by RGB-based VIs presented an 

accuracy rate close to 90% (standard deviation of 1.6% in the three flight campaigns), if 

excluding VARIg. If discarding the less performant VIs (exact detection lower than 90%), the 

overall accuracy rate is around 94%. 
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The obtained results from the different VI motivated the selection of the ExRE as it was the VI 

with the best overall performance (mean accuracy of 96%). Despite the selection of ExRE, 

which is proposed in this study (being an adaptation of ExG to CIR imagery), as the VI of better 

performance, there were other NIR-based VIs with similar performance (~95%), therefore with 

equivalent results, namely: GDVI, GNDVI and GSAVI. However, if only RGB images are 

available, the method maintains its performance. Indeed, ExG and RGBVI reached an overall 

accuracy around 95%. 

Appendix C. Supplementary material for Chapter 5 

This appendix contains the results of the RFE procedure presented in Section 5.3.3 (Table C.1). 

Moreover, boxplots of some of the vegetation indices used in this study (Figures Figure C.1 

and Figure C.2) are also presented. These boxplots intend to depict the distribution of mean tree 

crown values when considering two or three classes: (i) with or without phytosanitary issues 

(Figure C.1); and (ii) affected by chestnut ink disease, nutritional deficiencies, or healthy 

(Figure C.2). Data dispersion trends throughout the season can be further studied to understand 

the multi-temporal variations of phytosanitary issues. The overall accuracy results from the 

prediction stage are presented in Figure C.3. 

Table C.1. Recursive feature elimination results for each flight campaign, considering two classes (C2) and three 
classes (C3), and its overall rank. Top ten features are highlighted. 

Feature 
May Jun Jul Aug Sep Oct Overall 

C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 C2 C3 
NDExNIR 1 2 2 4 2 2 1 1 4 4 2 2 1 1 

EXNIR 3 3 3 3 3 3 3 3 2 3 3 3 2 2 
GNDVI 4 1 1 1 4 5 2 4 3 2 4 5 3 3 
NDRE 8 6 7 10 1 1 6 7 1 1 1 1 4 4 
RVI 6 7 4 2 5 6 4 2 5 5 5 9 5 5 

NDVI 2 4 5 5 6 9 5 5 6 9 9 10 6 7 
RED 5 5 11 7 8 10 8 6 7 6 6 4 7 6 

NDExRE 7 9 6 6 9 11 9 10 9 11 11 11 8 10 
GRVI 11 11 12 12 7 4 10 8 10 7 8 6 9 8 
EXRE 10 8 10 8 11 8 13 11 8 8 7 7 10 9 
TCARI 9 12 9 9 12 12 7 9 13 10 10 14 11 12 
SAVI 16 14 8 14 14 15 11 15 16 15 13 15 12 15 

GREEN 13 10 13 11 13 7 14 13 11 12 16 8 13 11 
NIR 12 13 14 13 10 13 15 12 14 13 15 13 14 13 

RDVI 14 16 16 16 15 16 12 14 12 16 12 16 15 16 
RE 15 15 15 15 16 14 16 16 15 14 14 12 16 14 
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Figure C.1. Boxplots representing the distribution of tree crown mean values regarding the vegetation indices 
used for healthy chestnut trees and for those affected by phytosanitary issues. 
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Figure C.2. Boxplots representing the distribution of tree crown mean values regarding the vegetation indices 
used for chestnut trees affected by ink disease, nutritional deficiencies, or healthy. 

 

Figure C.3. Overall accuracy, per flight campaign, of the prediction for the presence of phytosanitary issues (a) 
and for phytosanitary issue detection (b). 

            

                

   

   

   

   

   

   

   

   

   

 
 
  
 

    

            

                

    

    

    

    

    

    

    

    

 
 
  
 

    

            

                

   

   

   

   

   

   

 
 
  
 

       

    

   

   

   

   

   

   

 
 
  
 

            

                

    

                                                                          

            

                

   

   

   

   

   

   

 
 
  
 

     

            

                

 

 

 

 

  

  

  

  

 
 
  
 

   

            

                

    

    

   

   

   

 
 
  
 

      

            

                

    

    

    

   

   

 
 
  
 

    

            

                

   

   

   

   

   

 
 
  
 

     

  

  

  

  

  

   

                       

                     

   

  

  

  

  

  

   

                       

                     

   


