LIVRO DE COMUNICAÇÕES

Estimativa da composição da carcaça e dos depósitos de gordura de cabritos a partir da medida de GRAVIDADE ESPECÍFICA

A. Cabo ${ }^{1}$, A. Monteiro ${ }^{2}$, A. Teixeira ${ }^{3}$, C. Guedes ${ }^{1}$, V. Santos ${ }^{1}$, E. Mena ${ }^{1}$, J. Azevedo ${ }^{1}$, D. Outor-Monteiro ${ }^{1}$, S. Rodrigues ${ }^{3}$, S. R. Silva ${ }^{1}$
${ }^{1}$ CECAV, PO Box 1013, 5001-801 Vila Real, Portugal; ${ }^{2}$ IPV- ESAV, 3500-606 Viseu, Portugal; ${ }^{3} \mathrm{CIMO}$, PO Box 1172, 3501-855 Bragança, Portugal

Resumo

Com o objectivo de estimar a composição da carcaça e a composição em depósitos de gordura de cabritos recorrendo à medida da gravidade específica foram utilizados 24 animais da raça Serrana (12,5 $\pm 5,5 \mathrm{~kg}$ de peso vivo). Após o abate foi obtida a carcaça e o peso dos depósitos internos de gordura. A carcaça foi dividida em duas metades. A metade esquerda foi totalmente dissecada em músculo, gordura subcutânea, gordura intermuscular e osso. A metade direita foi utilizada para a determinação da gravidade específica. Recorrendo à análise de regressão simples verificou-se que a gravidade específica permite explicar 30 a 63% da variação dos tecidos da carcaça e dos depósitos de gordura. Os valores de r^{2} mais elevados foram observados para os depósitos de gordura (r^{2} entre 0,43 e 0,63; $\mathrm{P}<0,01$). Pode ser concluído que a medida de gravidade específica tem potencial para estimar a composição de cabritos.

Introdução

Em produção animal têm sido desenvolvidas e aplicadas várias metodologias para estimar a composição da carcaça das diversas espécies de interesse zootécnico (Teixeira, 2009). Esta preocupação prende-se com a necessidade de conhecer os diferentes tecidos da carcaça sem causar a sua destruição. Foi nesse sentido que se desenvolveram várias técnicas de imagem (ultrasonografia, tomografia computadorizada) ou a bio-impedância, a condutividade eléctrica total do corpo e a gravidade específica (Stanford et al., 1998). Esta última técnica recebeu uma atenção considerável por parte dos investigadores dado que é de aplicação simples, rápida e não destrutiva. A gravidade específica tem como princípio o facto de a gordura ser menos densa que os outros tecidos corporais (Alliston, 1983) e tem sido aplicada em várias espécies (Garrett e Hinman, 1969; Timon e Bichard, 1965). No entanto, não foram encontrados trabalhos com caprinos. O objectivo deste trabalho é investigar a possibilidade de utilizar a gravidade específica para estimar a composição da carcaça e a composição em depósitos de gordura de cabritos.

Material e Métodos

Foram utilizados 24 cabritos da raça Serrana ($12,5 \pm 5,5 \mathrm{~kg}$ de peso vivo). Antes do abate os animais foram submetidos a um jejum de 24 h e obtido o peso vivo (PV). Os animais foram abatidos e obtido o peso vivo vazio (PVV), que representa a diferença entre o PV e o peso dos conteúdos gástricos e intestinais. Ao longo do processo de abate foram sendo pesados numa balança digital (AND com precisão de 1 g) os depósitos internos de gordura (gordura mesentérica, omental, perirenal e pélvica). O peso dos conteúdos gástricos e intestinais foi determinado por diferença entre os compartimentos (rúmen+retículo, omaso, abomaso, intestino delgado e intestino grosso) cheios e vazios. Foi então obtida a carcaça que neste trabalho representa o animal depois de morto, sangrado, esfolado, eviscerado, sem cabeça, que é separada pela articulação atloido-occipital, sem genitais, sem extremidades, que são separadas ao nível das articulações cárpico-metcárpicas e társico-metatársicas e sem rins e gordura perirenal e pélvica. A carcaça foi identificada e colocada numa câmara frigorífica a $4^{\circ} \mathrm{C}$. Após 24 h a carcaça foi pesada e determinado o peso da carcaça. Após esta operação a carcaça foi cortada ao meio com o máximo cuidado. Para isso a carcaça foi suspensa num chambaril de abertura

variável e utilizada uma serra de dentes curtos para aumentar a precisão do corte. A metade esquerda foi utilizada para determinação da composição em músculo, osso, gordura subcutânea e gordura intermuscular. A metade direita foi utilizada para a determinação da gravidade específica. Assume-se que a carcaça é simétrica pelo que todas as determinações realizadas numa metade são válidas para a outra metade. A determinação da gravidade específica foi obtida de acordo com a seguinte expressão:

$$
\text { Gravidade específica }=\frac{\rho \text { carcaça }}{\rho \mathrm{H} 2 \mathrm{O}}
$$

em que $\square \rho$ carcaça representa a densidade da carcaça e $\rho \mathrm{H}_{2} \mathrm{O}$ representa a densidade da água. A água apresentava a temperatura de $13,50 \mathrm{C}$ a que corresponde uma densidade de $0,999312 \mathrm{~g} / \mathrm{cm}^{3}$ (http://www.simetric.co.uk/).
Para determinar a densidade da carcaça foi utilizada a seguinte expressão:

$$
\rho \text { carcaça }=\frac{\mathrm{PC}}{\mathrm{~V}}
$$

em que: PC representa o peso da carcaça e V representa o volume da carcaça.
A determinação do volume das carcaças foi obtida pelo princípio de Arquimedes. Para isso as carcaças foram totalmente mergulhadas numa tina e determinado o volume da água deslocada. Para obter o máximo rigor neste processo a carcaça foi mergulhada lentamente e foi criada uma tina com um orifício que permitia a recolha de toda a água deslocada. Para além disso durante o processo de submersão da carcaça houve sempre o cuidado de verificar que não havia ar aprisionado na carcaça. Para todas as pesagens foi utilizada uma balança de precisão (Precisa 32000D, 32000 $\pm 0,01 \mathrm{~g}$). A relação entre a gravidade específica e a composição da carcaça e a composição em depósitos de gordura foi obtida por análise de regressão simples recorrendo ao programa SAS.

Resultados e Discussão

No Quadro 1 são apresentados os valores de média, desvio padrão (DP), mínimo, máximo e coeficiente de variação (CV) para o peso vivo, o peso vivo vazio, o peso da carcaça, a gravidade específica, a composição da carcaça, a composição em depósitos internos de gordura e gordura corporal para os 24 cabritos estudados.

Quadro 1. Média, desvio padrão (DP), mínimo, máximo e coeficiente de variação (CV) para o peso vivo, o peso vivo vazio, o peso da carcaça, a gravidade específica, a composição da carcaça, a composição em depósitos internos de gordura e gordura corporal ($n=24$).

Característica	Média	DP	Mínimo	Máximo	CV, \%
Peso vivo, kg	12,5	5,5	4,5	22,4	44,0
Peso vivo vazio, kg	10,6	4,5	4,2	18,9	42,1
Peso da carcaça, kg	5,2	2,3	1,9	9,9	44,4
Gravidade específica	0,963	0,085	0,844	1,21	8,8
Composição da carcaça, g					
Músculo (M)	3342	1581	1104	6537	47,3
Gordura subcutânea (GS)	292	151	83,4	607	51,6
Gordura intermuscular (GI)	429	189	169	850	44,0
Osso (O)	1185	491	513	2189	41,4
Gordura da carcaça	721	322	269	1357	44,6
Depósitos internos de gordura, g					
Gordura perirenal e pélvica (GPP)	90,9	42,3	9,2	166	46,5
Gordura omental (GO)	123	71,7	22,8	291	58,1
Gordura mesentérica (GM)	134	73,2	40,4	249	54,7
Gordura interna	348	172	101	695	49,3
Gordura corporal, g	1069	475	421	1828	44,4

Os cabritos apresentaram um PV médio de $12,5 \mathrm{~kg}$ e um CV de 44%. Esta amplitude reflecte-se na variação do peso da carcaça e na sua composição, que apresentaram um CV entre 41 e 52%. Relativamente à composição da carcaça a GS foi o componente que apresentou maior variação (CV= 55%) e a GI representa o maior depósito de gordura (4% do PVV). O depósito de GO foi o que apresentou maior variação (58\%) e a gordura corporal representou 11% do PVV. Estes valores sugerem que mesmo em animais jovens e de baixo peso, a gordura é um componente importante e que apresenta elevada variação. O que é de salientar, uma vez que, se trata de caprinos e é reconhecido que esta espécie apresenta menor proporção de gordura nas carcaças que os ovinos em carcaças leves. De facto, num dos poucos trabalhos que comparam estas espécies ao mesmo grau de maturidade (Santos et al., 2008) foi verificado que as carcaças de caprinos apresentaram maior ($\mathrm{P}<0,05$) quantidade de músculo e menor quantidade de gordura que os ovinos.
No Quadro 2 são apresentados os valores de coeficiente de determinação (r^{2}) e de desvio padrão residual (dpr) para as equações simples entre as variáveis de composição (variável dependente) e a gravidade específica (variável independente). De uma forma geral, há uma relação significativa entre os tecidos da carcaça e os depósitos de gordura e a gravidade específica (r^{2} entre 30 e 63%). É de destacar que os valores de r^{2} são mais elevados para os depósitos de gordura do que para o músculo e osso (r^{2} entre 0,43 e 0,63 vs 0,33 e 0,32 , respectivamente). Estes resultados vão no mesmo sentido, no entanto, com menores valores de r^{2} de trabalhos noutras espécies (bovinos- Garrett e Hinman, 1969; ovinosTimon e Bichard, 1965). O que pode ser explicado pela menor proporção de gordura na carcaça dos cabritos relativamente às outras espécies. De facto, a maioria dos estudos com gravidade específica utilizaram carcaças com elevada proporção de gordura 20 a 40% (Kraybill et al., 1952; Kelly et al., 1968). Trabalhos posteriores mostraram que a gravidade específica apresenta maiores limitações de estimativa da composição em carcaças com menos de 12% de gordura (Preston et al., 1974), o que é próximo ao observado no presente trabalho (13\%).

Quadro 2. Valores de coeficiente de determinação (r^{2}) e de desvio padrão residual (dpr) para as equações simples entre as variáveis de composição (variável dependente) e a gravidade específica (variável independente).

Variáveis dependentes	r^{2}	dpr	P
Composição da carcaça, g			
Músculo (M)	0,33	1323	0,0033
Gordura subcutânea (GS)	0,63	93,6	0,0001
Gordura intermuscular (GI)	0,49	137	0,0001
Osso (O)	0,32	414	0,0039
Gordura da carcaça	0,61	204	0,0001
Depósitos internos de gordura, g	0,43	36,1	0,0054
\quad Gordura perirenal e pélvica (GPP)	0,49	52,4	0,0001
\quad Gordura omental (GO)	0,49	53,3	0,0001
Gordura mesentérica (GM)	0,53	121	0,0001
Gordura interna	0,63	295	0,0001

Os resultados encontrados neste trabalho mostram a necessidade de aprofundar o conhecimento sobre a aplicação da técnica da gravidade específica em caprinos de modo a melhorar a sua capacidade de estimativa.

Bibliografia

Alliston, JC., 1983. Evaluation of carcass quality in the live animal. Sheep Production. W. Haresign (editor), Butterworths, pp. 75-95.
Garrett, W.N., Hinman, N., 1969. Re-evaluation of the relationship between carcass density and body composition of beef steers. J. Anim. Sci., 28: 1-5.
Kelly, R.F., Fontenot, J.P., Graham, P.P, Wilkinson, W.S., Kincaid, C.M., 1968. Estimates of carcass composition of beef cattle fed at different planes of nutrition. J. Anim. Sci., 27: 620-627.
Kraybill, H., Bitter F., Hankins. O.G., 1952. Body composition of cattle. II. Determination of fat and water content from measurement of body specific gravity. J. Applied Physiol., 3: 575-578.
Preston, R.L., Vance, R.D., Cahill V.R., Kock. S.W., 1974. Carcass specific gravity and carcass composition in cattle and the effect of bone proportionality on this relationship. J. Anim. Sci., 38:47-51.
Santos, V.A.C., Silva, S.R., Azevedo, J.M.T. 2008. Carcass composition and meat quality of equally mature kids and lambs. J. Anim. Sci., 86: 1943-1950.
Stanford, K., Jones, S.D.M., Price, M.A., 1998. Methods of predicting lamb carcass composition: a review. Small Rumin. Res., 29: 241-254.
Timon, V.M., Bichard, M., 1965. Quantitative estimates of lamb carcass composition. 2. Specific gravity determination. Anim. Prod., 7: 183-187.

Teixeira, A., 2009. Rapid composition: Rapid methodologies. Handbook of muscle foods analysis, L.M.L. Nollet and F. Toldrá (editors), CRC Press, Taylor \& Francis, Oxford, UK. 291-314.

