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Abstract
Biot–Savart’s law is used to determine in all regions of space the magnetic
field generated by a finite length conducting tube of negligible thickness.
Simplified approximate closed form solutions for the magnetic field in the tube
axis vicinity, near the median plane just outside the tube, and very far from the
tube, are also derived. Lastly, the finite tubular conductor results are used to
address the finite solenoid magnetic field’s azimuthal component.

Keywords: Biot–Savart, tubular conductor, solenoid, magnetic field

1. Introduction

Biot–Savart’s law is a fundamental and easy-to-use relation whose relevance derives, in part,
from its potential as a tool to determine the magnetic field generated by the flow of current
through different geometrical configurations, of which the most extensively addressed is
probably the filamentary wire segment, e.g. [1–11] and references therein. By contrast, even
though a finite length tubular conductor’s magnetic field can be obtained by superposition of
filamentary wire segments carrying infinitesimal current, Biot–Savart’s law has not previously
been applied to such problem, which as far as known to us has only been addressed in two
recent studies [12, 13], of which [12] is the most relevant in the present context. In [12] the
magnetic field of a finite length tubular conductor of negligible thickness was determined by
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applying an oblique solid angle formula derived therein to an expression for magnetic field
circulation obtained in [14] from the application of Ampère–Maxwell’s law for magnetic field
circulation to an arbitrarily-shaped finite length wire segment in the zero retarded-time limit.
The present study aims to apply a different method, i.e. Biot–Savart’s law, to obtain the finite
tubular conductor magnetic field. Using distinct methods to solve the same problem, besides
being instructive, allows the reader to evaluate the relative advantages and disadvantages of
each. Moreover, though more elegant, the method used in [12] (including the oblique solid
angle formula) is new and thus far from being widely adopted, the use of an alternative
method contributing to corroborate the results in [12]. For instance, one could imagine
calculating the vector potential and taking the curl to solve this problem. However, Biot–
Savart’s law already explicitly contains the magnetic field and thus provides a direct method
of calculation. For this reason it is, together with Ampère’s law, the most widely used for
problem solving at the undergraduate level, e.g. [5, 15]. Most undergraduates will therefore
be already familiar with its use to solve elementary problems such as the finite wire, and since
the finite wire is the basic building block of a finite tube the adoption of Biot–Savart’s law
seems the natural choice to solve such problem. Being a study intended for undergraduates,
we aim to use Biot–Savart’s law to explore the symmetries that result from its application to
the finite tubular conductor problem, leading to a description of its magnetic field from a
physical perspective. Additionally, this study aims to (i) corroborate the results in [12];
(ii) obtain simplified expressions that approximate the magnetic field in the tube axis vicinity,
near the median plane just outside the tube, and very far from the tube; (iii) use the finite
length tubular conductor results to address the weak azimuthal component of the finite length
solenoid field, thereby completing an analysis which has up to now been restricted to the
exterior of an infinitely long solenoid, see [16–25].

2. Results and discussion

2.1. General solution for the finite tube’s magnetic field

Consider an axial current I uniformly distributed around a thin tubular conductor (figure 1), of
radius R and length L. Such tubular conductor can be divided into segments, each traversed by
an elementary current Id , the flow of Id through any infinitesimal length vector ld 1


origi-

nating an infinitesimal magnetic field Bd2
1


at point P, given by Biot–Savart’s law as
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where 0m is the permeability in free space, position vectors s1
 and r1

 are defined in figure 1,
and the second equality in (1) follows directly from the vector product property

l s l rd d .1 1 1 1


´  =


´  Note that (1) is only valid as long as the current changes little in
the time it takes a light signal to travel from the elementary segments to the point of interest,
e.g. [8, 26], this being an assumption of the present study. To avoid unnecessary duplication
only the case z L0 2C  is considered below, zC being the z-coordinate of point P in
figure 1. The extension to z L 2,C > which involves minor changes to the equations, is
addressed later, and the case z 0C < is redundant due to the symmetry of the problem.

The integration of (1) is trivial, giving the familiar expression for the magnitude of the
magnetic field generated at P by a segment of wire traversed by a current Id , i.e.
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where r r ,1= ∣ ∣ the distances h are defined in figure 1 and related to zC as
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the distance from P to either end of the wire segment being h r .2 2+ Moreover, see

figure 2, for any segment 1 that contributes Bd 1


to the magnetic field at P, there is a segment 2
at the same distance r from P and whose contribution Bd 2


to the magnetic field has the same

magnitude as Bd ,1


so that the added contribution of both segments to the magnetic field at P,
i.e. B Bd d ,1 2


+


is tangential to C, giving a net contribution Bd


of each segment to the

magnetic field of (see figure 2)

Figure 1. Tubular conductor (radius R) traversed by current I can be divided into
segments (length L, width R dq), each traversed by an elementary current Id whose

direction determines that of infinitesimal length vector ld .1


The flow of Id through any

ld 1


in segment 1 generates an infinitesimal field Bd2
1


at point P distant RC from the

z-axis. Position vectors of P relative to ld 1


and to the segment’s closest point are,

respectively, s1
 and r .1

 From Biot–Savart’s law Bd2
1


is always normal to both ld 1


and

s ,1
 therefore lying on the C-plane, as does also r .1

 Distances h from C-plane to either
end of the tubular conductor.
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B Bd d cos , 41q a


= - ˆ ( )

where Bd 1 is given by (2), a is the angle between RC


and r1-( ) in figure 2, and q̂ the unit
vector tangential to C at P and oriented in the rotation direction of a right-handed corkscrew
which is placed on the z-axis and advances with current I. The infinitesimal current Id through
each segment is, see figure 1
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and, inserting the latter into (4), the elementary segment’s magnetic field Bd


is written as
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The magnetic field generated at P results from integrating (7), which requires that all
quantities be expressed as functions of the same integration variable. From figure 2, r and
cos a can be written as functions of q as

Figure 2. Cross-sectional view of tubular conductor in figure 1, showing two segments
(1 and 2) equidistant from P and traversed by elementary currents Id (directed out of

page), whose contributions to the field at P, Bd 1


and Bd ,2


result in the combined

contribution B Bd d1 2


+


tangential to curve C. The angle between position vectors R


and RC


is ,q and that between position vectors RC


and r1-( ) is .a Note that cos a can
be positive or negative depending on .q
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so that (7) can be integrated as
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the last step in (9) resulting from the already addressed equality between the contributions to
the magnetic field at P from any pair of segments 1 and 2 in figure 2. Naturally, as the flow of
current in the finite length tubular conductor requires such conductor to be integrated in some
circuit, e.g. [10], equation (9) has to be understood as the finite tube’s contribution to the
circuit’s magnetic field. Moreover, although (9) was derived using figures 1 and 2, which
correspond to R R,C < it is also valid for R R,C > the case shown in figure 3, because (1)–(8)
are mathematically identical in both cases. However, from a physical perspective, there are
significant differences between the two, as next highlighted.

2.2. Magnetic field inside (RC < R) and outside (RC > R) of the finite tube

Although (9) does not explicitly differentiate between R RC < and R R,C > there is an
implicit distinction which follows from Biot–Savart’s law (1), and thus from (2) to (8), and

Figure 3. Identical setup to figure 2, save that point P is now located outside the tubular
conductor, i.e. R R.C > Segment currents Id directed out of page. From Biot–Savart’s

law the contributions of segments 1 and 2 to the field at P ( Bd 1


and Bd 2


) have the

directions shown, so that the added contribution B Bd d ,1 2


+


although again tangential
to C, now has the opposite orientation to that resulting from the two segments shown in
figure 2. By contrast to figure 2, the values of cosα=−cos(π−α) are now always
negative, regardless of .q
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can be interpreted as follows: for R R,C > see figure 3 with (8a), cos a is always negative and

thus all contributions (4) to B


point in the same direction ,q+( ˆ) i.e. for R RC > the field B


is
oriented in the rotation direction of an axially-placed right-handed corkscrew that advances
with current I, in line with [12]. By contrast, for R R,C < see figure 2 with (8a), cos a is
positive for R R0 cos 1

C q < - ( ) and R R2 cos 21
C p q p- <- ( ) and negative for

R R R Rcos 2 cos ,1
C

1
Cq p< < -- -( ) ( ) and thus contributions (4) to B


point in the q-( ˆ)

direction in the former intervals and in the q+( ˆ) direction in the latter one. The combined
effect of such opposing contributions, only present for R R,C < is best understood by
recasting (9) for this case using figure 4.

From figure 4, for any segment 1 of width Rdq that provides a net contribution to the
field at P of Bd cos ,1q a- ˆ there is an oppositely-located segment1 of width Rdb that provides

an opposing net contribution Bd cos ,1q aˆ ¯ where Bd 1


is the field generated at P by segment 1,
the combined net contributions of 1 and 1 being thus

B B Bd d d cos . 101 1q a


= - -ˆ ( ) ( )

To determine (10) first note that, by analogy with (2),
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Figure 4. Shows opposing contributions to the field at P, Bd 1


and Bd ,1


generated
respectively by oppositely-located segments 1 and 1, of widths Rdq and Rd ,b traversed
by elementary currents Id and Id directed out of the page. While segment 1 is further
from P than segment 1 it does transport more current due to its larger width, so that

from (5), (12), (16), (17) I r I rd d=¯ ¯ and thus, see (11) with (2), the strength of Bd 1


relative to Bd 1


depends solely on r, r , and h .
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where, in figure 4, r is the distance from P to segment 1, and Id the infinitesimal current
through such segment, which by analogy with (5) is

I
I

d
2

d , 12
p

b= ( )

thereby reducing the problem of determining (10) to that of determining infinitesimal angle
db and distance r in figure 4. In figure 4 the triangle of side r r+ is isosceles, its other 2 sides
(of length R) forming an angle of 2 2 ,p a q- + so that 2b p a q= + - and thus

d 2d d . 13b a q= - ( )

Also, from (8)
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Inserting (15) into (13) and using (8b) gives
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On the other hand, from figure 4 and elementary geometry,
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so that, using (12), (16) and (17), (11) can be written as
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Inserting (6) and (18) into (10), the combined contributions to Bd


of any pair of seg-
ments 1 and 1 in figure 4 can be rearranged as
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If the contributions (19) to Bd


generated by each pair of segments 1 and 1 in figure 4 are
added from 0a = (i.e. 0q = ) to 2a p= (i.e. R Rcos 1

Cq = - ( )), thereby spanning half the
tubular conductor, from symmetry the remaining half will yield an identical contribution to
the field because, as discussed earlier in the context of figure 2, for any segment 1 (or 1) there
is always a paired segment 2 (or 2) equidistant from P. Therefore, from (19), for the case

Eur. J. Phys. 39 (2018) 055202 J M Ferreira and J Anacleto

7



R R,C < (9) can be recast as
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with r, r and cos a being given by (8) with (17) as functions of integration variable .q
Carefully note that in the integration interval of (20), a goes from 0 to 2p and thus cos a is
always positive. Moreover, since in such interval r r< (figure 4), both curve-bracketed terms
in (20) are positive. Therefore the integrating function (20) is always positive, so that for any
point P located at R RC < the field B


has the direction ,q-( ˆ) i.e. counter to the rotation

direction of an axially-placed right-handed corkscrew that advances with the current I, again
in line with [12]. Moreover, from (3), an increase in L and therefore in h results in a decrease
in value of the curve-bracketed terms in (19) and (20) and thus of the individual contributions
Bd


for R R,C < i.e. an increase in tubular conductor length weakens the magnetic field

within it, ultimately leading to B 0 .


=


Conversely, for R R,C > an increase in L and
therefore h results in an increase in value of the curve-bracketed terms in (7) and (9) and thus
of the individual contributions Bd


for R R.C > Therefore, and since cos a never changes sign

in the integration interval of (9) for R RC > (see (8a) with figure 3), all Bd


contributions are
additive and an increase in tube length strengthens the magnetic field.

2.3. Extension to zC > L=2

Given that the process used to determine the magnetic field for z L 2C > parallels that for
z L0 2C  a detailed analysis is redundant, the basic difference being that for z L 2C >

independent variable h- needs to be replaced by h- -( ) in all relevant expressions. Applying
such operation to (9), the magnetic field for both R RC > and R RC < is given by
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where, since h h ,>+ - the curve-bracketed term is always positive. For R R,C > the term
cos a in (21) is negative (figure 3), which combined with the positive curve-bracketed term in
(21) gives a negatively-valued integrating function and thus B


is oriented in the q+( ˆ)

direction, i.e. for R RC > the direction of B


in the region z L 2C > is the same as that in
z L0 2.C  By contrast this is not necessarily the case for R R,C < as next explained. For

z L 2,C > since h- needs to be replaced by h ,- -( ) (20) has to be modified to
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i.e. although cos a in (22) is positive (figure 2), and both curve-bracketed terms in (22)
remain identical to the corresponding ones in (20) and thus positive-valued, instead of adding
they now subtract. Since such difference is not necessarily positive, the magnetic field
direction for R RC < is no longer necessarily ,q-( ˆ) a result whose interpretation was lacking
in [12] and is best illustrated by two examples, namely the magnetic field close to the basal
plane z L 2C = (so that, from (3), h 0»- ), and distant from such plane (z L 2,C  i.e. large
h). In the first example (h 0»- ), the second curve-bracketed term in (22) is negligible and
therefore the integrating function in (22) is always positive, i.e. B


is oriented in the q-( ˆ)

direction. By contrast, in the second example (large h) the square-bracketed term in (22)

approximates as r r 0
h h

1

2

1 1 2 2
2 2- - <
+ -( )( ) giving a negative integrating function in (22), i.e.

B


is oriented in the q+( ˆ) direction. It is instructive, from a physical perspective, to visualise

such behaviour through figure 4: as h increases, the magnitude of each Bd 1


contribution in

figure 4 becomes smaller than that of the opposing contribution Bd ,1


the net result being that
the field B


in this figure reverses direction. This counterintuitive result, which shows that the

fields for R RC < and R RC > can both point in the same direction, physically differentiates
this region from z L0 2.C 

2.4. Numerical comparison to earlier work

At the outset it is important to clarify that unlike the present study, the magnetic field
equations in [12] were not derived from the Biot–Savart law and were not identical to (9) or
(21), but were instead derived using an oblique solid angle formula in the magnetic field
circulation expression obtained in [14] from the application of Ampère–Maxwell’s law to an
arbitrarily-shaped finite length wire in the zero retarded-time limit, resulting in [12]
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Despite (9) and (21) being different from (23) with (24), limited comparison between
both sets of equations gave identical numerical results, shown in figures 5 and 6, such identity
being consistent with both Biot–Savart’s law and the equations derived in [12] being valid in
the zero retarded-time limit, as well as with the very recent result that the circulation
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expression derived in [14] and used in [12] is, in fact, the magnetic field circulation coun-
terpart to Biot–Savart’s law for a volume distribution of current in the filamentary wire limit
[27]. Additionally such identity corroborates, indirectly, the oblique solid angle formula
which was derived and used in [12].

2.5. Simplified expressions for the magnetic field

2.5.1. The finite tube axis vicinity (RC{R). The magnetic field can be simplified in the tube
axis vicinity by first inserting (8b) into the h r1 2 2+ terms of (9) and (21), which can then
be approximated as

Figure 5. Magnetic field (normalised to I 40 0
2m p ) versus R R,C at different

normalised positions (z RC ) for z L0 2.C  Field values obtained from equation (9)
with (8) and (3) coincide numerically with those obtained from equations (23a), (23b)
with (24) and (3). Here L R6 ,= so that curves z R 0.0, 2.0, 3.0C = correspond
respectively to z L L0.0, 0.67 2, 2.C =

Figure 6. Magnetic field (normalised to I 40 0
2m p ) versus R R,C at different

normalised positions (z RC ) for z L 2.C > Field values obtained from equation (21)
with (8) and (3) coincide numerically with those obtained from equation (23c) with
(24) and (3). Here L R6 ,= so that curves z R 3.001, 3.1, 3.5, 4.0C = correspond
respectively to z L1.0003 2,C = L1.03 2, L1.17 2, L1.33 2.
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provided the inequality

R h R 26C
2 2+ ( )

holds, which is always the case in the tube axis vicinity. From (8) with (25), the terms in (9)
and (21) can be written and rearranged in the form
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so they then integrate as
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Given that only the case R RC < is of interest here, the above integral gives
R h R 2,C

2 2 3 2p+
-( ) which inserted into (9) and (21) results in two expressions that

approximate the magnetic field in the tube axis vicinity as
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Comparing (29) to the numerical results given earlier shows that the linear dependence of
B on R ,C present in (29), is observed in figures 5 and 6 up to about R R0.2C = and, for some
of the curves, well beyond that, an observation which can be interpreted by noting that away
from the axis vicinity (i.e. for larger RC), condition (26) will remain valid provided that h is
also large. However, being conservative, the deviation of (29) relative to the general solution
curves in figures 5 and 6 is under 2% at R R0.1 ,C = rising to under 8% at R R0.2 .C =

2.5.2. Region near the median plane just outside the finite tube. This approximation is only
possible if the tube length is large in comparison to its radius, i.e. if L R. For such case
near the median plane h R,  which combined with the condition of being just outside the
tube gives R hC

2 2
 and R R h R ,C

2 2+ so that equations (25)–(28) remain valid and,
since in this case R R,C > equation (28) gives
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Inserting (30) into (9) gives the approximate closed form expression for the magnetic
field near the median plane just outside the tube as
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i.e. the magnetic field is of the form C R C R ,1 C 2 C+ constants C1 and C2 depending both on
the finite tube geometry and on the position of the point of interest relative to the two basal
planes. Naturally, if the tube is infinitely long (L  ¥), from (3) h  ¥ and (31) reduces
to the well-known result B I R2 .0 Cm p=q ( )

2.5.3. Region very far outside the finite tube. This last approximation corresponds to the
trivial case where application of condition R RC  to (8) results in R Rcos Ca » - and
r R ,C» so that (9) and (21) reduce to the approximate closed form expressions
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i.e. as would be expected the tubular conductor’s magnetic field becomes indistinguishable
from that generated by a filamentary wire segment of identical length.

2.6. The finite length solenoid magnetic field’s azimuthal component

In addition to the widely studied axial and radial components, e.g. [8, 28–39], the magnetic field
generated by a tightly wound solenoid has a weaker azimuthal component which can be readily
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evaluated, an analysis which has hitherto been restricted to the infinitely long solenoid [16–25].
While readily conceding Gauthier’s [21] point that the following does not apply to solenoids
with an even number of superimposed windings, the magnetic field generated by a tightly
wound odd-layered solenoid of finite length includes a term resulting from the component of the
current flowing along the solenoid’s surface, such term being precisely the magnetic field
generated by the finite tubular conductor described in the present study and in [12]. Therefore,
while an infinitely long solenoid of radius R generates a weak azimuthal magnetic field in the
region surrounding it [16–25], for a finite length solenoid our results showed that such azi-
muthal component is present not only in the region surrounding the solenoid, R R,C > but also
in the region inside it, R R,C < such component simplifying to (29) in the solenoid axis
vicinity, to (31) near the median plane just outside the solenoid, and to (32) very far outside the
solenoid (i.e. R RC  ). Moreover, increased solenoid length results in the strengthening of
such azimuthal component outside the solenoid and weakening within it, ultimately leading to
the well-known limiting values B I R20 Cm p=q ( ) and B 0=q respectively.

3. Conclusions

General solutions for the magnetic field generated by a conducting tube of length L and radius R
carrying a current in the axial direction were obtained from Biot–Savart’s law and symmetry
considerations for points P of z-coordinates z L0 2C  relative to the tube’s mid-plane and
located at distances R0 C < ¥ from its axis. Inside the tube (R RC < ) the magnetic field
orientation, which was counter to the rotation direction of a right-handed corkscrew placed on
its axis and advancing with the current, was interpreted from Biot–Savart’s law as resulting
from opposing contributions that originated from diametrically-opposite ends of the tube
relative to P. It was also found that no such competing effects were present for points located
outside the tube (R RC > ), that the magnetic field outside the tube had reverse orientation to
that inside it, and that an increase in tube length led to weakening of the magnetic field inside it
and strengthening of such field outside it. The region z L 2C > was also addressed and it was
shown that, contrary to the region z L0 2,C  the magnetic field’s orientation for R RC <
was not necessarily opposite to that for R R.C > Additionally, simplified approximate closed
form expressions for the magnetic field were derived in the tube axis vicinity, near the median
plane just outside the tube, and very far outside the tube (i.e. R RC  ). Finally, the azimuthal
component of the finite solenoid magnetic field was addressed using the finite tube results
which showed that, by contrast to the infinite solenoid, such component was present not only
outside (R RC > ) the solenoid but also within it, an increase in solenoid length resulting in the
strengthening of such component outside the solenoid and weakening within it.
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