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Abstract10

An holistic stochastic-dynamic modelling methodology has been developed in order to predict the ecological status of lotic
systems in Northeast Portugal. These procedures focus on the interactions between conceptually isolated key-components, such
as some relevant benthic macroinvertebrate metrics and changes in local habitat conditions. The proposed model was preceded
by a conventional multivariate statistical treatment performed to discriminate the significant relationships between prevailing
biological and environmental variables. Since this statistical analysis is static, the dataset recorded from the field included true
gradients of habitat changes. In this way, the factors time and space are implicit in the respective treatment. Such a procedure
gives credibility to the parameters included in the dynamic model construction. In order to enhance the importance of monitoring
in aquatic systems based on ecological integrity indicators, different biotic metrics were selected from the studied benthic
macroinvertebrate communities. The samples of aquatic macroinvertebrate, environmental and physical-chemical data were
collected from three watersheds of mountain rivers in Northeast Portugal, between 1983 and 1985. The model validation was
based on independent data from another watershed not included in the model construction. Thereafter, the model behaviour was
tested facing a “new” scenario, namely ongoing organic pollution disturbances in the region. The results are encouraging since,
after the model validation, they seem to demonstrate the reliability of the model (1) to assess the ecological status of running
waters from the studied watersheds and (2) to predict the behaviour of key macroinvertebrate metrics, along an ecological
gradient from relatively pristine conditions to serious human impacts.
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1. Introduction29

The ability of humans to change the world out-30

paces the capacity of living systems to respond to31

those changes (Dolèdec et al., 1999; Kimberling et al.,32
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fax: +351-259-350-480.

E-mail address: edna@utad.pt (E. Cabecinha).

2001). Therefore, most of the freshwater lotic ecosys-33

tems are subject to severe pressure by either an alter-34

ation in the quality or the quantity of the water, as well35

as the structure of these systems. This pressure forces36

changes in biotic communities, especially evidenced37

in a reduction of their characteristic biological diver-38

sity (Ribaudo et al., 2001; Harris, 2002). The progres- 39

sive degradation of running waters takes place in most40

watersheds in Northeast Portugal (Cortes, 1992). 41

1 0304-3800/$ – see front matter © 2003 Published by Elsevier B.V.
2 doi:10.1016/j.ecolmodel.2003.10.021
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For conservation and management purposes, the42

use of adequate ecological integrity indicators is par-43

ticularly helpful in assessing the impact of environ-44

mental changes on characteristic ecological patterns45

(Barbour et al., 1999; Dolèdec et al., 1999; Rabeni,46

2000; Andreasen et al., 2001; Dale and Beyeler,47

2001; Karr and Rossano, 2001; Kurtz et al., 2001;48

Karr, 2002). Ecological integrity is a concept centered49

in the system as a whole, but depends on the state50

of all components, such as the presence of species,51

populations and autochthonous communities, the52

occurrence of appropriate ecological processes and53

the maintenance of all the environmental conditions54

that support the ecosystem (Angermeier and Karr,55

1994; Townsend and Riley, 1999; Dale and Beyeler,56

2001). Since ecological indicators can reflect bio-57

logical, chemical and physical aspects of ecological58

conditions, they have been used to characterize status,59

to track or predict changes, to identify stressors or60

stressed systems, to assess risk and to influence man-61

agement actions (Seager, 1999; Rabeni, 2000; Karr62

and Chu, 2001; Kurtz et al., 2001; Karr, 2002). The63

biological alterations due to extrinsic causes or inher-64

ent in the natural running of aquatic ecosystems can65

be considered at the molecular or physiologic level, at66

the individual level and at population or community67

levels (Cortes, 1992; Karr, 1998, 1999; Turak et al.,68

1999; Cortes et al., 2002). Key aquatic communities69

have been used, in some cases for decades, to evalu-70

ate the biological quality of streams, rivers and lakes71

(Karr, 2002).72

In this paper, the macroinvertebrate communi-73

ties were used as ecological integrity indicators of74

aquatic ecosystems. These communities have been75

commonly chosen for aquatic bioassessment inves-76

tigations as aquatic invertebrates respond rapidly to77

environmental changes and provide signs for the early78

detection of ecological changes (Barbour et al., 1999;79

Kimberling et al., 2001). They are present in wide80

aquatic habitat types, possess life cycles with a rela-81

tively long aquatic phase giving information on short82

and long term disturbances and are relatively easy to83

sample and process due to their conspicuous nature84

(Wright et al., 1989, 1992; Hutchens et al., 1998;85

DeWalt et al., 1999; Whiles et al., 2000). Additionally,86

great progress has been made towards standardized87

methods of collection and analysis of these groups88

(Barbour et al., 1999; Karr and Rossano, 2001; Cortes89

et al., 2002). Other advantages of macroinvertebrate90

communities are related to the capacity for population91

recovery in response to good management procedures92

in previously disturbed ecosystems (Cortes, 1992; 93

Barbour et al., 1999; Harris and Silveira, 1999; Karr,94

2002). This recovery depends on countless factors95

such as the duration and nature of the disturbance,96

characteristics of the organisms (namely the life97

cycle phase) and the capacity of recolonization of98

affected habitats (Wallace, 1990; Yount and Niemi, 99

1990; Mackay, 1992; Hutchens et al., 1998; Rabeni, 100

2000; Kurtz et al., 2001). Therefore, several studies101

have demonstrated the effectiveness of invertebrate102

bioassessment for detection of stream reaches im-103

paired by a variety of point and non-point source104

pollutants (seeLenat, 1998; Thorne and Williams,105

1997; Karr, 1999, 2002; Maxted et al., 2000; Whiles106

et al., 2000; Kurtz et al., 2001). 107

One of the great challenges in ecological integrity108

studies is to predict how anthropogenic environmental109

changes will affect the abundance of species, guilds110

or communities in disturbed ecosystems (Andreasen 111

et al., 2001). Although ecological models have been112

used to predict macroinvertebrate species responses113

to environmental stresses and habitat characteristics,114

most of them are static (e.g.Wright, 1995; Parsons and115

Norris, 1996; Kay et al., 1999; Marchant et al., 1999;116

Moss et al., 1999; Smith et al., 1999; Turak et al., 1999;117

Charvet et al., 2000; Oberdorf et al., 2001). Static 118

models with fixed parameters are unable to estimate119

the structural changes when the habitat conditions are120

substantially changed (Jørgensen and Bernardi, 1997). 121

Therefore, it is a goal of ecological modelling to con-122

struct dynamic models and structural dynamic models123

that can adequately capture the structure and the124

composition, including the related processes, of those125

systems (Jørgensen, 1994, 2001; Chaloupka, 2002). 126

In fact, dynamic models are very important tools with127

which to improve the assessment of the medium- and128

long-term directional environmental disturbances in129

perturbed ecosystems (Jørgensen and Bernardi, 1997;130

Ault et al., 1999; Brosse et al., 2001; Cabral et al.,131

2001; Costanza and Voinov, 2001; Jørgensen,132

2001; Voinov et al., 2001; Santos and Cabral, submit-133

ted). The application of dynamic ecological models134

can synthesize the pieces of ecological knowledge,135

emphasizing the need for an holistic view of a certain136

environmental problem (Mitsch and Jørgensen, 1989). 137
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The aim of the present paper is to develop an holis-138

tic, simple, expedite and applicable methodology, by139

using appropriate statistical and dynamic modelling140

techniques, in order to contribute to the assessment141

of the ecological status in running waters systems. A142

stochastic dynamic model was constructed and vali-143

dated by focusing on the interactions between con-144

ceptually isolated key-components in such systems,145

namely between biological metrics and physicochem-146

ical conditions. These specific components of ecosys-147

tem integrity are intricately linked by their dependence148

on habitat characteristics, particularly their occurrence149

related to environmental conditions. Hypotheses to be150

tested include: (1) that the selected metrics are rep-151

resentative of the local macroinvertebrate community152

that changes in some predictable way with the increase153

of human influence; and (2) that the ecosystem in-154

tegrity can be assessed by the state variables, assumed155

as important ecological indicators, used in the dynamic156

model construction. These hypotheses were tested by157

new applications of a stochastic dynamic model in or-158

der to capture, in an holistic perspective, the complex-159

Fig. 1. Location of the study area in Northeast Portugal (shaded area) with the different watersheds used in the construction of the model
(Olo (O), Corgo (C) and Tinhela (T) rivers) and in the respective validation (Pinhão river (P)).

ity of some ecological processes resulting from the160

gradients of the ongoing environmental changes in the161

studied watersheds of Northeast Portugal. 162

2. Methods 163

2.1. Study area 164

The study was carried out in four main streams from165

the Douro river watershed, located in Northeast Por-166

tugal: the Olo (O), Corgo (C), Pinhão (P) and Tinhela167

(T) rivers (Fig. 1). The watersheds of these rivers have168

different lithological, topographical, hydrological and169

land use features. The studied streams range from 2nd170

to 10th in order of altitude (50–1500 m). The granite171

and schist bedrocks create a common pattern of acid172

and soft waters. Strongly seasonal irregular discharges,173

related to the precipitation pattern and low retention174

time are important characteristics. Land use reflects175

the topographical conditions: the steep slopes are cov-176

ered with rough pastures mixed with forests of pine

ECOMOD 3515 1–15
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trees; few arable crops, using a small amount of fer-177

tilizers and large areas of vineyards are present in the178

lower lands. During the sampling period (1983–1985)179

some sources of disturbance have changed these fea-180

tures: an input of As, Zn and sulphates, resulting from181

spoil heaps created by gold mines have affected the182

Tinhela river, and sewage from urban areas has caused183

eutrophic conditions in the Corgo river.184

2.2. Field programme185

The environmental and biological data used to186

support the model construction was collected in 15187

sampling stations from three watersheds (O, C and T,188

Fig. 1) (Cortes, 1992), representative of the typolog-189

ical variations in the studied region. The model was190

validated with independent data from four sampling191

stations (P1, P2, P3 and P4) located in the Pinhão192

watershed (Fig. 1). Sampling was carried out from193

March 1983 to November 1985. Four sampling cam-194

paigns were made annually, corresponding to spring,195

summer, autumn and winter periods (seeCortes,196

1992for details). In each campaign, semi-quantitative197

biological samples were taken monthly in each sam-198

pling station. Therefore, the recorded data allowed199

to incorporate into the model the seasonality of the200

natural variations that occurred in these aquatic sys-201

tems. Aquatic macroinvertebrates were identified202

at species level with the exception of Acari (pres-203

ence/absence), Oligochaeta (Family) and Chironomi-204

dae (sub-Family), and grouped in relevant metrics.205

The data were analysed according to measures of taxa206

richness, composition and tolerance to environmental207

disturbance. These biomonitoring metrics were used208

to assess river health as they reveal high sensitivity to209

environmental stress (see,Cortes, 1992; Thorne and210

Williams, 1997; Barbour et al., 1999; Harris and211

Silveira, 1999; Karr, 1999, 2002; Maxted et al., 2000).212

The specifications of all physicochemical and biolog-213

ical variables considered in this study are presented214

in Table 1.215

2.3. Data analysis216

The stochastic dynamic model proposed is preceded217

by a conventional multivariate statistical procedure.218

A stepwise multiple regression analysis (Zar, 1996)219

was used to test relationships between the biological220

Table 1
Specification (units and taxa resolution) of all physicochemical
and biological variables considered in this study

Variables Specification Code

Environmental variables
Alkalinity meq. l−1 ALK
Altitude of the site m ALT
Biochemical oxygen demand mg O2 l−1 BOD5

Chemical oxygen demand mg O2 l−1 COD
Chlorides meq. l−1 CL
Conductivity at 20◦C �mhos cm−1 COND
Distance from the stream

source
km DSOURCE

Hardness meq. l−1 HARD
Nitrates-N mg N-NO3 l−1 NO3

Oxygen content mg l−1 O2

pH pH units pH
Precipitation mm PREC
Temperature ◦C TEMP

Integrity metrics
Composition measures

Number of Chironomidae
taxa

No. of
sub-families

CHIR

Number of Ephemeroptera
taxa

No. of species EPH

Number of Plecoptera taxa No. of species PLEC
Number of Trichoptera taxa No. of species TRIC
Number of EPT taxa EPH+ PLEC

+ TRIC
EPT

Richness measures
Total number of taxa No. of species TOT
Shannon–Wiener index H′
Pielou’s evenness E

Tolerance measures
EPT/(EPT+ Chironomidae) EPT and

CHIR

metrics and the environmental variables. The depen-221

dent variables correspond to the selected metrics ex-222

pressed in number of species, with the exception of223

Chironomidae in sub-families. The independent vari-224

ables were the environmental parameters displayed in225

Table 1. A step down procedure was used so that the226

effect of each variable in the presence of all others227

could be examined first, with the least significant vari-228

able being removed at every step. The analysis stopped229

when all the remaining variables had a significance230

level P < 0.05 (Zar, 1996). Although the lack of nor- 231

mal distribution of the dependent variables was not232

solved by any transformation (Kolmogorov–Smirnov233

test), the linearity and the homoscedasticity of the234
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residuals were achieved by using logarithmic transfor-235

mations (X′ = log10[X+1]) in each side of the equa-236

tion, i.e. on both dependent and independent variables237

(Zar, 1996). The lack of multicolinearity between in-238

dependent variables was assured by the inspection of239

the respective tolerance values.240

Since the previous statistical procedures are static,241

the initial data set included true gradients of environ-242

mental characteristics and man-induced disturbances.243

In this way, the factors of time and space were implicit244

in the respective treatment and the significant par-245

tial regression coefficients were assumed as relevant246

holistic ecological parameters in the dynamic model247

construction. This is the heart of the philosophy of248

the stochastic dynamic model developed. This model249

does not distinguish between different species within250

the selected metrics, but considers them as a whole in251

each corresponding state variable. Therefore, from an252

holistic perspective, the partial regression coefficients253

represent the global influence of the environmental254

variables selected and are of significant importance in255

several complex ecological processes not included ex-256

plicitly in the model, but related to the state variables257

or metrics under consideration. All the modelling pro-258

cedures were developed using STELLA 5.0®.259

For validation purposes, independent biological and260

physicochemical data from the four sampling stations261

of the Pinhão watershed (P1, P2, P3 and P4) were used262

to confront the simulated values of a given metric,263

resulting from the introduction of the respective real264

physicochemical data into the model, with the real val-265

ues of the same metric contemporaneous to those en-266

vironmental parameters. A regression analysis (Model267

II) was performed to compare the observed real values268

of the selected ecological metrics with the expected269

values obtained by model simulations for the same pe-270

riods. At the end of each analysis, the 95% confidence271

limits for the intercept and the slope of the regression272

line were determined which, together with the results273

of the respective analysis of variance (ANOVA), al-274

lowed us to assess the proximity of the simulations275

produced with the observed values (Sokal and Rohlf,276

1995). When the results of the regression analysis were277

statistically significant, i.e. when the intercept of the278

regression line was not statistically different from 0279

and the slope was not statistically different from 1, the280

model simulations were considered validated (Sokal281

and Rohlf, 1995; Oberdorf et al., 2001).282

In order to quantify assessment we must be able to283

specify the ecological properties that are expected to284

occur in the absence of human alteration (the pristine285

condition) or are attainable if human impact ceases.286

Since we had no knowledge about the biota that existed287

at the studied sites prior to human alteration, we took288

the environmental data reported in the eighties as a289

reference situation. In fact, in that period the studied290

watersheds presented, in general, good water quality291

(clean waters, not polluted or little altered), according292

to the BMWP′ (Alba-Tercedor and Sánchez-Ortega,293

1998) and IBB (Pauw and Vanhooren, 1983) indexes. 294

After the validation process, the model performance295

was analysed facing scenarios of water quality degra-296

dation resulting from organic pollution. Since the297

sampling station C6, located in the Corgo watershed,298

was monitored in 1994 for chemical water quality299

(Sampaio, 1995), approximately 10 years later than300

the data used for the model construction, this data was301

used to represent water quality degradation in this site.302

In fact, according toSampaio (1995), this sampling 303

station displayed a typical diagnosis of eutrophication.304

Two scenarios for C6 were considered to evaluate the305

sensitivity of the developed model in discriminating306

real perturbations: scenario 1 was assumed, for com-307

parative purposes, as a reference condition (in spite308

of already not being an unpolluted site) and charac-309

terized by the environmental data from 1984 (Cortes, 310

1992), and scenario 2 was identified as a perturbed311

condition regarding environmental data from 1994312

(Sampaio, 1995). Thereafter, a Mann–Whitney test313

was performed to compare two different time series314

from the two scenarios considered. 315

3. Results 316

3.1. Effects of environmental factors in biological 317

metrics 318

A stepwise multiple regression analysis was used to319

search for significant correlations between the mixed320

biological metrics and the mixed environmental vari-321

ables of the three watersheds used in the model con-322

struction. Of the 13 environmental variables consid-323

ered, 4 were excluded from the model (P > 0.05), 324

namely chemical oxygen demand, phosphates-P, chlo-325

rides, and dissolved oxygen content. The environmen-326
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Table 2
The regression equations, degrees of freedom (d.f.), coefficient of determination (R2)

Equations d.f. R2 F

log CHIR = 0.066+ 0.278(log COND)− 0.890(log HARD) 69 0.181 4.169∗
log EPH= 1.805+ 0.255(log DSOURCE)− 1.718(log pH)− 0.831(log NO3) 68 0.263 6.637∗∗∗
log PLEC= −1.385+ 0.145(log PREC)+ 0.457(log ALT) + 0.256(log DSOURCE) 68 0.504 19.333∗∗∗
log TRIC = −0.300+ 0.305(log BOD5) + 0.274(log ALT) − 0.822(log NO3) 68 0.253 6.238∗∗∗
log TOT = 2.548+ 1.492(log ALK) − 1.576(log pH)− 0.961(log NO3) 68 0.206 4.462∗∗
log H′ = 0.512+ 0.624(log ALK) − 0.093(log COND) 68 0.081 3.022∗

F-values and their significance level (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001) for all the variables combination selected as significant by
stepwise multiple regression. The specification of all variable codes is expressed inTable 1.

tal variables associated with a longitudinal gradient327

seemed to be the main influencing factors on metrics328

related to those macroinvertebrates more sensitive to329

organic pollution. In fact, the increase in the number330

of species of Ephemeroptera and Plecoptera was posi-331

tively correlated with the distance from stream source332

(Table 2). Moreover, the number of species of Ple-333

coptera and Trichoptera seemed to be positively in-334

fluenced by an increase of altitude (Table 2). The in-335

crease of nitrate concentrations, an indicator of poten-336

tial organic perturbation, seemed to negatively affect337

the total number of taxa, and the Ephemeroptera and338

Trichoptera compositions (Table 2). The remaining339

physicochemical significant influences are expressed340

in Table 2.341

3.2. Model conceptualization and equations342

The diagram of the model presented inFig. 2 is343

based on the relationships detected in multiple regres-344

sion analysis (Table 2) and on existing relevant re-345

gional data sets (Cortes, 1992). Therefore, the model346

includes the following six state variables: four met-347

rics related to the composition measures of benthic348

community and two related to their richness measures349

(Fig. 2). Difference equations that describe the pro-350

cesses affecting the state variables are expressed in a351

logarithm of composition and richness of the respec-352

tive biological metrics (Table 3, Difference equations).353

The initial values of all state variables, indicated in354

Table 3(Process equations), were assumed to be zero,355

given the lack of knowledge of the initial situation356

in t0. Later, for simulations representation, the initial357

value was discarded, since only in t1 (first month of358

the simulation) was it possible to take into account the359

influences of the environmental variables, whose sea-360

sonal fluctuations were introduced into the model as361

table functions (Table 3, Table functions). 362

The inflows affecting the ecological metrics state363

variables, Chironomidae (Chir gains), Ephemeroptera364

(Eph gains), Plecoptera (Plec gains), Trichoptera365

(Tric gains), total number of taxa (Tot gains), and366

Shannon–Wiener index (H′ gains), were based on the367

positive constants and all positive partial coefficients368

of each metric resulting from the previous multiple369

regression analysis (Fig. 2, Tables 2 and 3, Difference 370

and Process equations). However, all metrics were371

affected by an outflow (Chir losses, Eph losses, Plec372

losses, Tric losses, Tot losses, H′ losses) related to the373

negative constants and partial regression coefficients374

(Fig. 2, Tables 2 and 3, Difference and Process equa-375

tions). Although the composition and richness output376

for each metric in our stochastic dynamic model sim-377

ulation is composed of a given value per time unit,378

the respective state variable may result in a cumula-379

tive behaviour over time in response to environmental380

condition changes. Therefore, to prevent this from381

happening, six outflow adjustments were incorporated382

into the model (Chir adjust, Eph adjust, Plec adjust,383

Tric adjust, Tot adjust, and H′ adjust). These outflow384

adjustments aim to empty the ecological metric state385

variables at each time step, by a “flushing cistern386

mechanism”, before beginning the next step with387

new environmental influences (Fig. 2 and Table 3, 388

Difference and Process equations). For process com-389

patibilities and a more realistic comprehension of390

the model simulations, some conversions were intro-391

duced, denominated as associated variables (Fig. 2 392

and Table 3, associated variables). Regarding the393

biological metrics, these conversions were obtained394

through an inverse transformation (anti-logarithmic),395

which transforms logarithms into composition and396

ECOMOD 3515 1–15
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Fig. 2. Conceptual diagram of the model used to predict biological metrics by given environmental variables from the studied watersheds
in Northeast Portugal. The specification of all variable codes is expressed inTable 1.

richness expressed in the original measurement units397

(CHIR, EPH, PLEC, TRIC, TOT, and H′). The physic-398

ochemical variables were logarithm transformed for399

a compatible integration into the balance of the state400

variables (Fig. 2 and Table 3, associated variables).401

This transformation was incorporated because the402

data required for the state variables balances should403

use the same units to obtain the significant partial404

regression coefficients, assumed to be holistic eco-405

logical parameters (seeSection 2). Therefore, only406

logarithms of the physicochemical variables are ac-407

ceptable in the inflows and outflows of the state408

variables (Fig. 2 andTable 3, Difference and Process409

equations). Thus, the model is ready to receive and410

transform real data from the environmental variables411

and convert logarithmic outputs from state variables412

simulations into original units. Other variables, re-413

sulting from simple mathematical operations between414

the associated variables, such as Pielou’s evenness415

(E), the ratio EPT/(EPT+ Chironomidae) (EPT and416

CHIR), and the EPT metric (EPT), were used to com-417

plete the output of the model and named composed418

variables (Table 3, composed variables). Some envi-419

ronmental values, such as altitude (ALT) and distance420

from the stream source (DSOURCE), were static,421

with no variation during the simulated period, and,422

ECOMOD 3515 1–15
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Table 3
Mathematical equations used in Stella for the relationships between the composition, richness and tolerance metrics and the environmental
physicochemical variables from the studied watersheds

Difference equations
log CHIR(t) = log CHIR(t − dt) + (Chir gains− Chir losses− Chir adjust)dt
log EPH(t) = log EPH(t − dt) + (Eph gains− Eph losses− Eph adjust)dt
log PLEC(t) = log PLEC(t − dt) + (Plec gains− Plec losses− Plec adjust)dt
log TRIC(t) = log TRIC(t − dt) + (Tric gains− Tric losses− Tric adjust)dt
log TOT(t) = log TOT(t−dt) + (Tot gains− Tot losses− Tot adjust)dt
log H′(t) = log H′(t − dt) + (H′ gains− H′ losses− H′ adjust)dt

Process equations
(a) Chironomidae

Initial richness of log CHIR= 0
Chir gains= 0.066+ 0.278 log COND
Chir losses= 0.890 log HARD
Chir adjust= log CHIR

(b) Ephemeroptera
Initial richness of log EPH= 0
Eph gains= 1.805+ 0.255 log DSOURCE
Eph losses= 1.718 log pH+ 0.831 log NO3

Eph adjust= log EPH
(c) Plecoptera

Initial richness of log PLEC= 0
Plec gains= 0.145 log PREC+ 0.457 log ALT + 0.256 log DSOURCE
Plec losses= 1.385
Plec adjust= log PLEC

(d) Trichoptera
Initial richness of log TRIC= 0
Tric gains= 0.305 log CBO5 + 0.274 log ALT
Tric losses= 0.300+ 0.822 log NO3

Tric adjust= log TRIC
(e) Total number of taxa

Initial richness of log TOT= 0
Tot gains= 2.548+ 1.492 log ALK
Tot losses= 1.576 log pH+ 0.961 log NO3

Tot adjust= log TOT
(f) Shannon–Wiener index

Initial richness of log H′ = 0
H′ gains= 2.548+ 1.492 log ALK
H′ losses= 1.576 log pH+ 0.961 log NO3

H′ adjust= log H′

Associated variables
CHIR = 10∧(log CHIR) − 1
EPH = 10∧(log EPH)− 1
PLEC = 10∧(log PLEC)− 1
TRIC = 10∧(log TRIC) − 1
TOT = 10∧(log TOT) − 1
H′ = 10∧(log H′) − 1
log ALK = log10 (ALK + 1)
log ALT = log10 (ALT + 1)
log BOD5 = log10 (BOD5 + 1)
log COND = log10 (COND + 1)
log DSOURCE= log10 (DSOURCE+ 1)
log HARD = log10 (HARD + 1)
log NO3 = log10 (NO3 + 1)
log O2 = log10 (O2 + 1)
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Table 3 (Continued )

log pH = log10 (pH + 1)
log PPREC= log10 (PREC+ 1)

Composed variables
E = H′/log TOT
EPT = EPH + PLEC + TRIC
EPT and CHIR= EPT/(CHIR + EPT)

Environmental constants
ALT = 690
DSOURCE= 7.5

Table functions
ALK = Graph (month, meq. l−1)

(0.00, 0.18), (1.09, 0.18), (2.18, 0.18), (3.27, 0.2), (4.36, 0.2), (5.45, 0.2), (6.55, 0.26), (7.64, 0.26), (8.73, 0.26), (9.82, 0.13),
(10.9, 0.13), (12.0, 0.13)

BDO5 = Graph (month, mg O2 l−1)
(0.00, 0.42), (1.09, 0.42), (2.18, 0.42), (3.27, 0.63), (4.36, 0.63), (5.45, 0.63), (6.55, 2.40), (7.64, 2.40), (8.73, 2.40), (9.82,
1.70), (10.9, 1.70), (12.0, 1.70)

COND = Graph (month,�mhos cm−1)
(0.00, 33.3), (1.09, 33.3), (2.18, 33.3), (3.27, 33.5), (4.36, 33.5), (5.45, 33.5), (6.55, 48.0), (7.64, 48.0), (8.73, 48.0), (9.82,
37.6), (10.9, 37.6), (12.0, 37.6)

HARD = Graph (month, meq. l−1)
(0.00, 0.19), (1.09, 0.19), (2.18, 0.19), (3.27, 0.23), (4.36, 0.23), (5.45, 0.23), (6.55, 0.1), (7.64, 0.1), (8.73, 0.1), (9.82, 0.3),
(10.9, 0.3), (12.0, 0.3)

NO3 = Graph (month, mg N-NO3− l−1)
(0.00, 0.01), (1.09, 0.01), (2.18, 0.01), (3.27, 0.00), (4.36, 0.00), (5.45, 0.00), (6.55, 0.03), (7.64, 0.03), (8.73, 0.03), (9.82,
0.13), (10.9, 0.13), (12.0, 0.13)

O2 = Graph (month, mg l−1)
(0.00, 9.17), (1.09, 9.17), (2.18, 9.17), (3.27, 9.10), (4.36, 9.10), (5.45, 9.10), (6.55, 7.60), (7.64, 7.60), (8.73, 7.60), (9.82,
10.2), (10.9, 10.2), (12.0, 10.2)

pH = Graph (month, pH units)
(0.00, 6.29), (1.09, 6.29), (2.18, 6.29), (3.27, 6.40), (4.36, 6.40), (5.45, 6.40), (6.55, 6.50), (7.64, 6.50), (8.73, 6.50), (9.82,
6.30), (10.9, 6.30), (12.0, 6.30)

PREC= Graph (month, mm)
(0.00, 80.4), (1.09, 80.4), (2.18, 80.4), (3.27, 22.7), (4.36, 22.7), (5.45, 22.7), (6.55, 137), (7.64, 137), (8.73, 137), (9.82, 154),
(10.9, 154), (12.0, 154)

As an example, the environmental data of the sampling station P1 was used. The specification of all variable codes is expressed inTable 1.

therefore, were introduced as environmental constants423

(Table 3, Environmental constants).424

3.3. Model simulations425

The temporal unit chosen was the month, because it426

represents the average ecological variations that occur427

in lotic systems throughout one or several years. The428

Euler’s integration method was used. For precipitation429

values, we considered the data from a typical year430

that would correspond to the averages calculated over431

a period of 30 years (1961–1990). In this work, all432

the performed simulations have a total length of 12433

months, beginning in the spring, coinciding with the434

first sampling campaign carried out byCortes (1992).435

For the majority of the relevant metrics adopted,436

the model successfully predicts the behaviour of the437

biological metrics under the influence of independent438

environmental variables from the Pinhão watershed439

sampling stations (P1, P2, P3 and P4) (Table 4). With 440

the exception of P3, all the simulations were statisti-441

cally validated by the regression analysis (Model II)442

of the remaining sampling stations (Table 4). Fig. 3 il- 443

lustrates the confrontation between simulated and real444

values for the most revealing metrics under consider-445

ation (Chironomidae, EPT, number of total taxa, and446

Shannon–Wiener index). For these metrics, the model447

simulations accurately predicted the real values for P1,448

P2 and P4, with generally the same behavioural ten-449

dencies, but not for P3 (Fig. 3 andTable 4). In fact, 450
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Table 4
Regression analysis (Model II) intercepts and slopes, and the respective 95% confidence limits (in parenthesis), degrees of freedom (d.f.),
coefficient of determination (R2)

Metrics Site Intercept Slope d.f. R2 F

EPH P1 −0.45 (−1.05; 0.03) 1.21 (1.02; 1.45) 11 0.936 161.13∗∗∗
P2 0.06 (−1.10; 0.88) 1.17 (0.87; 1.60) 11 0.831 54.211∗∗∗
P3 −0.056 (−0.83; 0.52) 0.86 (0.59; 1.21) 11 0.788 40.92∗∗∗

PLEC P1 −0.73 (−1.24; −0.32) 1.43 (1.20; 1.72) 11 0.933 154.27∗∗∗
P2 −0.029 (−0.20; 0.13) 0.69 (0.57; 0.80) 11 0.941 176.56∗∗∗
P3 −2.80 (−119.12;−0.41) 3.65 (1.73; 96.76) 11 0.307 4.86∗
P4 −0.003 (−0.31; 0.23) 1.12 (0.82; 1.55) 11 0.819 49.68∗∗∗

TRIC P1 −0.69 (−2.67; 0.55) 1.55 (1.14; 2.21) 11 0.810 46.77∗∗∗
P2 −0.25 (−2.58; 1.02) 1.49 (1.04; 2.41) 11 0.716 27.77∗∗∗
P3 −1.9 (−11.43; 0.64) 2.71 (1.58; 6.94) 11 0.515 11.69∗∗
P4 0.36 (−0.26; 0.85) 1.14 (−1.41; 0.92) 11 0.907 107.69∗∗∗

EPT P1 −2.05 (−4.43; −0.23) 1.43 (1.18; 1.75) 11 0.920 126.36∗∗∗
P2 0.45 (−1.60; 2.02) 1.09 (0.85; 1.39) 11 0.883 83.41∗∗∗
P3 −3.42 1.92 11 0.235 3.37 (n.s.)
P4 −0.11 (−1.54; 1.01) 1.10 (0.89; 1.38) 11 0.901 99.89∗∗∗

CHIR P1 −0.24 (−2.55; 0.56) 1.76 (0.99; 3.94) 11 0.732 12.69∗∗
P2 −0.42 (−4.74; 0.83) 1.45 (0.69; 4.06) 11 0.434 8.44∗
P3 −1.04 (−7.52; 0.44) 1.39 (0.58; 4.97) 11 0.370 6.46∗
P4 −0.49 (−3.59; 0.61) 1.16 (0.51; 2.97) 11 0.431 8.34∗

EPT and CHIR P1 −0.008 (−0.09; 0.06) 1.12 (1.01; 1.22) 11 0.981 570.69∗∗∗
P2 0.015 (−0.11; 0.12) 1.05 (0.89; 1.22) 11 0.948 202.19∗∗∗
P3 0.014 (−0.12; 0.13) 1.09 (0.93; 1.29) 11 0.944 184.27∗∗∗
P4 −0.03 (−0.24; 0.13) 1.12 (0.88; 1.43) 11 0.977 468.98∗∗∗

TOT P1 −2.44 (−8.07; 1.81) 1.08 (0.83; 1.40) 11 0.868 72.49∗∗∗
P2 −0.108 (−0.83; 0.58) 1.08 (1.04; 1.13) 11 0.996 2807.2∗∗∗
P3 −13.85 1.91 11 0.254 3.75 (n.s.)
P4 −0.89 (−4.59; 2.04) 0.93 (0.73; 1.20) 11 0.878 79.05∗∗∗

H′ P1 −0.026 (−0.17; 0.11) 1.08 (0.98; 1.18) 11 0.982 595.02∗∗∗
P2 −0.19 (−0.89; 0.27) 1.34 (0.99; 1.87) 11 0.820 50.19∗∗∗
P3 −0.56 (−2.67; 0.30) 1.59 (0.93; 3.23) 11 0.575 14.91∗∗
P4 −0.37 (−1.45; 0.23) 1.25 (0.79; 2.09) 11 0.674 22.70∗∗∗

E P1 −0.033 (−0.15; 0.06) 1.18 (0.99; 1.41) 11 0.935 154.38∗∗∗
P2 −0.07 (−0.35; 0.10) 1.32 (0.94; 1.92) 11 0.787 40.76∗∗∗
P3 −0.089 (−0.84; 0.19) 1.32 (0.68; 2.98) 11 0.499 10.96∗∗
P4 −0.15 (−0.53; 0.06) 1.35 (0.89; 2.13) 11 0.717 27.94∗∗∗

F-values and significance level (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001), for all the observed vs. expected values of the biological metrics.
P1, P2, P3 and P4 represent the four sampling stations of the Pinhão river. (n.s.) not significant. The specification of all variables codes
is expressed inTable 1.

the worst performances of the model were always ob-451

tained in the sampling station P3, located in an atyp-452

ical tributary of the Pinhão river (Fig. 1). In P3, the453

simulated values were frequently underestimated or454

overestimated (Fig. 3andTable 4), probably because,455

in this case, the environmental variables selected do456

not capture all the relevant variability and heterogene-457

ity of this particular site. Overall, for the majority of458

the simulations, the model behaves as expected for the459

reference situation considered. 460

After the validation procedures, we tested the461

model’s performance in the face of a new scenario of462

eutrophization in the sampling station C6, from the463

Corgo river. Using the same illustrative criteria used464
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Fig. 4. Model simulations for Chironomidae (CHIR), EPT, total number of taxa (TOT) and Shannon–Wiener index (H′) facing two different
scenarios: scenario 1, the reference condition in 1985 (black line) and scenario 2, the perturbed condition in 1995 (grey line), both from
the sampling station C6 of the Pinhão watershed.

in Fig. 3, the comparisons between the simulated val-465

ues of the four more revealing metrics, obtained from466

scenario 1 (reference condition in 1984) and from467

scenario 2 (organic degradation in 1994) are shown468

in Fig. 4. The model reacted to the new scenario in469

a differentiated way. In fact, a clear decrease in the470

composition and richness of the metrics more sensi-471

tive to organic pollution was evident when water qual-472

ity declined in the scenario 2 (Fig. 4). On the con-473

trary, the number of Chironomidae taxa, well adapted474

to the organic degradation, increased in scenario 2475

(Fig. 4). These results were statistically corroborated476

by the Mann–Whitney test that indicated an expected477

discrimination between scenario 1 and scenario 2, re-478

garding the decreases in EPT (U = 144,n = 24,P <479

0.001), total number of taxa (U = 144,n = 24, P <480

0.001) and Shannon–Wiener index values (U = 138,481

n = 24, P < 0.001), and the increase of Chironomi-482

dae taxa (U = 144,n = 24, P < 0.001).483

4. Discussion484

The stochastic-dynamic methodology developed in485

this study seems to represent a useful contribution to

486

the assessment of the ecological status of typical run-487

ning waters, predicting the structure and diversity of488

key aquatic biological metrics. In fact, the simula-489

tion results showed that the biological metrics selected490

as state variables were not indifferent to changes in491

the environmental conditions, namely when sites rela-492

tively unaffected by human activities were changed by493

man-induced disturbances, such as organic pollution.494

The relevant ecological drifts observed are in agree-495

ment with other studies that have investigated the bi-496

ological consequences of aquatic ecosystem changes497

by these type of anthropogenic impacts on key aquatic498

communities in general and on macroinvertebrates in499

particular (e.g.Cortes, 1992; Wright et al., 1995; Fore500

et al., 1996; Hutchens et al., 1998; DeWalt et al., 1999; 501

Davies et al., 2000; Whiles et al., 2000; Karr and502

Rossano, 2001; Karr, 2002). 503

Since the attributes of the macroinvertebrate com-504

munity structure, such as their respective composi-505

tion, diversity and abundance are influenced by cer-506

tain environmental conditions (Karr and Dudley, 1981; 507

Norris et al., 1995; Richards et al., 1993; Roth et al.,508

1996; Townsend et al., 1997a,b; Lounaci et al., 2000; 509

Li et al., 2001), the developed methodology can be510

used as a predictive tool for running waters ecologi-511
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cal assessment. Another goal when developing meth-512

ods for assessing changes in the ecological integrity513

of an aquatic ecosystem is the feasibility of appli-514

cation and extent to which the results can be repro-515

duced in other areas (Andreasen et al., 2001). The516

methodology proposed is expeditious and easily ap-517

plicable to other aquatic ecosystems affected by envi-518

ronmental changes. The above multivariate statistical519

analysis used gave robustness to the dynamic interac-520

tions, with holistic and ecological relevance included521

in the model construction and reduces the number of522

pre-conceptions added to the model. Nevertheless, if523

we consider that validation is a fundamental process524

to test the relative accuracy of the model response in525

relation to its applicability (Rykiel, 1996) then two526

main questions remain within the present methodol-527

ogy. The first deals with the need for a validation car-528

ried out over a wider geographical area (Karr, 2002)529

and the second requires the use of other key aquatic530

communities, such as phytoplankton, microphytoben-531

thos, macrophytes, and fish (Barbour et al., 1999).532

Despite these considerations, the philosophy of this533

stochastic-dynamic methodology can be applicable534

to aquatic ecosystem management and policymaking,535

providing a useful contribution to define the reference536

conditions for surface water bodies from the quality537

elements specified in point 1.1 in Annex V of the538

Water Framework Directive 2000/60/EC. This will539

help not only the public end-users, but also those540

evaluating environmental quality.541

Overall, the main results showed that, as with any542

complex process in science, it is valid, interesting, and543

instructive to construct stochastic dynamic models544

focusing on the interactions between key-components545

of changing natural ecosystems. This approach may546

also provide a useful starting point from which to547

develop more global techniques in the scope of this548

research area, such the spatial dynamic models and to549

create expeditious interfaces with Geographical Infor-550

mation Systems, which will make the methodology551

more instructive and credible to decision-makers and552

environmental managers (Costanza, 1992, Santos and553

Cabral, submitted).554
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