Please use this identifier to cite or link to this item: http://hdl.handle.net/10348/11332
Title: Variations around a general quantum operator
Authors: Cardoso, José Luís dos Santos
Keywords: General quantum difference operator
β-derivative
β-integral
β-Lebesgue spaces
q-Analogues
Jackson q-Integral
Issue Date: 17-Feb-2020
Publisher: Springer
Citation: Cardoso, J.L. Variations around a general quantum operator. Ramanujan J 54, 555–569 (2021). https://doi.org/10.1007/s11139-019-00210-8
Abstract: Let I ⊆ R be an interval and β : I → I a strictly increasing and continuous function with a unique fixed point s0 ∈ I that satisfies (s0 − t)(β(t) − t) ≥ 0 for all t ∈ I, where the equality holds only when t = s0. For appropriate choices of the function β, the quantum operator defined by Hamza et al., Dβ[ f ](t) := f β(t) − f (t) β(t) − t if t = s0 and Dβ[ f ](s0) := f (s0) if t = s0, generalizes both the Jackson q-operator Dq and the Hahn (quantum derivative) operator, Dq,ω. With respect to the inverse of this general quantum difference operator, the β-integral, we study properties of the corresponding Lebesgue spaces L p β ([a, b]).
Peer Reviewed: yes
URI: https://doi.org/10.1007/s11139-019-00210-8
http://hdl.handle.net/10348/11332
Document Type: Article
Appears in Collections:DMAT - Artigo publicado em Revista Científica Indexada

Files in This Item:
File Description SizeFormat 
2021_RAMA_Variations around a general quantum operator_J.L.Cardoso.pdf
  Restricted Access
318,16 kBAdobe PDFView/Open Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.