Please use this identifier to cite or link to this item:
http://hdl.handle.net/10348/11332
Title: | Variations around a general quantum operator |
Authors: | Cardoso, José Luís dos Santos |
Keywords: | General quantum difference operator β-derivative β-integral β-Lebesgue spaces q-Analogues Jackson q-Integral |
Issue Date: | 17-Feb-2020 |
Publisher: | Springer |
Citation: | Cardoso, J.L. Variations around a general quantum operator. Ramanujan J 54, 555–569 (2021). https://doi.org/10.1007/s11139-019-00210-8 |
Abstract: | Let I ⊆ R be an interval and β : I → I a strictly increasing and continuous function with a unique fixed point s0 ∈ I that satisfies (s0 − t)(β(t) − t) ≥ 0 for all t ∈ I, where the equality holds only when t = s0. For appropriate choices of the function β, the quantum operator defined by Hamza et al., Dβ[ f ](t) := f β(t) − f (t) β(t) − t if t = s0 and Dβ[ f ](s0) := f (s0) if t = s0, generalizes both the Jackson q-operator Dq and the Hahn (quantum derivative) operator, Dq,ω. With respect to the inverse of this general quantum difference operator, the β-integral, we study properties of the corresponding Lebesgue spaces L p β ([a, b]). |
Peer Reviewed: | yes |
URI: | https://doi.org/10.1007/s11139-019-00210-8 http://hdl.handle.net/10348/11332 |
Document Type: | Article |
Appears in Collections: | DMAT - Artigo publicado em Revista Científica Indexada |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021_RAMA_Variations around a general quantum operator_J.L.Cardoso.pdf Restricted Access | 318,16 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.