Utilize este identificador para referenciar este registo: http://hdl.handle.net/10348/6770
Título: Variations around Jackson's quantum operator
Autor: Cardoso, J. L.
Petronilho, J.
Palavras-chave: Methods and Applications of Analysis
Data: 2015
Editora: International Press of Boston
Resumo: Let 0<q<1, ω≥0, ω0:=ω/(1 − q), and I a set of real numbers. Consider the so-called quantum derivative operator, D_{q,ω}, acting on functions f:I→K (where K = R or C) as D_{q,ω}[f](x):=(f(qx+ω )−f(x))/((q−1)x+ω), x∈I\{ω0}, and D_{q,ω}[f](ω0):=f′(ω0) whenever ω0∈I and this derivative exists. This operator was introduced by W. Hahn in 1949. Its inverse operator is given in terms of the so-called Jackson-Thomae (q,ω−integral, also called Jackson-Nörlund (q,ω)−integral. For ω=0 one obtains the Jackson’s q−operator, D_q, whose inverse operator is given in terms of the so-called Jackson q−integral. In this paper we survey in an unified way most of the useful properties of the Jackson’s q−integral and then, by establishing links between D_{q,ω} and D_q, as well as between the q and the (q,ω) integrals, we show how to obtain the properties of D_{q,ω} and the (q,ω)−integral from the corresponding ones fulfilled by D_q and the q−integral. We also consider (q,ω)−analogues of the Lebesgue spaces, denoted by {\cal L}^p_{q,ω}[a, b] and L^p_{q,ω}[a, b], being a,b∈R. It is shown that the condition a≤ω0≤b ensures that these are indeed linear spaces over K. Moreover, endowed with an appropriate norm, L^p_{q,ω}[a,b] satisfies some expected properties: it is a Banach space if 1≤p≤∞, separable if 1≤p<∞, and reflexive if 1<p<∞.
Revisão por Pares: yes
URI: http://hdl.handle.net/10348/6770
Tipo de Documento: Artigo
Aparece nas colecções:DMAT - Artigo publicado em Revista Científica Indexada

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
qw-integral_MAA.pdf
  Restricted Access
145,98 kBAdobe PDFVer/Abrir Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.